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Selecting an optimal antigen is a crucial step in vaccine development,
significantly influencing both the vaccine’s effectiveness and the breadth of
protection it provides. High antigen sequence variability, as seen in pathogens
like rhinovirus, HIV, influenza virus, complicates the design of a single cross-
protective antigen. Consequently, vaccination with a single antigen molecule
often confers protection against only a single variant. In this study, machine
learning methods were applied to the design of factor H binding protein (fHbp),
an antigen from the bacterial pathogen Neisseria meningitidis. The vast number
of potential antigen mutants presents a significant challenge for improving
fHbp antigenicity. Moreover, limited data on antigen-antibody binding in public
databases constrains the training of machine learning models. To address
these challenges, we used computational models to predict fHbp properties
and machine learning was applied to select both the most promising and
informative mutants using a Gaussian process (GP) model. These mutants
were experimentally evaluated to both confirm promising leads and refine the
machine learning model for future iterations. In our current model, mutants
were designed that enabled the transfer of fHbp v1.1 specific conformational
epitopes onto fHbp v3.28, while maintaining binding to overlapping cross-
reactive epitopes. The top mutant identified underwent biophysical and x-
ray crystallographic characterization to confirm that the overall structure of
fHbp was maintained throughout this epitope engineering experiment. The
integrated strategy presented here could form the basis of a next-generation,
iterative antigen design platform, potentially accelerating the development of
new broadly protective vaccines.
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Introduction

Advances in vaccine technologies, such as reverse vaccinology
and structural vaccinology, have significantly enhanced our ability
to develop vaccines for numerous diseases (Baden et al., 2021;
Crank et al., 2019; Hsieh et al., 2020; Pizza et al., 2000;
Polack et al., 2020; Rappuoli, 2001; Rappuoli et al., 2016). However,
a significant remaining challenge in vaccinology is antigen sequence
variation, where frequent mutations in infectious pathogens allow
them to evade the immune system (McCulloch et al., 2017;
Rappuoli, 2007). Consequently, developing broadly protective
vaccines against highly mutating pathogens, such as influenza
virus, HIV, rhinovirus, and meningococcus remains a difficult task
(Rappuoli, 2007; Ng’uni et al., 2020).

Neisseria meningitidis factor H binding protein (fHbp) is a key
component of vaccines that protect against meningitis and life-
threatening sepsis caused by serogroup B meningococcus (Pace
and Pollard, 2012; Rosenstein et al., 2001; Seib et al., 2015;
Serruto et al., 2012; Zlotnick et al., 2015). Over 1,300 naturally
occurring sequences of fHbphave been reported (Jolley andMaiden,
2010), classified into three variant groups (Bambini et al., 2009;
Masignani et al., 2003; Murphy et al., 2009). Immunization with a
single fHbp antigen typically induces an immune response specific
to the administered variant group. Therefore, the licensed vaccines
contain multiple antigens to ensure broad protection. This makes
the fHbp antigen an ideal test case for the design of broadly
protective antigens in variable pathogens. In addition, at least 20
crystal structures of fHbp variants and antibody-fHbp complexes are
available in the protein data bank (Berman et al., 2016), providing a
basis for rational design.

A significant challenge in rational antigen design is the vast
search space. Each amino acid position has 20 different possibilities,
resulting in an enormous combinatorial search space for a protein
of 300 amino acids. This complexity makes it difficult for humans
to navigate, so antigen design is typically driven by expert
knowledge and focuses on the most promising protein domains.
Advances in high-performance computing, simulation, and artificial
intelligence (AI)/machine learning (ML) have paved the way for
new approaches to rapidly design immunogens, including those not
intuitive to human experts (Beede et al., 2020; Lalmuanawma et al.,
2020; Ong et al., 2020). Unsupervised machine learning methods,
including the use of protein sequence-based language models
(Elnaggar et al., 2022; Prihoda et al., 2022; Verkuil et al., 2022),
show substantial promise in developing proteins in silico that are fit,
stable, or fold in vitro. These methods can also improve antibody
binding behavior in a so-called “zero-shot” context (Hie et al.,
2024). However, the need for large quantities of representative
training data often makes these methods unsuitable for the
scientific exploration of novel, idiosyncratic, or poorly characterized
systems, such as vaccine antigen design (D'Amour et al., 2022).
While substantial strides have been made, even the best ML
structure prediction methods are uncertain or incorrect about
many antibody-antigen co-structures, even when given high
computational resources (Abramson et al., 2024), and structure-
enabled ML antibody design remains challenging (Bennett et al.,
2024). Conversely, there is substantial power and efficiency to
be gained in iterative selection of designs using data obtained
from measuring the quantity of interest in the system or protein

of interest, including ML-assisted directed evolution approaches
(Bachas et al., 2022; Shanehsazzadeh et al., 2024; Stanton et al., 2022;
Yang et al., 2019).

Another strategy employed for large-scale in silico evaluation
of protein-protein binding is physics-based calculations of
binding energy. There are multiple simulation tools available
to predict binding with differing levels of rigor. The fastest
computational methods, such as FoldX (Schymkowitz et al., 2005)
and STATIUM (DeBartolo et al., 2014) are the least rigorous. More
elaborate methods, including Rosetta and molecular dynamics,
are more rigorous and account for some flexibility in the protein
backbone. While more rigorous approaches are expected to
provide more accurate predictions, none of the available tools is
completely accurate (Sirin et al., 2016).

In this work, we adopt a hybrid approach to manipulating
antibody/antigen binding. This approach combines the
advantages of physics-based simulations, machine learning,
and experimentation. It has recently been shown that limited
experimental data can be supplemented by molecular simulations
to develop an ML tool for the prediction of protein stability
(Jokinen et al., 2018) and that aggregation of amixture of predictions
can be a fruitful method for prioritizing mutations (Riahi et al.,
2021). Another related application is redesigning prophylactic
antibodies to counter viral escape (Desautels et al., 2024). Here,
the motivating application is the creation of a vaccine antigen that
would induce the production of broadly neutralizing antibodies in
vivo, using in vitro binding to a panel of known, broadly neutralizing
antibodies as a proxy for this desired shift in antigenicity. Collecting
at large scale such binding data is still expensive and limited,
as few data are collected in each system and each antigenic
protein is distinct. Consequently, public data sets only contain
thousands of relevant experimental observations (Sirin et al.,
2016), while ML models typically employ millions or billions
of datapoints. Simulation methods provide principled binding
estimates, but effectively selecting antigen designs for subsequent
in vitro testing requires a rigorous algorithmic framework for
optimal performance.

Overall, this study establishes the capabilities required to
implement machine learning as a primary component of an
integrated strategy for vaccine antigen design. Specifically, this
work attempts to expand the antigenicity of fHbp variant 3.28
(v3.28) by incorporating epitopes specific to fHbp variant 1.1
(v1.1), without compromising overlapping epitopes known to
elicit cross-reactive antibodies. These two sequences have 60.2%
identity and 75.7% similarity. Two phases of experimentation
were conducted. In the set-up phase, the initial preparatory
experiments focused on generating model-specific training data
and confirmed that the target outcome was achievable. Next,
the primary design campaign evaluated a Gaussian process (GP)
model and Bayesian active learning method for candidate selection.
The antigenicity of the candidate fHbp mutants was validated
experimentally by measuring the affinity to a panel of antibodies
(Bianchi et al., 2019; Lopez-Sagaseta et al., 2018; Malito et al., 2013;
Malito et al., 2016; Veggi et al., 2020). Several fHbp v3.28 candidate
antigens selected for experimental evaluation by the machine
learning model gained binding to fHbp v1.1-specific antibodies,
providing a proof of concept for further exploration of this approach.

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1580967
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Chesterman et al. 10.3389/fbinf.2025.1580967

FIGURE 1
Illustration of the mAb binding locations on the surface of fHbp. Aligned overlays of independent crystal structures, each containing a single Fab
antibody fragment bound to fHbp v1.1 or fHbp v3.28; PDB: 2YPV, 5T5F, 5O14, 6H2Y, and 6XZW (Riahi et al., 2021; Desautels et al., 2024; Bianchi et al.,
2019; Lopez-Sagaseta et al., 2018; Malito et al., 2013). (A) Bound Fab structures of the fHbp v1.1 specific mAbs are depicted in green and blue. (B)
Bound Fab structures of the cross-reactive mAbs 4B3, 1A12, and 1E6 are depicted in orange, purple, and red respectively. Residues in the epitopes of
fHbp v1.1-specific mAbs JAR5 (blue) and 12C1 (green) are indicated on the fHbp surface.

Results

Preparatory experiments

The set-up phase focused on generating model-specific training
data and confirming the feasibility of expanding the antigenicity
of fHbp v3.28 to fHbp-specific antibodies. Three goals were
considered in the design and selection of fHbp mutants in the
set-up phase: (1) introduce substitutions into fHbp v3.28 or fHbp
v1.1 to generate mutants with variable binding to two fHbp
v1.1-specific monoclonal antibodies (mAbs) known as 12C1 and
JAR5 (Figure 1), (2) select mutations in fHbp v3.28 that do not
disrupt binding to cross-reactive mAbs 1A12, 4B3, and 1E6, and
(3) determine the difficulty of introducing the 12C1 and JAR5
epitopes into fHbp v3.28 without disrupting binding to mAbs
1A12, 4B3, and 1E6. To accomplish these goals, residues within
the 12C1 and JAR5 epitopes (as defined by their crystal structures
with fHbp v1.1) (Malito et al., 2013; Malito et al., 2016) were
identified and different combinations of these residues transferred
from fHbp v1.1 into the fHbp v3.28 sequence (to test gain of
binding) or vice-versa (to test loss of binding) (Figure 1). In
locations where the amino acid residue is conserved between
fHbp v1.1 and fHbp v3.28, a structurally compatible alternative
residue for substitution at that location was selected by using
StralSV, a computational tool that determines the probability of
finding an amino acid given the local structure of the protein
(Zemla et al., 2011).

In total, 131 mutants of fHbp v1.1 and v3.28 were proposed.
The binding affinity for mAbs 12C1, JAR5, 1A12, 4B3, and
1E6 to each mutant was estimated computationally. Specifically,
10 homology models were generated for each mutant and
two approaches from the FoldX package, ‘BuildModel’ and
‘AnalyseComplex,’ were used to determine the change in binding
free energy (ΔΔG) for the interaction of each mutant with the

mAbs (Supplementary Table S1; see also Materials and Methods).
Forty-eight mutants, eight fHbp v1.1 derivatives and forty fHbp
v3.28 derivatives, were selected for experimental evaluation
considering binding predictions for all five mAbs and the stated
goals (Figure 2).

In total, 50 fHbp proteins (48 mutants, plus fHbp v1.1 and
fHbp v3.28) were produced in vitro on a small scale (4–12 mL)
in Escherichia coli and evaluated for protein yield after one-step
nickel affinity purification. From this group, 39 fHbp samples
were successfully produced (final concentration >10 μg/mL),
allowing the measurement of 195 antigen-antibody interactions
(Supplementary Tables S2, S3) by biolayer interferometry (BLI).
Affinity measurements (Kd) fell between 750 pM and 5.5 nM
for binding of all fHbp mutants to the cross-reactive mAb
4B3. This variation is expected given the accuracy of individual
measurements by this technique. The consistent interaction with
mAb 4B3, which recognizes a large discontinuous conformational
epitope (Veggi et al., 2020), provided confidence that all fHbp
mutants maintained the expected overall 3-dimensional fold.
All mutants also bound the cross-reactive mAbs 1E6 and 1A12,
though some mutants had an affinity reduced by up to 100-fold.
Appreciable binding to mAb JAR5 was detected for 90% of the
fHbp mutants produced, and 38% of the mutants also bound
mAb12C1. Binding mutants were defined as having a measurable
Octet Kd where the curve fit had an R2 value of at least 0.8. The
initial data for JAR5 and 12C1 binding to mutants includes 28
fHbp-mAb pairs with no measurable binding, four pairs with
weak binding affinity (Kd > 50 nM), and 46 Ag-Ab pairs for
which the binding of the fHbp mutant was similar to the Ag-Ab
affinity observed for binding with fHbp v1.1. Mutants of fHbp
v3.28 with the strongest binding to mAbs JAR5 and 12C1 (n =
2) had affinities equivalent to fHbp v1.1 (Table 1). Therefore, it
was determined that the design problem selected for this project,
gaining binding to mAbs JAR5 and 12C1 in fHbp v3.28 while
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FIGURE 2
Round 1 summary of computational and experimental outcomes. (A) Interface ΔΔG calculated with FoldX for binding of fHbp v3.28-derived sequences
to mAbs JAR5 and 12C1. ΔΔG values for binding to 1A12, 4B3, and 1E6 were also calculated (Supplementary Table S1). Of these sequences, and
including v3.28, 41 were selected for production and are shown as red dots; sequences not selected for laboratory evaluation are shown as black dots.
(B) For the selected sequences, experimentally validated binding is indicated with horizontal (pink, JAR5) or vertical (purple, 12C1) bars. Sequence
m00006, which was selected as the starting sequence for Round 2, is at (−1.53, −2.11) in both panels.

TABLE 1 Summary of measured affinities (Kd) for binding of five mAbs to select fHbp mutant sequences determined by BLI.

mAb affinity

Antigen Description JAR5 12C1 1A12 1E6 4B3

fHbp v1.1 Wild type 200–700 pM 100–800 pM Tight binding (no koff) 3–10 nM 1–5 nM

fHbp v3.28 Wild type No binding No binding 7–20 nM 2–4 nM 5–6 nM

m000019 Round 1 best mutant 254 pM 37 pM Tight binding (no koff) 800 pM 2.4 nM

m000006 Round 2 starting sequence Tight binding (no koff) 11.1 µM∗ 1.8 µM 870 pM 5.5 nM

m002416 Round 2 best mutant 631 pM 293 pM 544 pM 320 pM 3.8 nM

Ranges of typical affinities are provided for wild-type antigens when the fHbp protein was produced and mAb affinities measured in multiple independent experiments. Variations observed
were consistent with the expected error of the high-throughput BLI assay.∗No binding was measured in preliminary experiments. Weak binding was measured in the main design campaign
after improving assay parameters. See also Supplementary Tables S2, S5.

maintaining binding to cross-reactive mAbs 1A12, 4B3, and 1E6,
was achievable.

Finally, it was observed during these preliminary experiments
that mouse 12C1 mAb performed poorly in the BLI affinity
assay, with specifically low signal/noise ratio even when binding
affinity was strong. Therefore, we humanized the mouse
JAR5 and 12C1 mAbs and observed significant improvements
in assay performance (Table 1). This was attributed to the
substitution of anti-mouse mAb biosensors (AMC) for anti-
human mAb biosensors (AHC). While data quality was
improved, the Ag-Ab affinity measured was the same. The
humanized JAR5 and 12C1 mAb reagents were used for all
subsequent work.

Vaccine design pipeline integrating
machine learning

The primary purpose of this work was to incorporate machine
learning methods into our pipeline for vaccine design and selection.

In the main experiment for this project, a machine learning method
was implemented to select a diverse pool of fHbp mutant sequences
after computational prediction of Ag-Ab binding. The design was
focused on the 12C1 epitope (more difficult design problem than
JAR5 epitope) and implemented a mutant design strategy that
reduced the need for prior knowledge of fHbp v1.1. Allmutants were
made in fHbp m000006, a mutant of fHbp v3.28 identified in the
preliminarywork, that had good protein expression (88%yieldwhen
compared with wild-type fHbp v3.28). fHbp m000006 is primarily
fHbp v3.28 with 51 residues mutated to their counterparts in fHbp
v1.1. During the preliminary experiments, this mutant bound mAb
JAR5 and did not bind mAb 12C1. The objective for the machine
learning campaign was to computationally design and select
mutants of fHbp m000006 that bound mAb 12C1 and improved
binding to mAb 1A12, which shares an overlapping epitope
with mAb 12C1.

Seven residue locations were selected for mutation, specifically
in the region where the 12C1 and 1A12 epitopes overlap on the
fHbp v3.28 surface, producing a design search space of 207 (20
amino acids possible for each of seven locations). The search space
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TABLE 2 Comparison of key sequences.

Residue Location 221 222 223 249 250 251 252

fHbp v1.1 Y N Q T V N G

fHbp v3.28 Y G S I G E K

m000006 Y G S T G E G

Allowed mutations based on StralSV L
T
Y

R
G
N

S
G
Q

S
T
I

D
V
G

V
N
E

A
G
S

Consensus of top binders Y N G/S T/S V Any G

Focused alignment of amino acid residues. Includes residues from fHbp v1.1, fHbp v3.28, the starting sequence for design (m000006), amino acids selected by StralSV, and a consensus
sequence derived from the top mutations after experimental evaluation.

was narrowed by selecting the top three structurally compatible
amino acid substitutions using StralSV (Table 2) (Zemla et al.,
2011). This resulted in a pool of 2,186 (37-1) mutated sequences.
This search space was probed with a hybrid computational approach
as outlined conceptually in Figure 3. Calculations were performed
using FoldX and STATIUM to calculate the ΔΔG for each mutant
when binding all five mAbs (Supplementary Table S4). Machine
learning was used to evaluate this data. Specifically, this work
employed multi-objective Bayesian optimization and a GP model
trained with published data from the AB-Bind database (Sirin et al.,
2016) and project-specific data points collected in the preliminary
experiments. Finally, a batch upper confidence bound decision
rule (Desautels et al., 2014) was used to iteratively select 108
sequences, or 4.9% of the candidates for experimental evaluation
(Figure 4).This decision rule ensured exploration (broad acquisition
of information) with exploitation (selected mutants with the best
predictors), while balancing the binding of fHbp mutants to mAbs
12C1 and 1A12 simultaneously. As constructed, the decision rule
favored sequences with the best FoldX predictions, and the most
important contribution of the GP model was to ensure diversity in
the selected sequences for experimental evaluation. This stands in
contrast to selection methods based on the output of individual
computational predictors, such as FoldX alone, which might
result in homogeneous, narrow groups of mutants (see Figure 5)
that could fall victim to potential biases introduced
by these tools.

Experimental evaluation of binding affinity was carried out for
a selected batch of 102 candidate sequences, 83 of which could
be produced in small scale E. coli cultures (8 mL) with sufficient
yields (5%–50% yield compared with fHbp v3.28 wild type). Affinity
measurements for the binding of 12C1, 1A12, and 1E6 were
performed for all obtained mutants (Supplementary Table S5). Re-
evaluation of the starting mutant, fHbp m000006, as a control in the
main design campaign revealed unexpected weak binding of fHbp
m000006 to mAb 12C1. This was attributed to improvements in
the experimental assay. Therefore, final evaluation of the mutants
focused on simultaneous improvement of binding to mAbs 12C1
and 1A12. All evaluated mutants bound mAb 1E6 with an affinity
equivalent to the starting sequence (within 2-fold), or stronger,
confirming that all fHbpmutants were folded. As expected, variation
was observed among the binding of mutants to mAbs 12C1 and

1A12. In total, 40 mutants selected by machine learning had
measurable affinity to mAb 12C1 and mAb 1A12. From this set,
17 fHbp mutants with the highest binding affinities were selected
and it was confirmed that these samples also bound mAb 4B3 and
mAb JAR5 with the expected affinity. Finally, six mutants were
identified that bound all five antibodies with affinities similar to
those obtained for fHbp v1.1 (affinity formAbs 1A12 and 12C1 both
stronger than 5 nM). When the respective sequences were aligned,
they revealed a high degree of homology within the target mutation
sites to fHbp v1.1 (Figure 5; Table 2) and a consensus sequence
was derived (Table 2).

In total, 12 mutants, or 0.5% of the mutants in the decision
set of 2,186 possibilities, conformed to this consensus sequence.
The 108 mutants selected for experimental evaluation represented
4.9% of the total possibilities and included seven, or 58.3%
of the potential fHbp candidates that matched the consensus
sequence, a 12-fold enrichment. Only one experimentally
evaluated mutant that conformed to this consensus showed
weaker binding, namely, fHbp m002419, with an affinity to
mAb 1A12 being 10 nM. Overall, the machine learning methods
implemented here selected an enriched set of mutants for
experimental testing, leading to multiple candidates capable
of binding mAbs 12C1 and 1A12 with high affinity (stronger
than 5 nM).

Biophysical characterization of a top
mutant confirms protein integrity and
antigenic design

The computational and experimental evaluation of fHbp
mutants thus far focused solely on antigenicity (antibody binding)
and did not confirm protein stability/integrity/folding beyond the
inclusion of cross-reactive mAbs in the testing panel. The mutant
from the ML design campaign with the highest measured affinities
for 12C1 and 1A12, fHbp m002416, was produced in sufficient
quantity to perform further biophysical characterization. Purified
fHbp m002416 was monodisperse and monomeric as determined
by size-exclusion chromatography (Supplementary Figure S1). The
thermal stability of fHbp v1.1, fHbp v3.28, and fHbp m002416
was compared using differential scanning fluorimetry. As shown
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FIGURE 3
Overview of the computational strategy for selection of diverse candidates with the GP model. All candidates within the defined search space are
computationally modelled and multiple binding parameters are predicted using established biophysical tools, including STATIUM and FoldX. This data is
combined in a machine learning model and the selection of candidates is driven by the training data provided. This allows the selection of a small set of
candidates for experimental evaluation.

FIGURE 4
Sequences selected by the Gaussian process model for experimental evaluation. (A) Scatter plot of FoldX interface ΔΔG values (AnalyseComplex) for all
2,186 mutants evaluated computationally. The 108 mutants selected using the machine learning model and the decision rule are highlighted in red.
Lines superimposed on the figure show effective selection thresholds in FoldX values corresponding to alternative sets of 108 mutants. If the 108
sequences with the best FoldX-predicted ΔΔG in binding 1A12 had been selected, points below the blue line fall in this set. Similarly, for if FoldX
predicted binding of 12C1 is the only criterion, points left of the purple line are the resulting set, and for the equal sum of the two ΔΔGs for 1A12 and
12C1, points below and left of the orange line would constitute the resulting set. (B) The selected 108 points were tested in BLI. Among these, the best
binders for 12C1 and 1A12 are marked, using cyan vertical and blue horizontal bars, respectively. A number of selected, strongly binding sequences do
not lie in any of the sets constructed post hoc on the basis of FoldX binding predictions. (C) For each of group of sequences, sequence logos showing
positions 221-223 and 249-252 are framed by the corresponding color. The sequence logo framed in black is all 2,187 mutants, including the parental
sequence. (D) Pairwise distances among the 108 sequences in each selected or comparison set, using Blosum62. The black set is a size-matched,
randomly selected set of 108 sequences from all 2,186 mutants considered, giving a fair comparison of intra-set sequence distances. Boxes show first
quartile, median, and third quartile, while whiskers are 1.5 times the interquartile range or to the most extreme datum, whichever is narrower. Using the
GP model, the decision rule traded off predicted binding performance for greater diversity in the selected set.
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FIGURE 5
A new Figure 5 was generated consecutively to a comment made by one of the reviewers. It is said in the legend that residues are in light grey, which
does not appear in the figure here. We'll provide the correct figure in green font. Residues identical in all sequences are in light grey. Locations allowed
to mutate are highlighted.

TABLE 3 Thermostability of fHbp samples determined by differential
scanning fluorimetry.

Sample Melting temperatures

Tm1 Tm2

fHbp v1.1 64.4 86.2

fHbp v3.28 59.0 84.1

fHbp m002416 47.2 82.1

Measurements were performed in duplicate and the average is reported.

previously, fHbp v1.1 showed greater thermostability in the N-
terminal domain (Tm1) relative to fHbp v3.28 (Malito et al.,
2013; Johnson et al., 2012). By comparison, fHbp m002416
showed a reduction in thermostability, most significantly in the
N-terminal domain, relative to both fHbp v1.1 and fHbp v3.28,
suggesting a significant impact from the introduced mutations
(Table 3).

To further explore the impact of mutations in fHbp m002416, a
crystal structure was determined for this protein in complex with
the Fab fragment of mAb JAR5 (Figure 6). JAR5 Fab was crucial
for the crystallization of fHbp m002416, which did not crystallize
in isolation. The JAR5 epitope/paratope interface adopts the same
conformation as seen previously in the structure of JAR5 bound to
fHbp v1.1 (Malito et al., 2016).Theoverall fold and domain structure
reproduced the expected backbone for fHbp, including the 12C1
epitope wheremutations were introduced.While >70% of the amino
acid residues in fHbp m002416 were visible within the electron
density, a section of the C-terminal domain could not be modelled
due to flexibility and high local b-factors.When crystallized in space
group C2, the solvent content of the crystal was 37%, the C-terminal
domain of fHbp participated in few crystal contacts, and the
disordered region was entirely exposed to the solvent channels. In
contrast, crystals of fHbp v1.1 bound to JAR5were previously grown
in space groupsC2221 (Malito et al., 2016) or I4122, where the full C-
terminal beta-barrel was modelled, despite above average b-factors
relative to the N-terminal domain. Therefore, while fHbp m002416

did not maintain the thermostability of natural fHbp variants, it
did maintain the overall fold of fHbp proteins while increasing
the cross-reactivity to the tested panel of relevant antibodies.
These results emphasized the importance of optimizing the
computation-designed antigens for multiple parameters, including
both antigenicity and stability, in future campaigns. Crystallographic
statistics for new structures presented herein are summarized in
Supplementary Table S6.

Discussion

The type of interaction between antigen and antibody is
distinct from general protein-protein interactions, where both
binding partners have co-evolved over time (Akbar et al., 2021;
Graves et al., 2020). Therefore, it is important to develop specific
datasets and tools for predicting and optimizing antibody-antigen
interactions. Protective epitopes can oftenbe clustered close together
(Neu et al., 2016) and few tools are available for optimizing
the binding of antigens to multiple antibodies simultaneously.
Machine learningmethods employingGP-models have already been
successfully applied to predict various protein properties, including
thermostability (Jokinen et al., 2018; Pires et al., 2014; Romero et al.,
2013), substrates for enzymatic reactions (Mellor et al., 2016),
fluorescence (Saito et al., 2018), membrane localization, and
peptide binding to MHC complexes (Ren et al., 2011). This
work evaluated an integrated approach, incorporating both
biophysical calculations of Ag-Ab affinity and machine learning
strategies to optimize binding to multiple mAbs with overlapping
binding sites.

The AB-bind database provided a limited number of
datapoints (1,109) for generating a training dataset for
immediate implementation of machine learning. Additionally,
45% of mutants in the AB-Bind database contain only alanine
substitutions, and 37% represent a single point mutation to
alanine (Sirin et al., 2016). Active ML strategies have shown
small amounts of problem-specific data can significantly improve
the performance of ML algorithms, especially when applied
iteratively (Brochu et al., 2010; Liu, 2004; Shahriari et al.,
2016). Therefore, preliminary experiments were designed to
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FIGURE 6
Crystal structure of fHbp m002416. (A) Crystal structure of fHbp m002416 (blue) crystallized with JAR5 (black) PDB: 2YPV. (B) Crystal structure of fHbp
m002416 bound to JAR5 (black) with fHbp m002416 colored by b-factors. (C) Crystal structure of fHbp v1.1 in complex with JAR5 (black) in space
group C2221, fHbp v1.1 colored by b-factor. (D) Crystal structure of fHbp v1.1 in complex with JAR5 (black) in space group I4122, fHbp colored by
b-factor. B-factor scale from high (red) to low (blue) and standardized across panels (B–D).

supplement the AB-bind data with fHbp-mAb datapoints,
including a diversity of amino acid mutations and multi-residue
mutations.

The primary design campaign focused on the 12C1 epitope
and its overlap with the 1A12 epitope. While the preliminary
experiments demonstrated that fHbp v3.28 can be mutated to
bind fHbp v1.1-specific mAbs 12C1 and JAR5, the manual design
strategy relied heavily on knowledge of the fHbp v1.1 sequence. By
incorporating ML, the goal was to significantly reduce our reliance
on information from fHbp v1.1. Additionally, the co-evolution of
overlapping epitopes is a key point in vaccine design, making the
interplay between 1A12 and 12C1 binding of specific interest.

All residue locations shared between the 12C1 and 1A12
epitopes were allowed to mutate, and the number of residues
allowed in each position was down-selected. To provide
an unbiased method for determining the search space, the
algorithm StralSV (Zemla et al., 2011) was used to suggest the
most compatible residues based on local structure. The top three
residues for each location included known residues from fHbp
v3.28, fHbp v1.1, and one to two additional residues. Thus, it was
apparent that the known solution, all fHbp v1.1 residues in these
locations, would be within the search space. After experimentally
evaluating 108 computationally selected sequences, a consensus
motif was determined based on the top six successful mutants.
This sequence conflicted with the fHbp v1.1 sequence in only
one position, residue 223, where a glycine or serine was preferred
over glutamine. This substitution in the top candidates did not
improve the binding of fHbp to either mAbs 12C1 or 1A12
over fHbp v1.1.

MLmodels provide ameasure of the informational relationships
and dependencies among a collection of many variant sequences.
This allows the construction of batches of simultaneous experiments
that strategically trade off exploitation of knowledge (prediction
of strong performance) with the acquisition of valuable, non-
redundant information on the overall design space. Balancing these
objectives can result in practical gains in the quality of the selected
sequences when taken as a group, including discovering effective

designs not in the top tier of any ranking directly derived from
computational tools (see Figure 5A), greater sequence diversity,
and the balancing of competing design goals (Figures 5B,C).
In this case, the search scope after down selection by StralSV
was too narrow to allow the algorithm to propose a non-
intuitive solution. Within the space allowed, the algorithm funneled
toward the known fHbp v1.1 solution. To expand on this
work in the future and find potentially novel solutions, the
amount of down selection performed by StralSV will need
to be reduced.

While antigenicity and binding affinity are key properties of
antigens, developability and antigen stability are also crucial for
developing an effective vaccine. Here, 18% of sequences selected
by the ML algorithm were not successfully produced, reducing the
efficiency of experimental evaluation. While the high-throughput
production methods employed do not pin-point specific failures,
the most likely issues include inadequate protein expression,
protein aggregation, or reduced stability (Tokuriki and Tawfik,
2009). Given that the computational model only considers binding
affinity, there was concern that stability and protein folding in
successful designs had also been impacted. To further explore, the
highest affinity binder, fHbp m002416, was selected for biophysical
characterization. A crystal structure of this ML-derived mutant
confirmed the expected 3D fold of the fHbp protein backbone.
Interestingly, while this mutant folded correctly and had high
affinity for both antibody targets, its thermostability was reduced.
Therefore, an optimal ML strategy for vaccine antigen design
must balance improved antigenicity with other protein properties,
including protein expression and stability. This phenomenon has
also been observed in the development of monoclonal antibody
therapies and small molecule therapeutics using ML methods
(Schneider et al., 2020).

Given the rapid advance of vaccine delivery platforms,
including recent breakthroughs in using mRNA-encoded
antigens, selecting and designing appropriate molecules is poised
to become a rate-limiting step in vaccine development and
future pandemic responses. The application of computational
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algorithms has massive potential to reduce the number of
wet-lab experiments and the time required for this stage of
development. Moving forward, an active ML approach that
iterates between computational simulations and targeted wet-lab
experimentation performed in a rapid high-throughput manner
is expected to provide the most efficient tool for vaccine antigen
development. Our work established the core capabilities required
to develop this technology further and tackle more challenging
design problems.

Materials and methods

Computational evaluation and selection of
mutants for preparatory experiments

X-ray crystallographic structures of fHbp v1.1 bound to five
specific antibodies, namely, 12C1, JAR5, 1A12, 1E6, 4B3, are
available in the Protein Data Bank as 2YPV, 5T5F, 5O14, 6H2Y,
and 6XZW (Bianchi et al., 2019; Lopez-Sagaseta et al., 2018;
Malito et al., 2013; Malito et al., 2016; Veggi et al., 2020). All
antibodies bind fHbp v1.1; antibodies 1A12, 1E6, and 4B3 also
bind fHbp v3.28. Five homology models were created using the
AS2TS system (Zemla et al., 2005) for fHbp v3.28 in complex
with each antibody based on the available crystal structures.
Models of fHbp v3.28 in complex with the antibody panel were
used to define two putative epitopes each, including residues with
at least one atom from fHbp within a distance ≤5 and/or ≤7 Å
from the respective antibody (Supplementary Figure S2). Non-
conserved amino acid locations within the proposed 12C1 and JAR5
epitopes were mutated to contain fHbp v1.1 residues. Overlapping
positions were defined as those that are included in more than
one epitope. Residues in overlapping regions were varied within
the mutant panel to include residues present in fHbp v1.1, fHbp
v3.28, or those suggested as conservative mutations by StralSV
(Zemla et al., 2011). StralSV was used to select an alternative
residue substitution at the positions where V1 and V3 had the same
residue.The finalmutants scored well according to ΔΔG assessment,
and as anticipated showed binding to JAR5 experimentally
confirmed. Sequences for all mutants evaluated are listed in
Supplementary Document S1.

Five homology models were created using AS2TS (Zemla et al.,
2005) for each sequence in the initial pool of candidates (5 × 131
= 655 total) to generate a pose in complex with each of the five
antibodies. Each model was energy-minimized using molecular
dynamics (MD) in GROMACS using the steepest descents method
(Abraham et al., 2015). Both the energy-minimized, and original
homology models were used in future calculations, for a total of 10
models per fHbp antigen sequence. Two approaches from the FoldX
package were used to determine the change in binding free energy
(ΔΔG); ‘BuildModel’ - “FOLDX total energies before and after
introducing mutations” and ‘AnalyseComplex’ - “FOLDX energies
in interfaces” (Schymkowitz et al., 2005). From this initial set of
131 mutants, 48 mutants were selected based on the best scores in
all evaluated complexes and agreement in the two approaches for
calculating ΔΔG values. All ΔΔG values calculated in this round are
included in Supplementary Table S1.

Computational evaluation and selection of
mutants using a GP model

From the training data, mutant m000006 was selected as
the starting fHbp sequence. Seven residues from a region of
the 12C1 epitope that overlaps with the 1A12 epitope were
identified. StralSV was used to select the top three residue
substitutions that would be compatible with these locations
(Zemla et al., 2011). This yielded 2,186 (3^7, minus the unmutated
m000006 sequence) sequences, and homology models were
generated in AS2TS (Zemla et al., 2005) for each of them. FoldX
(Schymkowitz et al., 2005) and STATIUM (DeBartolo et al., 2014)
calculations were performed for each candidate to determine the
change in binding free energy (ΔΔG) relatively to the starting
sequence. This yielded 2,186 (3^7, minus the unmutated m000006
sequence) sequences (Supplementary Document S2) and homology
models were generated in AS2TS (Zemla et al., 2005) for each
of them. FoldX (Schymkowitz et al., 2005) and STATIUM
(DeBartolo et al., 2014) calculations were performed for each
candidate to determine the change in binding free energy (ΔΔG)
relative to the starting sequence (Supplementary Table S4).

The relationships between likely experimental outcomes were
modeled via a GP (Rasmussen et al., 2004). To represent mutant
antigens to the GP model and make predictions about the effects
of these mutations, a feature vector was constructed as follows: The
contacts or potential contacts in these interfaces were identified by
α-α distances of 10Å or less. Each residue in such an interaction was
assigned a chemical class and a size class (Supplementary Table S7);
each identified interaction was then added to a tally of how
many interactions exhibit particular chemical types (e.g., an
aliphatic/aromatic interaction) and size types (e.g., a small/very
large interaction). This set of all interaction features, for both the
pre- and post-mutation versions of the antigen, was assembled
into a feature vector. The outputs of the STATIUM and FoldX
models were concatenated onto this feature vector and the whole
feature vector was passed to the GP. The GP applies a normalizing
feature transformation and Matérn kernel function to determine
the similarity of any two such sequences’ mutational effects on
the binding free energy. The model was implemented in Python
in scikit-learn (Pedregosa et al., 2011). It was trained on the AB-
Bind data set (Sirin et al., 2016) and antigen-specific results from
round one experiments. For each interaction, a score is calculated,
which is themodel’s predictedmean, themodel’s predicted variance,
and a weighted combination of the FoldX and STATIUM scores.
Because antigens must bind several target antibodies, separate
predictions and separate scores were calculated for each of the target
antibodies.Thefinal score functionwas a sumover target antibodies:

gt(x) = ∑
i
αiμi|t−1(x) + βiσi|t−1(x) + γ · Si(x)

Where x was the antigen under consideration; μi|t−1 and σi|t−1 were
the predicted (“posterior”) mean and standard deviation of the GP
model for this antigen and the i th target antibody, given selections
1 to t-1; Si was the set of simulation results (FoldX and STATIUM);
and α,β,γ were weighting coefficients, respectively scalar-, scalar-,
and vector-valued. We then selected the maximizer of g(x), i.e.,

xt = argmax
x∈Dt

gt(x)
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Where Dt was the current decision set. Note that because desirable
values for μ and S were negative (i.e., mutation is desired to make
binding free energy more negative), α and γ were negative.

A batch upper confidence bound decision rule (Desautels et al.,
2014) was adapted and applied to the posterior distribution to
iteratively select the batch of 108 sequences from the decision set
of 2,186. This decision rule balances exploration (broad acquisition
of information) with exploitation (selecting sequences that are
predicted to be promising in terms of free energy), while balancing
the multiple target antibodies.

High-throughput cloning and sequencing

The fHbp mutant amino acid sequences were reverse-translated
and codon-optimized for E. coli K12 expression using the Geneious
R10 software (Version 10.1.3, Biomatters Ltd., San Diego, CA).
Target sequences were synthesized as gBlocks (Integrated DNA
technologies, IDT, Iowa, United States) and cloned into plasmid
pBR322. Linearized plasmid was produced by PCR using Q5 Hot-
start High-Fidelity DNA Polymerase (New England Biolabs) and
site-specific primers (IDT), following the manufacturer’s protocol.
Clones were assembled using NEBuilder HiFi DNA Assembly
(E5520S, New England BioLabs) to perform Gibson Assembly
in an automated 96-well plate format on a customized Tecan
Fluent platform. This platform was used to resuspend dried DNA
reagents, combine reaction components at the appropriate ratios,
heat/cool the plate as required, transformcompetent bacteria, spread
and incubate bacterial plates, and pick colonies for inoculation
into LB media. New plasmid DNA constructs were isolated from
bacterial culture with the MagJET Plasmid DNA Kit (ThermoFisher
Scientific) automated in a 96-well format on a Kingfisher Flex
(ThermoFisher Scientific). Sequence confirmation was performed
by Sanger sequencing (Genewiz).

Production of antibody reagents

Plasmids for the expression of mAb 4B3, 1E6, 1A12, JAR5, and
12C1 have been described previously (Bianchi et al., 2019; Lopez-
Sagaseta et al., 2018;Malito et al., 2013;Malito et al., 2016; Veggi et al.,
2020). The human mAb 4B3, 1E6, and 1A12 and mouse antibodies
JAR5 and 12C1 were prepared as previously reported (Veggi et al.,
2020). In brief, plasmid DNA was prepared by maxi-prep and
transiently transfected into Expi293 cell using an ExpiFectamine
kit (ThermoFisher). Culture supernatant was harvest after a 4–5-
day growth in a shake-flask culture at 37°C and 8% CO2.
Antibodies were purified from the harvested supernatant by affinity
chromatography (HiTrap MabSelect SuRe, Cytiva) followed by size-
exclusion chromatography (Superdex 200 16/600, Cytiva). Antibodies
were eluted from the affinity column with 0.1 M sodium citrate pH
3.0, which was immediately neutralized with 1 M Tris pH 9.0 (5:1
ratio). Buffer was exchanged into the storage buffer, 20 mM HEPES
pH 7.0, 150 mM NaCl, during size-exclusion chromatography. The
mouseantibodieshad sub-optimalperformanceduring initial binding
studies (specifically low signal/noise ratio). Therefore, the variable
domains from the mouse JAR5 and 12C1 mAb were subcloned into
a human IgG framework containing the crystallizable domains (CH1,

CH2, CH3, CL1).These chimeric antibodies, hJAR5 and h12C1, were
producedusing the sameprotocol andused for evaluating themutants
selected by the GP model.

Fab fragments for mouse JAR5 were sub-cloned from the
original mouse vectors and produced in Expi293 cells using the
same overall protocol as the mAb reagents. Culture supernatant was
concentrated and diafiltered into Tris saline buffer (50 mM Tris pH
8.0, 150 mM NaCl) prior to purification. Fab fragments contained
a Streptavidin tag fused to the C-terminus of the heavy chain which
enabled purification by affinity chromatography (StrepTrap, Cytiva).
Protein was eluted in 100 mM Tris pH 8.0, 150 mM NaCl, 1 mM
EDTA, 2.5 mM desthiobiotin and further purified by size-exclusion
chromatography (Superdex 200 Increase 10/300 GL, Cytiva) in
25 mM Tris pH 8.0, 150 mM NaCl. All antibody samples were
concentrated using Millipore centrifugal filters. Antibody reagents
were stored frozen at −80°C prior to characterization.

Production of fHbp reagents

Plasmids for the expression of wild-type fHbp variants 1.1 and
3.28 with a C-terminal 6-His fusion tag were reported previously
(Masignani et al., 2003; Giuliani et al., 2005). Protein sample
references and protein samples for X-ray crystallography were
produced in low throughput on a large scale. Chemically competent
E. coli BL21(DE3) star cells (ThermoFisher) were transformed with
the respective fHbp plasmid and protein was expressed during
growth in up to 1 L of Terrific Broth (TB) media containing
100 μg/mL carbenicillin. Cultures were incubated at 37°C for 16 h
prior to harvest. Cells were lysed by sonication and insoluble debris
was removed by centrifugation. Soluble protein was purified by
nickel-affinity chromatography (HisTrap FF, Cytiva). Protein was
eluted with a linear gradient of 20–250 mM imidazole in 50 mM
Tris pH 8.0, 300 mM NaCl. Further purification was performed by
size-exclusion chromatography (Superdex 200 Increase 10/300 GL,
Cytiva) using 25 mM Tris-HCL pH 8.0 and 150 mM NaCl as the
elution buffer. Protein samples were concentrated (Millipore-Sigma)
and protein concentration was determined using optical density at
280 nm before storage at −80°C.

Mutant fHbp sequences were produced in parallel using a high-
throughput approach. Protein was expressed using 4 mL cultures
of TB media with 100 μg/mL carbenicillin in 24 deep-well plates
shaken at 37°C. Harvested cells were lysed with BugBuster Master
Mix reagent (Millipore Sigma). Mutant fHbp samples were purified
using one-step nickel-affinity chromatography using the MagneHis
protein purification system (Promega) and automated with a
Kingfisher Flex (ThermoFisher). Proteins were eluted in 50 mMTris
pH 8.0, 300 mM NaCl, 500 mM imidazole and protein quality were
assessed by SDS-PAGE.

Biolayer interferometry experiments (BLI)

The concentration of fHbp samples was determined using an
Octet 384 Red Instrument (Sartorius FortéBio) operating at 30°C
and anti-His biosensors. Highly pure fHbp v3.28 was used as
the standard curve protein and all protein samples were diluted
1/10 in Octet buffer (1 x phosphate-buffered saline [PBS], 1% w/v
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bovine serum albumin). Binding kinetics were also measured using
BLI at 30°C and anti-Human Fc biosensors. IgG antibodies at a
concentration of 10 μg/mL were captured on the biosensor followed
by binding of fHbp samples with concentrations ranging from
approximately 150 nM–1 nM. For each fHbp-mAb pair, binding
traces (average n = 4) were fit using the FortéBio Analysis 11.1 HT
software package to determine KD, Kon, and koff.

Differential scanning fluorimetry

Previous studies based on differential scanning calorimetry have
demonstrated that fHbp proteins from variant groups 1, 2 and 3 all
have two distinct melting points that correspond to the unfolding of
the N- and C-terminal domains (Malito et al., 2013; Johnson et al.,
2012). To measure both events, while using a minimal amount
of protein, the stability of fHbp m002416 was determined using
differential scanning fluorimetry. The first melting point (Tm1)
was measured using the hydrophobic dye SYPRO orange and
corresponds to the unfolding of the N-terminal domain. The second
melting point (Tm2) was measured using intrinsic fluorescence and
corresponds to the unfolding of the C-terminal domain.

fHbp samples were diluted in PBS to an approximate
concentration of 0.5 mg/mL and a total volume of 20 μL. Samples
were further diluted with 400 μL of buffer followed by concentration
to 50 μL using 0.5 mL, 10 kDa cutoff devices from Millipore.
This process was repeated twice to remove imidazole and other
buffer components remaining from the purification. Final sample
volume was approximately 80 μL. SYPRO Orange hydrophobic dye
(ThermoFisher) was diluted from 1000X to 10X in PBS. Chemical
DSF samples were prepared in duplicate by mixing 18 mL of protein
with 2 mL of dye in a 96-well PCR plate and protecting from light.
Samples were analyze using the ViiA 7 System (ThermoFisher) using
a ramp speed of 0.02°C/s from 25°C to 99°C. Melting scans were
analyzed using Protein Thermal Shift v1.4 and analyzed with default
parameters. In addition, fHbp protein samples in PBS were loaded
into high-sensitivity capillaries and analyzed using a Prometheus
NT.48 system (nanoTemper). The melting scan was performed from
24°C to 110°C with a ramp of 1°C/min. Duplicate measurements
were performed for each sample and melting temperature was
determined using the manufacturer provided software.

X-ray crystallography

Purified fHbp 2,416 and JAR5 Fabwere combined in a 1:1.1 ratio
at room temperature in protein buffer (25 mM Tris pH 8.0, 150 mM
NaCl) at a final protein concentration of 11.3 mg/mL. Sparse
matrix screening was performed using a Mosquito automated drop
setter (SPT Labtech) and drop volumes of 200 nL protein +200 nL
precipitant. Crystals were identified in well B8 of the ProPlex screen
(MolecularDimensions); 0.1 M sodiumcitrate pH5.0, 15%w/v PEG
4000, 0.1 M magnesium chloride and were harvested after an 8-
day incubation at 20°C. 20% glycerol was added as cryoprotectant
prior to plunge freezing in liquid nitrogen. Data were collected
at the Advance Photon Source, beamline 22-ID equipped with
an Eiger 16M detector. The X-ray wavelength was 1.0 Å and 800
images were collected with a frame width of 0.25° at a detector

distance of 300 nM. Diffraction patterns were integrated and scaled
using XDS (Kabsch, 2010). Data was truncated in XDS to remove
frames from the end of the data collection that showed the most
radiation damage.Molecular replacement was performed by placing
individual models of fHbp v1.1 and JAR5 Fab extracted from PDB
5T5F using Phaser as implemented in Phenix (Adams et al., 2010;
McC et al., 2007). The final model was built after iterative rounds of
refinement in Phenix and manual corrections in Coot (Emsley et al.,
2010). Visualization and analysis of the final model were performed
with PyMOL 2.0 (Schrodinger LLC).
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