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Gene signature extraction from transcriptomics datasets has been instrumental
to identify sets of co-regulated genes, identify associations with prognosis,
and for biomarker discovery. Independent component analysis (ICA) is a
powerful tool to extract such signatures to uncover hidden patterns in complex
data and identify coherent gene sets. The ICARus package offers a robust
pipeline to perform ICA on transcriptome datasets. While other packages
perform ICA using one value of the main parameter (i.e., the number of
signatures), ICARus identifies a range of near-optimal parameter values, iterates
through these values, and assesses the robustness and reproducibility of the
signature components identified. To test the performance of ICARus, we
analyzed transcriptomedatasets obtained fromCOVID-19 patientswith different
outcomes and from lung adenocarcinoma. We identified several reproducible
gene expression signatures significantly associated with prognosis, temporal
patterns, and cell type composition. The GSEA of these signatures matched
findings from previous clinical studies and revealed potentially new biological
mechanisms. ICARus with a vignette is available on Github https://github.
com/Zha0rong/ICArus.

KEYWORDS
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Introduction

Transcriptomic data plays a crucial role in understanding the variation in gene
expression patterns across diverse biological conditions and phenotypes. Common
approaches to analyze such data involve conducting a differential expression and
gene expression pattern analyses, which evaluate changes in expression across
groups (Conesa et al., 2016). However, challenges arise when analyzing large
transcriptomic datasets from sources like Genotype-Tissue Expression (GTEx)
(Lonsdale et al., 2013) and the Cancer Genome Atlas (TCGA), since these data can
often be classified according to multiple known (e.g., tissue, sex, age, tumor type,
tumor stage, etc.) as well as unknown variables. This complicates identifying the
contribution of the different variables to the differences in expression observed across
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samples. To address these issues and enable the analysis of such
large datasets, unsupervised algorithms like principal component
analysis (PCA), Weighted Gene Co-Expression Network Analysis
(WGCNA) (Langfelder and Horvath, 2008), non-negative matrix
factorization (NMF) (Jia et al., 2015), and independent component
analyses (ICA) (Anglada-Girotto et al., 2022) have been developed.
Unlike methods that compare gene expression between groups,
these unsupervised algorithms identify gene expression modules or
signatures associated with the phenotype labels of the samples.

ICA has been widely used to identify gene expression
signatures in large transcriptomic datasets, including cancer,
development, and exposure to treatments (Biton et al., 2014).
ICA separates a multivariate signal, in this case gene expression,
into additive subcomponents or signatures which are positive
and negative contributions of each gene in the dataset. One
key parameter in ICA is determining the optimal number of
signatures to extract in a dataset as there is no ground truth
for the actual number of independent contributing variables.
Most pipelines, such as RobustICA (Anglada-Girotto et al., 2022)
and BIODICA (Kairov et al., 2012) select this optimal parameter
based on the number of components needed in PCA to explain a
percentage of variance in the dataset. These studies often increase
robustness by iterating the analysis using the same parameter;
however, signatures often vary widely across parameter values. This
can lead to the identification of low-confidence, non-reproducible
signatures.

Here, we introduce the R package ICARus (Figure 1A), designed
to streamline the application of ICA and extraction of high-
confidence expression signatures that are robust across iterations
and reproducible across parameter values. ICARus leverages the
proportion of variance explained obtained from PCA to provide
a range of near-optimal parameters for the ICA algorithm.
Subsequently, for each parameter the ICA algorithm is applied,
and the results are clustered and evaluated using the stability
index proposed by Icasso to identify robust signatures for each
parameter (Himberg and Hyvarinen, 2003). ICARus then clusters
the robust signatures obtained to identify reproducible signatures
across parameters. Finally, the gene expression signatures with the
highest reproducibility scores are combined into meta-signatures
and subjected to further analysis through Gene Set Enrichment
Analysis (GSEA) or Fisher’s Exact test to functionally interpret the
signatures identified.

Materials and methods

Input data format for ICARus

The input data for ICARus is a normalized transcriptome dataset
in matrix format, with rows being gene names and columns being
samples (Figure 1B). Normalization methods such as Counts-per-
Million (CPM) (Chen et al., 2025) and Ratio of median (Anders and
Huber, 2010) are recommended. Different normalization method
strategies will introduce differences in the final results of ICARus;
however, most of the signatures are reproducible in the results
obtained from different methods (Supplementary Figure S1).

Prefiltering of sparsely expressed genes in the input data is
recommended as these genes introduce noise in the analysis, but

since the filtering strategy varies between different datasets, it is not
included in the pipeline.

Estimating the set of near-optimal
parameters for the ICA algorithm

To estimate the set of near-optimal parameters, ICARus first
performs PCA for the input dataset (Figure 1C). Prior work has
used an optimal parameter N as the number of top principal
components that collectively account for 99% of the variance
observed in the dataset (Sastry et al., 2019). ICARus, also relies
on the variance explained by PCA, but identifies the range of
near-optimal values for n. After performing PCA, users can select
whether to use: 1) the ranked distribution of standard deviations
of each principal component, or 2) the cumulative proportion of
variance explained by a certain number of principal components
to determine the lower bound for the parameter set. In the first
option, the standard deviation of each principal component is
plotted against the ranked order of the principal components
which takes the form of an elbow plot; whereas in the second
option, the cumulative proportion of variance explained against
the order of principal components takes the form of a knee plot.
The elbow-point in the first plot and the knee-point in the second
plot indicates the top n principal components that explain a large
fraction of the variance in the data (Figure 1D), i.e., including more
principal components does not lead to amarked increase in variance
explained.

To pinpoint this critical elbow/knee point, the Kneedle
Algorithm (Satopaa et al., 2011) is used, and this identified point
is designated as the minimum number n for the near-optimal
parameter set for subsequent ICA analysis. The Kneedle algorithm
was implemented in an R package1. This set of parameters is then
selected as every integer (n, n + k) where k can be user defined and
is set as default to be 10.

Generating reproducible gene signatures

Following the identification of the near-optimal parameter set,
ICARus initiates the generation of reproducible gene signatures
employing two sequential strategies: intra-parameter iterations
and inter-parameter iterations. For the intra-parameter iterations,
ICARus conducts the ICA algorithm 100 times for each n value.
Subsequently, the resulting signatures undergo sign correction
suggested by a previous study (Anglada-Girotto et al., 2022) and
hierarchical clustering to identify sets of robust signatures for
each specific n. Within each cluster, the medoid is extracted
and employed as the representative signature, while the stability
of the signature cluster is assessed using the stability index
proposed by Icasso (Figure 1E) (Himberg and Hyvarinen, 2003).
To calculate the stability index, the similarities between signatures
from different runs are calculated using the absolute value of
the Pearson correlation coefficient σi,j. Then the stability index

1 https://github.com/etam4260/kneedle
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FIGURE 1
Overview of ICARus pipeline. (A) Pipeline diagram overview of ICARus. (B) The input for ICARus is a (Genes x Samples) normalized gene expression
matrix where the rows are gene symbols (IDs) and columns are samples. (C) PCA plot of samples based on normalized gene expression. (D) Left =
Standard deviation of each principal component sorted by principal component rank order. Right = Cumulative proportion of variance explained
across principal components. The elbow and knee-points in these plots are used to identify the initiation point n for ICA. (E) For each parameter
between n and n + k (k is defined by user) ICA is performed 100 times, and Icasso quality index is used to assess the robustness of independent
components. (F) The independent components that pass the user defined robustness threshold for each tested parameter value are clustered. The
sizes of clusters indicate the reproducibility of signatures across different parameter values. Signatures that pass the user defined reproducibility scores
are output as genes x signatures and signatures x samples matrices.
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of given cluster M is calculated using the following function in
Equation 1:

1
|CM|2
∑

i,j∈CM

σi,j −
1

|CM‖C−M|
∑
i∈CM

∑
j∈C−M

σi,j (1)

where |CM| and |C−M| are the size of cluster M and the number
of signatures not in cluster M (Himberg and Hyvarinen, 2003).
The stability index calculated by this function ranges from 0 to
1, from least to most stable. The signatures with stability indices
>0.75 are evaluated for reproducibility across values of n (Figure 1F).
These robust signatures are subjected to hierarchical clustering. A
signature obtained with one value of the parameter is considered
reproducible if it clusters together with signatures obtained across
multiple other n values within the near-optimal set. The user can
specify whether to only keep the reproducible signatures originated
from the starting point n, or to also keep the reproducible signatures
originated from a higher parameter within the near-optimal set, as
long as they can be reproduced in more than half of the remaining
tested parameters.

ICARus outputs the number of near-optimal values that
contribute a signature to the cluster and the average distance
between these signatures for each cluster. These values can
then be used to select reproducible signatures across many
parameter values (Figure 1F).

Output signatures and downstream
analysis of the gene signatures

The reproducible signatures extracted by ICARus consist of
two parts: 1) a matrix of genes by signatures, where each
value indicates the contribution of the gene to the signature
(the distribution in scores of the signatures follows the normal
distribution, with the mean of 0); and 2) a matrix of signatures
by samples where each value indicates the contribution of the
signature to the expression profile of the sample (Figure 1F). The
gene scores of a particular signature can be used to perform Gene
Set Enrichment Analysis (Subramanian et al., 2005) to identify
pathways or gene sets associated with the signature for further
biological interpretation. The signatures scores across samples can
be used to associate signature values with sample phenotypes or
temporal patterns.

Implementation

Steps that are described above were implemented in R
with parallel backend computation as package ICARus and
provided as pseudocode in Supplementary Material S1. The
package and a vignette is available on Github https://github.
com/Zha0rong/ICArus.

Test datasets

Peripheral leukocyte samples from COVID-19
patients

To illustrate the efficacy of ICARus in identifying relevant
signatures, we applied it to a publicly available RNA-Seq dataset

featuring 46 peripheral blood leukocyte samples collected from
11 COVID-19 patients infected with SARS-CoV-2, with varying
clinical outcomes (fast recovery, prolonged recovery, and fatal)
at different time points (Figure 2A) (Lam et al., 2023). Fast
recovery patients had a median hospitalization time of 7 days,
prolonged recovery patients had a median hospitalization time
of 25 days, and fatal patients were patients that passed away
due to complications of the infection. The count matrix was
downloaded from the GEO repository (GSE221066), which
included 26,475 genes and 55 samples. To prevent genes with
sparse expression introducing noise in the analysis, only genes
with non-zero expression in at least one-fourth of the samples
were included in the analysis. This strategy filtered out 8,918
genes and retained 17,557 genes for the analysis. The count
matrix was normalized using the Counts-Per-Million method
(Chen et al., 2025).

Primary tumor samples of lung adenocarcinoma
(LUAD)

To test the performance of ICARus on a large RNA-seq
dataset with complex clinical phenotypes, we processed 539
lung adenocarcinoma primary tumor RNA-seq samples from
TCGA database (Cancer Genome Atlas Research Network, 2014),
which were downloaded through the TCGA-biolinks portal
(Colaprico et al., 2016). The count matrix included 19,938 protein
coding genes and 539 samples. To filter out genes with sparse
and low expression in the dataset, only genes with non-zero
expression in at least one-fourth of the samples were included in
the analysis. This strategy filtered out 1,417 genes and retained
18,091 genes and 539 samples for the analysis. The count
matrix was normalized using the Counts-Per-Million method
(Chen et al., 2025).

Results

Identification of reproducible signatures in
a COVID-19 expression dataset

To identify signatures associated with COVID-19 outcomes, we
used a dataset of 46 samples derived from 11 patients with different
outcomes (fast recovery, prolonged recovery, and fatal) at different
time points (Figure 2A) (Lam et al., 2023). First, we determined the
near-optimal parameter set in theCOVID-19 expression dataset.We
then selected the critical elbow-point in the PCA option provided by
ICARus. This corresponded to 10 principal components; therefore,
the nominated range for the ICA parameter was 10–19 independent
components. We used 100 iterations for each of these parameter
values, then identified the medoid signature, followed by clustering
of signatures across the parameter values. This resulted in 10
signatures that were reproducible across more than half of the
tested parameter values (Figures 2B,C). By comparing the signature
scores between samples from patients with different clinical
outcomes, we identified two signatures (signatures 4 and 10) that
monotonically increase with outcome severity (Figure 2D). Next, we
aimed to determine the biological processes associated with these
signatures.
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FIGURE 2
Application of ICARus to a COVID-19 transcriptomic dataset. (A) The test dataset consists of 46 samples of blood-derived leukocytes obtained from
COVID-19 patients with different clinical outcomes at different time points during infection. After filtering genes with no expression in more than half
of the dataset, 17,557 genes were kept for downstream analysis. (B) The PCA plot illustrates the separation of samples from different clinical outcomes.
(C) The initiation parameter identified by ICARus for this dataset was 10 (n), and ICARus determined robust signatures using parameter values 10–19.
Signatures across parameter values were clustered and only the signatures that were reproducible across more than 5 values were considered for
downstream analysis. ICARus identified 10 robust and reproducible gene expression signatures from the test dataset. (D) The box plots showed the
signature score distributions in different clinical outcomes. Statistical significance determined by Wilcoxon-ranked sum test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p
< 0.005.

Signature 4 is associated with poor prognosis and
fatal outcomes

Signature 4 exhibited a significant correlation with patient
outcomes, with samples from fatal outcome patients having the
highest scores and those from fast-recovery patients having the
lowest scores (Figure 3A). By plotting signature scores across
time points and clinical outcomes, we observed that signature 4
scores were higher in samples from fatal outcome patients, and
lower in fast-recovery patients at every time point (Figure 3A).

This observation is important as it rules out the possibilities
of association driven by the bias at one or more time points
and suggests that the biological functions associated with
signature 4 can be used to differentiate fast recovery patients at
any time point.

The GSEA analysis of signature 4 revealed a depletion of T
and B cell activation and MHC class II antigen processing and
presentation, and an enrichment of inflammation pathways and
MHC Class I antigen presentation (Figure 3B). To identify which
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FIGURE 3
GSEA of clinical outcome-associated Signature 4. (A) The box plots show the signature 4 score distributions in different clinical outcomes. The line plot
shows the temporal pattern of Signature 4 for different patient outcomes. Statistical significance determined by Wilcoxon-ranked sum test. (B) Bar
graph displays the top enriched and depleted pathways from GSEA analysis results of Signature 4. Net enrichment scores are shown. (C) Network
representation of the top enriched pathways and the driver genes associated with the enrichment results. (D) ssGSEA results of the top enriched
pathways from GSEA analysis results of Signature 4.
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genes were driving the observed enrichments, a net plot was
generated (Figure 3C). In this plot, large brown nodes represent
enrichment terms, while smaller red or blue nodes represent
individual genes colored according to their scores in signature 4.
Edges were drawn between nodes when a gene belonged to the
core enrichment set of a given term. In the network graph, elevated
scores of immune genes, such as IL1R2, MYD88, NRLP3, CASP1,
TLR4, were shown to drive the enrichment of interleukin 1 and
interleukin 8 producing signaling pathways (Figure 3C). This is
consistent with previous studies linking the elevated expression of
IL-1 and IL-8 with poor prognosis (Li et al., 2021; Cavalli et al.,
2021). Further clinical studies also showed that the blocking of IL-1
in COVID-19 patients led to better prognosis (Cavalli et al., 2020).
The network also showed that toll-like receptor genes such as TLR1,
TLR2 and TLR4, which had elevated metagene scores, were driving
the enrichment of toll-like receptor signaling pathways (Figure 3C).
The TLR2 signaling pathway, elevated in signature 4, can also be
associated with poor prognosis, consistent with several clinical
studies showing elevated TLR2 expression was associated with poor
prognosis in COVID-19 infection (Taniguchi-Ponciano et al., 2021;
Xu Q. et al., 2022). Signature 4 has also a negative association with
MHC-Class II antigen presenting pathways, which is driven by
the suppression of MHC-Class II such as HLA-DMA, HLA-DMB
and HLA-DRA (Figure 3C), suggesting a negative association with
poor prognosis. This is consistent with previous studies showing
that monocytes in COVID-19 patients have lower levels of MHC
class II proteins (Xu Q. et al., 2022; Laing et al., 2020). These
results were confirmed using ssGSEA (Reich et al., 2006) that
calculate net enrichment scores of individual pathways in each
sample (Figure 3D).

ICARus identified signature 10 as associated with
a temporal phenotype

Signature 10 not only displayed an association with clinical
outcomes (lowest in fast recovery, highest in fatal), but also
showed a temporal phenotype (Supplementary Figure S2A).
Prolonged recovery patients and fatal outcome patients had
similar signature 10 scores in the beginning time point, but
fatal outcome patients had consistent higher signature 10
scores in the later time points (Supplementary Figure S2A).
GSEA analysis of signature 10 revealed positive associations
with regulation of neutrophils chemotaxis/mediated immunity,
actin filaments assembly/organization and extracellular matrix
(Supplementary Figure S2B). A net plot was generated for the
genes and the enriched terms to visualize the genes that drive
the enrichment of given pathways (Supplementary Figure S2C).
For example, matrix metalloproteinase genes such as MMP2 and
MMP8 drive the enrichment of extracellular matrix disassembly
and galectin genes such as LGALS1, LGALS3 and LGALS9 drive
the enrichment of neutrophil mediated immune pathways. Previous
studies (Schulte-Schrepping et al., 2020) have shown that elevated
neutrophil counts are associated with a poor prognosis in COVID-
19 patients, with clinical publications attributing the poor prognosis
to the formation of neutrophil extracellular traps (NETs) (Zuo et al.,
2021). NETs, composed of cell-free DNA, histones, and cytosolic
proteins released by neutrophils, require the rearrangement of the
actin cytoskeleton for their formation (Sprenkeler et al., 2022).
NETs have been implicated in thrombosis and tissue damage

(Papayannopoulos, 2018; Zuo et al., 2020), contributing to the poor
prognosis of COVID-19 patients.

GSEA analysis results also revealed a negative association
between signature 10 and regulation of T cell activation and
T cell mediated immunity, driven by suppression of killer cell
lectin-like receptors such as KLRC2/3/4, KLRD1 and KLRK1
(Supplementary Figure S2C). Previous studies have also shown
decreasing T cell counts in COVID-19 patients with severe
symptoms compared to the ones with non-severe symptoms
(Liu et al., 2020). Further, another study reported an elevated
number of neutrophils and decreasing number of T cells in
COVID-19 patients with severe symptoms compared with COVID-
19 patients with mild symptoms (Xu J. et al., 2022).

Identification of reproducible
signatures in a TCGA-LUAD expression
dataset

To demonstrate the application of ICARus on
another larger dataset, we selected the TCGA-LUAD
lung adenocarcinoma expression dataset (Figure 4A)
(Cancer Genome Atlas Research Network, 2014). To identify the
near-optimal parameter set, we selected the critical elbow-point
in the PCA option provided by ICARus. This corresponded to 48
principal components, and therefore, the nominated range for the
ICA parameter was 48–57 independent components. We performed
100 iterations for each of these parameter values, identified the
medoid signature, then clustered signatures across the parameter
values. This resulted in 22 signatures that were reproducible across
more than half of the parameter values tested (Figure 4B).

Identification of gene signatures
associated with disequilibrium of cell
type proportion and adverse prognosis

To identify signatures associated with adverse prognosis,
samples were stratified by the median score of each gene signature
into two groups: samples with higher given gene signature scores
and samples with lower given gene signature scores. The Cox
proportional hazards model was used to perform the survival
analysis and the likelihood ratio test was used to regress out
co-variables such as age of diagnosis, gender, location of tumor
origin, and cell type proportion. Four signatures were significantly
associated with adverse prognosis (Figure 4C).We performedGSEA
for signatures 9 and 10 to determine the pathways associated with
adverse prognosis. GSEA of signature 10 showed an enrichment
of keratinization related processes and depletion of metabolic,
immune-related, and cell division related pathways (Figure 4D).
Previous studies have shown that keratin gene expression activates
the epithelial-mesenchymal transition in tumor cells and leads to
poor prognosis (Li et al., 2024). GSEA of signature 9 showed an
enrichment of appendage development pathways and depletion of
macrophages and immune related pathways (Figure 4E). Previous
studies have shown that the enrichment of appendage development
pathways was associated with poor prognosis (Yu et al., 2024).
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FIGURE 4
ICARUS extracts prognosis-related signatures from TCGA-LUAD database. (A) 539 primary tumor RNA-Seq samples were downloaded from the TCGA
database, and 18,091 genes were kept in the analysis. (B) ICARUS identified 22 reproducible signatures. (C) Kaplan Meier plots of 4 signatures
significantly associated with adversary prognosis. The adjusted p-values obtained from the Cox-proportional hazard ratio test, covariate factors such as
gender, age, tissue of origin were regressed out using likelihood ratio test. HR = hazard ratio. (D and E) The bar graph displays the top enriched and
depleted pathways from GSEA results of Signature 10 (D) and Signature 9 (E). Net enrichment scores are shown. (F) Dot plot of Pearson correlation
coefficient (PCC) and adjusted p-value of correlation tests between signature scores and cell type proportion. The color of the dot showed correlation
coefficients and the size of the dots showed −log10 (adjusted p-value).
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To determine whether signature 9 is indeed associated with a
depletion of macrophages in the corresponding samples, we used
BayesPrism (Chu et al., 2022) to deconvolve the 539 bulk RNA-Seq
samples and predict the proportion of each cell type in the tumor
microenvironment of each sample. Then, we performed correlation
tests between the proportion of each cell type and score of each
signature. The results were visualized using the dot plot where the
rows are signatures and the columns are cell type proportions, the
sizes of the dot are the negative log10 transformed FDR adjusted
p-values of the correlation tests and the colors of the dots are the
correlation coefficients (Figure 4F). We found several signatures
associated with cell type proportions. In particular, signature 9
was significantly associated with a low proportion of macrophages,
consistent with our GSEA results.

Discussion

We developed ICARus, an R package designed to assist
researchers in identifying robust and reproducible gene signatures
using ICA across multiple parameter values. This pipeline is highly
versatile enabling users to select analysis parameters and stringency.
First, ICARus enables the user to manually or automatically select
near-optimal parameter sets using elbow or knee points of PCA
results. Next, ICARus allows users to select the reproducibility
criteria. Although our analyses focused on signatures identified
in more than half of all parameters tested, the pipeline can also
output signatures present inmore than half of parameters from their
first instance. This allows the identification of signatures specific to
higher parameter values.

To show that the gene expression signatures extracted by ICARus
aremeaningful, we tested the package on twoRNA-Seq datasets.The
first dataset consisted of leukocytes samples which were obtained
from COVID-19 patients with different clinical outcomes, and the
second dataset consisted of primary tumor samples obtained from
lung adenocarcinoma patients. The analysis of COVID-19 patient
samples showed that ICARus identified biologically meaningful
signatures that were associated with patient prognosis and the
pathways that drive these associations.

Analysis of the primary tumor samples showed that ICARus
identified gene signatures associated with prognosis and cell type
proportion in the tumor microenvironment. The reproducible
signatures identified by ICARus were associated with clinical
phenotypes and temporal patterns consistent with previous studies.
Furthermore, the network analyses of the signatures domonstrated
that the signatures will provide biologically meaningful genes
driving the enrichment of relevant biological functions. These
genes can be used as input for some of the recently published
algorithms that employ deep learning algorithms to study gene
interactions networks and drug response (Zhao et al., 2024;
Zhao et al., 2025; Zhao et al., 2022). In principle, ICARus can also
be used to extract signatures from single cell RNA-seq datasets;
however, the method may need adaptation to account for noise and
missing values.

In summary, ICARus has demonstrated the ability to produce
biologically meaningful and reproducible signatures which can be
extended to other expression datasets.
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