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Introduction: Understanding the temporal dynamics of gene expression is
vital for interpreting biological responses, especially in drug treatment studies.
Conventional visualization techniques, such as heatmaps and static clustering,
often fail to effectively capture these temporal dynamics, particularly when
analyzing large-scale multidimensional datasets. These traditional methods
tend to obscure fine-grained temporal transitions, resulting in overcrowded
visualizations, diminished clarity, and limited interpretability of biologically
significant patterns.

Methods: To address these visualization challenges, we introduce Temporal
GeneTerrain, an advanced method designed to represent dynamic changes
in gene expression over time. We applied Temporal GeneTerrain to compare
transcriptomic perturbations induced by mefloquine (M), tamoxifen (T), and
withaferin A (W), both individually and in all-pairwise and triple combinations
(TM, TW, MW, and TMW), in LNCaP prostate cancer cells using the GSE149428
dataset (0, 3, 6, 9, 12, and 24 h). Expression values were first Z-score normalized,
and the 1,000 most variably expressed genes were selected. To ensure
coordinated temporal dynamics, we calculated Pearson correlation coefficients
among these genes and retained those with r ≥ 0.5, resulting in 999 strongly
co-expressed candidates. We then constructed a protein-protein interaction
network for these genes and embedded it in two dimensions using the Kamada-
Kawai force-directed algorithm. Finally, for each time point and treatment, we
mapped the normalized expression values of the corresponding genes onto the
fixed Kamada-Kawai layout as Gaussian density fields (σ = 0.03), generating a
distinct Temporal GeneTerrain map for each time-condition combination.

Results: The application of Temporal GeneTerrain revealed intricate temporal
shifts in gene expression, particularly unveiling delayed responses in pathways
such as NGF-stimulated transcription and the unfolded protein response under
combined drug treatments. Compared to traditional heatmap visualizations,
Temporal GeneTerrain significantly improved both resolution and interpretability,
effectively capturing gene expression patterns’ multidimensional and transient
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nature. This enhancement provides a solid foundation for further research and
analysis, assuring the scientific community of the method’s reliability.

Discussion: Temporal GeneTerrain addresses the limitations of traditional
visualizationmethods by offering an intuitive and detailed representation of gene
expression dynamics. Compared to other approaches, such as heatmaps and
static clustering, Temporal GeneTerrain uniquely captures the transient nature of
gene expression patterns. Thismethod significantly enhances the interpretability
of complex biological datasets, thereby supporting informed decision-making in
biological research and therapeutic development.

KEYWORDS

cancer cell lines, gene expression, drug screening, precision medicine, bioinformatics,
data visualization

1 Introduction

Precision medicine, at its core, centers on selecting optimal
treatments for individual patients. Given the heterogeneity of
patients’ genetic profiles, it is crucial to identify appropriate drugs
and to administer them at the most effective time or disease
stage. In translational science, extensive efforts have focused on
characterizing gene function and determining the drugs specifically
targeting those genes. Importantly, as a disease progresses, its
molecular drivers--the specific genes or gene sets involved--may
change, influencing both disease propagation and therapeutic
outcomes.This dynamic nature necessitates treatment strategies that
adapt over time, a challenge underscored by in vitro drug screening
studies, where traditional visualization techniques such as heat
maps, clustering, bar charts, and box plots, are employed to represent
drug-induced gene expression changes (Friedman et al., 2015;
McGranahan and Swanton, 2015; Huang et al., 2017; Konno et al.,
2019; Malone et al., 2020; Zeng et al., 2021).

Traditional gene expression visualization techniques have
been instrumental in depicting transcriptomic changes and
discerning patterns for various conditions within complex datasets.
Heat maps effectively capture expression gradients but cannot
typically illustrate gene interactions or integrate functional
annotations. Clustering methods, including self-organizing maps
(Kohonen, 1997; Tamayo et al., 1999), can handle large-scale
data, yet often yield results that are difficult to interpret or
may not accurately reflect the underlying biology. Bar charts
and box plots provide useful summaries but are limited in
representing the complexity and multidimensionality of gene
expression profiles (Tamayo et al., 1999).

Moreover, these conventional techniques suffer from data
overcrowding and loss of resolution when applied to large datasets
(Dietzsch et al., 2006; Katz et al., 2010; Deng et al., 2014;
Metsalu and Vilo, 2015), and are inadequate for capturing dynamic
interactions and temporal transitions in gene activity. Clustering
methods may not always reflect the actual biological function
of genes, leading to potential misinterpretations (Eisen et al.,
1998; Tamayo et al., 1999). In addition, a general shortcoming of
conventional visualization techniques is their limited integration of
different data types that overlook potential correlations, trends, or
causal relationships (Gehlenborg and Wong, 2012).

These limitations underscore the need for more advanced,
flexible, and comprehensive visualization methods. Newer
techniques are required to handle the complexity of gene expression
data while providing interactive and integrative capabilities for
deeper insights and interpretations. Such advanced methods could
significantly enhance our understanding of gene interactions and
functions, particularly in complex biological systems, and offer
a more comprehensive view of drug responses in cancer cell
lines over time.

While traditional visualization approaches effectively capture
gene expression at discrete time points, they fail to convey
the continuous evolution of gene regulatory networks during
disease progression. The temporal aspect of gene involvement
is critical; genes may be differentially engaged as the disease
evolves, influencing both progression and treatment outcomes.
Static representations do not capture these transitions, limiting our
understanding of the dynamic interplay between gene regulation
and therapeutic interventions.

In response to these challenges, we propose the Temporal
GeneTerrain, a novel visualization technique designed to capture
and represent dynamic changes in gene expression over time. Unlike
static snapshots, Temporal GeneTerrains generate a continuous,
integrated view of gene expression trajectories that evolves during
disease progression and treatment response. By revealing temporal
transitions in gene expression, this method provides new insights
into the molecular dynamics underlying pathophysiological and
therapeutic responses.

Temporal GeneTerrains build upon established visualization
concepts while introducing several key innovations. Rather than
displaying a series of disconnected time-point snapshots, our
approach creates a continuous representation that emphasizes
the trajectories of expression changes. This design facilitates the
identification of coordinated expression patterns, transient effects,
and delayed responses that might be overlooked using conventional
methods. Furthermore, the technique incorporates interactive
elements that enable users to explore the data at different levels of
granularity, focusing on specific genes, pathways, or time periods of
interest to gain multiscale insights (Ahmed et al., 2021).

A significant strength of Temporal GeneTerrains is their
capacity to manage large-scale, multidimensional datasets
without compromising interpretability. Dimensionality reduction
algorithms preserve biologically meaningful relationships, allowing
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complex temporal patterns to be visualized intuitively. This
capability is especially valuable in precision medicine, where
integrating heterogeneous data sources is essential for informing
clinical decisions.

Another distinctive feature of Temporal GeneTerrains is its
integration of functional annotations and interaction networks
within the visualization. By overlaying known biological pathways,
protein-protein interactions, and gene-disease associations,
the technique provides context for interpreting observed
expression changes. This integrative approach bridges the gap
between molecular data and clinical implications, facilitating
the translation of research findings into actionable insights for
patient care (Gonzalez-Hernandez et al., 2018).

Key innovations of Temporal GeneTerrain include:

• Continuous Temporal Mapping: Rather than discrete
snapshots, our method interpolates expression changes to form
a smooth trajectory, exposing transient waves and sustained
shifts in gene activity.

• Integration of Functional Context: By overlaying pathway
annotations and PPI connections, each terrain conveys
mechanistic insights, linkingmolecular interactions to dynamic
expression patterns.

• Invariant Network Topology: Re-optimizing layouts at each
time point introduces visual jitter, impeding clear trend
tracking. Freezing node coordinates on a single baseline layout
eliminates variability, enabling unambiguous comparison of
gene trajectories over time.

• Adaptive Noise Smoothing: Fixed smoothing can either blur
sharp spikes or overemphasize noise. Dynamic modulation of
the GeneTerrain’s parameter according to expression-change
magnitude sharpens meaningful transients and highlights
sustained patterns, balancing sensitivity and clarity.

• Scalability and Interactivity: Advanced dimensionality-
reduction techniques ensure that even large, multidimensional
datasets remain interpretable. Interactive controls allow users
to explore different temporal resolutions and focus on specific
subnetworks (Ahmed et al., 2021).

In Table 1, we compared Temporal GeneTerrain against
complementary dynamic-network and trajectory-inference
approaches. These include TS-OCD for detecting overlapping
temporal protein complexes (Ou-Yang et al., 2014),
DyNet/DyNetViewer for synchronized network timelines
(Goenawan et al., 2016), TimeNexus for multilayer network
construction (Pierrelée et al., 2020), TVNViewer for web-
based rewiring exploration (Curtis et al., 2011), NACEP for
module-aware expression comparison (Huang et al., 2010),
TETRAMER for modeling temporal transcriptional-regulation
cascades (Cholley et al., 2018), and BioTapestry for hierarchical
regulatory maps (Longabaugh, 2011). TSEE excels at uncovering
latent trajectories in single-cell landscapes by embedding temporal
information directly into a dimensionality-reduction framework
(An et al., 2019). TrendCatcher provides a robust statistical toolkit
for pinpointing and visualizing distinct gene- and pathway-level
dynamics from longitudinal data (Wang et al., 2022). While each
of these tools represents a state-of-the-art solution within its
specialized domain, Temporal GeneTerrain complements them by

fusing temporal dynamics with molecular interaction networks into
an interpretable spatial terrain, making it uniquely suited for studies
where understanding the co-regulation and modular behavior of
genes over time is critical. Supplementary 1 provides additional
details on the implementation and capabilities of each method.

As a proof of concept, we applied Temporal GeneTerrains to
study the effects of single drug perturbations and their combinations
in prostate cancer cell lines. Prostate cancer was chosen as an
ideal model due to its well-characterized progression patterns and
variability in patients’ treatment responses. Using our generated
temporally integrated GeneTerrain visualizations, we observed
distinct gene expression transitions throughout treatment, revealing
both immediate and delayed responses that static methods failed
to capture.

Subsequent gene set enrichment analysis further enhanced the
biological interpretation of our results by associating coordinated
gene expression changes with key pathways implicated in disease
progression and drug sensitivity or resistance. These insights
underscore the potential of Temporal GeneTerrains to elucidate
molecular processes that drive disease dynamics, and to identify
novel targets for therapeutic intervention (Zhang et al., 2022).

The remainder of the paper is structured as follows: Section 2
details the datasets involved and the algorithmic design of the
Temporal GeneTerrain method. Section 3 presents a comprehensive
evaluation of results from a prostate cancer cell line case study
under various drug perturbations. Section 4 discusses the biological
significance, clinical implications, and potential applications of
our findings, concluding with a summary of contributions and
suggestions for future research.

2 Materials and methods

2.1 Dataset

The GSE149428 dataset (Diaz et al., 2020) was retrieved from
the Gene Expression Omnibus (GEO) Database (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149428). This dataset
comprises transcriptomic profiles of the LNCaP prostate cancer
cell line treated with DMSO (vehicle control), three distinct drugs,
and all possible combinations of these drugs, with each condition
performed in triplicate. Samples were collected at six time intervals
(0, 3, 6, 9, 12, and 24 h), including a triple drug combination
explicitly evaluated in LNCaP cells.

2.2 Temporal GeneTerrain: Conceptual
framework and implementation

The Temporal GeneTerrain consists of an innovative
visualization methodology that extends conventional gene
expression analysis by incorporating temporal dynamics into a
network-spatial framework that enables researchers to observe
the evolution of gene expression patterns over time within a
biologicallymeaningful spatial context.Themethod builds upon the
GeneTerrain visualization framework initially proposed by You et al.
(2010) by incorporating an additional temporal dimension
that reveals dynamic changes in gene expression patterns. The
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TABLE 1 Feature matrix comparing Temporal GeneTerrain against leading dynamic gene-expression visualization tools.

Method Continuous
temporal map

PPI integration
(spatial)

Statistical DDEG
modeling

Regulatory GRN
modeling

Cytoscape
Plugin

Temporal GeneTerrain ✔ ✔ ✖ ✖ ✖

TSEE ✔ ✖ ✖ ✖ ✖

TrendCatcher ✖ ✖ ✔ ✖ ✖

TS-OCD ✖ ✔ ✖ ✖ ✖

DyNet ✖ ✔ ✖ ✖ ✔

DyNetViewer ✖ ✖ ✖ ✖ ✔

TimeNexus ✖ ✖ ✖ ✖ ✔

TVNViewer ✖ ✖ ✖ ✖ ✔

NACEP ✖ ✖ ✔ ✖ ✖

TETRAMER ✖ ✖ ✖ ✔ ✖

BioTapestry ✖ ✖ ✖ ✔ ✖

✔ indicates that the method provides the listed capability;✖ denotes lack thereof.

implementation follows a two-phase process: (1) generating
individual GeneTerrain visualizations at discrete time points and
(2) temporally integrating these visualizations to reveal continuous
dynamic expression patterns.

2.3 Data preparation and preprocessing

Before visualization, gene expression data were normalized
using Z-score normalization to standardize measurements across
time points and conditions. Differential expression analysis was
performed at each time point relative to baseline or control samples.
Protein-protein interaction (PPI) network data were obtained from
HAPPI (Chen et al., 2017) and BEERE (Yue et al., 2019) to provide
the underlying network structure for network-based visualization.

2.4 GeneTerrain generation

2.4.1 Network layout construction
Each GeneTerrain visualization is founded on a two-

dimensional spatial layout, where each node represents a gene,
and the inter-node distances reflect functional relationships derived
from the PPI network. To construct this layout, we employed the
Kamada-Kawai force-directed graph drawing algorithm (Kamada
and Kawai, 1989) to generate this layout based on protein-protein
interaction data. This algorithm positions genes in two-dimensional
space such that genes with functional relationships (as defined by
the PPI network) are placed in closer proximity.

The Kamada-Kawai algorithm (Kamada and Kawai, 1989)
determines optimal vertex (gene) positioning by minimizing the
system’s energy, which is computed using a combination of attractive

forces between connected vertices and repulsive forces between all
pairs of vertices. The system energy (E) is formulated as:

E = ∑
(i,j)∈E

k2(dij − lij)
2

lij
+∑

i≠j

k2

dij

Where:

• E represents the set of edges in the PPI network
• dij is the Euclidean distance between nodes i and j in the

visualization
• lij represents the desired distance between nodes i and j,

computed as:

lij = k√
Area
|V|

Lij

• |V| is the total number of vertices (genes) in the graph
• Area is the display area of the visualization
• Lij is the shortest path length between nodes i and j in the

PPI network
• k is a constant scaling factor

The algorithm iteratively adjusts vertex positions to minimize
this energy function until convergence criteria are met.

2.5 Gene expression signal visualization

After constructing the network layout, gene expression data are
mapped onto this spatial framework by generating a continuous
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signal field. Each gene’s expression level is modeled as a three-
dimensional Gaussian distribution centered at its corresponding
coordinates in the layout. The amplitude of the Gaussian reflects
the gene’s expression value, where positive amplitudes denote
upregulation and negative amplitudes denote downregulation.

The continuous signal S (x,y) at any point (x,y) in the
visualization is given by:

S(x,y) =
n

∑
i=1

ei · exp(−
(x− xi)

2 + (y− yi)
2

2σ2 )

Where:

• ei is the expression value of gene i
• (xi, yi) are the spatial coordinates of gene i in the layout
• σ controls the dispersion (width) of the Gaussian distribution

The resulting continuous signal field is rendered using a
divergent color scheme, with intense red indicating strong
upregulation, intense blue indicating strong downregulation,
and intermediate values represented by shades of green.
Figure 1 of Supplementary 2 presents the complete GeneTerrain
workflow and demonstrates how varying the Gaussian smoothing
width (σ) systematically modulates the spatial resolution and feature
sharpness of the resulting terrain.

2.6 Temporal integration

The second phase of the Temporal GeneTerrain method
involves integrating individual visualizations to capture temporal
dynamics. For each cell line, a series of GeneTerrain visualizations
was generated for discrete time points (e.g., 0, 6, 12, 24, and
48 h). To facilitate direct comparison across time, the network
layout coordinates were held constant while updating the gene
expression values for each time point. This strategy enables the clear
visualization of temporal trajectories in gene expression, thereby
revealing coordinated regulatory changes and identifying genes with
significant temporal modulation. Figure 1 schematically illustrates
the framework for constructing and temporally integrating
GeneTerrains, and Algorithm 1 presents the pseudocode for the
proposed method.

3 Results

In this article, we employed the Temporal GeneTerrain
methodology to perform a comparative analysis of transcriptomic
perturbations induced by three drugs, mefloquine (M), tamoxifen
(T), and withaferin A (W), administered individually and in
combination (TM, TW, MW, and TMW) on the LNCaP prostate
cancer cell line. This case study demonstrates how Temporal
GeneTerrain can elucidate both single-drug and combination-
based perturbation at the transcriptomic level. We used the
GSE149428 dataset (Diaz et al., 2020) for our case study, which
consists of the drug perturbation data from cancer cell lines cultured
for six distinct time intervals (0, 3, 6, 9, 12, and 24 h).

We initially selected 1,000 genes exhibiting high expression
variance for data preprocessing, a key indicator of dynamic

regulation and potential interaction with drug response. To refine
our gene set, we conducted a thorough correlation analysis to
identify genes with a correlation coefficient threshold above
0.5. This stringent selection criterion allowed us to distill our
initial group to a core subset of 999 genes, demonstrating a
strong inter-correlation, suggesting a significant role in drug
sensitivity and resistance mechanisms. Parameter optimization
involved manually setting the sigma parameter for the GeneTerrain
algorithm to 0.03. Subsequently, GeneTerrain visualizations
were generated for all samples. Figure 2 illustrates GeneTerrain
visualizations that capture the dynamics of gene expression
alterations across successive time intervals (0→3, 3→6, 6→9, 9→12,
and 12→24 h). At each interval, the GeneTerrains identify sets of
significantly upregulated or downregulated genes; these gene sets are
subsequently subjected to enrichment analysis to elucidate critical
pathways underpinning the observed temporal dynamics. The top
row corresponds to the DMSO (vehicle control), while the following
three rows display results from single-drug treatments, and the final
four rows depict drug combination treatments. Notably, treatments
M and T exhibit minimal perturbations, maintaining relatively
consistent expression patterns over the 24-h period. In contrast,
other remaining treatments display pronounced gene expression
alterations.The color-coded patterns and trajectories depicted in the
GeneTerrain maps effectively capture these dynamic perturbations
over time, with a colormap range from −10 to +10.

Figure 3 provides an in-depth portrayal of gene expression
variability in prostate cancer cells subjected to different drug
treatments across time, organized into two key sections. Figure 3a
features a pie chart detailing gene variation distributions across six
comparison groups: T_0 vs. T_24,W_0 vs.W_24, TM_0 vs. TM_24,
TW_0 vs. TW_24, MW_0 vs. MW_24, and TMW_0 vs. TMW_24.
Each chart segment corresponds to one comparison category, with
segment sizes reflecting the proportion of highly variable genes in
each. This format clarifies how each treatment comparison uniquely
influences gene expression variability, accompanied by percentage
values for quantitative insight. The TMW treatment displays the
most significant variability between its initial and 24-h time points.
Panel 3b highlights temporal patterns of gene expression changes
by presenting a pie chart that illustrates the percentages of gene
variability across discrete time intervals (0–3, 3–6, 6–9, 9–12, and
12–24 h) for individual drug treatments (TMW, MW, TW, TM, W).
The segments, representing distinct time intervals, offer insights
into the dynamic nature of cellular responses, precisely pinpointing
substantial changes during the TM treatment at 12–24 h, the MW
treatment at 0–3 h, and the TMW treatment at 12–24 h. Notably,
the minimal gene expression changes observed in the M and T
treatments, encompassing both upregulated and downregulated
genes, were omitted from Figure 3.

Figure 4a presents the Temporal GeneTerrain visualization for
the TM treatment, depicting drug perturbations on a cancer cell
line sample cultured over intervals of 0, 3, 6, 9, 12, and 24 h.
Figures 4b, c present heatmaps of synthetic pathway enrichment
scores over time in the TM treatment study, utilizing the PAGER
tool (Yue et al., 2018; Yue et al., 2015) for both upregulated and
downregulated gene sets. Each heatmap displays the enrichment
level for various pathways at different time points, with rows
representing pathways and columns denoting time points. Each
cell’s color intensity and values reflect the pathway’s enrichment
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FIGURE 1
A framework for constructing Temporal GeneTerrains involves Step-1, Generating the GeneTerrain for visualizing using the network biology of genes
and gene signals; Step-2, Stitching the GeneTerrain generated in Step-1 based on their chronological order.

score. The PAGER tool parameters were set to a PAG range of
2–5,000, a similarity score threshold of 0.05, a minimum overlap
of one gene, a cohesion value of 1, and a p-value threshold
of 0.05, utilizing data from the WikiPathways_2021 dataset for
Homo sapiens. The heatmaps represent p-values on a–log10 scale
to enhance the visualization of statistical significance, with more
intense red shading indicating higher pathway significance.

Examination of the pathway heatmap for upregulated genes in
Figure 4b provides a nuanced view of the cellular response dynamics
in the LNCaP cell line over the 24-h period (Horoszewicz et al.,
1983). At 0 h, themetallothionein-binding pathway is notably active,
with an expression level of 5.1, suggesting an immediate cellular
response to the drug.This pathway remains consistently upregulated
throughout the 24-h period, although with a gradual decrease in
expression, indicating a sustained but diminishing response. The
choline catabolism pathway shows a decrease in activity over time,

starting at a moderate level at 0 h and progressively diminishing,
reflecting a possible adaptation or downregulation of this pathway
in response to the treatment. Notably, several pathways show no
initial activity at 0 h but become significantly upregulated later. For
instance, the NGF-stimulated transcription pathway (Chen et al.,
2021) remains inactive at 0 h but shows a dramatic increase from 3 h
onwards, peaking at 14.7 at 12 h. This suggests a delayed but robust
response to the drug. Similarly, the photodynamic therapy-induced
unfolded protein response (Firczuk et al., 2013) and the response
of EIF2AK1 (HRI) (Cordova et al., 2022) to heme deficiency
pathways are activated from 3 h onwards, indicating their roles in
later stages of the drug response. Interestingly, pathways such as
the orexin receptor pathway (Graybill and Weissig, 2017) and zinc
homeostasis (Li et al., 2020) remain inactive until later stages (12
and 24 h, respectively) before exhibiting markedly high expression
levels, suggesting involvement in long-term cellular adaptations.The
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Require: GeneExpressionData, PPINetwork,

TimePoints, σ, k, area, ϵ, max- Iterations, η

Ensure: TemporalVisualization

1: Data Preprocessing:

2: for each sample in GeneExpressionData do

3:  Normalize (e.g., via Z-score)

4: end for

5: Network Layout Construction:

6: Let V = setofgenes in PPINetwork

7: for each pair (i,j) ∈ V,i ≠ j do

8:  Lij ← ShortestPath(PPINetwork,i,j)

9:  lij ← k√ area

|V|
Lij

10: end for

11: for each gene i ∈ V do

12:  Initialize position pi

13: end for

14: iteration ← 0,Eprev ←∞

15: while iteration < maxIterations do

16:  Ecur← 0

17:  for all i,j ∈ V,i ≠ j do

18:   dij← ‖pi −pj‖

19:   Eij←
k2(dij−lij)

2

lij
+ k2

dij

20:   Ecur← Ecur +Eij
21:  end for

22:  if |Eprev −Ecur| < ϵ then

23:   break

24:  end if

25:  for each i ∈ V do

26:   Gi← ∑
j≠i
∇piEij

27:   pi← pi −ηGi
28:  end for

29:  Eprev ← Ecur,iteration ← iteration+1

30: end while

31: Signal Field Generation:

32: for each t ∈ TimePoints do

33:  for each grid point (x, y) do

34:   St(x,y) ← ∑
i∈V

ei(t)exp(−
(x−pi,x)

2+(y−pi,y)
2

2σ2
)

35:  end for

36:  Map St(x,y) to a color map Vt

37: end for

38: Temporal Integration:

39: Assemble {Vt} into TemporalVisualization

40: return TemporalVisualization

Algorithm 1. Pseudocode of Temporal GeneTerrain Method.

heatmap in Figure 4c reveals distinct temporal response patterns
among various pathways in the LNCaP cancer cell line across the
time points of 0, 3, 6, 9, 12, and 24 h. At 0 h, pathways, including the
nuclear receptors’ meta pathway, the orexin receptor pathway, and
spinal cord injury-related pathways, exhibit significant activation,
suggesting an immediate cellular response to the drug perturbation.
However, these pathways show no activity at subsequent time
points, suggesting a transient or initial phase response. Subsequently,

other pathways become active as time progresses. Notably, the
prostaglandin signaling pathway shows a consistent increase in
activity from 3 to 12 h, indicating a sustained response to the
drug over this period. Similarly, the LTF danger signal response
pathway exhibits a gradual increase from 3 to 24 h, with a slight
dip at the 12-h mark, suggesting a prolonged involvement in the
drug response. In contrast, some pathways, such as the FGF23
signaling and unfolded protein response, show activity only in
the initial hours (up to 6 h) and then cease to respond, implying
a role in early-stage drug response mechanisms. Interestingly,
pathways associated with selective serotonin reuptake inhibitors
and activation of the NLRP3 inflammasome by SARS-CoV-2
exhibit delayed activation, with no initial activity but subsequent
triggering at 3 and 6 h, further highlighting temporal specificity
in drug response.

These pathways’ temporal specificity and high significance
suggest distinct roles in mediating the cellular response to drug
treatment. These findings are instrumental in identifying potential
targets for cancer therapy, elucidating the timing of cellular
responses, and informing the design of time-dependent therapeutic
interventions. Overall, the temporal pathway activation patterns in
LNCaP cells reveal phase-specific biological responses to treatment.
Nuclear receptor meta-pathway activation at baseline (0 h) aligns
with studies showing elevated LRH-1 expression in castration-
resistant prostate cancer (CRPC), where this nuclear receptor
drives de novo androgen biosynthesis via steroidogenic enzymes
(CYP17A1, HSD3B1) (Xiao et al., 2018). The transient orexin
receptor pathway activity at 0 h corresponds to OX1R’s dual role
in prostate cancer - baseline receptor presence in LNCaP cells
(Graybill and Weissig, 2017) with therapeutic potential through
androgen receptor translocation inhibition (Graybill and Weissig,
2017; Couvineau et al., 2021). However, its rapid deactivation
likely reflects receptor internalization or downstream signaling
adaptation. The sustained activation of prostaglandin signaling
from 3 to 12 h may intersect with NF-κB-mediated survival
pathways, as neuropeptides such as bombesin have been shown to
activate NF-κB in LNCaP cells to preserve androgen receptor (AR)
stability under castration conditions (Jin et al., 2008). Similarly, the
prolonged activation of the LTF danger signal mirrors mechanisms
observed in CRPC progression, where chronic NF-κB activation
prevents tumor regression through AR/cyclin D1 maintenance
(Jin et al., 2008). The delayed NLRP3 inflammasome activation
(from 6 h) may reflect secondary stress responses, potentially linked
to LRH-1-mediated steroidogenesis creating pro-inflammatory
microenvironments (Xiao et al., 2018). Although FGF23 signaling
was not directly examined in these studies, its early-phase activity
may be attributable to growth factor crosstalk during the initial
response to treatment.

4 Discussion

This study presents Temporal GeneTerrain, an innovative
visualization methodology that significantly enhances our
ability to interpret the dynamic landscape of gene expression
in response to pharmacological interventions. Moving beyond
conventional static approaches such as heat maps and standard
clustering techniques, this method effectively captures the
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FIGURE 2
GeneTerrains at different time intervals forming the Temporal GeneTerrain for DMSO as the control vehicle, three treatments, and their combination for
the LNCaP cancer cell line.

temporal evolution of gene expression with enhanced resolution
and biological relevance. Similar advancements have been
observed in tools like TrendCatcher, which identifies dynamic
transcriptional signatures and biological processes over time, further
validating the importance of temporal analysis in transcriptomics
(Wang et al., 2022).

Our analysis revealed specific dynamic transcriptional events in
LNCaP cells, namely, the transient NGF-stimulated transcription
surge peaking at 12 h, the short-lived stress-response module
activation between 6 and 9 h, the delayed zinc homeostasis
upregulation at 24 h, and the early but transient orexin receptor
pathway engagement at baseline. Previous studies examining
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FIGURE 3
(a) a pie chart representing the distribution of gene variation across specified categories: T_0 vs. T_24, W_0 vs. W_24, TM_0 vs. TM_24, TW_0 vs.
TW_24, MW_0 vs. MW_24, and TMW_0 vs. TMW_24. Each segment’s size corresponds to the proportion of genes with high variation in that category,
and the percentages are shown for each segment. (b) The pie chart shows the percentage of each portion, representing the distribution of counts over
the various time intervals for each drug (MWT, MW, TW, TM, W) in the time intervals (0–3, 3–6, 6–9, 9–12, 12–24 h).

FIGURE 4
Analysis of Pathway Dynamics in LNCaP Cancer Cell Line Under TM Treatment. (a) illustrating the Temporal GeneTerrain of a LNCaP cancer cell line
sample treated with a combination TM treatment, cultured over intervals of 0, 3, 6, 9, 12, and 24 h. (b, c) Two heatmaps of visualizing the synthetic
pathway enrichment scores over time for TM treatment for genes that are upregulated and downregulated using the PAGER tool.

NGF effects in LNCaP cells focused primarily on proliferation
assays conducted over multi-day intervals, without accompanying
genome-wide expression profiling at intermediate time points
(Sortino et al., 2000). Earlier transcriptomic analyses characterizing
LNCaPprogression toward castration resistance sampled only broad

intervals (e.g., 0, 3, 6, 12, and 24 h), without highlighting transient
activation spikes (Vaarala et al., 2000). Investigations of time-course
zinc treatments in prostate cancer cells predominantly profiled gene
expression at earlier stages (e.g., 3 and 6 h) and did not capture
the late-phase activation at 24 h (Lin et al., 2009; Kolenko et al.,
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2013). Similarly, studies of orexin receptors reported negligible
OX1R expression in standard LNCaP cells and lacked temporally
resolved gene expression data that could reveal an immediate
baseline engagement (Saghapour et al., 2024). Furthermore, while
methods such as TrendCatcher have demonstrated the utility of
fine-grained temporal analyses in other contexts, such as COVID-
19 PBMC transcriptomes (Wang et al., 2022), and tools like TSEE
have underscored the importance of high-resolution temporal
embedding in single-cell RNA-seq data (An et al., 2019), analogous
approaches have not previously been applied to the GSE149428
LNCaP dataset.

This echoes findings from studies like the GeneTerrain
Knowledge Map (GTKM), which uses protein-protein interaction
networks to graphically represent differentially expressed genes,
offering nuanced insights into gene interactions and expression
patterns (Saghapour et al., 2024). Notably, Temporal GeneTerrain
adeptly delineates immediate and delayed transcriptional responses
to single and combination treatments with mefloquine, tamoxifen,
and withaferin A. This temporal dissection reveals that pathway
activations, such as NGF-stimulated transcription and the unfolded
protein response, occur in a staggered manner, aligning with
studies that emphasize transcriptional adaptation as a key driver
of tumor progression rather than a reflection of pre-existing
cellular states (Bolis et al., 2021).

A principal advantage of the Temporal GeneTerrain framework
is its integration of protein-protein interaction networks via
force-directed layout algorithms. This approach provides a spatial
representation that mirrors the functional interrelationships among
genes, facilitating a more intuitive interpretation of underlying
biologicalprocesses.Bysuperimposinggeneexpressionvaluesonthese
networksusing a continuous signal field, nuancedbut significant shifts
in cellular behavior over time were visualized. Similar approaches,
such as TSEE (Time Series Elastic Embedding), have demonstrated
the potential of integrating temporal information into visualization
frameworks toenhance theresolutionofdynamic transitions(Anetal.,
2019).Theobserved temporal dynamics suggest thatwhile somegenes
respond promptly to treatment, others display delayed regulation,
indicating a complex interaction between immediate drug effects and
subsequent adaptive responses.

Furthermore, the integration of gene set enrichment analysis
reinforces our visualization strategy. By mapping expression changes
to known biological pathways, we confirm that the temporal shifts
captured by Temporal GeneTerrain correspond to critical regulatory
mechanisms. For instance, the delayed yet pronounced activation
of pathways such as NGF-stimulated transcription underscores the
prospective relevance of temporal regulation in influencing treatment
outcomes. These findings are consistent with studies showing gradual
transcriptional progression during prostate cancer adaptation to
androgen deprivation therapy (Vaarala et al., 2000; Romanuik et al.,
2010). This dual strategy—merging spatial network visualization
with pathway enrichment analysis provides a comprehensive
framework for interpreting high-dimensional transcriptomic data in
clinically relevant contexts.

Unlike generating independent GeneTerrain snapshots for each
time point, which requires realignment of hundreds of gene nodes,
our temporal stitching strategy constructs a single force-directed
layout at baseline and preserves those exact coordinates across all
subsequent time points. By mapping time-specific expression fields

onto an invariant topology and then interpolating between them,
users can directly track the ‘flow’ of each gene’s activity without the
visual jitter introduced by re-optimizing the layout at every interval.

To support this, we modified the underlying algorithm in two
ways. First, we performed Kamada–Kawai embedding just once
on the PPI network and froze the node positions for all time
points, which eliminates layout variability. Second, we introduced an
adaptive Gaussian smoothing scheme, in which σ is automatically
adjusted based on the magnitude of expression change between
consecutive intervals such that smaller σ values sharpen transient
spikes, while larger σ values emphasize sustained trends. Together,
these enhancements sharpen the contrast between immediate versus
delayed responses and reduce noise.

Despite these promising findings, several limitations merit
consideration. First, the accuracy of the spatial layouts produced
by our methodology is inherently dependent on the quality
and completeness of the underlying protein-protein interaction
data. Incomplete or inaccurate interaction networks could
obscure subtle gene relationships. In addition, the parameter
selection process, such as determining the optimal sigma value
for Gaussian smoothing, requires careful calibration. Although
our settings were informed by preliminary analyses, further
optimization across diverse datasets is necessary to establish
standardized protocols, a challenge similarly encountered
in other time-series visualization frameworks like TSEE
(An et al., 2019).

Despite the advances afforded by Temporal GeneTerrain, our
approach is inherently dependent on the quality and completeness of
the underlying protein–protein interaction (PPI) network. Gaps or
inaccuracies in PPI data can obscure true functional relationships
and lead to misplacement of genes in the terrain. In principle,
our framework can accommodate alternative network priors such
as regulatory interactions derived from ChIP-seq, RIP-seq, or
Hi-C chromatin-contact maps by simply substituting the PPI
adjacency matrix used in the force-directed layout. Employing a
ChIP-seq–based network, for example, would emphasize direct
transcription factor–target relationships, whereas Hi-C–derived
contacts could reveal three-dimensional co-regulation modules.
Similarly, our high-variance gene filter was chosen to focus on
the most dynamically regulated genes, but more stringent criteria
(e.g., top 500 most variable) would produce a sparser terrain
with reduced visual clutter at the expense of potentially missing
subtler but biologically important signals, while looser thresholds
(e.g., top 2,000) would increase coverage but could overwhelm the
visualization with noise. Systematic evaluation of these tradeoffs
across multiple datasets would be essential for establishing best
practices for gene selection.

Scalability to larger cohorts and more heterogeneous clinical
samples also presents challenges. While we demonstrated
Temporal GeneTerrain on ∼1,000 highly variable genes in a
controlled cell-line experiment, extending this method to complete
transcriptomes or patient-derived multi-omics (e.g., scRNA-seq,
proteomics, metabolomics) would require strategies tomanage both
computational load and visual interpretability. Possible solutions
include hierarchical terrain generation first mapping modules or
pathway-level aggregates before “drilling down” to individual genes
and GPU-accelerated force-directed layouts to handle millions
of interactions. For clinical datasets, batch effects and sample
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heterogeneity can distort both the network and the temporal signal;
incorporation of robust normalization, batch-effect correction,
and adaptive σ-smoothing schemes will be necessary to ensure
that inter-patient variability does not confound the temporal
trajectories. Future work will focus on integrating these strategies
to bring Temporal GeneTerrain toward large-scale, clinically
actionable analyses.

As a result, Temporal GeneTerrains reveal biologically
meaningful dynamics that discrete analyses would miss, such
as the 3 h activation of NGF-stimulated transcription preceding
any visible change in the unfolded protein response, and the
transient peak in stress-response genes between 6 and 9 h that
disappears by 12 h. These patterns emerge organically from
the continuous terrain rather than as isolated signals across
separate plots, significantly improving interpretability in time-
series transcriptomic studies. When we used a traditional clustered
heatmap to visualize the 0–24 h expression data, transient
spikes were blurred and gene trajectories became misaligned.
Figure 2 in Supplementary 2 shows how static heatmaps obscure
fine-grained temporal transitions, with staggered clusters and
shifted patterns. In contrast, our dynamic Temporal GeneTerrain,
when using σ-modulated smoothing uncovers interaction patterns
and transient activation waves, fully resolved underlying temporal
dynamics.

Moreover, while Temporal GeneTerrains prove effective
in visualizing dynamic gene expression in controlled in vitro
environments, their application to more heterogeneous clinical
samples may pose challenges. The variability inherent in patient-
derived data encompassing differences in sample quality, treatment
regimens, and disease stages could complicate the visualization and
interpretation of temporal patterns. Future research should focus on
adapting this methodology for clinical contexts, ideally integrating
additional omics layers (e.g., proteomics or metabolomics) to yield
a more holistic view of disease dynamics (Romanuik et al., 2010;
Aviñó-Esteban et al., 2025).

Looking ahead, several promising avenues for future
research emerge. Expanding the Temporal GeneTerrain
framework to incorporate multi-omics data could provide a
more enriched, systems-level perspective on cellular responses.
Furthermore, coupling real-time data acquisition with interactive
visualization tools may facilitate dynamic decision support in
clinical settings, ultimately refining therapeutic precision. Such
advancements would broaden our approach’s applicability and
help bridge the gap between fundamental research and clinical
practice.

In conclusion, Temporal GeneTerrains represent a significant
methodological advancement in bioinformatics and precision
medicine. By capturing the dynamic nature of gene expression
and linking these alterations to functional biological pathways,
this methodology provides researchers and clinicians with a
powerful tool for understanding the complex temporal responses
that underlie drug efficacy and disease progression. Continued
enhancements and validation across diverse biological contexts
will establish Temporal GeneTerrains as an indispensable
resource for developing time-sensitive, personalized therapeutic
strategies.
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