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Identification of immune and
major depressive
disorder-related diagnostic
markers for early nonalcoholic
fatty liver disease by WGCNA and
machine learning

Yuyun Jia*, Yanping Cao*, Qin Yin, Xueqian Li and Xiu Wen

Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing, China

Background: Major depressive disorder (MDD) and nonalcoholic fatty liver
disease (NAFLD) are highly prevalent conditions that exhibit significant
pathophysiological overlap, particularly in metabolic and immune pathways.

Objective: This study aims to bridge this gap by integrating transcriptomic data
from publicly available repositories and advanced machine learning algorithms
to identify novel biomarkers and construct a predictive model facilitates the
provision of clinical psychological nursing interventions for early-stage NAFLD
in MDD patients.

Method: We systematically analyzed transcriptomic data of simple steatosis
(SS), nonalcoholic steatohepatitis (NASH), and major depressive disorder (MDD)
from GEO databases to construct and validate a diagnostic model. After
removing batch effects, we identified differentially expressed genes (DEGs) that
distinguished disease and control groups. We further applied Weighted Gene
Co-expression Network Analysis (WGCNA) to identify immune-related genes
in SS/NASH patients versus controls. The intersection of shared DEGs across
both conditions and WGCNA-identified genes was determined and subjected
to functional enrichment analysis. Immune cell infiltration levels were quantified
using single-sample gene set enrichment analysis (ssGSEA). A predictive model
for SS/NASH was developed by evaluating nine machine-learning algorithms
with 10-fold cross-validation on the datasets.

Results: Fourteen genes strongly linked to both the immune system and the
two conditionswere identified. Immune cell infiltration profiling revealed distinct
immune landscapes in patients versus healthy controls. Moreover, an eight-gene
signature was developed, demonstrating superior diagnostic accuracy in both
testing and training cohorts. Notably, these eight genes were found to correlate
with the severity of early-stage NAFLD.

Conclusion: This study established a predictive model for early-stage
NAFLD through the integration of bioinformatics and machine learning
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approaches, with a focus on immune- and MDD-related genes. The eight-gene
signature identified in this study represents a novel diagnostic tool for precision
medicine, enabling targeted psychological nursing intervention in comorbid
populations.

KEYWORDS

major depressive disorder, nonalcoholic fatty liver disease, simple steatosis,
nonalcoholic steatohepatitis, machine learning, weighted gene co-expression network
analysis, psychological nursing intervention

Introduction

Major depressive disorder (MDD) is a complex disorder
characterized by multiple impairments, with emotional dysfunction
being the primary one (Wang et al., 2025). MDD is intricately
linked to nonalcoholic fatty liver disease (NAFLD) through shared
pathophysiological pathways, including immune-inflammatory
dysregulation, metabolic dysfunction, and neuroendocrine
imbalance (Zhang et al., 2024). NAFLD has emerged as a major
global public health challenge, affecting over one-quarter of the
world’s population (Nie et al., 2025). Recent investigations have
underscored the critical need to characterize the bidirectional
relationship between neuropsychiatric disorders andNAFLD, as this
mechanistic understanding is essential to mitigate the progression
of comorbid metabolic and psychiatric pathologies (Wang S. et al.,
2024; Xu et al., 2024). Accumulating evidence demonstrates
that MDD predisposes individuals to NAFLD through stress-
mediated dysregulation of neuroendocrine and inflammatory axes
(Shao et al., 2021).

NAFLD represents a histopathological spectrum of liver
disorders, ranging from simple steatosis (SS) to nonalcoholic
steatohepatitis (NASH), with NASH potentially progressing
to cirrhosis and hepatocellular carcinoma when untreated
(Figge et al., 2021). SS is defined as triglyceride accumulation in
hepatocytes without histological evidence of hepatocellular injury
(De and Duseja, 2020). In contrast, NASH is characterized by
lobular inflammation, hepatocellular ballooning, and progressive
fibrosis, which may evolve into cirrhosis and end-stage
liver disease (Xu et al., 2025).

Recent advancements in genomics and bioinformatics have
shed new light on the molecular mechanisms underpinning MDD
and NAFLD. A study by Arold et al. identified shared genetic
pathways governing immune regulation and metabolic dysfunction
across these disorders (Arold et al., 2024). Another study revealed
that specific gene expression profiles linked to the pathogenesis
of MDD and NAFLD exhibit a strong association with the next-
generation epigenetic aging clock, CheekAge (Shokh et al., 2025).
These findings underscore the potential of utilizing genetic markers
to develop predictive models for the early diagnosis of NAFLD in
individuals with MDD.

Despite the accumulating evidence linking MDD and NAFLD,
substantial gaps persist in research investigating the mechanistic
link between MDD and early-stage NAFLD (Zhu et al., 2020),
specifically SS (Mazzolini et al., 2020) and NASH (Xu et al., 2025).
This evidentiary gap is particularly problematic, as early detection

and intervention are paramount for averting disease progression and
ameliorating patient outcomes. Consequently, an urgent imperative
exists to develop diagnostic tools for identifying early-stage NAFLD
in individuals with MDD, thereby enabling timely therapeutic
interventions.

To address this critical gap, we propose an integrated machine-
learning framework for developing a diagnostic model of early-
stage NAFLD using MDD-related genes. By integrating publicly
available transcriptomic data from the Gene Expression Omnibus
(GEO) database, we sought to identify differentially expressed
genes (DEGs) that distinguish simple steatosis (SS) or nonalcoholic
steatohepatitis (NASH) from healthy controls. We further applied
Weighted Gene Co-expression Network Analysis (WGCNA) to
isolate immune-related gene modules. Functional enrichment
analyses of immune- and MDD-associated genes were performed
to characterize key biological pathways, while single-sample gene
set enrichment analysis (ssGSEA) was used to quantify immune cell
infiltration levels, providing a comprehensive immune landscape for
both conditions.

Materials and methods

Data collection and batch effect removal

The search terms “simple steatosis (SS)”, “nonalcoholic
steatohepatitis (NASH) ”, or “major depressive disorder (MDD)”
were used to retrieve datasets from the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/).

Specifically, we selected two datasets (GSE76826 (Miyata et al.,
2016) and GSE98793 (Leday et al., 2018)) that included samples
from patients with MDD and healthy controls. Additionally,
owing to the limited sample size of the SS and NASH cohorts,
we merged four datasets (GSE48452 (Ahrens et al., 2013),
GSE63067 (Frades et al., 2015), GSE126848 (Suppli et al., 2019),
and GSE89632 (Pettinelli et al., 2022)) that included patients with
SS, NASH, and healthy controls.

As the data were sourced from multiple studies, batch effects
may have confounded the results. To mitigate this issue, we
employed the “ComBat” algorithm (Bostami et al., 2022), which is
widely used for batch correction in genomic studies (Leek et al.,
2012). This approach mitigates systematic biases arising
from divergent experimental conditions, thereby ensuring
that downstream analyses remain uncompromised by
technical artifacts.
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Identification of differentially expressed
genes (DEGs)

Differentially expressed genes (DEGs) were identified
using the limma (3.60.6) package in R (version 4.4.2), a tool
specialized for RNA-seq data analysis. This package compares
gene expression profiles across disease and control groups to
identify significantly upregulated or downregulated genes. For
each dataset, significance thresholds were set at |log2fold change
(FC)| >0.25 and false discovery rate (FDR) <0.05. Following DEG
identification in MDD, SS, and NASH datasets, overlap analysis
was performed to characterize commonly dysregulated genes,
which are hypothesized to underlie the shared pathophysiology of
these conditions.

Construction of weighted gene
co-expression network analysis (WGCNA)

To perform Weighted Gene Co-expression Network Analysis
(WGCNA) on combined datasets (GSE48452, GSE63067,
GSE126848, and GSE89632), the pickSoftThreshold function from
the WGCNA R package was employed to determine optimal gene
co-expression thresholds. Filtering involved selecting the top 5,000
genes with the highest absolute median differences to prioritize
transcriptionally variable genes. During preprocessing, genes
with missing values or zero variance were excluded to maintain
analytical rigor.

Scale-free network topology criteria (requiring a scale-free
fit index R2 ≥ 0.85) guided adjacency matrix construction,
which was subsequently transformed into a Topological Overlap
Matrix (TOM). Genes with similar expression profiles were
grouped via hierarchical clustering with average linkage. Key
gene modules were detected using selection criteria: a minimum
module size of 30 genes and a cut height of 0.25. Finally,
Pearson’s correlation coefficients between gene modules and
disease-related target traits were calculated to identify significant
associations.

Enrichment analysis of shared immune and
MDD-related genes

To characterize the biological functions of identified shared
DEGs, we performed Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) pathway
enrichment, and Disease Ontology Semantic and Enrichment
(DOSE) analyses.These analyses utilized the ggplot2 (version 3.5.2),
enrichplot (version 1.24.4), clusterProfiler (version 4.12.6), and org.
Hs.e.g.,.db (version 3.19.1) R packages.

To ensure robust statistical inference in multiple hypothesis
testing, we employed the Benjamini-Hochberg (BH) procedure
to control the false discovery rate (FDR), which generates q-
values estimating the proportion of false positives among significant
results. Following computation of raw p-values, the BH procedure
sorts and applies a formula to derive q-values. When q-values ≥0.05
(failing FDR control), corresponding raw p-values are reported.
This strategy balances strict FDR control with unadjusted evidence,

enabling evaluation across stringency levels. By prioritizing q-
values for FDR-controlled findings and including p-values for non-
significant results, we present a comprehensive view of statistical
evidence in multiple testing contexts.

Immune-related pathways in each
condition

Building on the established role of immune pathways, we
prioritized the characterization of immune-related signaling
networks. Specifically, we investigated pathways governing
inflammation, immune cell activation, and cytokine signaling.
Immune cell infiltration levels were quantified using single-sample
gene set enrichment analysis (ssGSEA) (Gong et al., 2024), amethod
that computes enrichment scores for distinct immune cell subsets
based on gene expression profiles. We then compared immune cell
infiltration profiles between patient and healthy control groups.

Machine learning algorithms

To develop a predictive model for diagnosing simple steatosis
(SS) or nonalcoholic steatohepatitis (NASH) in individuals with
major depressive disorder (MDD), we evaluated nine machine
learning algorithms: Generalized Boosted Regression Modeling
(GBM), Linear Discriminant Analysis (LDA), Elastic Net (Enet),
Support Vector Machine (SVM), Ridge Regression, Naive Bayes,
StepGLM, generalized linear model boosting (glmBoost), and
eXtreme Gradient Boosting (XGBoost).

First, the initial data were preprocessed. This entailed removing
missing values and outliers, followed by Z-score standardization.
Using this method, each feature was adjusted to have a mean of 0
and standard deviation of 1, thereby mitigating the effect of feature
scale disparities.

Subsequently, the datasetwas randomly partitioned into training
(70%) and testing (30%) subsets. During model training, we utilized
six machine learning algorithms: Elastic Net regression (λ = 0.1),
Ridge regression (λ = 1.0), Support Vector Machine (SVM, C = 1.0,
γ = 0.01), Linear Discriminant Analysis (LDA), Gradient Boosting
Machine (GBM, learning rate = 0.1, 100 trees), and eXtreme
Gradient Boosting (XGBoost, learning rate = 0.01, 150 trees).
Models were trained on the training set, with hyperparameters
optimized via cross-validation.

For model evaluation, we calculated the area under the curve
(AUC) at a threshold of 0.7 using the testing set to assess classification
performance.AUCvalueswere computedusing theRunEval function,
and model performance was visualized via a heatmap generated with
the SimpleHeatmap function. The model with the highest AUC was
selected as the optimal classifier. Calibration curves were generated to
evaluate diagnostic model accuracy.

Statistical analysis

Statistical analyses were conducted using R (version 4.4.2). For
two-group comparisons, Student’s t-test was used for continuous
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FIGURE 1
Integration of SS/NASH and MDD datasets with transcriptional changes. (A,B) Principal component analysis (PCA) of 4 SS/NASH datasets (GSE48452,
GSE63067, GSE126848, GSE89632) before (A) and after (B) batch correction. (C,D) PCA of two MDD datasets (GSE76826, GSE98793) before (C) and
after (D) batch correction. (E) Heatmap of differentially expressed genes (DEGs) in SS/NASH vs. controls. (F) Heatmap of DEGs in MDD vs. controls.
DEGs, differentially expressed genes.

variables, and Pearson’s chi-squared test for categorical data. One-
way analysis of variance (ANOVA) was applied for multiple group
comparisons of continuous variables, followed by the Benjamini-
Hochberg (BH) procedure to control the false discovery rate
(FDR) for multiple testing correction. Statistical significance was
defined as p < 0.05.

Results

Remove the batch effects

Raw transcriptomic data for simple steatosis (SS), nonalcoholic
steatohepatitis (NASH), and control samples were obtained from
the GEO database. Following batch effect removal, data were
integrated and normalized, yielding a processed cohort comprising
98 SS/NASH patients and 59 healthy controls (Figures 1A,B;
Table 1). Similarly, raw datasets ofmajor depressive disorder (MDD)
and control groups were combined after batch effect correction
(Figures 1C,D), yielding a normalized validation cohort with 138
MDD patients and 76 healthy controls (Table 1). Consequentially,
batch effects were significantly mitigated post-correction.

Identifying of DEGs

Given the crosstalk between SS/NASH andMDD, we performed
limma analysis on these cohorts to identify MDD-associated

differentially expressed genes (DEGs) linked to SS/NASH. A total
of 2,606 DEGs were identified in the SS/NASH cohorts (Figure 1E),
including 1,507 upregulated and 1,099 downregulated genes. In
the MDD cohort, 209 DEGs were detected (Figure 1F), with 99
upregulated and 110 downregulated genes.

Construction of weighted gene
co-expression networks

Weighted gene co-expression network analysis (WGCNA)
was employed to explore the relationship between immune cell
composition and gene expression in SS and NASH datasets.
Following batch effect correction, unsupervised clustering was
performed to classify patients based on gene expression profiles in
SS/NASH samples (Figures 2A,B). An optimal soft threshold of 16
was determined for the dataset, achieving a scale-free fit index (R2 =
0.85; Figure 2C), and 14 gene modules were identified (Figure 2D).

Specifically, the yellow and green modules exhibited significant
positive correlations with activated CD4+ T cells, activated dendritic
cells, eosinophils, immature dendritic cells, myeloid-derived
suppressor cells (MDSCs), regulatory T cells, and follicular helper
T cells. The purple module was strongly associated with activated
CD4+ T cells, eosinophils, immature B cells, immature dendritic
cells, MDSCs, mast cells, and T helper 1 (Th1) cells. The tan module
demonstrated robust positive correlations with activated B cells,
activated CD4+ T cells, activated CD8+ T cells, activated dendritic
cells, CD56 bright natural killer cells, CD56 dim natural killer cells,
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TABLE 1 Basic information of GEO datasets used in the study.

GSE series Diseasea Samples Platform

GSE48452 SS or NASH 14 SS, 18 NASH, and 14 health control GPL11532

GSE63067 SS or NASH 2 SS, 9 NASH, and 7 health control GPL570

GSE126848 NASH 16 NASH and 14 health control GPL18573

GSE89632 SS or NASH 20 SS, 19 NASH and 24 health control GPL14951

GSE76826 MDD 10 MDD and 12 health control GPL17077

GSE98793 MDD 128 MDD and 64 health control GPL570

aSS, simple steatosis; NASH, nonalcoholic steatohepatitis; MDD, major depressive disorder.

FIGURE 2
Weighted gene co-expression network analysis (WGCNA) for SS/NASH. (A) Sample clustering based on expression levels after batch correction. Tree
branches represent individual samples, with no outliers identified. (B) Module formation and merging processes below the clustering tree. (C)
Determination of the optimal soft-threshold power for sample data. (D) Heatmap showing correlations between module eigengenes and immune cell
infiltration profiles. (E) Venn diagrams depicting intersecting genes from SS, NASH, MDD cohorts, and WGCNA modules. WGCNA, weighted gene
co-expression network analysis.

gamma delta T cells, immature dendritic cells, natural killer T
cells, natural killer cells, T follicular helper cells, and T helper 1/2
(Th1/Th2) cells (Figure 2D). Given their critical association with
infiltrating immune cells, the yellow, green, purple, and tan modules
were prioritized for downstream analysis.

Subsequently, an intersection analysis was performed
between DEGs from SS, NASH, and MDD cohorts and genes
within these modules. This analysis identified 14 shared genes,
which were selected for further functional characterization
(Figure 2E).
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FIGURE 3
Enrichment analysis of shared DEGs. (A) Gene Ontology (GO) enrichment for biological processes (BP), cellular components (CC), and molecular
functions (MF). (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. (C) Disease Ontology enrichment, with terms
color-coded by significance.

Functional enrichment of the shared genes

Gene Ontology (GO) enrichment analysis identified
overrepresented biological processes, including cell-mediated
cytotoxicity, neutrophil-mediated cytotoxicity, regulation of
leukocyte-mediated cytotoxicity, and acute inflammatory responses.
Enriched cellular components included secretory granule lumen,
cytoplasmic vesicle lumen, vesicle lumen, and endocytic vesicles,
while heparin binding was the prominent molecular function
(Figure 3A). Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis further revealed significant enrichment in arginine
biosynthesis, antifolate resistance, folate transport and metabolism,
asthma, and circadian rhythm pathways (Figure 3B).

Disease Ontology Semantic and Enrichment (DOSE) analysis
demonstrated that shared genes were significantly associated
with metabolic dysfunction–associated steatotic liver disease,
steatotic liver disease, liver cirrhosis, lipid storage disease, liver
disease, lysosomal storage disease, viral infectious disease, and
hepatobiliary disease (Figure 3C).

Immune cell infiltration analysis of both
conditions

Figure 4A revealed elevated proportions of activated CD8+ T
cells in simple steatosis (SS) and nonalcoholic steatohepatitis
(NASH) cohorts. By contrast, the abundance of activated B cells,
activated CD4+ T cells, activated dendritic cells, CD56 dim natural
killer cells, eosinophils, immature B cells, immature dendritic cells,
myeloid-derived suppressor cells (MDSCs), macrophages, natural

killer cells, neutrophils, plasmacytoid dendritic cells, regulatory T
cells, T follicular helper cells, T helper 17 (Th17) cells, and T helper
2 (Th2) cells was reduced relative to controls (Figure 4A).

Figure 4B showed increased proportions of activated dendritic
cells, macrophages, and natural killer cells in the major depressive
disorder (MDD) cohort. Conversely, activated B cells, activated
CD8+ T cells, and T helper 1 (Th1) cells exhibited reduced
abundance compared with controls (Figure 4B).

Developing a diagnostic model for
MDD-related early NAFLD via machine
learning

Using 10-fold cross-validation, we evaluated 12 machine
learning algorithms to develop a diagnostic model using shared
genes. This analysis, performed on integrated datasets (GSE48452,
GSE63067, GSE126848, GSE89632), aimed to identify the most
reliable model (Figures 5A–D). The LASSO and GBM algorithms
were employed to build the final model, which demonstrated optimal
performance. These algorithms identified eight key genes (TGFBR3,
S100A12,TP53I3,RASGEF1B,NFIL3,CD163,KLRB1,COL5A3)and
facilitated selection of the most robust diagnostic model.

Assessment of our model

As depicted in Figure 6A, the calibration curves of the diagnostic
model closely mirrored the ideal diagonal line in both cohorts,
demonstrating strong consistency between predicted probabilities
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FIGURE 4
Immune cell abundance comparisons between disease groups and controls. (A) Boxplots of immune cell proportions in SS/NASH vs. controls. (B)
Boxplots of immune cell proportions in MDD vs. controls. Significance: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

FIGURE 5
Diagnostic performance of the model for early-stage NAFLD in MDD patients. (A) Evaluation of nine machine-learning algorithm combinations via
10-fold cross-validation. (B–D) Receiver operating characteristic (ROC) curves for two validation cohorts and the training cohort.
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FIGURE 6
Performance assessment of the diagnostic model. (A) Calibration plot showing agreement between predicted and observed probabilities. (B) Decision
curve analysis of the 8-gene model for MDD-related early-stage NAFLD. (C) Nomogram for predicting MDD-related early-stage NAFLD based on
shared DEGs. (D) ROC curves of the 8-gene signature for early-stage NAFLD diagnosis.

and observed clinical outcomes. This indicated excellent calibration
performance. The clinical utility of the model was further validated
by decision curve analysis (Figure 6B), which showed that the
nomogram yielded the highest net benefit across a broad range of
threshold probabilities. Followingmultivariate analysis, nomograms
integrating the eight-gene signature were developed to predict
early NAFLD risk (Figure 6C). ROC curve analysis confirmed
the superior diagnostic efficacy of the eight-gene signature, with
TGFBR3 and TP53I3 exhibiting AUC values (0.940–0.969) that
significantly outperformed other genes (Figure 6D).

Clinical relevance and gene expression
heatmap analysis

A heatmap was generated to visualize the correlation
between the expression levels of eight immune-related genes
and clinical parameters in early NAFLD patients using the

GSE89632 dataset. Genes including KLRB1, COL5A3, and TP53I3
exhibited higher expression in groups with elevated Aspartate
transaminase (AST), Alanine transaminase (ALT), Triglycerides,
Fasting glucose (FG), Homeostatic insulin resistance (HIR), and
Hemoglobin A1c (HbA1c). Steatosis severity was associated
with upregulation of COL5A3 and TP53I3, whereas upregulated
RASGEF1B, S100A12, and TGFBR3 were linked to early-stage liver
steatosis (Figure 7A).

Figure 7B illustrated the expression of these eight genes across
different NAFLD activity score groups. Compared with the low-
score group, COL5A3 and TP53I3 showed significant upregulation,
while NFIL3, RASGEF1B, S100A12, and TGFBR3 were significantly
downregulated (Figure 7B). Figure 7C depicted gene expression
across fibrosis stages, revealing significant variation in RASGEF1B,
S100A12, TGFBR3, and TP53I3 expression (Figure 7C). Figure 7D
demonstrated that all identified genes exhibited significant
expression differences corresponding to varying degrees of
steatosis (Figure 7D).
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FIGURE 7
Clinical relevance and gene expression heatmap analysis. (A) Heatmap of gene expression correlated with clinical parameters (risk score based on
NAFLD activity score; score ≥4 defined as high risk). (B) Expression of eight key genes in high vs. low NAFLD activity score groups. (C,D) Expression of
gene signatures across fibrosis stages and steatosis degrees. AST, aspartate transaminase (U/L); ALT, alanine transaminase (U/L); TC, total cholesterol
(mmol/L); LDL, low-density lipoprotein (mmol/L); FG, fasting glucose (mmol/L); FI, fasting insulin (pmol/L); HIR, homeostatic insulin resistance; HbA1c,
hemoglobin A1c; LAA, liver arachidonic acid (% of total lipids); LDA, liver docosahexaenoic acid (% of total lipids). Groups for continuous variables were
divided by median. Significance: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Discussion

This study sought to develop an integrated machine-learning
framework for the early diagnosis of nonalcoholic fatty liver
disease (NAFLD) in individuals with major depressive disorder
(MDD). By integrating transcriptomic data with advanced
computational approaches, we identified an eight-gene signature
that exhibited robust diagnostic accuracy for early-stage NAFLD
(simple steatosis [SS]/nonalcoholic steatohepatitis [NASH]) in
MDD patients. The model demonstrated high sensitivity and
specificity in both training and validation cohorts, underscoring
its translational potential for clinical application. Furthermore,
we identified putative therapeutic compounds targeting these
genes, which warrant further investigation in future therapeutic
development.

Health conditions and socioeconomic status mediate the causal
effect of reproductive traits on NAFLD (Wang Q. et al., 2024). Other
studies have also investigated the relationship between MDD and
NAFLD, highlighting the shared genetic and metabolic pathways
underlying these conditions (Li et al., 2024). Chen et al. elucidated
the mechanisms underlying the comorbidity of MDD and multiple
gastrointestinal disorders (Chen et al., 2023). Previous studies
have also reported significant overlaps in gene expression profiles
between MDD and NAFLD, particularly in the pathways related
to immune regulation and lipid metabolism (Shao et al., 2021).
Similarly, Zhou et al. revealed a prospective association between
depression and severeNAFLD, thus potentially necessitating clinical
monitoring of individuals with depression for severe NAFLD
(Zhou et al., 2024). These findings align with our results, as we
also observed significant enrichment of immune-related pathways
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(Sales et al., 2023) and metabolic dysfunction (Zhu et al., 2023) in
our shared DEGs (Le et al., 2021). However, unlike previous studies
that primarily focused on the later stages of NAFLD, our study
specifically targeted patients with early-stage NAFLD.

The identification of 14 shared differentially expressed
genes (DEGs) between major depressive disorder (MDD) and
early nonalcoholic fatty liver disease (NAFLD; including SS
and NASH) highlights their putative role in immune-mediated
pathways. Functional enrichment analysis revealed significant
overrepresentation of acute inflammatory response and cell-
mediated cytotoxicity pathways, consistent with the immune cell
infiltration profiles observed in both conditions. In this study,
SS and NASH cohorts exhibited elevated activated CD8+ T cells,
whereas the MDD cohort showed increased activated dendritic
cells, macrophages, and natural killer cells—key mediators of
proinflammatory responses (Sun et al., 2025). These shared
genes may mediate crosstalk between the neuroinflammatory
mechanisms of MDD and hepatic immune surveillance in NAFLD,
where chronic stress-induced glucocorticoid elevation (a known
driver of MDD) (Lukic et al., 2015) disrupts hepatic immune
cell homeostasis, thereby promoting lipid accumulation and
hepatocyte damage.

KEGG pathway analysis of the shared DEGs highlighted
enrichment in antifolate resistance, folate metabolism, and
circadian rhythms linked to both psychiatric and metabolic
disorders. For example, folate dysmetabolism is associated with
MDD (Carboni et al., 2021) and NAFLD (Jung et al., 2025).
Disease ontology analysis further implicated these genes in
metabolic dysfunction–associated steatotic liver disease and
cirrhosis, highlighting their role in disease progression. Notably,
the tan module—strongly correlated with activated B cells and
natural killer T cells—may represent a key interface where adaptive
immune responses drive hepatic inflammation in NAFLD and
neuroinflammation in MDD. This hypothesis was supported by
recent evidence of gut–liver–brain axis interactions in comorbid
conditions, which underscores the module’s potential role in
bridging immune responses across hepatic and neurological
contexts (Li et al., 2025; Fan et al., 2025).

The overlap of DEGs in immune cell infiltration and metabolic
pathways suggests that targeting these shared genes may offer
dual benefits in MDD and early NAFLD. For example, heparin-
binding proteins (a highlighted molecular function) are involved
in immune cell trafficking and may represent novel therapeutic
targets for mitigate both neuroinflammation (Maurya et al.,
2016) and hepatic steatosis (Goikoetxea-Usandizaga et al., 2022).
Additionally, the identified gene modules (yellow, green, purple,
and tan) provide a framework for developing multi-omics
biomarkers to predict disease progression in patients with comorbid
MDD and NAFLD. Given the rising global prevalence of both
conditions, these findings underscore the need for integrated
approaches that address immune-metabolic dysregulation, and
potentially improve early nursing intervention strategies and
clinical outcomes (Arold et al., 2024).

Studies have also found that nearly one in six patients with
cirrhosis has moderately severe to severe depression, and nearly
half of them have moderate to severe anxiety (Hernaez et al.,
2022). Therefore, early detection during the asymptomatic phase
offers a critical therapeutic window for interrupting disease

progression and mitigating subsequent psychiatric comorbidities
(Zimbrean and Jakab, 2025). This distinction is crucial because
early detection can significantly affect patient outcomes by enabling
timely interventions (Wigg et al., 2025). The consistency in the
predictive accuracy suggests that our model is not overfitted and
can be effectively applied to new, unseen data. The calibration
curves of our diagnostic model aligned closely with the perfectly
calibrated diagonal in both the validation sets (Demir et al.,
2024). This near-ideal overlap demonstrates robust concordance
between the predicted probabilities and observed clinical
outcomes, underscoring the exceptional calibration accuracy
of the model.

CD163, a hemoglobin scavenger receptor, is a macrophage-
specific protein associated with the “alternative activation” (M2)
phenotype that plays a pivotal role in dampening inflammatory
responses. Recent studies have established midbrain CD163+
macrophages as key players in MDD pathophysiology, opening
new avenues for developing anti-inflammatory approaches that
synergize with conventional antidepressants to enhance therapeutic
efficacy (Mendez-Victoriano et al., 2024). Other studies have also
demonstrated that CD163 is a pivotal mediator of microglial
hypoactivity in MDD, opening avenues for developing CD163-
targeted therapies that restore microglial effector function
(Scheepstra et al., 2023). Future research should prioritize
clinical trials evaluating CD163-inducing agents and explore their
synergistic effects with conventional antidepressants to improve
the treatment efficacy for MDD. KLRB1 (killer cell lectin-like
receptor subfamily B member 1) is another critical mediator
linking immune-inflammatory pathways to MDD pathogenesis
(Zhao et al., 2021). Mechanistically, KLRB1 may influence MDD
through two plausible pathways: (1) modulating microglial
activation and neuroinflammation, as KLRB1+ immune cells
have been shown to infiltrate the brain during chronic stress,
promoting proinflammatory cytokine release (Winans et al.,
2023); and (2) interfering with the hypothalamic-pituitary-
adrenal (HPA) axis (Wei and Hong, 2024), given KLRB1’s
role in stress-induced immune dysregulation. The association
between KLRB1 and inflammatory markers in patients with MDD
further supports its role in bridging the gap between immunity
and depression.

The significance of our model lies in its ability to facilitate early
detection of NAFLD in patients with MDD. Early intervention is
critical in managing NAFLD, as it can prevent the progression to
more severe forms of liver disease, such as cirrhosis (Ang et al.,
2025) and hepatocellular carcinoma (Moon et al., 2025). By
identifying at-risk individuals using a reliable diagnostic tool,
healthcare providers can implement personalized treatment plans
that address both MDD and NAFLD, thereby improving the overall
patient outcomes. This study also offers valuable insights that could
inform the development of comprehensive intervention strategies
for managing depression in clinical settings (Jiang et al., 2024).
By identifying at-risk individuals using a reliable diagnostic tool,
healthcare providers can implement personalized treatment plans
that address both MDD and early stage NAFLD (Nurcahyanti et al.,
2022). Additionally, the identification of therapeutic targets based
on our gene signature opens new avenues for drug development,
potentially leading to more effective treatments for this comorbid
condition (Geng et al., 2025).
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Limitations

While our study offers valuable insights into early NAFLD
diagnosis in MDD patients, it has notable limitations. A primary
constraint is the limited number of shared DEGs. The identification
of only a small number of intersecting DEGs between MDD
and early NAFLD (simple steatosis/nonalcoholic steatohepatitis,
SS/NASH) significantly impacted model development, potentially
restricting the robustness of our diagnostic framework (Suarez-
Barcena et al., 2025). Due to the paucity of overlapping genes,
numerous machine-learning algorithms were excluded during
the initial evaluation phase. Specifically, complex models require
a substantial number of input features to achieve optimal
performance (Su et al., 2025).

With a reduced feature space, these models struggled to capture
intricate data relationships, leading to suboptimal performance.
Consequently, we relied on simpler models, which are less sensitive
to input dimensionality but may lack the predictive power of
complex algorithms. The relatively small sample size of the external
validation dataset may limit the generalizability of findings to
broader populations. Although rigorous feature selection and 10-
fold cross-validation mitigated overfitting, limited samples still
constrained the complexity of reliably trainable models.

Future studies should prioritize large, multi-cohort validation
and advanced feature-reduction strategies to optimize model
robustness. Notably, the identified gene signature presents dual
utility in precision medicine: (1) as diagnostic biomarkers for early
NAFLD, where genes correlated with steatosis severity could enable
non-invasive screening via blood or tissue expression profiles; and
(2) as therapeutic targets in MDD, where dysregulated immune-
metabolic pathways may guide personalized pharmacotherapy.
Furthermore, our transcriptomic-focused analysis would benefit
from integrating proteomic/metabolomic data to elucidate
mechanistic pathways. We plan to address these gaps by
expanding independent cohorts and validating key genes through
immunohistochemistry and functional assays.

Conclusion

In summary, despite these limitations, our study has made
significant strides in advancing the early diagnosis of NAFLD in
individuals with MDD. By developing a robust machine-learning
model anchored in an eight-gene signature, we provide a promising
clinical tool to facilitate the early identification and management
of NAFLD. Future research should prioritize validation in larger,
more diverse cohorts and the discovery of additional biomarkers to
enhancemodel predictive power.Ultimately, this work paves theway
for precision medicine approaches tailored to manage this complex
comorbidity.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

Author contributions

YJ: Writing – review and editing, Writing – original draft. YC:
Writing – original draft, Writing – review and editing. QY: Writing
– review and editing, Writing – original draft. XL: Writing – review
and editing, Writing – original draft. XW: Writing – original draft,
Writing – review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Correction note

This article has been corrected with minor changes. These
changes do not impact the scientific content of the article.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbinf.2025.
1594971/full#supplementary-material

Frontiers in Bioinformatics 11 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1594971
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1594971/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1594971/full#supplementary-material
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Jia et al. 10.3389/fbinf.2025.1594971

References

Ahrens, M., Ammerpohl, O., von Schonfels, W., Kolarova, J., Bens, S., Itzel, T., et al.
(2013). DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct
disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 18 (2),
296–302. doi:10.1016/j.cmet.2013.07.004

Ang, S. P., Chia, J. E., Iglesias, J., Usman, M. H., and Krittanawong, C. (2025).
Coronary intervention outcomes in patients with liver cirrhosis. Curr. Cardiol. Rep. 27
(1), 2. doi:10.1007/s11886-024-02163-x

Arold, D., Bornstein, S. R., Perakakis, N., Ehrlich, S., and Bernardoni, F. (2024).
Regional gray matter changes in steatotic liver disease provide a neurobiological link
to depression: a cross-sectional UK Biobank cohort study. Metabolism 159, 155983.
doi:10.1016/j.metabol.2024.155983

Bostami, B., Hillary, F. G., van der Horn, H. J., van der Naalt, J., Calhoun, V. D., and
Vergara, V.M. (2022). A decentralizedComBat algorithmand applications to functional
network connectivity. Front. Neurol. 13, 826734. doi:10.3389/fneur.2022.826734

Carboni, L., Delafont, B., Ivanchenko, E., Ratti, E., Learned, S.M., Alexander, R., et al.
(2021). Folatemetabolismbiomarkers from two randomised placebo-controlled clinical
studies with paroxetine and venlafaxine. World J. Biol. Psychiatry 22 (4), 315–321.
doi:10.1080/15622975.2020.1805509

Chen, D., Zhang, Y., Huang, T., and Jia, J. (2023). Depression and
risk of gastrointestinal disorders: a comprehensive two-sample Mendelian
randomization study of European ancestry. Psychol. Med. 53 (15), 7309–7321.
doi:10.1017/s0033291723000867

De, A., andDuseja, A. (2020). Natural history of simple steatosis or nonalcoholic fatty
liver. J. Clin. Exp. Hepatol. 10 (3), 255–262. doi:10.1016/j.jceh.2019.09.005

Demir, H., Gul, O. V., and Kanyilmaz, G. (2024). Investigation of the effect of
calibration curves obtained from different computed tomography devices on the dose
distribution of tomotherapy plans. J. Med. Phys. 49 (4), 545–550. doi:10.4103/jmp.jmp_
129_24

Fan, M., Jiang, Y., Cai, C., Wang, Z., Chen, L., Hu, S., et al. (2025). Green tea
ameliorates depression-like behavior and cognitive impairment induced by high-fat diet
and chronic mild stress. Phytother. Res. doi:10.1002/ptr.8499

Figge, A., Jahnert, A., and Canbay, A. (2021). The harmfulness of simple steatosis.
Dtsch. Med. Wochenschr 146 (3), 146–151. doi:10.1055/a-1156-0875

Frades, I., Andreasson, E., Mato, J. M., Alexandersson, E., Matthiesen, R., and
Martinez-Chantar, M. L. (2015). Integrative genomic signatures of hepatocellular
carcinoma derived from nonalcoholic Fatty liver disease. PLoS One 10 (5), e0124544.
doi:10.1371/journal.pone.0124544

Geng, W., Liao, W., Cao, X., and Yang, Y. (2025). Therapeutic targets and
approaches to manage inflammation of NAFLD. Biomedicines 13 (2), 393.
doi:10.3390/biomedicines13020393

Goikoetxea-Usandizaga, N., Serrano-Macia, M., Delgado, T. C., Simón, J., Fernández
Ramos, D., Barriales, D., et al. (2022). Mitochondrial bioenergetics boost macrophage
activation, promoting liver regeneration in metabolically compromised animals.
Hepatology 75 (3), 550–566. doi:10.1002/hep.32149

Gong,W., Kuang,M., Chen,H., Luo, Y., You,K., Zhang, B., et al. (2024). Single-sample
gene set enrichment analysis reveals the clinical implications of immune-related genes
in ovarian cancer. Front. Mol. Biosci. 11, 1426274. doi:10.3389/fmolb.2024.1426274

Hernaez, R., Kramer, J. R., Khan, A., Phillips, J., McCallister, K., Chaffin, K., et al.
(2022). Depression and anxiety are common among patients with cirrhosis. Clin.
Gastroenterol. Hepatol. 20 (1), 194–203.e1. doi:10.1016/j.cgh.2020.08.045

Jiang, C., Wang, B., Wang, N., Wang, J., Qu, Y., Zhao, G., et al. (2024).The curvilinear
relationship between Framingham Steatosis Index and depression: insights from a
nationwide study. Front. Psychiatry 15, 1510327. doi:10.3389/fpsyt.2024.1510327

Jung, C., Park, S., and Kim, H. (2025). Association between vitamin A, E, and folate
levels and risk of non-alcoholic fatty liver disease in adults with diabetes mellitus. Sci.
Rep. 15 (1), 11844. doi:10.1038/s41598-025-96500-x

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27

Le, X., Negrao, M. V., Reuben, A., Federico, L., Diao, L., McGrail, D., et al.
(2021). Characterization of the immune landscape of EGFR-mutant NSCLC identifies
CD73/adenosine pathway as a potential therapeutic target. J. Thorac. Oncol. 16 (4),
583–600. doi:10.1016/j.jtho.2020.12.010

Leday, G. G. R., Vertes, P. E., Richardson, S., Greene, J. R., Regan, T., Khan, S., et al.
(2018). Replicable and coupled changes in innate and adaptive immune gene expression
in two case-control studies of blood microarrays in major depressive disorder. Biol.
Psychiatry 83 (1), 70–80. doi:10.1016/j.biopsych.2017.01.021

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The sva
package for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28 (6), 882–883. doi:10.1093/bioinformatics/bts034

Li, C., Yao, J., Yang, C., Yu, S., Yang, Z.,Wang, L., et al. (2025). Gutmicrobiota-derived
short chain fatty acids act as mediators of the gut-liver-brain axis.Metab. Brain Dis. 40
(2), 122. doi:10.1007/s11011-025-01554-5

Li, S., Li, S., Duan, F., and Lu, B. (2024). Depression and NAFLD risk: a
meta-analysis and Mendelian randomization study. J. Affect Disord. 352, 379–385.
doi:10.1016/j.jad.2024.02.074

Lukic, I., Mitic, M., Soldatovic, I., Jovicic, M., Maric, N., Radulovic, J., et al.
(2015). Accumulation of cytoplasmic glucocorticoid receptor is related to elevation
of FKBP5 in lymphocytes of depressed patients. J. Mol. Neurosci. 55 (4), 951–958.
doi:10.1007/s12031-014-0451-z

Maurya, S. K., Mishra, J., Abbas, S., and Bandyopadhyay, S. (2016). Cypermethrin
stimulates GSK3β-dependent aβ and p-tau proteins and cognitive loss in young rats:
reduced HB-EGF signaling and downstream neuroinflammation as critical regulators.
Mol. Neurobiol. 53 (2), 968–982. doi:10.1007/s12035-014-9061-6

Mazzolini, G., Sowa, J. P., Atorrasagasti, C., Kucukoglu, O., Syn, W. K., and Canbay,
A. (2020). Significance of simple steatosis: an update on the clinical and molecular
evidence. Cells 9 (11), 2458. doi:10.3390/cells9112458

Mendez-Victoriano, G., Zhu, Y., Middleton, F., Massa, P. T., Ajulu, K., Webster, M.
J., et al. (2024). Increased parenchymal macrophages are associated with decreased
tyrosine hydroxylase mRNA levels in the substantia nigra of people with schizophrenia
and bipolar disorder. Psychiatry Res. 340, 116141. doi:10.1016/j.psychres.2024.116141

Miyata, S., Kurachi, M., Okano, Y., Sakurai, N., Kobayashi, A., Harada, K., et al.
(2016). Blood transcriptomic markers in patients with late-onset major depressive
disorder. PLoS One 11 (2), e0150262. doi:10.1371/journal.pone.0150262

Moon, A. M., Kappelman, M. D., Barritt Iv, A. S., Evon, D. M., Sanoff, H. K.,
and Wagner, L. I. (2025). Improving health-related quality of life in hepatocellular
carcinoma patients: key methodologies for assessing patient reported outcomes and
intervention targets. J. Hepatocell. Carcinoma 12, 497–511. doi:10.2147/jhc.s347929

Nie, W. Y., Ye, Y., Tong, H. X., and Hu, J. Q. (2025). Herbal medicine as a potential
treatment for non-alcoholic fatty liver disease. World J. Gastroenterol. 31 (9), 100273.
doi:10.3748/wjg.v31.i9.100273

Nurcahyanti, A. D. R., Cokro, F., Wulanjati, M. P., Mahmoud, M. F., Wink, M., and
Sobeh, M. (2022). Curcuminoids for metabolic syndrome: meta-analysis evidences
toward personalized prevention and treatment management. Front. Nutr. 9, 891339.
doi:10.3389/fnut.2022.891339

Pettinelli, P., Arendt, B. M., Schwenger, K. J. P., Sivaraj, S., Bhat, M., Comelli, E. M.,
et al. (2022). Relationship between hepatic gene expression, intestinal microbiota, and
inferred functional metagenomic analysis in NAFLD.Clin. Transl. Gastroenterol. 13 (7),
e00466. doi:10.14309/ctg.0000000000000466

Sales, P. M. G., Schrage, E., Coico, R., and Pato, M. (2023). Linking nervous and
immune systems in psychiatric illness: ameta-analysis of the kynurenine pathway.Brain
Res. 1800, 148190. doi:10.1016/j.brainres.2022.148190

Scheepstra, K. W. F., Mizee, M. R., van Scheppingen, J., Adelia, A., Wever, D. D.,
Mason, M. R., et al. (2023). Microglia transcriptional profiling in major depressive
disorder shows inhibition of cortical gray matter microglia. Biol. Psychiatry 94 (8),
619–629. doi:10.1016/j.biopsych.2023.04.020

Shao, Q., Wu, Y., Ji, J., Xu, T., Yu, Q., Ma, C., et al. (2021). Interaction mechanisms
between major depressive disorder and non-alcoholic fatty liver disease. Front.
Psychiatry 12, 711835. doi:10.3389/fpsyt.2021.711835

Shokhirev, M. N., and Johnson, A. A. (2025). Various diseases and conditions
are strongly associated with the next-generation epigenetic aging clock CheekAge.
Geroscience. doi:10.1007/s11357-025-01579-9

Su, R., Lv, J., Xue, Y., Jiang, S., Zhou, L., Jiang, L., et al. (2025). Genomic selection in
pig breeding: comparative analysis of machine learning algorithms. Genet. Sel. Evol. 57
(1), 13. doi:10.1186/s12711-025-00957-3

Suarez-Barcena, P. D., Parra-Perez, A. M., Martin-Lagos, J., Gallego-Martinez, A.,
Lopez-Escamez, J. A., and Perez-Carpena, P. (2025). Machine learning models and
classification algorithms in the diagnosis of vestibular migraine: a systematic review
and meta-analysis. Headache 65, 695–708. doi:10.1111/head.14924

Sun, R., Yu, J., Zou, Z., Yang, S., Tuo, Y., Tan, L., et al. (2025). FcγRI plays a
pro-inflammatory role in the immune response to Chlamydia respiratory infection
by upregulating dendritic cell-related genes. Int. Immunopharmacol. 147, 113943.
doi:10.1016/j.intimp.2024.113943

Suppli, M. P., Rigbolt, K. T. G., Veidal, S. S., Heebøll, S., Eriksen, P. L., Demant,
M., et al. (2019). Hepatic transcriptome signatures in patients with varying degrees
of nonalcoholic fatty liver disease compared with healthy normal-weight individuals.
Am. J. Physiol. Gastrointest. Liver Physiol. 316 (4), G462–G472. doi:10.1152/ajpgi.
00358.2018

Wang, M., Wei, S., Zhang, Y., Jia, M., Teng, C., Wang, W., et al. (2025).
Event-related brain oscillations changes in major depressive disorder patients
during emotional face recognition. Clin. EEG Neurosci., 15500594241304490.
doi:10.1177/15500594241304490

Wang Q., Q., Wang, L., Hao, R., Zhang, L., Wang, W., and Xia, L. (2024). Health
condition and socioeconomic status mediate the causal effect of reproductive traits on
nonalcoholic fatty liver disease: evidence from Mendelian randomization study. Front.
Endocrinol. (Lausanne) 15, 1419964. doi:10.3389/fendo.2024.1419964

Frontiers in Bioinformatics 12 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1594971
https://doi.org/10.1016/j.cmet.2013.07.004
https://doi.org/10.1007/s11886-024-02163-x
https://doi.org/10.1016/j.metabol.2024.155983
https://doi.org/10.3389/fneur.2022.826734
https://doi.org/10.1080/15622975.2020.1805509
https://doi.org/10.1017/s0033291723000867
https://doi.org/10.1016/j.jceh.2019.09.005
https://doi.org/10.4103/jmp.jmp_129_24
https://doi.org/10.4103/jmp.jmp_129_24
https://doi.org/10.1002/ptr.8499
https://doi.org/10.1055/a-1156-0875
https://doi.org/10.1371/journal.pone.0124544
https://doi.org/10.3390/biomedicines13020393
https://doi.org/10.1002/hep.32149
https://doi.org/10.3389/fmolb.2024.1426274
https://doi.org/10.1016/j.cgh.2020.08.045
https://doi.org/10.3389/fpsyt.2024.1510327
https://doi.org/10.1038/s41598-025-96500-x
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1016/j.jtho.2020.12.010
https://doi.org/10.1016/j.biopsych.2017.01.021
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1007/s11011-025-01554-5
https://doi.org/10.1016/j.jad.2024.02.074
https://doi.org/10.1007/s12031-014-0451-z
https://doi.org/10.1007/s12035-014-9061-6
https://doi.org/10.3390/cells9112458
https://doi.org/10.1016/j.psychres.2024.116141
https://doi.org/10.1371/journal.pone.0150262
https://doi.org/10.2147/jhc.s347929
https://doi.org/10.3748/wjg.v31.i9.100273
https://doi.org/10.3389/fnut.2022.891339
https://doi.org/10.14309/ctg.0000000000000466
https://doi.org/10.1016/j.brainres.2022.148190
https://doi.org/10.1016/j.biopsych.2023.04.020
https://doi.org/10.3389/fpsyt.2021.711835
https://doi.org/10.1007/s11357-025-01579-9
https://doi.org/10.1186/s12711-025-00957-3
https://doi.org/10.1111/head.14924
https://doi.org/10.1016/j.intimp.2024.113943
https://doi.org/10.1152/ajpgi.00358.2018
https://doi.org/10.1152/ajpgi.00358.2018
https://doi.org/10.1177/15500594241304490
https://doi.org/10.3389/fendo.2024.1419964
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Jia et al. 10.3389/fbinf.2025.1594971

Wang S., S., Gao, H., Lin, P., Qian, T., and Xu, L. (2024). Causal relationships
between neuropsychiatric disorders and nonalcoholic fatty liver disease: a bidirectional
Mendelian randomization study. BMC Gastroenterol. 24 (1), 299. doi:10.1186/s12876-
024-03386-6

Wei, W., and Hong, T. (2024). Analysis of KLRB1-mediated immunosuppressive
regulation in adamantinomatous craniopharyngioma. J. Neurol. Surg. A Cent. Eur.
Neurosurg. doi:10.1055/a-2312-9813

Wigg, A. J., Narayana, S., Woodman, R. J., Adams, L. A., Wundke, R., Chinnaratha,
M. A., et al. (2025). A randomized multicenter trial of a chronic disease management
intervention for decompensated cirrhosis. The A ustra l ian L iver F a i lur e (ALFIE)
trial. Hepatology 81 (1), 136–151. doi:10.1097/hep.0000000000000862

Winans, T., Oaks, Z., Choudhary, G., Patel, A., Huang, N., Faludi, T., et al.
(2023). mTOR-dependent loss of PON1 secretion and antiphospholipid autoantibody
production underlie autoimmunity-mediated cirrhosis in transaldolase deficiency. J.
Autoimmun. 140, 103112. doi:10.1016/j.jaut.2023.103112

Xu, M., Xu, H., Ling, Y. W., Liu, J. J., Song, P., Fang, Z. Q., et al. (2025).
Neutrophil extracellular traps-triggered hepatocellular senescence exacerbates
lipotoxicity in non-alcoholic steatohepatitis. J. Adv. Res. doi:10.1016/j.jare.
2025.03.015

Xu, W. M., Zhang, H. F., Feng, Y. H., Li, S. J., and Xie, B. Y. (2024).
Genetically predicted fatty liver disease and risk of psychiatric disorders:

a mendelian randomization study. World J. Clin. Cases 12 (14), 2359–2369.
doi:10.12998/wjcc.v12.i14.2359

Zhang, J., Wang, Y., Ke, S., Xie, T., Liu, L., Fu, X., et al. (2024). Association between
weight-adjusted waist index and depression in NAFLD: the modulating roles of sex and
BMI. BMC Psychiatry 24 (1), 838. doi:10.1186/s12888-024-06308-8

Zhao, S., Bao, Z., Zhao, X., Xu, M., Li, M. D., and Yang, Z. (2021). Identification
of diagnostic markers for major depressive disorder using machine learning methods.
Front. Neurosci. 15, 645998. doi:10.3389/fnins.2021.645998

Zhou, X., Liao, J., Liu, L., Meng, Y., Yang, D., Zhang, X., et al. (2024). Association
of depression with severe non-alcoholic fatty liver disease: evidence from the UK
Biobank study and Mendelian randomization analysis. Sci. Rep. 14 (1), 28561.
doi:10.1038/s41598-024-79100-z

Zhu, Q., Jiang, G., Lang, X., Zhang, J., Fu, Z., Zhang, P., et al. (2023). Prevalence
and clinical correlates of thyroid dysfunction in first-episode and drug-naive major
depressive disorder patients with metabolic syndrome. J. Affect Disord. 341, 35–41.
doi:10.1016/j.jad.2023.08.103

Zhu, Y. F., Wang, J., Fang, J. Z., Yang, Q., and Lv, F. F. (2020). Interface hepatitis over
grade 2 may differentiate chronic inflammation associated with CHB from NAFLD in
the early stage. Gastroenterol. Res. Pract. 2020, 1–7. doi:10.1155/2020/3584568

Zimbrean, P. C., and Jakab, S. S. (2025). Depression and anxiety management in
cirrhosis. Hepatol. Commun. 9 (1), e0600. doi:10.1097/hc9.0000000000000600

Frontiers in Bioinformatics 13 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1594971
https://doi.org/10.1186/s12876-024-03386-6
https://doi.org/10.1186/s12876-024-03386-6
https://doi.org/10.1055/a-2312-9813
https://doi.org/10.1097/hep.0000000000000862
https://doi.org/10.1016/j.jaut.2023.103112
https://doi.org/10.1016/j.jare.2025.03.015
https://doi.org/10.1016/j.jare.2025.03.015
https://doi.org/10.12998/wjcc.v12.i14.2359
https://doi.org/10.1186/s12888-024-06308-8
https://doi.org/10.3389/fnins.2021.645998
https://doi.org/10.1038/s41598-024-79100-z
https://doi.org/10.1016/j.jad.2023.08.103
https://doi.org/10.1155/2020/3584568
https://doi.org/10.1097/hc9.0000000000000600
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	Introduction
	Materials and methods
	Data collection and batch effect removal
	Identification of differentially expressed genes (DEGs)
	Construction of weighted gene co-expression network analysis (WGCNA)
	Enrichment analysis of shared immune and MDD-related genes
	Immune-related pathways in each condition
	Machine learning algorithms
	Statistical analysis

	Results
	Remove the batch effects
	Identifying of DEGs
	Construction of weighted gene co-expression networks
	Functional enrichment of the shared genes
	Immune cell infiltration analysis of both conditions
	Developing a diagnostic model for MDD-related early NAFLD via machine learning
	Assessment of our model
	Clinical relevance and gene expression heatmap analysis

	Discussion
	Limitations
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Correction note
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

