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Microbiome research is becoming a mature field with a wealth of data amassed
from diverse ecosystems, yet the ability to fully leverage multi-omics data for
reuse remains challenging. To provide a view into researchers’ behavior and
attitudes towards data reuse, we surveyed over 700 microbiome researchers to
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evaluate data sharing and reuse challenges. We found that many researchers
are impeded by difficulties with metadata records, challenges with processing
and bioinformatics, and problems with data repository submissions. We also
explored the cost constraints of data reuse at each step of the data reuse process
to better understand “pain points” and to provide amore quantitative perspective
from sixteen active researchers. The bioinformatics and data processing step
was estimated to be the most time consuming, which aligns with some of the
most frequently reported challenges from the community survey. From these
two approaches, we present evidence-based recommendations for how to
address data sharing and reuse challenges with concrete actions for future work.
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1 Introduction

Researchers investigating microbiomes, whether from host,
plant, water, or soil ecosystems, collectively generate large amounts
of data increasingly from multi-omics experiments. The current
paradigm in the field is to generate data for a given scientific
question, yet the nature ofmulti-omics data often lends itself to reuse
for data exploration and discovery purposes outside of the original
study. More recent studies have demonstrated the tremendous value
of a data reuse approach, including meta-analyses and comparative
(meta)genomics, modeling efforts, and machine learning training
(Duvallet et al., 2017; Kiledal et al., 2021; Madrigal et al., 2022;
Saucedo et al., 2024; Li et al., 2025; Abdill et al., 2025; Elmassry et al.,
2025). Microbiome data reuse has also enabled researchers to
address their scientific questions at broader scales with data that
they would not normally be able to generate themselves, such
as continental and global-scale data (Zhang and Ning, 2015;
McCauley et al., 2023; Lang et al., 2023; Osburn et al., 2024;
Graham et al., 2024; Abdill et al., 2025), and difficult to acquire
samples such as those from remote terrestrial and marine locations
and even the International Space Station (Saunders and Rocap,
2016; Alexander et al., 2023; Pitot et al., 2024; Gonzalez et al.,
2024; Nastasi et al., 2024). Reuse of published microbiome data
has enabled the discovery of novel organisms and relationships,
and informed our collective understanding of the biogeography of
microorganisms and genetically encoded traits such as secondary
metabolite production (Parks et al., 2017; Nayfach et al., 2021;
Robinson et al., 2021; Edgar et al., 2022; Lima et al., 2022;
Sanders et al., 2023; Machado et al., 2024; Elmassry et al., 2025).

To facilitate microbiome data reuse, several calls have been
made to promote standardization, open data, and to increase
data sharing (Gomez-Cabrero et al., 2014; Bhandary et al., 2018;
Huttenhower et al., 2023; Sielemann et al., 2020; Eckert et al., 2020).
More research teams, primary repositories, and institutions are
promoting data reuse to facilitate enhanced analyses across samples,
geographic locations, data types, and time scales (Jurburg et al.,
2024). However, amore nuanced view into researchers’ behavior and
attitudes towards data reuse, alongwith the associated costs, have not
been explored in depth.

Here, we conducted a community survey of over 700
microbiome researchers to evaluate data sharing and reuse
challenges. Based on the survey results, we next explored the cost

and personnel time constraints of data reuse at each step of the data
reuse process to better understand the “pain points” that could
be improved upon. Together, we present recommendations for
how to address these challenges and concrete actions to improve
how the research community can further leverage data reuse for
microbiome science.

2 Community analysis of barriers to
microbiome data reuse

To better understand the barriers to microbiome data reuse
that researchers face, we conducted a survey in 2020 to assess
various aspects of microbiome science. The survey was designed
by the National Microbiome Data Collaborative (NMDC) team
and reviewed and approved by the Human Subjects Committee
at Lawrence Berkeley National Laboratory as an exempt IRB
protocol under #394NR001. A total of 783 participants participated
in the survey spanning 60 countries with approximately 50% of
participants indicating they resided in the United States (415 out
of 783 participants). Survey participants were asked a series of
questions about their data sharing and data reuse practices, with
the survey questions and anonymized results publicly available
[https://doi.org/10.5281/zenodo.14948343] (Kelliher et al., 2025).
Beyond themultiple choice questions, we specifically were interested
in gathering feedback to understand the biggest challenges for
(a) searching for microbiome data in available resources and (b)
sharing microbiome data (Figure 1). For data search, we received
responses from participants that outlined 637 challenges, with
a plurality of responses (22%, 140/637) describing missing or
incorrect metadata (Figure 1A). Other related issues with metadata
were also reported, specifically a lack of standardized metadata
(e.g., different ontologies and requirements across repositories)
making it challenging to find data (7%, 44/637), along with
issues linking primary data to the metadata (6%, 38/637). The
next two categories with the most responses included challenges
with processing data (16%, 105/637) and the user-friendliness
of data repositories (11%, 71/637). Data processing challenges
included issues with a lack of data interoperability (e.g., a
lack of standardized formatting hindering data processing and
different workflows leading to different outputs) and bioinformatics
limitations (e.g., compute power, quality checks after data retrieval,
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FIGURE 1
Synthesis of results from the community survey about challenges for data discovery and sharing. The answers to both free-form questions were
classified into the broader categories for (A) data search: respondents were asked, “What is currently your biggest challenge when searching for
microbiome data in available resources?” and (B) data sharing: respondents were asked, “What is currently your biggest challenge with respect to
sharing microbiome data?”. All respondent answers and bins are available here: https://doi.org/10.5281/zenodo.14948343 (Kelliher et al., 2025).

downloaded data is not in a useful format for programmatic
usage).

Survey feedback regarding “user-friendliness of data
repositories” focused on issues with filtering or searching for data,
a lack of interoperability between user interfaces and platforms,
lack of programmatic access for downloading files, and issues with
repositories or databases not beingmaintained. Related to challenges
with data, many respondents specifically noted poor quality data
(8%, 50/637) and difficulties managing data (4%, 28/637). Other
response categories encompassed data accessibility, including the
inability to find specific data of interest (Data type not available - 6%,
36/637; e.g., research area too niche, researchers not sharing data),
concerns regarding data findability (5%, 29/637; e.g., challenges
identifying relevant datasets, sorting through vast amounts of
datasets, concerns about missing relevant datasets), or limited
publication access (e.g., paywalls or datasets and publications not
linked) to identify the study context (2%, 12/637). Lack of expertise
was reported as one of the least limiting factors (3%, 17/637), while
the lack of time or funding together only garnered 1% (n = 7) of 637
responses.

For data sharing, we received 428 separate issues. The top
responses to this question related to issues submitting data,
including difficulties in formatting metadata/data for submission
(17%, 74/428), managing or uploading large volumes of data
(15%, 64/428), and general challenges with repository submission
processes (12%, 50/428) (Figure 1B). Related to difficulties
formatting metadata, many responses specified that a lack of
universal metadata standards (11%, 48/428) hindered the sharing
process (e.g., uncertainty about which standards or ontologies to
use). Other issues related to data management included difficulty
linking raw and processed data or linking different omics types
(6%, 26/428) (e.g., repositories not accepting different omics data
types) and challenges navigating and choosing where to submit
their data from the vast amount of repositories (7%, 28/428).
Participants also reported concerns about data privacy (5%, 20/428)
and concerns about credit or provenance (4%, 17/428), indicating

that issues surrounding data reuse ethics may contribute to reduced
data sharing. Lack of time (4%, 19/428), expertise (4%, 15/428),
and incentives (1%, 6/428) were additional limiting factors, with
researchers reporting that the data deposition process is time-
consuming and tedious, and that there are insufficient resources for
navigating proper data management and repository submissions.
Similar to the responses regarding data reuse, the associated costs
were not reported as a major issue (1%, 5/428).

Taken together, the responses to both data search and sharing
indicate that challenges with metadata, data repositories, data
management, and data processing represent major issues that limit
effective data reuse across the microbiome research field.

3 A case study to assess the costs of
reusing microbiome data

To expand upon the community survey results and assess the
costs associated with each step of the typical microbiome data reuse
process, we collated information from active microbiome researchers
part of the NMDC Champions program (https://microbiomedata.
org/community/championsprogram/). Sixteen researchers provided
estimates of personnel time and other resources associated with each
step of the data reuse process from their own experiences. Figure 2
outlines the estimated personnel hours (excluding salaries or other
associatedcosts) foreachstep.Personnel timewasemphasizedbecause
it allowed for more direct comparisons between microbiome studies,
regardless of institution or salary level, and could be used as a proxy
for cost and burden estimations. Sixteen Champions assessed their
“level of expertise” for large-scale data reuse (7 Intermediate and 9
Expert), and estimated thepersonnel time investment required at each
research step, as well as the required computational resources. These
estimates widely varied for each step, but overall the bioinformatics
step was reported as the largest time burden (average: 160.5 hours
(h); median: 100 h), followed by the downstream statistics, analyses,
and figure generation step (average: 91.5 h; median: 72 h) and the
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FIGURE 2
Estimates of personnel time for microbiome data reuse steps. These steps include: Experimental design, Searching for relevant datasets, Assessing and
linking metadata with datasets, Data download, Bioinformatics, Downstream statistics, analyses, and figure generation, and Writing publications.
Estimates were gathered from 16 NMDC Champions. Several Champions estimated “greater than” the hours that were used in the final average and
median calculations (e.g., >100 h was treated as 100 h). Figure was generated using the ggplot2 R package and the microshades color palette
(Wickham, 2011; Dahl et al., 2022).

publication writing step (average: 81.25 h; median: 90 h). In the
communitysurvey,manyresearchersreporteddifficulties inmanaging
and uploading large amounts of data. To further quantify the amounts
of data involved in typical reuse studies, Champions estimated the
amount of computational resources required for data storage as
well as the computational resources required for data analysis and
bioinformatics. A range from 1 TB to 10 TB was estimated for data
storage, and up to 10,000 core hours were reported for data analysis
and bioinformatics, although this metric was not able to be estimated
byallChampions.Together, this case study toestimate timeconstraints
and costs illustrates practical data reuse steps in a more quantitative
way. Based on these data, we offer evidence-based recommendations
to improve the process with an eye towards streamlining
future data reuse.

4 Discussion

This view into researchers’ attitudes towards data reuse and cost
estimates is instructive and allows for an enhanced understanding of
howmicrobiome researchers can leverage existing data investments.
By clarifying howchallenges are perceived and the associated costs of
data reuse, we are able to establish evidence-based recommendations
for future work. Using a community survey approach, we found

that there are several issues that disincentivize researchers from
reusing data. One major theme of reported challenges in both
sharing and reusing data involvedmetadata quality, standardization,
and availability. This echoes other reports surrounding lagging
adoption of metadata standards and best practices (Vangay et al.,
2021; Cernava et al., 2022; Fraga-Gonzalez et al., 2025), further
emphasizing that this is a barrier that needs to be universally
addressed. Challenges with processing large volumes of data was
reported in the community survey, and this burden was also
reflected by the NMDCChampion estimates that the bioinformatics
steps are the most time consuming and require large amounts
of computational resources. Difficulties with repositories for data
sharing aswell as for finding and accessing reusablemicrobiomedata
were also reported.

The case study estimation analysis, while limited to sixteen
individuals, provides more quantitative information on data reuse
that, to our knowledge, has not been reported in other studies
discussing barriers to data reuse. This analysis is meant as a
preliminary assessment of current practices to elaborate upon
discussion points that have been reported in other perspectives
(Tenopir et al., 2011; Tenopir et al., 2015; Huttenhower et al.,
2023). We recognize that other costs such as those associated
with computational resources widely vary across institutions and
that it can be difficult or impossible to obtain quotes or financial
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information to quantify and standardize cost assessments across
the entire microbiome research community. We assessed personnel
time requirements as a more comparable metric across microbiome
research questions, researchers, and institutions, however this also
has its limitations when used as a measure of burden.

4.1 Recommendations

Moving forward, it is increasingly clear that data reuse
challenges must be addressed from the perspectives of both
depositors and reusers to make it more broadly feasible. Below, we
provide specific recommendations based on our synthesis of both
the community survey and Champions feedback on data sharing,
reuse, and costs.

4.2 Metadata

From our survey, researchers reported issues with metadata
collection, standardization, reporting, deposition, and access as
significant barriers to both sharing and reuse. The Genomic
Standards Consortium (GSC), the Environment Ontology (EnvO),
and the Open Biomedical Ontologies (OBO) Foundry are all
examples of community-driven efforts that have significantly
advanced how microbiome metadata can be collected and
standardized (Field et al., 2011; Buttigieg et al., 2013; Smith et al.,
2007). More recently, two large community-driven efforts have
emerged to assist researchers with consistently reporting and
publishing on microbiome data: the STORMS and STREAMS
guidelines for human microbiome and environmental microbiome
data, respectively (Mirzayi et al., 2021; Kelliher et al., 2024a). Despite
these efforts, there is generally a lack of awareness of existing
metadata standards and an even more pronounced lack of adoption
(Vangay et al., 2021; Cernava et al., 2022). We suspect that this
lack of awareness and utilization of metadata standards significantly
contributes to the challenges the community faces with sharing
and reusing data. Additional training, tutorials, and awareness of
metadata and data standards would provide significant benefits
at the individual and community levels to increase adoption and
implementation of these efforts.

4.3 Finding and accessing data through
data repositories

Searching for, finding, and accessing relevant datasets was
emphasized as a pain point for researchers in both the community
survey and as a time burden in the Champions’ estimates.
Enhanced interoperability between datasets and repositories can
assist researchers in these steps, and it is often the responsibility of
the data submitter to ensure that there are decipherable connections
between the data and metadata. Survey participants reported
issues navigating repositories for both sharing and searching
for data, and a lack of training or tutorials hindering this
process. Educational resources with a focus on data repositories
could enhance researchers’ ability to effectively share their data
and adhere to FAIR [Findable, Accessible, Interoperable, and

Reusable] principles, thus making data more accessible overall
(Wilkinson et al., 2016). Several data repositories offer links
to other related repositories or datasets which can help in the
search process (Gebre et al., 2025). It can also be important
to note whether repositories have been curated and in what
manner to minimize the reported issues with insufficient data and
metadata quality (Eloe-Fadrosh et al., 2022; Muller et al., 2022).
Additionally, when publishing on data reuse studies, it is important
to note that many repositories accept processed data, which can
improve reproducibility of the published work (Baker et al., 2000;
McWilliam et al., 2013). Researching and adhering to the data
use policies and citing data from repositories properly can save
time during revisions and can foster trust and incentives for those
that report hesitancy with data sharing. Lastly, we anticipate newer
tools like incorporating machine learning or artificial intelligence
within repositories will also help to address challenges in data
quality control for both raw and processed data (reviewed in
Hernández Medina et al., 2022; Kumar et al., 2024).

4.4 Data processing and bioinformatics

Bioinformatics was reported as the most time-consuming step
for the NMDC Champions. Data processing steps would be
significantly less time consuming for researchers if free, publicly
available software and tools were more readily available. Several
web-based cyberinfrastructures exist that increase the accessibility
of bioinformatics workflows (Swetnam et al., 2024; Lo et al.,
2022; Arkin et al., 2018; Li et al., 2017; Kelliher et al., 2024b).
For data download, tools such as the Sequence Read Archive
(SRA) toolkit and Globus can help researchers to improve their
download procedures (Foster and Kesselman, 1997; Chard et al.,
2016; Heldenbrand et al., 2017; Sayers et al., 2022). More transfer
services at the institutional and individual levels (such as the services
provided by IMG/M) as well as more publicly available application
programming interfaces (APIs) would alsominimize data download
burdens for researchers (Chen et al., 2023). Additional training,
webinars, workshops, tutorials, and documentation would all lower
the barriers to these steps, especially for researchers that are not
as familiar with these processes. Publishing and sharing code
used for data reuse can also facilitate collective improvements
across the field.

5 Conclusion

Taken together, many of the responsibilities for promoting
microbiome data reuse have been discussed from the perspective
of the data generators (Huttenhower et al., 2023). Other new tools,
resources, and recommendations can also improve the data reuse
process and decrease researcher burden. Increased collaboration
and discussions between data generators and reusers can also lead
to the sharing and adoption of data and metadata best practices.
We encourage the continuation of calls to action for increased
reuse of microbiome data, ideally from the perspective of all
organizational partners including research teams, data repository
representatives, funding agencies, and publishers. Grant funding
calls for research projects specifically reusing data and providing

Frontiers in Bioinformatics 05 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1585717
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Kelliher et al. 10.3389/fbinf.2025.1585717

compute timemay incentivemoremeta-analyses.While community
awareness and adoption of FAIR and open data management
practices is increasing, addressing the reported challenges will
facilitate further implementation across the field. The two lines of
investigation reported herein provide insight into the behaviors and
practices ofmicrobiome researchers, and the barriers they encounter
with microbiome data reuse. This perspective contributes to our
collective understanding of researcher attitudes towards data reuse,
and provides recommendations for how the community can work
together to address the most pressing challenges in microbiome
data reuse.
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