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Integrated single-cell and bulk
RNA dequencing to identify and
validate prognostic genes related
to T Cell senescence in acute
myeloid leukemia
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Yan Zhang1*
1Department of Laboratory Medicine, Suzhou Yongding Hospital, Suzhou, China, 2Department of
Hematology, Suzhou Yongding Hospital, Suzhou, China

Background: T-cell suppression in patients with Acute myeloid leukemia (AML)
limits tumor cell clearance. This study aimed to explore the role of T-cell
senescence-related genes in AML progression using single-cell RNA sequencing
(scRNA-seq), bulk RNA sequencing (RNA-seq), and survival data of patients with
AML in the TCGA database.

Methods: The Uniform Manifold Approximation and Projection (UMAP)
algorithm was used to identify different cell clusters in the GSE116256, and
differentially expressed genes (DEGs) in T-cells were identified using the
FindAllMarkers analysis. GSE114868 was used to identify DEGs in AML and
control samples. Both were crossed with the CellAge database to identify aging-
related genes. Univariate and multivariate regression analyses were performed
to screen prognostic genes using the AML Cohort in The Cancer Genome Atlas
(TCGA) Database (TCGA-LAML), and risk models were constructed to identify
high-risk and low-risk patients. Line graphs showing the survival of patients
with AML were created based on the independent prognostic factors, and
Receiver Operating Characteristic Curve (ROC) curves were used to calculate
the predictive accuracy of the line graph. GSE71014 was used to validate the
prognostic ability of the risk scoremodel. Tumor immune infiltration analysis was
used to compare differences in tumor immune microenvironments between
high- and low-risk AML groups. Finally, the expression levels of prognostic genes
were verified using polymerase chain reaction (RT-qPCR).

Results: 31 AMLDEGs associated with aging identified 4 prognostic genes (CALR,
CDK6, HOXA9, and PARP1) by univariate, multivariate, and stepwise regression
analyses with risk modeling The ROC curves suggested that the line graph
based on the independent prognostic factors accurately predicted the 1-, 3-,
and 5-year survival of patients with AML. Tumor immune infiltration analyses
suggested significant differences in the tumor immune microenvironment
between low- and high-risk groups. Prognostic genes showed strong binding
activity to target drugs (IGF1R and ABT737). RT-qPCR verified that prognostic
gene expression was consistent with the data prediction results.
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Conclusion:CALR, CDK6, HOXA9, and PARP1 predicted disease progression and
prognosis in patients with AML. Based on these, we developed and validated
a new AML risk model with great potential for predicting patients’ prognosis
and survival.

KEYWORDS

acutemyeloid leukemia, T cell, cell senescence, single-cell RNA sequencing, prognostic
risk model

1 Introduction

Acute myeloid leukemia (AML) is a heterogeneous
hematological neoplasm characterized by the clonal proliferation
of myeloid cells in peripheral blood and bonemarrow (Pollyea et al.,
2021), with a 5-year survival rate of less than 30% (Narayanan and
Weinberg, 2020). Cellular senescence is an irreversible state of cell
cycle arrest characterized by DNA damage, telomere shortening,
and secretion of pro-inflammatory cytokines (Rossiello et al., 2022).
Recent studies have emphasized that T-cell dysfunction, including
senescence, is a key contributing factor to immune evasion and
treatment resistance in AML (Chen et al., 2025; Ikeda et al., 2025;
Yuan et al., 2021), as evidenced by the poor prognosis and low
survival of patients with AML (Mazziotta et al., 2024).

Previous studies have identified markers to study T-cell
senescence in some patients with AML, such as increased KLRG1
expression (Shive et al., 2021; Towers et al., 2024). These studies
focused on identifying senescence markers; however, knowledge of
the impact of T-cell senescence and subpopulation changes on the
immune microenvironment of AML tumors and AML prognosis
remains inadequate. In this study, we identified AML prognostic
genes related to T-cell senescence using transcriptome (GSE116256)
and single-cell sequencing (GSE114868) data and constructed a
prognostic risk model. We also developed a predictive line graph
for viability using TCGA-LAML and another transcriptome data
(GSE71014). We then analyzed the differences in the immune
microenvironment between the low- and high-risk AML groups.
The relationship between T cell subsets and prognostic genes, and
which T cell subsets were most significantly associated with AML,
was evaluated, predicting target lncRNAs, miRNAs, and drugs.
Finally, we concluded that prognostic gene expression influences
T cell senescence, altering the immune microenvironment. This
causes tumor immune escape, thereby determining the prognosis
and survival duration of patients with AML. Our findings provide
new insights into the role of T-cell senescence in AML and suggest
potential therapeutic targets for improving immunotherapy-based
treatments.

2 Materials and methods

2.1 Data collection

We downloaded gene expression data from the GSE114868,
GSE116256, and GSE71014 datasets associated with AML through

the Gene Expression Omnibus (GEO) repository (http://www.
ncbi.nlm.nih.gov/geo/). Eight hundred and sixty-six cellular
senescence-related genes (CSRGs) were extracted from the CellAge
database (Avelar et al., 2020; Chatsirisupachai et al., 2019) (https://
genomics.senescence.info/cells/) (Supplementary Table S1). The
survival data and gene expression profiles of the TCGA-LAML
cohort were obtained from the TCGA database (https://xena.ucsc.
edu/) (Table 1).

2.2 Differential expression analysis

Differentially expressed genes (DEGs) in the AML and control
groups from theGSE114868 datasetwere identified using the Limma
software package (v 3.54.0). All hypothesis tests were corrected using
the Benjamini–Hochberg method to control the false discovery rate
(FDR <0.05), and the screening criteria for differentially expressed
genes were |log 2 fold change (FC)|>1, adj. p < 0.05 (Ritchie et al.,
2015). The ggplot2 (Gustavsson et al., 2022) and ComplexHeatmap
(v 2.14.0) (Gu and Hübschmann, 2022) packages were used to
visualize the top ten significantly DEGs via a volcano plot and a
heatmap, respectively.

2.3 Single-cell analysis

In the GSE116256 scRNA-seq dataset, cells were curated using
Seurat’s NormalizeData function (Gu and Hübschmann, 2022),
selecting high-quality cells based on stringent criteria (nFeature
RNA >200, genes expressed in <3 cells removed, nCount RNA
between 200–3,000, and mitochondrial proportion <10%). The
FindVariableFeatures function identified the top 2,000 highly
variable genes (HVGs). Subsequent normalization and PCA outlier
detection were conducted using Seurat’s Scale Data function,
with Elbowplot visualization and Jackstraw reclustering used to
determine the top 30 significant principal components (PCs) (p
< 0.05). Dimensionality reduction and clustering were performed
using a UMAP with 30 PCs and Seurat’s FindNeighbors and
FindClusters functions (resolution = 0.4). Notable marker genes for
distinct clusters were identified using the FindAllMarkers function
(logfc. Threshold = 0.5, min. pct = 0.25, return. thresh = 0.01).
Cell annotation was assigned based on these markers using SingleR
(v 2.4.0) (Aran et al., 2019) and the CellMarker database. Finally,
to investigate the differences in gene expression at the T cell level
betweenAML and controls, we screened theDEGs of T cells in AML
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TABLE 1 Dataset collection.

Data source Experimental cohort Control cohort Platform

GSE114868 194 bone marrow mononuclear cell
samples from AML patients

20 normal control human bone marrow
mononuclear cell samples

GPL17586

GSE116256 16 Bone marrow samples from AML
patients

5 bone marrow samples from normal
controls

GPL18573

TCGA-LAML 132 blood samples from AML patients with survival information ——

GSE71014 104 bone marrow samples from AML patients GPL10558

Senescence gene set 866 CSRGs were obtained from the CellAge database ——

and controls using the FindMarkers function. We depicted them
using Manhattan plots (|log2 FC| > 0.1, adj. p < 0.05).

2.4 Identification and functional analysis of
candidate genes and protein-protein
interaction (PPI) networks

Weused theVennDiagrampackage (v 1.7.3) (Chen and Boutros,
2011) to intersect T cell DEGs with CSRGs and GSE114868 DEGs.
The ClusterProfiler package (v 4.7.1.3) (Yu et al., 2012) was used
to perform Gene Ontology (GO) and Kyoto Encyclopedia of the
Genome (KEGG) enrichment analyses (p < 0.05). We visualized
the data using the GO plot (v 1.0.2) (Walter et al., 2015) and
enrichment (v 1.22.0) packages (Wang et al., 2022). The interacting
gene search tool (STRING database [http://www.string-db.org/])
and Cytoscape software (v 3.7.2) (Liu et al., 2020) were used to
build protein-protein interaction (PPI) networks with a confidence
threshold >0.4.

2.5 The screening of the prognostic genes
and construction of a risk model

We refined candidate genes linked to survival and prognosis
using a univariate Cox regression analysis (HR ≠ 1, p < 0.05). We
validated the proportional hazards (PH) assumption (p > 0.05) using
the survival package (v 3.7-0) (Lei et al., 2023) and cox. zph function
on TCGA-LAML data. This was followed by multivariate and
stepwise Cox regression analyses (p < 0.05) to identify prognostic
genes for AML risk model development.

risk score =
n

∑
i=1

coe f(genei) × expr(genei)

Where coef is the gene regression coefficient and expr is the gene
expression level.

Patients in the TCGA-LAML and GSE71014 databases were
categorized into high- and low-risk groups based on themedian risk
score. We plotted risk and Kaplan-Meier Survival Curves using the
survminer package (v 0.4.9) (Ramsay et al., 2018). The AUC was
determined by ROC analysis of the 1-, 3-, and 5-year survival using
the survivalROC package (v 1.0.3.1) (Heagerty et al., 2000).

2.6 Independent prognostic analysis and
line graph

We performed a univariate Cox regression analysis, which
included risk scores, age, and type. AHR≠1 and p < 0.05 represented
the prognostic significance of the model, and the model met the
proportional hazards assumption (p > 0.05). We used the survival
package (v 3.7-0) for the multivariate analysis and the rms package
(v 6.5.0) (Heagerty et al., 2000) to construct line plots to predict the
1-, 3-, and 5-year survival of patients with AML. We plotted ROC
curves to verify the reliability of the line graphs using the plotROC
package (v 2.3.1) (Sachs, 2017).

2.7 Tumor immune microenvironment
analysis

The estimate package (v 1.0.13) and Wilcoxon test assessed the
AML immune microenvironment.The ssGSEA (Charoentong et al.,
2017) and GSVA (v 1.46.0) packages (Hänzelmann et al., 2013)
calculated the enrichment of 28 immune cell populations, and the
Wilcoxon test compared their ratios in TCGA-LAML samples (p
< 0.05). We performed a Spearman correlation analysis using the
psych package (v 2.4.3) to assess the association between immune
cells and prognostic genes (|cor| > 0.30, p < 0.05).

2.8 Regulatory network construction

We used the MultiMiR package (v 1.24.3) (Ru et al., 2014) to
predict mRNAs targeted by miRNAs based on the TargetScan and
PITA databases. We used starBase (https://rnasysu.com/encori/) to
identify the upstream lncRNAs ofmiRNAs and visualized “lncRNA-
miRNA-mRNA” networks using Cytoscape (v 3.9.1) (Liu et al.,
2020). We explored prognostic gene interactions and co-expression
using the geneMANIA (https://genemania.org/) database.

2.9 Chromosomal and subcellular
localization

The chromosomal location of prognostic genes was determined
using ENSEMBL (https://asia.ensembl.org/index.html) andmapped
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to chromosomes using the RCircos package (v 1.2.2) (Zhang et al.,
2013). Proteins were extracted from Genecards (https://www.
genecards.org/) sequences to study the subcellular localization of
proteins encoded by prognostic genes, and the ggplot2 package (v
3.4.1) was used to visualize the cellular distribution of the proteins.

2.10 Drug prediction and molecular
docking

We assessed drug sensitivity using the GDSC database.
The pRRophetic package (v 0.5) (Geeleher et al., 2014)
determined the IC50 values, and a Wilcoxon test compared drug
sensitivities between different risk groups (p < 0.05). The corrplot
package (v 0.92) (Wang et al., 2022) performed a Spearman’s test
(|cor| > 0.30, p < 0.05) to analyze the correlation between IC50
values and gene expression. Highly correlated 3D drug structures
were obtained from the PubChem and RSCB PDB databases. CB-
Dock2 was used to evaluate affinity, with a binding energy below
−5 kcal/mol indicating affinity.

2.11 Experimental validation by RT-qPCR

Bone marrow samples from controls and patients
with AML were collected at Suzhou Yongding Hospital,
and informed consent and ethical approval were obtained
(202450; see Supplementary Table S3 for sample details).

2.12 Statistical analysis

Data processing and comparisons were performed using R (v
4.2.3), with statistical significance determined by Wilcoxon tests at
p < 0.05.

3 Results

3.1 Five hundred and seventeen T-cell
DEGs identified in the scRNA-seq dataset
GSE116256 and T-cell subcluster analysis

TheGSE116256 dataset contained 21,253 cells and 19,003 genes
for subgroup identification and annotation afterquality control
(QC) (Supplementary Figure S1A). Supplementary Figure S1B
shows the inclusion of 2,000 high-variance genes (red
dots). Supplementary Figure S1C shows no outlier samples in
GSE116256. An elbow plot was used to visualize the 2,000
high-variance genes after principal component analysis. The
optimal number of dimensions for cell clustering was determined
to be 30 (p < 0.05) using linear dimensionality reduction
(Supplementary Figure S1D,E). After co-clustering the cells into
20 different cell clusters (Figure 1A), bubble plots showed the
expression of typical marker genes in 15 cell clusters (Figure 1B,
Supplementary Table S2). The annotated cell groups are shown in
Figure 1C. Among them, monocytes had three clusters (7, 13, and
14), and T cells had two clusters (6 and 11). After a differential

analysis of the genes in the subclustered cells, clusters 7 and 13
were shown to contain 340 and 736 DEGs (cluster 14 did not),
respectively, based on the screening according to predefined criteria
(|logFC| > 0.1 and adj. p < 0.05; Supplementary Figure S2A,B). A
functional analysis revealed that the two clusters of monocytes were
involved in significantly different biological processes and pathways
(Supplementary Figure S2C–F). Given that the impact of T-cell
senescence and subpopulation changes in the AML tumor immune
microenvironment is still poorly understood, we clustered the T-
cell subpopulations based on T-cell-typical marker gene expression
(Szabo et al., 2019) (Figures 1D,E). The annotated cell clusters are
shown in Figure 1F. The Manhattan plot suggests 517 T-cells DEGs
between the control and AML groups (358 upregulated and 159
downregulated genes) (Figure 1G; Supplementary Table S4).

3.2 Screening of AML candidate genes
based on the GSE114868, GSE116256, and
CellAge databases

The GSE114868 dataset yielded 2,864 DEGs (downregulated:
1,552; upregulated: 1,312), with the top ten DEGs highlighted
in the volcano and heat maps (Figures 2A,B). The intersection
between the 2,864 DEGs with 866 CSRGs and 517 T-cell DEGs
yielded 31 candidate genes (Figure 2C; Supplementary Table S5).
The enrichment analysis and PPI networks of the 31 candidate genes
is shown in Figures 2D–F.

3.3 Establishment and evaluation of a
prognostic model for AML based on the
TCGA-LAML cohort and validation of a
prognostic model for AML based on
GSE71014

Using multifactorial models that directly incorporate too many
variables resulted in model instability and overfitting. Therefore,
we first performed a univariate Cox regression analysis on the
TCGA-LAML cohort (HR = 1: no significant effect; HR < 1:
protective genes; HR > 1: risk genes; p < 0.05) to initially screen
for variables that were significantly associated with AML survival.
The results of the univariate Cox regression analysis were then
subjected to the proportional hazards (PH) hypothesis test (p
> 0.05) (Supplementary Figure S3), and six genes were finally
identified: CALR, CDK6, CTSD, HOXA9, PARP1, and SAMHD1
(Figure 3A). A multifactor Cox model was constructed for the six
genes to obtain a more robust prediction model (Figure 3B). A
stepwise regression analysis was performed based on themultifactor
Cox regression analysis (Figure 3C), which resulted in the final
identification of four prognostic genes: CALR, CDK6, HOXA9, and
PARP1. The formula for the risk model was

RiskScore = (−0.222606222×CALReExpression level )

+ (−0.531973651×CDK6expression level)

+ (0.106253563×HOXA9expression level)

+ (0.994626253× PARP1expression level)

The risk coefficients are shown in Table 2.
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FIGURE 1
Five hundred and seventeen T-cell DEGs identified in the scRNA-seq dataset GSE116256 and T-cell subcluster analysis. (A) UMAP plot of 20 different
cell clusters obtained by dimensionality reduction clustering before annotation. (B) Bubble plot of gene expression of different cellular markers. (C) The
15 major cell types identified after annotation. (D–F) Further dimensionality reduction and clustering of T cell cluster 6 revealed four distinct T cell
types. (G) Manhattan plot of 517 DEGs in T cell clusters.
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FIGURE 2
Screening of AML candidate genes based on the GSE114868, GSE116256, and CellAge databases. (A) Volcano plot of DEGs in GSE114868, with genes
labeled according to significance; (B)The heatmap consists of two parts: the upper part shows the density plot of DEGs expression with lines
representing five quantiles and the mean; the lower part is the DEGs expression heatmap (red for AML group, green for Control group). (C) Venn
diagram showing the intersection of DEGs from GSE116256, GSE114868, and CSRGs; (D–F) GO/KEGG enrichment and PPI network analysis of 31
cross-genes.

Risk scores were calculated for each patient based on the
regression coefficients and expression levels of the prognostic genes,
and the TCGA-LAML samples were categorized into high- and low-
risk groups (median risk score of 0.1134133, high/low-risk patients

= 66/66). Risk distribution and survival status maps showed that the
high-risk grouphadhigher risk scores and shorter survival durations
than the low-risk group (Figure 3D). The KM curves showed that
the high-risk group had a significantly lower probability of survival
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FIGURE 3
Establishment and evaluation of a prognostic model for AML based on the TCGA-LAML cohort and validation of a prognostic model for AML based on
GSE71014. (A) Six prognostic genes identified via univariate analysis; (B,C) Four prognostic genes determined by multivariate Cox and stepwise
regression analyses; (D) Risk score distribution and Survival status distribution (The x-axis of both panels represents patients sorted by risk score. The
y-axis of the upper panel shows risk scores, with a dashed line indicating the median risk score and its corresponding patient count. The y-axis of the
lower panel shows survival time, with a dashed line indicating the median risk score and its corresponding patient count). (E) Kaplan-Meier curve; (F) 1-,
3-, 5-year ROC curves; (G–I) Validation in GSE71014 with corresponding risk score and survival analysis, and ROC curve assessment at 1, 3, and 5 years.
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TABLE 2 Risk model gene coefficients.

Gene Coef Exp (coef) Se (coef) Z Pr (>|z|)

CALR −0.222606222 0.800429979 0.157474682 −1.413600074 0.157479359

CDK6 −0.531973651 0.587444415 0.147764044 −3.600156287 0.000318026

HOXA9 0.106253563 1.112103829 0.059733266 1.778800481 0.075272478

PARP1 0.994626253 2.703713649 0.269146597 3.695481436 0.000219471

Note: Gene, Prognostic gene; Coef, Gene risk coefficient from stepwise regression; Exp (coef), Hazard ratio (HR); Se (coef), Standard error of HR; Z, Wald statistic (coef/se (coef)).

FIGURE 4
Establishing a line graph for AML survival prediction based on independent risk factors. (A,B) Risk score, age, and staging were included as clinical
characteristics in univariate and multivariate Cox regression analyses. (C) Line graph for risk score and age and 1-, 3-, and 5-year survivability with AML.
(D) ROC curves for 1-, 3- and 5-year survivability with AML.
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FIGURE 5
Differences in tumor immune microenvironment between the high- and low-risk groups and prognostic gene expression in different T cell subclusters.
(A) Stromal, immune, and ESTIMATE scores were compared between low- and high-risk cohorts. (B,C) Immune cell infiltration levels were contrasted
across low- and high-risk groups. (D) The correlation between prognostic genes and immune cells was assessed.

(Figure 3E). The AUC values of the ROC analyses of the 1-, 3-,
and 5-year risk models were ≥0.6, suggesting a strong validity in
predicting the survival of patients with AML (Figure 3F). The KM
curves showed that the high-risk group had a higher risk score and
a shorter survival duration than the low-risk group (Figure 3D).

In the independent cohort (GSE71014) split into high- and low-
risk groups (52 samples each) with a median score of 3.269811, the
high-risk group hadmore adverse outcomes than the low-risk group
with an AUC of ≥0.6 (Figures 3G–I), validating the efficacy of the
risk model.

3.4 Establishing a line graph for AML
survival prediction based on independent
risk factors

To evaluate the prognostic model and identify independent
prognostic factors for AML, a one-way Cox regression analysis (HR
≠ 1, p < 0.05) was performed using the risk score and age. M-staging
(M3 and others) was also performed on the TCGA-LAML cohort.
We found that the risk score, age, and M-stage were significantly
associated with the survival of patients with AML (Figure 4A), and
the PH hypothesis (p > 0.05) was fulfilled. The risk score and
age were the independent prognostic factors in the multifactorial
Cox independent prognostic analysis (Figure 4B). Based on the
independent prognostic factors, a column chart was constructed

with survival as the outcome event (Figure 4C). Higher scores in the
column chart indicated a higher risk of death and a lower survival
rate. For example, if a patient was 60 years old (points = 4.5) with
a risk score of 1.5 (points = 0; total points = 4.5), the probability
of surviving for 1, 3, and 5 years was approximately 50%, 20%, and
10%, respectively. ROCs were evaluated on the column line graphs,
and the AUCs were all greater than 0.8, indicating good model
predictions (Figure 4D).

3.5 Differences in tumor immune
microenvironment between the high- and
low-risk groups and prognostic gene
expression in different cell subclusters

We found a significant upward trend (p < 0.05) in the
immunization and ESTIMATE scores in the high-risk group of
the TCGA-LAML cohort (Figure 5A). We compared the abundance
of immune cell infiltration in the high- and low-risk groups.
Twelve immune cell types showed significant differences, including
activated dendritic cells, memory T-cells, and macrophages (p
< 0.05; Figures 5B,C). Additionally, CALR, CDK6, and PARP1
were negatively correlated with most of the differential immune
cells, whereas HOXA9 was positively correlated with plasmacytoid
dendritic cells, macrophages, and central memory CD4+ T cells (p
< 0.05; Figure 5D).
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FIGURE 6
Functional analysis of molecular regulation of prognostic genes. (A) lncRNA-miRNA-mRNA interaction network. (B) Functional and co-expression
analysis of prognostic genes. (C,D) Genomic and subcellular mapping of prognostic genes.
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FIGURE 7
IC50 difference analysis and targeted drug prediction based on AML prognostic modeling. (A) Comparative IC50 analysis predicts differential drug
sensitivity between low- and high-risk groups. (B) Assesses the correlation between prognostic gene expression and drug IC50 values. (C–F) Employs
CB-Dock2 for molecular docking of prognostic genes to elucidate potential drug interactions.

3.6 Functional analysis of molecular
regulation of prognostic genes

The “lncRNA-miRNA-mRNA” regulatory network showed that
CALR, CDK6, HOXA9, and PARP1 predicted six, six, two, and
one miRNAs, respectively. The miRNAs predicted 0, 40, 28,
and 41 lncRNAs associated with prognostic genes, including

the XIST-“hsa-miR-324-5p”-HOXA9 and XIST-“hsa-miR-105-5p”-
PARP1 relationships (Figure 6A). The biological functions and co-
expression networks of the prognostic genes were analyzed using
the GeneMANIA database, with CANX, CDKN2C, and CCND3
having the strongest association with prognostic genes (Figure 6B).
Chromosomal localization revealed that CALR, CDK6, HOXA9,
and PARP1 were located on chromosomes nineteen, one, seven, and
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TABLE 3 Binding energy.

Gene Drug Binding energy

CDK6 ABT737 −10.1

PARP1 I.BRD9 −10.6

CALR IGF1R −9.9

HOXA9 Pevonedistat −8.9

Note: Gene, Prognostic gene; Drug, Targeted drug for prognostic gene; Binding energy,
Binding free energy between prognostic genes and chemotherapeutic drugs.

seven, respectively (Figure 6C). Subcellular localization of proteins
revealed that the four prognostic genes weremainly expressed in the
cytoplasm and nucleus (Figure 6D).

3.7 IC50 difference analysis and targeted
drug prediction based on AML prognostic
modeling

IC50 difference analyses assess drug sensitivity. Lower IC50
values (concentration of drug required to inhibit tumor cell
growth) indicate higher drug sensitivity (Garnett et al., 2012). By
comparing the IC50 values of drugs in the high- and low-risk
AML groups of the prediction model, we found that the high-risk
group had higher sensitivity to chemotherapeutic drugs (Dactolisb,
Gemcitabine, GNE.317, and 5-fluorouracil). In contrast, the low-
risk group was more sensitive to entinostat (Figure 7A). Figure 7B
shows the correlation between the IC50 of drugs and prognostic
genes. PARP1 was negatively correlated with the IC50 of most
chemotherapeutic drugs.

The prognostic genes CALR, CDK6, HOXA9, and PARP1 were
identified as four targets for CB-Dock2 molecular docking, and
the prognostic genes had good binding with chemotherapeutic
drugs. Specifically, CALR had a binding energy of −9.9 kcal/mol
with IGF1R, with residues E60 and K151 forming hydrogen
bonds with IGF1R (Figure 7C). The binding energy of CDK6 to
ABT737 was −10.1 kcal/mol, with residues E127, G152, and P114
forming hydrogen bonds with ABT737 (Figure 7D). The binding
energy of HOXA9 to pevonedistat was −8.9 kcal/mol, with residues
T276, V277, and K265 forming hydrogen bonds with pevonedistat
(Figure 7E). PARP1 binds to IBRD9 with a binding energy of
−10.6 kcal/mol, with residuesM890, G888, N868, and S864 forming
hydrogen bonds with I. BRD9 (Figure 7F, Table 3).

3.8 Experimental validation of CALR, CDK6,
HOXA9, and PARP1

We validated the mRNA expression of prognostic genes by
extracting RNA from fresh bone marrow from healthy individuals
and patients with AML. Compared to the control group, the AML
group had significantly reduced CALR and CDK6 expression and
increasedHOXA9 and PARP1 expression (Figure 8), consistent with
the predictions of our risk model.

Insert up to 5 heading levels into yourmanuscript as can be seen
in “Styles” tab of this template. These formatting styles are meant as
a guide, as long as the heading levels are clear, Frontiers style will be
applied during typesetting.

4 Discussion

Prior research correlates AML risk with T-cell senescence,
characterized by chronic immune activation and dysfunction
(Bailur et al., 2020; Chen et al., 2024; Miao et al., 2024; Song et al.,
2024). In this study, we screened candidate genes using single-cell
and bulk RNA sequencing data. We constructed a prognostic model
using four genes (CALR, CDK6, HOXA9, and PARP1) and a line
graph for predicting survival by single-factor and multifactor Cox
stepwise regression using TCGA-LAML and RNA sequencing data.
We also elucidated the relationship between the tumor immune
microenvironment and prognostic genes, revealing that cellular
senescence was significantly associated with AML. This study
aimed to provide new insights for the early diagnosis, personalized
treatment, and prognostication of AML.

Thirty-one candidate genes were first identified using
independent external data from GEO, TCGA, and CellAge
databases. The signaling pathways significantly enriched with the
candidate genes were the nucleotide-binding oligomeric structural
domain (NOD)-like receptor and IL-17 signaling pathways. Studies
have shown that the NOD-like receptor protein 3 (NLRP3) pathway
is overexpressed and highly activated in AML cells (Chen et al.,
2024; Zhong et al., 2021). IL-17 stimulates the development of
granulocytes and myeloid hematopoietic cells (Wei et al., 2024), and
small molecules targeting the TNF/IL-17/MAPK pathway (OUL35,
KJ-Pyr-9, and CID44216842) attenuate zebrafish bone marrow
proliferation (Luo et al., 2024). Univariate analysis identified six
prognostic predictor genes, which multivariate Cox and stepwise
regression analyses further validated. Using the above analyses,
we identified the prognostic genes (CALR, CDK6, HOXA9, and
PARP1). The prognostic risk model categorized patients into high-
risk and low-risk groups, with high-risk patients experiencing a
shorter survival period. The AUC values from the ROC analyses
confirmed the accuracy of the model. The qPCR validation results
were consistent with the initial predictions, emphasizing the
reliability of the model predictions. IC50 difference analysis yielded
significant differences in sensitivity to drugs between the high-
and low-risk groups in the prognostic model. Molecular docking
techniques identified targeted drugs with strong binding to the
prognostic genes, including pevonedistat and azacitidine (first-line
therapy for AML) (Adès et al., 2022; Murthy et al., 2024; Short et al.,
2023). ABT737 neutralizes the inhibition of Bax and Bak by
Bcl-2, Bcl-xl, and Bcl-w at nano-micro molar concentrations,
thereby inducing apoptosis (Yalniz and Wierda, 2019).

In this study, CALR, CDK6, HOXA9, and PARP1 expression in
pDCs, Mφs, and central memory CD4+ T cells significantly differed
between low- and high-risk groups. CALR induces phagocytosis
by sending an “eat-me signal,” and its downregulation contributes
to immune evasion in AML (Bhave et al., 2023; Liu et al., 2021;
Weinhäuser et al., 2023; Zhou et al., 2024). CDK4/6 inhibitors
(palbociclib) slow AML progression by reducing DNA damage and
telomere shortening in T cells by inhibiting CDK4 and CDK6 kinase
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FIGURE 8
Experimental validation of CALR, CDK6, HOXA9, and PARP1. (A–D) RT-qPCR validation of prognostic genes CALR, CDK6, HOXA9, and PARP1 in control
and refractory AML cohorts.

activities (Nebenfuehr et al., 2020; Schmoellerl et al., 2020). CDK6
knockdown stalls DN T cell differentiation at the DN3/DN4 stage,
resulting in insufficient thymocytes and structural atrophy (Yabas
and Hoyne, 2023). HOXA9 is a transcription factor that can be
used as a prognostic indicator for AML because its dysregulation
is associated with AML progression (Deshpande and Zhu, 2023;
Lai et al., 2020; Salik et al., 2020; Xiao et al., 2023), specifically
by recruiting EZH2 to inhibit INK4A/B (cell cycle inhibitor)
expression and subsequently affecting T-cell senescence (Collins
and Hess, 2016a; b). PARP1 is involved in DNA repair and gene
expression, and inhibiting PARP1 has anti-tumor effects in AML
(Csizmar et al., 2021; Kontandreopoulou et al., 2021; Kumar et al.,
2022; Paczulla et al., 2019; Wu et al., 2023).

5 Conclusion

This bioinformatics-driven study identified prognostic genes
linked to T-cell senescence in AML and confirmed the findings
using RT-qPCR. Using public single-cell and bulk RNA-seq data,
we identified 31 candidate genes associated with inflammation
and hematopoiesis. A four-gene prognostic model (CALR, CDK6,
HOXA9, and PARP1) was constructed using Cox and stepwise
regression to forecast AML survival. Molecular docking highlighted
ABT737, IBRD9, IGF1R, and pevonedistat as potential therapeutic
agents with high affinity for these genes.
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