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The function of long non-coding RNA (lncRNA) is largely determined by its
specific location within a cell. Previous methods have used noisy datasets,
includingmRNA transcripts in tools intended for lncRNAs, and excluded lncRNAs
lacking significant differential localization between the cytoplasm and nucleus.
In order to overcome these shortcomings, a method has been developed for
predicting cytoplasm-associated lncRNAs in 15 human cell-lines, identifying
which lncRNAs are more abundant in the cytoplasm compared to the nucleus.
All models in this study were trained using five-fold cross validation and tested
on an validation dataset. Initially, we developed machine and deep learning
based models using traditional features like composition and correlation.
Using composition and correlation based features, machine learning algorithms
achieved an average AUC of 0.7049 and 0.7089, respectively for 15 cell-lines.
Secondly, we developed machine based models developed using embedding
features obtained from the large languagemodel DNABERT-2. The average AUC
for all the cell-lines achieved by this approach was 0.665. Subsequently, we also
fine-tuned DNABERT-2 on our training dataset and evaluated the fine-tuned
DNABERT-2model on the validation dataset. The fine-tuned DNABERT-2model
achieved an average AUC of 0.6336. Correlation-based features combined
with ML algorithms outperform LLM-based models, in the case of predicting
differential lncRNA localization. These cell-line specific models as well as web-
based service are available to the public from our web server (https://webs.iiitd.
edu.in/raghava/cytolncpred/).

KEYWORDS
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Highlights

• Prediction of cytoplasm-associated lncRNAs in 15 human cell lines
• Machine learning using composition and correlation features
• DNABERT-2 embeddings for lncRNA localization prediction
• Correlation-based models outperform LLM-based models
• Web server and models available for public use

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1585794
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1585794&domain=pdf&date_stamp=2025-05-22
mailto:raghava@iiitd.ac.in
mailto:raghava@iiitd.ac.in
https://doi.org/10.3389/fbinf.2025.1585794
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1585794/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1585794/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1585794/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1585794/full
http://orcid.org/0000-0002-4509-4683
http://orcid.org/0009-0009-0244-2826
http://orcid.org/0000-0002-8902-2876
https://webs.iiitd.edu.in/raghava/cytolncpred/
https://webs.iiitd.edu.in/raghava/cytolncpred/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Choudhury et al. 10.3389/fbinf.2025.1585794

Introduction

The rapidly expanding field of non-coding RNAs has
revolutionized our understanding of gene regulation and cell
biology. Among the diverse classes of non-coding RNAs, long non-
coding RNAs (lncRNAs) have attracted significant attention due
to their ability to regulate gene expression at various levels. Initially
dismissed as transcriptional noise, lncRNAs have emerged as critical
players in cellular processes, including development, differentiation,
and disease progression (Statello et al., 2021). To fully comprehend
the functional roles of lncRNAs, it is imperative to investigate
their subcellular localization. lncRNAs have distinct functions
in the nucleus and cytoplasm, influencing transcriptional and
posttranscriptional processes. In the nucleus, lncRNAs regulate gene
expression and chromatin organization, while in the cytoplasm, they
participate in signal transduction and translation. Some lncRNAs
exhibit dual localization and functional diversification, reflecting
their adaptability to different subcellular environments (Miao et al.,
2019; Aillaud and Schulte, 2020; Mattick et al., 2023).

In recent years, extensive research efforts have been focused
on deciphering the subcellular localization of lncRNAs. Various
experimental approaches, such as fluorescence in situ hybridization
(FISH) (Chang et al., 2023), RNA sequencing (RNA-seq) (Mayer
and Churchman, 2017), and fractionation techniques (Miao et al.,
2019), have been employed to identify the subcellular localization
patterns of lncRNAs. These studies have revealed that lncRNAs
can be localized in different cellular compartments, including the
nucleus, cytoplasm, nucleolus, and specific subcellular structures.
The subcellular localization of lncRNAs is often associated with
their biological functions. For instance, nuclear-localized lncRNAs
are frequently involved in transcriptional regulation, chromatin
remodeling, and epigenetic modifications. Cytoplasmic lncRNAs,

on the other hand, can interact with proteins or act as competitive
endogenous RNAs (ceRNAs) to regulate gene expression post-
transcriptionally (Bridges et al., 2021). However, most of these
methods are expensive to perform and require highly specialized
instrumentation.

Advancements in computational methods and machine
learning approaches have further facilitated the prediction of
lncRNA subcellular localization. These methods leverage various
features, such as sequence composition, secondary structure, and
evolutionary conservation, to predict the subcellular localization
of lncRNAs with high accuracy. Several computational methods
have been proposed for predicting lncRNA subcellular localization.
Sequence-based methods rely on the nucleotide composition of the
lncRNA. They utilize features such as k-mer frequency, nucleotide
composition, and sequence motifs. However, these methods are
trained on datasets that are not unique to humans, and they do not
account for the variation in the subcellular localization of lncRNA
in different cells.

Cell-line specific subcellular localization gains prominence due
to the variability (in terms of subcellular localization) that lncRNAs
exhibit within different cell-lines. This was reported by Lin et al.
in lncLocator 2.0, where it was observed that a single lncRNA had
different localization in different cell-lines (Lin et al., 2021). We
observed a similar trend in our dataset, where some lncRNAs were
found to be localized in the nucleus for some cell-lines but were
localizing to the cytoplasm in some other cell-lines.This pattern can
be seen clearly in Figure 1.

lncLocator 2.0 is a cell-line-specific subcellular localization
predictor that employs an interpretable deep-learning approach
(Lin et al., 2021). TACOS, also a cell-line-specific subcellular
localization predictor, uses tree-based algorithms along with various
sequence compositional and physicochemical features (Jeon et al.,

FIGURE 1
Bubble plot indicating the variability of localization of a single lncRNA across multiple cell-lines.
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FIGURE 2
Overall architecture of CytoLNCpred.

2022). Among all the existing computational methods, only
lncLocator 2.0 and TACOS are designed to predict subcellular
localization specific to different cell-lines. The primary issue with
these methods is that the datasets used to develop these methods

have not been properly filtered. Specifically, these methods have
included mRNA sequences in their datasets, which can lead to
inaccurate predictions. Additionally, the datasets have eliminated
lncRNAs with an absolute fold-change less than 2, which can result
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FIGURE 3
Graphical overview of the process of dataset creation.

TABLE 1 Detailed summary of the dataset used in the study, including the total number of samples for each cell-line in the source database and the final
non-redundant dataset.

Cell-lines Original Non-
redundant
dataset

Filtering
out

sequences
>10,000
length

Training
dataset

(complete)

Training
dataset
(nucleus)

Training
dataset

(cytoplasm)

Validation
dataset

(complete)

Validation
dataset
(nucleus)

Validation
dataset

(cytoplasm)

1826 1821 1131 904 547 357 227 137 90

H1.hESC 4194 4178 2552 2041 1224 817 511 307 204

HeLa.S3 1142 1141 703 562 470 92 141 118 23

HepG2 1703 1699 1029 823 598 225 206 150 56

HT1080 1183 1180 690 552 314 238 138 78 60

HUVEC 1870 1859 1137 909 659 250 228 165 63

MCF.7 2714 2703 1702 1361 1028 333 341 257 84

NCI.H460 772 769 460 368 304 64 92 76 16

NHEK 1383 1378 755 604 450 154 151 112 39

SK.MEL.5 694 691 380 304 242 62 76 60 16

SK.N.DZ 762 759 422 337 205 132 85 52 33

SK.N.SH 2086 2077 1211 968 715 253 243 179 64

GM12878 2136 2128 1286 1028 788 240 258 198 60

K562 1197 1191 729 583 414 169 146 104 42

IMR.90 497 496 314 251 133 118 63 34 29

in the failure to predict the subcellular location of lncRNAs with
borderline concentration differences between locations.

To address the limitations of existing methods in a
comprehensive manner, we have developed CytoLNCpred.
In this study, we aimed to enhance the prediction accuracy
compared to current tools, which have significant room for
improvement. Furthermore, we have cleaned the dataset and
adhered to industry standards to validate the performance
of our method. In CytoLNCpred, a machine learning model
trained using correlation-based features demonstrated significantly

better performance on the validation dataset compared to
existing tools.

Materials and methods

To aid in the development of a prediction model for lncRNA
subcellular localization, we’ve designed a workflow diagram,
depicted in Figure 2.The comprehensive details of each phase in this
workflow are outlined in the subsequent sections.

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1585794
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Choudhury et al. 10.3389/fbinf.2025.1585794

TABLE 2 Overview of the composition-based features generated
using Nfeature.

Feature name Type of
descriptor

No. of descriptors

Nucleic acid
Composition

Di-Nucleotide 16

Reverse complement
K-Mer composition

Di-Nucleotide 10

Nucleotide Repeat
Index

Mono-Nucleotide 4

Entropy Sequence-level 1

Entropy Nucleotide-level 4

Distance Distribution Mono-Nucleotide 4

Pseudo Composition Pseudo Di-nucleotide 19

Pseudo Composition Pseudo Tri-nucleotide 65

Total number of
descriptors

123

Dataset creation

In this study, we have selected lncAtlas for acquiring cell-
line specific subcellular localization information. lncAtlas is a
comprehensive resource of lncRNA localization in human cells based
on RNA-sequencing data sets (Mas-Ponte et al., 2017). lncAtlas
contains a wide array of information, including Cytoplasm toNucleus
Relative Concentration Index (CNRCI), whichwe have utilized in our
method. CNRCI is defined as the log2-transformed ratio of RPKM
(Reads PerKilobase perMillionmapped reads) in two samples, in this
case - the cytoplasm and nucleus. It is calculated as follows

CNRCI = log2(
Cytoplasmicexpression (FPKM)
Nuclearexpression (FPKM)

)

Sequence information for the lncRNAs was obtained from
ENSEMBL database (version 112) and lncRNAs with no sequence
were dropped. In order to modify the dataset for a classification
problem,we assigned sequences havingCNRCI value greater than0 as
Cytoplasmand those havingCNRCI value less than 0were assigned as
Nucleus. Redundancy was removed using MeshClust (Girgis, 2022),
using a sequence similarity of 90%. Figure 3 graphically depicts how
the training and validation datasets were created.

Further, we used sequences up to the length of 10,000
nucleotides only, as the longer lncRNA were misleading for the
machine learningmodels and computationally very expensive when
large language models were involved. The summary of the dataset
used for each cell line is provided in Table 1.

Feature generation - Composition and
correlation-based

For facilitating the training of machine learning (ML) models,
we generated a large variety of features using different approaches.

TABLE 3 Overview of the correlation-based features generated
using Nfeature.

Feature
name

Type of
descriptor

Number of descriptors

Cross Correlation Trinucleotide
Cross Correlation

264

Auto-Cross
Correlation

Auto Dinucleotide
- Cross Correlation

288

Auto-Cross
Correlation

Auto Trinucleotide
- Cross Correlation

288

Auto Correlation Tri-Nucleotide 24

Auto Correlation Normalized
Moreau-Broto

24

Auto Correlation Dinucleotide
Moran

24

Auto Correlation Dinucleotide
Geary

24

Pseudo
Correlation

Serial Correlation
Pseudo
Trinucleotide
Composition

65

Pseudo
Correlation

Serial Correlation
Pseudo
Dinucleotide
Composition

17

Pseudo
Correlation

Parallel
Correlation
Pseudo
Trinucleotide
Composition

65

Pseudo
Correlation

Parallel
Correlation
Pseudo
Dinucleotide
Composition

17

Total number of
descriptors

1100

These features convert nucleotide sequences We used the in-
house tool Nfeature (Mathur et al., 2021) for generating multiple
composition and correlation features.

Composition-based

Nucleotide composition-based features refer to quantitative
representations of sequences that can be derived from the
proportions and arrangements of nucleotides within these
sequences. In this study, we have computed nucleic acid
composition, distance distribution of nucleotides (DDN),
nucleotide repeat index (NRI), pseudo composition and entropy of a
sequence.The details for each of the features are provided in Table 2.
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FIGURE 4
Overview of the performance achieved by different prediction strategies. The values indicate the average MCC and AUC across all the 15 cell-lines for a
prediction strategy.

TABLE 4 Composition based-features having the highest correlation with the CNRCI values for 15 cell-lines.

Top 5 positively correlated features Top 5 negatively correlated features

SK.N.DZ CDK_CGA CDK_TCG CDK_AAC CDK_ACG CDK_CG CDK_TGG CDK_TG CDK_CTG CDK_GGG CDK_GGT

HeLa.S3 CDK_TAC CDK_AA CDK_AAT CDK_A CDK_TA CDK_GG CDK_G CDK_GGG CDK_GGC CDK_CTG

HUVEC CDK_CG CDK_GCG CDK_CGG CDK_CGA CDK_CGC CDK_TG CDK_CAT CDK_T CDK_TGA CDK_ATG

NHEK CDK_GCG CDK_CGC CDK_CCG CDK_CG CDK_CGG CDK_TG CDK_TGT CDK_GTG CDK_GT CDK_TCT

GM12878 CDK_CGA CDK_ACG CDK_CG CDK_GCG CDK_TCG CDK_CAT CDK_TCA CDK_TAT CDK_AT CDK_TTC

IMR.90 CDK_CGA CDK_GCG CDK_CG CDK_CGG CDK_CGC CDK_TG CDK_TGG CDK_CTG CDK_CCT CDK_CT

A549 CDK_CGA CDK_AAA CDK_AA CDK_GCG CDK_GAA CDK_CTG CDK_CA CDK_CAG CDK_TG CDK_CCA

MCF.7 CDK_CGA CDK_CG CDK_GCG CDK_CGC CDK_CGG CDK_TG CDK_ATG CDK_CAT CDK_TGT CDK_T

NCI.H460 CDK_AAC CDK_CGA CDK_CAA CDK_ACG CDK_CGT CDK_TGG CDK_TG CDK_GGG CDK_GTG CDK_GGT

SK.MEL.5 CDK_CGC CDK_CG CDK_CCG CDK_ACG CDK_CGA CDK_AGT CDK_GAT CDK_TGA CDK_TG CDK_TTG

H1.hESC CDK_TA CDK_TTA CDK_TAA CDK_AAT CDK_AA CDK_CTG CDK_CAG CDK_C CDK_CCA CDK_CC

HT1080 CDK_CGA CDK_CG CDK_GCG CDK_ACG CDK_CGC CDK_TG CDK_T CDK_ATG CDK_TGT CDK_TTT

K562 CDK_CGA CDK_CG CDK_GCG CDK_ACG CDK_CGC CDK_CAG CDK_AG CDK_CTG CDK_TGG CDK_CA

HepG2 CDK_CGA CDK_CG CDK_TCG CDK_GCG CDK_CGC CDK_TG CDK_CT CDK_CTG CDK_CA CDK_TGT

SK.N.SH CDK_AA CDK_AAC CDK_AAA CDK_TAA CDK_CAA CDK_CTG CDK_TG CDK_TGG CDK_CAG CDK_CCA

Correlation-based features

In this study, using Nfeature, we quantitatively assess the
interdependent characteristics inherent in nucleotide sequences
through the computation of correlation-based metrics. Correlation
refers to the degree of relationship between distinct properties or
features; an autocorrelation denotes the association of a feature with
itself, whereas a cross-correlation indicates a linkage between two
separate features. By employing these correlation-based descriptors,
we effectively normalize the variable-length nucleotide sequences
into uniform-length vectors, rendering them amenable to analysis

viamachine learning algorithms.These specific descriptors facilitate
the identification and extraction of significant features predicated
upon the nucleotide properties distributed throughout the sequence,
enabling a more robust understanding of genetic information. A
brief description of the features has been provided in Table 3.

The total number of descriptors generated by using
both composition and correlation-based features is 1223.
Detailed explanation of the features and their biological
implication have been provided in Supplementary Table S1.
The properties used to calculate correlation-based features are
provided in Supplementary Table S2.
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TABLE 5 Correlation-based features having the highest correlation with the CNRCI values for 15 cell-line.

Top 5 positively correlated features Top 5 negatively correlated features

SK.N.DZ TCC_p3_
p4_lag1

TACC_p3_
p4_lag1

TCC_p3_
p11_lag1

TACC_p3_
p11_lag1

TCC_p2_
p3_lag2

DACC_p1_
p4_lag1

TCC_p3_
p12_lag1

TACC_p3_
p12_lag1

TCC_p12_
p3_lag1

TACC_
p12_p3_
lag1

HeLa.S3 DACC_p5_
p3_lag1

PC_
PTNC_
TAG

SC_PTNC_
TAG

PKNC_
TAG

TAC_p1_
lag1

TCC_p1_
p8_lag1

TACC_p1_
p8_lag1

TCC_p8_
p1_lag1

TACC_p8_
p1_lag1

TCC_p2_
p8_lag1

HUVEC DACC_p7_
lag1

DACC_p9_
p8_lag1

DACC_p1_
p7_lag1

DACC_p4_
p2_lag1

DACC_p4_
p8_lag1

DACC_p9_
p7_lag1

DACC_p1_
p8_lag1

DACC_p4_
p7_lag1

DACC_p7_
p2_lag1

DACC_p7_
p4_lag1

NHEK DACC_p4_
p2_lag1

DACC_
p10_p2_
lag1

DACC_p6_
p2_lag1

DACC_p7_
p12_lag1

DACC_p9_
p4_lag1

DACC_p7_
p2_lag1

DACC_p4_
p12_lag1

DACC_p6_
p12_lag1

DACC_p9_
p7_lag1

PC_
PDNC_TT

GM12878 TCC_p9_
p3_lag1

TCC_p10_
p3_lag1

TACC_p9_
p3_lag1

TACC_
p10_p3_
lag1

TCC_p3_
p9_lag1

DACC_p9_
p7_lag1

DACC_p4_
p7_lag1

DACC_p7_
p4_lag1

DACC_p7_
p6_lag1

DACC_p6_
p7_lag1

IMR.90 DACC_p4_
p2_lag1

DACC_p6_
p2_lag1

DACC_p1_
p7_lag1

DACC_
p10_p2_
lag1

MAC_p2_
lag1

DACC_p6_
p12_lag1

DACC_p7_
p2_lag1

DACC_p9_
p7_lag1

DACC_p1_
p2_lag1

DACC_p4_
p12_lag1

A549 DACC_p1_
lag1

DACC_p4_
lag1

DACC_p8_
p9_lag2

TAC_p3_
lag1

TACC_p3_
lag1

DACC_p9_
p1_lag1

DACC_p4_
p1_lag1

DACC_p8_
p1_lag2

DACC_p1_
p4_lag1

DACC_p7_
p9_lag2

MCF.7 DACC_p7_
lag1

DACC_p1_
p7_lag1

DACC_p9_
p8_lag1

DACC_p4_
p2_lag1

DACC_p4_
p8_lag1

DACC_p1_
p8_lag1

DACC_p9_
p7_lag1

DACC_p4_
p7_lag1

DACC_p7_
p2_lag1

DACC_p7_
p4_lag1

NCI.H460 DACC_p9_
p4_lag1

DACC_p1_
p7_lag1

DACC_p9_
p6_lag1

DACC_p7_
p12_lag1

DACC_p4_
p6_lag1

DACC_p1_
p10_lag1

DACC_p1_
p6_lag1

DACC_p1_
p4_lag1

DACC_p4_
p12_lag1

DACC_
p10_p12_
lag1

SK.MEL.5 DACC_p9_
p8_lag1

DACC_p4_
p2_lag1

DACC_p9_
p2_lag1

DACC_
p10_p2_
lag1

SC_PTNC_
CGG

TCC_p3_
p7_lag1

TACC_p3_
p7_lag1

DACC_p9_
p7_lag1

TCC_p7_
p3_lag1

TACC_p7_
p3_lag1

H1.hESC NMBAC_
p1_lag1

DACC_p3_
p11_lag1

DACC_p1_
lag1

DACC_p3_
p5_lag1

PDNC_TC PKNC_
CTT

PKNC_
CAT

SC_PTNC_
CTT

PC_
PTNC_
CTT

SC_PTNC_
CAT

HT1080 DACC_p4_
p2_lag1

DACC_p1_
p7_lag1

DACC_
p10_p2_
lag1

DACC_p7_
lag1

DACC_p6_
p2_lag1

DACC_p9_
p7_lag1

DACC_p1_
p8_lag1

DACC_p7_
p2_lag1

DACC_p1_
p2_lag1

DACC_p4_
p7_lag1

K562 TCC_p9_
p3_lag1

TCC_p10_
p3_lag1

TACC_p9_
p3_lag1

TACC_
p10_p3_
lag1

TCC_p3_
p9_lag1

DACC_p1_
p8_lag2

DACC_p1_
p4_lag1

DACC_p1_
p10_lag2

DACC_p4_
p1_lag2

DACC_p9_
p7_lag2

HepG2 DACC_p7_
p1_lag1

TAC_p3_
lag1

TACC_p3_
lag1

DACC_p4_
lag1

DACC_p1_
p7_lag1

DACC_p4_
p7_lag1

DACC_p7_
p4_lag1

DACC_p7_
p6_lag1

DACC_p6_
p7_lag1

DACC_p9_
p7_lag1

SK.N.SH DACC_p1_
lag1

DACC_p1_
p7_lag1

DACC_p9_
p4_lag1

DACC_p8_
p9_lag2

TCC_p11_
p3_lag1

DACC_p1_
p4_lag1

DACC_p9_
p1_lag1

DACC_p4_
p1_lag1

DACC_p1_
p6_lag1

TCC_p12_
p3_lag1

Embedding using DNABERT-2

DNABERT-2 is an adaptation of BERT (Bidirectional Encoder
Representations from Transformers) designed specifically for DNA
sequence analysis (Zhou et al., 2023). DNABERT-2 generates
embeddings for DNA sequences that encapsulate not just the
individual bases, but also their biological significance in terms of

structure, function, and interactions. Moreover, the key advantage
of DNABERT-2 embeddings lies in their ability to capture the
complex dependencies within DNA sequences. We have made use
of both aspects of DNABERT-2 - the pre-trained model to make
predictions and the embeddings from the model to be used as
features for downstream tasks.Thepre-trainedmodelwas trained on
the training dataset using the default parameters mentioned in their
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FIGURE 5
Heatmap depicting the composition-based features that demonstrate the highest variation in their correlation with the CNRCI values within 15
cell-lines.

GitHub repository. Moreover, we have also generated embeddings
from both the pre-trained as well as the fine-tuned models in
order to use them as features for machine learning algorithms.
The embeddings are derived from the hidden states of the model’s
final output layer, using max pooling. The number of embeddings
generated for each lncRNA using DNABERT-2 was 768.

Five-fold cross validation

In order to estimate the performance of machine learning based
models while training, we have deployed five-fold cross validation.
In this method, the training dataset is split into five folds in a
stratified manner and training is actually done over four folds
and one fold is dedicated for validation. This process is iteratively
performed for five times, by changing the fold that is used for
validation and the rest of the folds being used for training. This
generates an unbiased set of five performance metrics and the
performance of the model is reported as the mean of these five sets.

Feature selection

To optimize model performance and reduce computational
complexity, we employed the Minimum Redundancy Maximum

Relevance (mRMR) feature selection algorithm to identify the most
informative features from our dataset. The mRMR algorithm selects
features that exhibit the highest relevance to the target variable
while minimizing redundancy among the features themselves,
thereby enhancing the efficiency and predictive power of the
models. For applying the mRMR algorithm, we combined all the
features that were generated previously. Three different feature
sets–Composition, Correlation and Embeddings, were used to
generate a combined feature set comprising 2278 features. We
evaluated the impact of feature selection by calculating and selecting
subsets of 10, 50, 100, 500, 1000, 1500, and 2000 features. These
subsets were subsequently used in downstream analyses to assess
their influence on model performance metrics. Feature importance
was also evaluated using simple correlation.

Model development

In this study, three different approaches were followed formodel
development. The first approach involves the fine tuning of the
DNABERT-2 using our training dataset and subsequently using the
fine-tuned model to make predictions on the validation dataset.
This method initially fine-tunes both the tokenizer and the pre-
trained model according to our training dataset, and generates
a fine-tuned tokenizer, and model. The fine-tuned model takes
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FIGURE 6
Heatmap depicting the correlation-based features that demonstrate the highest variation in their correlation with the CNRCI values within 15 cell-lines.

lncRNA sequences and generates the prediction using the tokenizer
and model. In the next approach, we have implemented a hybrid
approach, combining the components of large language models and
machine learning algorithms. Instead of features, we have generated
embeddings from a pre-trained as well as fine-tuned DNABERT-2
model. Embeddings from the DNABERT-2 model were then used
to train machine learning models and subsequently evaluated them.
The third approach involves composition and correlation-based
features and using them to train machine learning models. The final
model was developed using the.

Model evaluation metrics

The binary classification performance of our fine-tuned model
was evaluated using the following metrics: Sensitivity (SENS),
Specificity (SPEC), Precision (PREC), Accuracy (ACC), Matthew’s
Correlation Coefficient (MCC), F1-Score (F1) and Area Under the
Receiver Operator Characteristic curve (AUC).The aforementioned
metrics were calculated using the four different types of prediction
outcomes: true positive (TP), false positive (FP), true negative (TN),
and false negative (FN):

Sensitivity = TP
TP+ FN

Speci ficity = TN
TN+ FP

Precision = TP+TN
TP+TN+ FN+ FP

Accuracy = TP+TN
TP+TN+ FN+ FP

MCC =
(TP×TN ) − (FP× FN)

√(TP+ FP) × (TP+ FN) × (TN+ FP) × (TN+ FN)

F1− score = TP
TP+ (0.5× (FN+ FP))

The evaluation of our binary classification model using various
metrics provides critical insights into its performance. Sensitivity
(SENS) measures the model’s ability to identify positive instances,
while Specificity (SPEC) assesses its accuracy in recognizing
negative instances. Precision (PREC) reflects the accuracy of positive
predictions, and Accuracy (ACC) offers an overall measure of
correctness, though it may be misleading in imbalanced datasets.
Matthew’s Correlation Coefficient (MCC) provides a balanced
view by considering all prediction outcomes, with values close
to 1 indicating strong predictive capability. The F1-Score (F1)
combines Precision and Sensitivity into a single metric, ideal for
balancing the trade-off between false positives and negatives. Finally,
the Area Under the Curve (AUC) evaluates the model’s ability

Frontiers in Bioinformatics 09 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1585794
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Choudhury et al. 10.3389/fbinf.2025.1585794

TABLE 6 Performance of the best ML model for each cell-line on the validation dataset using composition features.

Cell-lines Feature
used

ML model
used

Sensitivity Specificity Precision Accuracy MCC F1-score AUC

A549 RDK RandomForest
Classifier

0.600 0.825 0.692 0.736 0.438 0.643 0.761

H1.hESC CDK RandomForest
Classifier

0.500 0.785 0.607 0.671 0.297 0.548 0.708

HeLa.S3 PKNC GaussianNB 0.826 0.593 0.284 0.631 0.310 0.422 0.779

HepG2 RDK GaussianNB 0.429 0.847 0.511 0.733 0.292 0.466 0.718

HT1080 CDK MLPClassifier 0.517 0.769 0.633 0.659 0.296 0.569 0.728

HUVEC PKNC SVC 0.032 0.964 0.250 0.706 −0.011 0.056 0.756

MCF.7 CDK GaussianNB 0.452 0.809 0.437 0.721 0.259 0.444 0.724

NCI.H460 PKNC SVC 0.000 1.000 0.000 0.826 0.000 0.000 0.723

NHEK CDK SVC 0.000 1.000 0.000 0.742 0.000 0.000 0.643

SK.MEL.5 CDK XGBClassifier 0.063 0.950 0.250 0.763 0.023 0.100 0.676

SK.N.DZ CDK MLPClassifier 0.545 0.692 0.529 0.635 0.237 0.537 0.679

SK.N.SH PDNC Quadratic
Discriminant
Analysis

0.547 0.732 0.422 0.683 0.259 0.476 0.703

GM12878 PKNC GradientBoosting
Classifier

0.133 0.939 0.400 0.752 0.115 0.200 0.687

K562 ALL_COMP DecisionTree
Classifier

0.452 0.788 0.463 0.692 0.243 0.458 0.620

IMR.90 PKNC AdaBoost
Classifier

0.448 0.735 0.591 0.603 0.192 0.510 0.668

Average 0.370 0.829 0.405 0.704 0.197 0.362 0.705

to distinguish between classes across different thresholds, with
higher values indicating better performance. Together, thesemetrics
enable a comprehensive evaluation of the model, guiding necessary
improvements and refinements.

Results

In this study, an attempt was made to design a model that will be
able to classify the subcellular location of lncRNA into cytoplasm or
nucleus. To achieve this, we tried out multiple approaches. Figure 4
provides an overview of the performance of the various approaches
tried in this study.

Functional enrichment analysis

The GO and KEGG enrichment analysis, conducted using
RNAenrich (Zhang et al., 2023), reveals distinct functional

roles for cytoplasmic versus nuclear-localizing lncRNAs. Among
the significantly enriched GO terms (adjusted p-value <0.05),
2,511 were shared, while 397 were unique to cytoplasmic
lncRNAs (positive class) and 254 to nuclear lncRNAs (negative
class). Cytoplasmic lncRNAs were enriched for biological
processes such as “response to interferon-beta” (GO:0035456),
“positive regulation of apoptotic process” (GO:0043065), and
“RNA splicing” (GO:0008380), indicating roles in immune
signaling, post-transcriptional regulation, and cellular stress
responses. Correspondingly, KEGG pathway enrichment identified
associations with Ferroptosis (hsa04216) and Autophagy
(hsa04140), further highlighting their involvement in cytoplasmic
stress and degradation pathways. In contrast, nuclear-localized
lncRNAs were enriched for GO terms such as “eukaryotic 48S
preinitiation complex” (GO:0033290), “regulation of transcription
of nucleolar large rRNA by RNA polymerase I” (GO:1901836),
and “MLL1/2 complex” (GO:0044665), reflecting their roles in
transcriptional regulation, chromatin remodeling, and nucleolar
function. KEGG analysis further linked nuclear lncRNAs to
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TABLE 7 Performance of the best ML model for each cell-line on the validation dataset using correlation features.

Cell-lines Feature
used

ML model
used

Sensitivity Specificity Precision Accuracy MCC F1-score AUC

A549 PC_PDNC GradientBoosting
Classifier

0.567 0.803 0.654 0.709 0.381 0.607 0.757

H1.hESC PDNC RandomForest
Classifier

0.495 0.811 0.635 0.685 0.324 0.556 0.720

HeLa.S3 PKNC GaussianNB 0.783 0.585 0.269 0.617 0.272 0.400 0.779

HepG2 MAC GaussianNB 0.679 0.567 0.369 0.597 0.218 0.478 0.715

HT1080 SC_PTNC GaussianProcess
Classifier

0.583 0.769 0.660 0.688 0.359 0.619 0.738

HUVEC PDNC AdaBoostClassifier 0.302 0.897 0.528 0.732 0.243 0.384 0.757

MCF.7 SC_PDNC SVC 0.000 1.000 0.000 0.754 0.000 0.000 0.753

NCI.H460 PDNC SVC 0.000 1.000 0.000 0.826 0.000 0.000 0.683

NHEK PKNC AdaBoostClassifier 0.231 0.866 0.375 0.702 0.116 0.286 0.635

SK.MEL.5 PDNC GradientBoosting
Classifier

0.063 0.933 0.200 0.750 −0.007 0.095 0.654

SK.N.DZ TAC SVC 0.424 0.865 0.667 0.694 0.327 0.519 0.739

SK.N.SH PC_PTNC GaussianNB 0.750 0.531 0.364 0.588 0.248 0.490 0.689

GM12878 PC_PDNC XGBClassifier 0.350 0.899 0.512 0.771 0.288 0.416 0.715

K562 DACC AdaBoostClassifier 0.405 0.808 0.459 0.692 0.221 0.430 0.642

IMR.90 PC_PTNC AdaBoostClassifier 0.621 0.588 0.563 0.603 0.208 0.590 0.655

Average 0.417 0.795 0.417 0.694 0.213 0.391 0.709

Sterol Biosynthesis (hsa00100) and Nucleotide Excision Repair
(hsa03420), pointing to nuclear functions in genome maintenance
and metabolic regulation. Together, these enrichments underscore
the compartment-specific biological functions of lncRNAs, shaped
by their cellular localization.

Feature importance

To identify features associated with subcellular localization
labels (cytoplasm or nucleus), we computed the correlation of each
featurewith the correspondingCNRCI values. A positive correlation
indicates that an increase in the feature value favors cytoplasmic
localization, whereas a negative correlation suggests a preference
for nuclear localization. This analysis elucidates which features
predominantly influence localization to either compartment. The
top 10 genes that were highly correlated with the CNRCI values
are provided in Table 4, 5 for composition-based and correlation-
based features, respectively. A more detailed version of this table
is provided in Supplementary Table S3, 4. It can be observed
that Cytosine-based k-mers are more prevalent in the positively
correlated features (supporting cytoplasm localization) whereas

Thymine is predominantly found in negatively correlated features
(supporting nucleus localization).

Additionally, we assessed feature variability across cell lines by
calculating the difference between the maximum and minimum
correlation values observed for each feature across all 15 cell lines.
This approach highlights features exhibiting the most pronounced
inter-cell-line variation, providing insight into their potential
biological or experimental variability. Figures 5, 6 represent
heatmaps depicting the highly variable genes and their correlation
with the CNRCI values for composition and correlation-based
features, respectively. The complete information for the variable
genes has been provided in Supplementary Table S5, 6.

Model based on composition and
correlation features

Composition and correlation features generated from Nfeature
were used to train multiple ML models. We have computed
the performance of nine composition-based features and thirteen
correlation-based features. We implemented all the combinations
of feature and ML model to identify which feature-ML model
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TABLE 8 Performance of the best ML model for each cell-line on the validation dataset using embeddings from pre-trained DNABERT-2 model.

Cell-lines ML model used Sensitivity Specificity Precision Accuracy MCC F1-score AUC

A549 SVC linear 0.500 0.759 0.577 0.656 0.267 0.536 0.661

H1.hESC MLP Classifier 0.588 0.638 0.519 0.618 0.223 0.552 0.666

HeLa.S3 XGBoost Classifier 0.087 0.992 0.667 0.844 0.201 0.154 0.699

HepG2 MLP Classifier 0.000 1.000 0.000 0.728 0.000 0.000 0.706

HT1080 MLP Classifier 0.817 0.513 0.563 0.645 0.338 0.667 0.735

HUVEC Random Forest Classifier 0.032 0.982 0.400 0.719 0.041 0.059 0.690

MCF.7 MLP Classifier 0.012 0.984 0.200 0.745 −0.013 0.022 0.657

NCI.H460 Gradient Boosting Classifier 0.063 1.000 1.000 0.837 0.228 0.118 0.599

NHEK Gaussian Naive Bayes Classifier 0.538 0.705 0.389 0.662 0.223 0.452 0.660

SK.MEL.5 KNN 0.063 0.967 0.333 0.776 0.061 0.105 0.638

SK.N.DZ Gradient Boosting Classifier 0.364 0.808 0.545 0.635 0.191 0.436 0.678

SK.N.SH MLP Classifier 0.469 0.709 0.366 0.646 0.166 0.411 0.618

GM12878 Logistic Regression 0.117 0.955 0.438 0.760 0.125 0.184 0.655

K562 Logistic Regression 0.071 0.923 0.273 0.678 −0.009 0.113 0.609

IMR.90 Random Forest Classifier 0.345 0.824 0.625 0.603 0.193 0.444 0.699

Average 0.271 0.851 0.460 0.704 0.149 0.284 0.665

combination performs the best.The composition features combined
with classical ML methods were able to achieve an average
AUC of 0.7049 and a MCC of 0.1965, across the 15 cell-lines.
Similarly, with correlation-based features and ML methods, the
best performance achieved was an average AUC of 0.7089 and
a MCC of 0.2133. Performance of the best performing model
using both composition and correlation-based features are provided
for all the 15 cell-lines in Table 6, 7 respectively. The detailed
performance for all the models used in this analysis have been
provided in Supplementary Table S7, 8. The model parameters are
provided in Supplementary Table S12.

Models based on embeddings from
DNABERT-2

Embeddings from large language models are known to
encapsulate not just the individual bases, but also their biological
significance in terms of structure, function, and interactions. In
this approach, we generated high level representations of lncRNA
sequences using both the pre-trained as well as the fine-tuned
models. These embeddings were used to train ML models and
the models were evaluated on the validation dataset. In the case
of pre-trained embeddings, the model achieved an average AUC
of 0.6586 and an average MCC of 0.1182. When fine-tuned
embeddings were used as features, the performance of the model

dropped marginally, achieving an average AUC of 0.6604 and an
average MCC of 0.1740. Detailed results for the performance of
ML models on the validation dataset using pre-trained as well
as fine-tuned embeddings as features are provided in Table 8, 9
respectively. The detailed performance for all the models has been
reported in Supplementary Table S9, 10.

Fine-tuned DNABERT-2 model

In this approach, we used our training dataset to fine-tune the
model and generate a fine-tuned tokenizer and model. Using this
tokenizer and model, we generate high level representations of our
lncRNA sequences and these representations are used by the model
to generate predictions. The fine-tuned DNABERT2 model could
not be evaluated while training as we were not able to implement
five-fold cross validation. The fine-tuned model was evaluated on
the validation dataset and performance metrics for the same are
reported in Table 10. The detailed performance for all the models
has been provided in Supplementary Table S11.

Model based on features selected by
mRMR algorithm

In order to identify the best set of features from the
combined feature set of 2278 features (composition, correlation, and
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TABLE 9 Performance of the best ML model for each cell-line on the validation dataset using embeddings from fine-tuned DNABERT-2 model.

Cell-lines ML model used Sensitivity Specificity Precision Accuracy MCC F1-score AUC

A549 SVC_linear 0.489 0.708 0.524 0.621 0.200 0.506 0.660

H1.hESC SVC_linear 0.422 0.801 0.585 0.650 0.241 0.490 0.687

HeLa.S3 MLP Classifier 0.000 0.992 0.000 0.830 −0.037 0.000 0.732

HepG2 Gaussian Naive Bayes Classifier 0.571 0.767 0.478 0.714 0.321 0.520 0.708

HT1080 SVC_linear 0.450 0.756 0.587 0.623 0.217 0.509 0.700

HUVEC MLP Classifier 0.206 0.903 0.448 0.711 0.147 0.283 0.726

MCF.7 Gaussian Naive Bayes Classifier 0.512 0.739 0.391 0.683 0.232 0.443 0.700

NCI.H460 XGBoost Classifier 0.000 0.987 0.000 0.815 −0.048 0.000 0.535

NHEK AdaBoost Classifier 0.359 0.821 0.412 0.702 0.189 0.384 0.600

SK.MEL.5 SVC_radial 0.000 1.000 0.000 0.789 0.000 0.000 0.539

SK.N.DZ Gradient Boosting Classifier 0.515 0.692 0.515 0.624 0.207 0.515 0.717

SK.N.SH AdaBoost Classifier 0.156 0.866 0.294 0.679 0.028 0.204 0.587

GM12878 Gradient Boosting Classifier 0.183 0.939 0.478 0.764 0.182 0.265 0.683

K562 Gradient Boosting Classifier 0.143 0.894 0.353 0.678 0.052 0.203 0.590

IMR.90 Gradient Boosting Classifier 0.552 0.706 0.615 0.635 0.261 0.582 0.671

Average 0.304 0.838 0.379 0.701 0.146 0.327 0.656

embeddings), mRMR algorithm was used. Seven different feature
sets were created based on the top ‘k’ features selected by mRMR.
Performance was evaluated for seven different sets of features for
each cell-line using 12 different ML classifiers. Table 11 reports the
AUC for the bestmodel for each combination and the last row shows
the average for each feature set. The best AUC value was reported
when top 500 genes selected by mRMR was used for training.

Performance comparison of CytoLNCpred
and existing state-of-the-art classifiers

To further illustrate the efficacy of our method, we conduct a
comparative analysis with other cutting-edge classifiers. Specifically,
we evaluate existing predictors, namely, lncLocator 2.0 and TACOS,
which employ predictive algorithms to predict subcellular location
of lncRNAs in different cell-lines.

Among these predictors, lncLocator 2.0 relies on the word
embeddings and a MultiLayer Perceptron Regressor to predict
CNRCI values. The predicted CNRCI values were then converted
to labels using a fixed threshold value. The second predictor,
TACOS, generated a variety of feature encodings using composition
and physicochemical properties and tree-based algorithms were
deployed tomake the predictions. It is important to note that TACOS
has been trained on 10 out of the 15 cell-lines. For a fair performance
comparison, we leverage the performance metrics of evaluated

on the validation dataset. Table 12 summarizes the evaluation of
CytoLNCpred and other existing tools based on AUROC.

mRNA localization prediction accuracy
using CytoLNCpred

To assess the applicability of CytoLNCpred, a tool originally
developed for lncRNA localization prediction, to mRNA sequences,
we utilized mRNA data obtained from the lncAtlas database. These
mRNA sequences were subjected to prediction using the standalone
version of CytoLNCpred, and its performance was evaluated
using the Area Under the Receiver Operating Characteristic curve
(AUROC). The AUROC values obtained for mRNA localization
prediction across different cell lines, alongside the corresponding
performance for lncRNA prediction, are presented in Figure 7.

The results indicate that CytoLNCpred exhibits a varying degree
of accuracy in predicting the subcellular localization of mRNA
sequences across the tested cell lines. As illustrated in Figure 7, the
predictive performance for mRNA localization differs depending
on the cellular context. Notably, the highest prediction accuracy
for mRNA was observed in the A549 cell line (AUROC =
0.800), suggesting a strong potential for the tool in this specific
context. While the performance varied across different cell lines,
with HUVEC showing the lowest AUROC (0.598), the overall
results suggest that features learned by CytoLNCpred for lncRNA
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TABLE 10 Performance of fine-tuned DNABERT-2 model on the validation dataset.

Cell-lines Sensitivity Specificity Precision Accuracy MCC F1-score AUC

A549 0.500 0.861 0.703 0.718 0.393 0.584 0.762

H1.hESC 0.520 0.713 0.546 0.636 0.235 0.533 0.644

HeLa.S3 0.000 1.000 0.000 0.837 0.000 0.000 0.527

HepG2 0.000 1.000 0.000 0.728 0.000 0.000 0.698

HT1080 0.567 0.731 0.618 0.659 0.301 0.591 0.676

HUVEC 0.159 0.976 0.714 0.750 0.251 0.260 0.710

MCF.7 0.000 1.000 0.000 0.754 0.000 0.000 0.562

NCI.H460 0.000 1.000 0.000 0.826 0.000 0.000 0.576

NHEK 0.000 1.000 0.000 0.742 0.000 0.000 0.564

SK.MEL.5 0.000 1.000 0.000 0.789 0.000 0.000 0.468

SK.N.DZ 0.515 0.885 0.739 0.741 0.439 0.607 0.791

SK.N.SH 0.000 1.000 0.000 0.737 0.000 0.000 0.589

GM12878 0.000 1.000 0.000 0.767 0.000 0.000 0.718

K562 0.190 0.885 0.400 0.685 0.099 0.258 0.570

IMR.90 0.655 0.529 0.543 0.587 0.185 0.594 0.649

Average 0.207 0.905 0.284 0.730 0.127 0.228 0.634

localization can also provide some discriminatory power for mRNA
localization. Interestingly, in the A549 cell line, the prediction
accuracy for mRNA even surpassed that observed for lncRNAs.
However, in other cell lines like HUVEC and MCF-7, the
performance on mRNA was notably lower compared to lncRNAs.

In order to further validate the model accuracy for mRNAs,
10 random cytoplasmic mRNAs were obtained from NCBI gene
database. These mRNAs were then predicted using CytoLNCpred
for the A549 cell-line. The model was able to predict only 2
mRNAs correctly, among the 10 cytoplasmic RNA and the detailed
results are provided in Supplementary Table S13. This variability in
performance across cell types highlights the potential influence of
cell-specific factors on mRNA localization and suggests that further
refinement or specialized models might be beneficial for broader
applicability to mRNA.

Discussion

In recent years, researchers have recognized that the subcellular
localization of lncRNAs plays a pivotal role in understanding
their function. Unlike protein-coding genes, lncRNAs do not
encode proteins directly. Instead, they exert their effects through
diverse mechanisms, including interactions with chromatin, RNA
molecules, and proteins. The precise localization of lncRNAs within
the cell provides crucial information about their regulatory roles.

In our analysis LINC00852 showed a marked cell-line–specific
shift–predominantly nuclear (negative localization score) in most
cell types, but strongly cytoplasmic in the NCI-H460 lung
carcinoma line. This mirrors literature reports that LINC00852
can be cytoplasmically enriched in lung carcinoma cases. In lung
carcinoma cell-lines (A549 and SPCA-1), LINC00852 was found
mainly in the cytoplasm (qRT-PCR assay) (Liu et al., 2018). It
binds with the S100A9 protein in the cytoplasm, activating the
MAPK pathway and plays a positive role in the progression and
metastasis of lung adenocarcinoma cells. By contrast, other studies
have observed LINC00852 in the nucleus in some tumors. In
osteosarcoma cell-lines (like 143B and MG-63), it is observed
that LINC00852 acts as a transcription factor and increase the
expression of AXL gene (Li et al., 2020). Such context dependence
could reflect tissue-specific expression of RNA-binding factors or
isoforms that govern nuclear export. The fact that LINC00852 is
cytoplasmic in some cancer lines but nuclear in others suggests
it may switch roles-in cytosolic form it may acts as a post-
transcriptional regulator (e.g., miRNA sponge), whereas nuclear
retention may imply transcriptional or chromatin-related roles.

SNHG3 in our data is mostly cytoplasmic in H1.hESC,
HepG2 (liver carcinoma) and GM12878 (lymphoblast) cells, but
nuclear in cell-lines like MCF-7 and NHEK. This pattern aligns
with experimental studies. In colorectal cancer cell lines (e.g.,
SW480, LoVo), SNHG3 was found to localize predominantly in
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TABLE 11 AUC values of the best ML model for each cell-line on the validation dataset for the feature sets generated by mRMR algorithm.

Cell lines Top 10 Top 50 Top 100 Top 500 Top 1000 Top 1500 Top 2000

A549 0.756 0.75 0.749 0.741 0.739 0.738 0.738

GM12878 0.725 0.706 0.706 0.727 0.742 0.734 0.719

H1.hESC 0.677 0.687 0.694 0.71 0.712 0.716 0.717

HT1080 0.71 0.73 0.728 0.731 0.745 0.749 0.742

HUVEC 0.733 0.744 0.762 0.771 0.76 0.748 0.764

HeLa.S3 0.669 0.728 0.756 0.734 0.718 0.776 0.779

HepG2 0.736 0.722 0.725 0.72 0.691 0.673 0.685

IMR.90 0.725 0.651 0.647 0.621 0.636 0.602 0.663

K562 0.615 0.665 0.645 0.628 0.585 0.581 0.586

MCF.7 0.706 0.728 0.73 0.701 0.715 0.721 0.711

NCI.H460 0.535 0.514 0.533 0.638 0.553 0.593 0.568

NHEK 0.64 0.634 0.626 0.609 0.603 0.632 0.65

SK.MEL.5 0.672 0.652 0.552 0.725 0.597 0.619 0.575

SK.N.DZ 0.671 0.664 0.675 0.704 0.705 0.715 0.707

SK.N.SH 0.683 0.684 0.685 0.669 0.683 0.684 0.682

Average 0.683 0.684 0.681 0.695 0.679 0.685 0.686

the cytoplasm (comparable to GAPDH) (Huang et al., 2017).
There it acts as a competing endogenous RNA (ceRNA), sponging
miRNAs (e.g., miR-182-5p) to upregulate oncogenic targets like
c-Myc. The high cytoplasmic SNHG3 expression in stem-cell like
and proliferative cell-lines (H1.hESC, HepG2) from our dataset
suggests a similar ceRNA role, whereas its nuclear enrichment in
more differentiated/epithelial cells may reflect downregulation of
this pathway in those contexts. In general, SNHG-family lncRNAs
are known to influence cancer cell growth and often operate
via cytoplasmic post-transcriptional mechanisms, consistent with
SNHG3’s localization and function in promoting malignancy.

Subcellular localization of lncRNA gains prominence in recent
times due to their role in gene regulation within the cell. A large
number of aptamer and ASO based drugs are being developed
using RNA nanotechnology. In recent years, the convergence of
nanotechnology and long non-coding RNAs (lncRNAs) has yielded
exciting developments in drug development. Nanoparticles, such as
liposomes and exosomes, are being harnessed for targeted delivery
of lncRNA-based therapeutics to cancer cells. Additionally, CRISPR-
Cas9 technology, delivered via nanoparticles, enables precise gene
editing by modulating lncRNA expression. Computational models
and deep learning approaches are aiding our understanding of
lncRNA-mediated mechanisms. Overall, this interdisciplinary field
holds immense promise for personalized medicine, improved
therapies, and better patient outcomes.

Predicting lncRNA subcellular localization using tools
like CytoLNCpred offers significant potential for guiding the
development of RNA-based therapeutics and CRISPR strategies.
Since antisense oligonucleotides (ASOs) are generally more effective
against nuclear lncRNAs (Zong et al., 2015) and small interfering
RNAs (siRNAs) excel against cytoplasmic targets (Lennox and
Behlke, 2016), a CytoLNCpred prediction indicating cytoplasmic
enrichment would favor siRNA development, while a predicted
nuclear localization would suggest ASOs as the primary choice.
Similarly, this prediction informs CRISPR approaches: targeting
nuclear-acting lncRNAs might be best achieved by disrupting
transcription or key regulatory elements using CRISPRi or Cas9
(Rosenlund et al., 2021), whereas lncRNAs predicted to function in
the cytoplasm could be more effectively targeted by degrading the
transcript directly using RNA-targeting CRISPR-Cas13 (Xu et al.,
2020), potentially guiding crRNA expression strategies (e.g.,
using a U1 promoter for cytoplasmic crRNA localization). Thus,
localization prediction aids in the rational selection of therapeutic
modalities and CRISPR targeting strategies based on the likely site
of lncRNA function.

In recent times large language models are considered as SOTA
methods and apart from the classical composition and correlation
feature-based model, we also implemented DNABERT-2 for our
classification problem. The DNABERT-2 model has been trained
on the genomes of a wide variety of species and is computationally
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TABLE 12 Comparing the performance of our method and other existing classifiers using our validation dataset based on AUROC for all cell-lines.

lncLocator 2.0 TACOS CytoLncPred – Composition features CytoLncPred – Correlation features

A549 0.592 0.741 0.761 0.757

H1.hESC 0.649 0.752 0.708 0.720

HeLa.S3 0.492 0.721 0.779 0.779

HepG2 0.487 0.712 0.718 0.715

HT1080 0.597 0.727 0.728 0.738

HUVEC 0.500 0.721 0.756 0.757

MCF.7 0.530 - 0.724 0.753

NCI.H460 0.500 - 0.723 0.683

NHEK 0.519 0.623 0.643 0.635

SK.MEL.5 0.500 0.567 0.676 0.654

SK.N.DZ 0.500 - 0.679 0.739

SK.N.SH 0.508 0.633 0.703 0.689

GM12878 0.500 0.568 0.687 0.715

K562 0.500 - 0.620 0.642

IMR.90 0.471 - 0.668 0.655

Average 0.523 0.676 0.705 0.709

FIGURE 7
Performance evaluation of CytoLNCpred in predicting the subcellular
localization of mRNA and lncRNA sequences in various cell lines, as
measured by the Area Under the Receiver Operating Characteristic
curve (AUROC).

very efficient. DNABERT-2 uses Byte Pair Encoding to generate
tokens which is known to perform better than k-mer tokenization.
So, in order to fully exploit the DNABERT-2 model, we generated
embeddings from both pre-trained and fine-tuned models. These
embeddings when combined with MLmethods were able to predict
subcellular localization very well but poorer than a fine-tuned
DNABERT-2 model.

In our study, we compared the performance of DNABERT-
2 with traditional composition and correlation-based features for
classifying subcellular localization of lncRNAs. While DNABERT-
2, a pre-trained language model, showed promising results, but
we found that traditional machine learning models trained on
carefully crafted composition and correlation features consistently
outperformed DNABERT-2. This suggests that for this specific
task, the carefully engineered features capture the relevant
biological information more effectively than the general-purpose
representations learned by DNABERT-2. Specifically, it was
observed that the correlation-based features achieve a higher average
AUC than all other approaches. However, these approaches failed
when we used RNA sequences greater than 10,000 base pairs. In
order to reduce the variability in nucleotide length, the sequence
length was limited to 10,000 base pairs.

The lncAtlas database, while a valuable resource for lncRNA
subcellular localization, has several significant limitations including
its restriction toGENCODE-annotated lncRNAs and a limited set of
15 human cell lines, with detailed sub-compartment data available
only for the K562 cell line. The database relies on RNA-seq data
and the Relative Concentration Index (RCI), which provides relative
abundance rather than absolute counts. Furthermore, lncAtlas has
not been updated since 2017, making it less comprehensive and
potentially outdated.

To address these limitations, future research should focus
on developing techniques to improve the interpretability of
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DNABERT-2’s predictions. This could involve methods such as
attention visualization or feature importance analysis. Furthermore,
expanding the diversity of training data is essential to enhance
the model’s generalizability across different biological contexts. By
incorporating data from a wider range of organisms and conditions,
subcellular localization prediction could become a more versatile
and reliable tool for genomic analysis. In our case, correlation-based
features with machine learning algorithms outperformed all other
approaches. Moreover, improved machine learning algorithms are
needed to be developed that can account for large variability in
nucleotide lengths.

Conclusion

Understanding the subcellular localization of lncRNA can
provide great insights into their function within the cell.
Computational tools have recently expanded the domain of
subcellular localization by the development of faster and more
accurate methods. In this study, we used a variety of machine
learning as well as large language models to accurately predict
lncRNA subcellular localization. The implementation of large
languagemodels to tackle biological problems is gainingmomentum
and our study also highlights its importance. The final model used
in CytoLNCpred was designed using a traditional machine learning
model trained using correlation-based features. This tool will help
researchers to improve the functional annotation of lncRNA and
develop RNA-based therapeutics.
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