
TYPE Methods
PUBLISHED 18 June 2025
DOI 10.3389/fbinf.2025.1607119

OPEN ACCESS

EDITED BY

Keith A Crandall,
George Washington University, United States

REVIEWED BY

Anchala Kumari,
Jawaharlal Nehru University, India
Edgar Gonzalez-Kozlova,
Icahn School of Medicine at Mount Sinai,
United States

*CORRESPONDENCE

Zhijun Dai,
daizhijun@hunau.edu.cn

RECEIVED 08 April 2025
ACCEPTED 05 June 2025
PUBLISHED 18 June 2025

CITATION

Ba Q, Zhou H, Yuan Z and Dai Z (2025)
Enhancing genomic prediction in Arabidopsis
thaliana with optimized SNP subset by
leveraging gene ontology priors and
bin-based combinatorial optimization.
Front. Bioinform. 5:1607119.
doi: 10.3389/fbinf.2025.1607119

COPYRIGHT

© 2025 Ba, Zhou, Yuan and Dai. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Enhancing genomic prediction in
Arabidopsis thaliana with
optimized SNP subset by
leveraging gene ontology priors
and bin-based combinatorial
optimization

Qingfang Ba, Heng Zhou, Zheming Yuan and Zhijun Dai*

Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis &
Decision-making, Hunan Agricultural University, Changsha, China

With the rapid development of high-density molecular marker chips and high-
throughput sequencing technologies, genomic selection/prediction (GS/GP)
has been widely applied in plant breeding. Arabidopsis thaliana, as a common
model organism, provides important resources for dissecting genetic variation
and evolutionary mechanisms of complex traits. Quantitative traits are typically
influenced by multiple minor-effect genes, which are often functionally related
and can be enriched within gene ontology (GO) pathways. However, optimizing
marker subsets associated with these pathways to enhance GP performance
remains challenging. In this study, we propose an improvedGS framework called
binGO-GS by integrating GO-based biological priors with a novel bin-based
combinatorial SNP subset selection strategy. We evaluated the performance of
binGO-GS on nine quantitative traits from two A. thaliana datasets, comprising
nearly 1,000 samples and over 1.8 million SNPs. Compared with using either
the full marker set or randomly selected markers with Genomic BLUP (GBLUP),
binGO-GS achieved statistically significant improvements in prediction accuracy
across all traits. Similar improvements were observed across six additional
regression models when applying binGO-GS instead of the full marker set.
Furthermore, the selected markers for identical or similar morphological
traits exhibited consistent patterns in quantity and genomic distribution,
supporting the polygenic model of complex quantitative traits driven by minor-
effect genes. Taken together, binGO-GS offers a powerful and interpretable
approach to enhance GS performance, providing a methodological reference
for accelerating plant breeding and germplasm innovation.

KEYWORDS

genomic selection/prediction, SNP, subset selection, gene ontology, biological priors,
Arabidopsis thaliana

1 Introduction

One of the primary goals of plant breeding is to increase crop yields and accelerate
the development of elite varieties, which is essential to ensure food security in response
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to the projected global population of 9.5 billion by 2050 (He and
Li, 2020; Qaim, 2020). However, breeding for optimal performance
remains a formidable challenge due to climate variability, evolving
pathogens, limited arable land, and other biotic and abiotic stresses
(Bali and Singla, 2022). Genomic selection/prediction (GS/GP),
which predicts the genetic potential of individuals using genome-
wide marker information, has emerged as a powerful approach to
address these challenges and is now widely adopted in plant and
animal breeding programs (Meuwissen et al., 2001; Bernardo and
Yu, 2007; Heffner et al., 2009; Crossa et al., 2017).

GS enables the prediction of complex quantitative traits by
incorporating thousands of single nucleotide polymorphisms
(SNPs) distributed across the genome, irrespective of their
individual statistical significance (Meuwissen et al., 2001). The
widespread adoption of GS has been further fueled by decreasing
genotyping costs and the availability of high-density SNP arrays
and whole-genome sequencing data (Bernardo and Yu, 2007;
Heffner et al., 2009; Crossa et al., 2017). Alongside traditional
regression methods, machine learning (ML) techniques have
been increasingly employed to capture nonlinear and high-order
interactions among genomic features (Wolpert and Macready,
1997; González-Recio et al., 2014; Ma et al., 2014; Abdollahi-
Arpanahi et al., 2020).However, despite these advances, the accuracy
of genomic prediction remains constrained by the inclusion of large
numbers of non-causal markers, which introduce noise and reduce
model efficiency.

To improve the biological relevance of marker subsets used in
GS models, researchers have explored integrating prior biological
knowledge such as gene ontology (GO), gene networks, and
metabolic pathways into predictive models (Lango Allen et al.,
2010; O'Roak et al., 2012; Lage et al., 2012; Maurano et al.,
2012; Peñagaricano et al., 2013). GO, in particular, provides
curated annotations of gene function and biological processes,
and markers associated with specific GO terms are more likely
to be enriched for causal variants. For genomic prediction of
photosynthesis and plant growth traits in A. thaliana, GO-
informed features were incorporated into GBLUP models, but
required extensive model fitting and faced challenges with marker
redundancy (Farooq et al., 2021).

Directly including all SNPs linked to effective GO terms may
introduce a substantial amount of irrelevant of weak-effect markers,
which can obscure true signals and reducemodel performance.This
highlights the critical need for effective marker subset selection.
Identifying an optimal SNP subset that balances strong-effect and
weak-effect markers is crucial for accurate GS, especially under
the polygenic nature of most complex traits. However, this task is
computationally intractable (NP-hard), and heuristic or biologically
guided methods are needed to navigate the search space efficiently.
Our research group has previously proposed a series of feature
selection approaches for trait prediction or pattern recognition
problems (Ji et al., 2025; Qin et al., 2022; Dai et al., 2021;
Dai et al., 2020; Dai et al., 2014), and similar efforts have been
reported in GS studies using various selection and dimensionality
reduction techniques (Xu et al., 2025; Yoshida and Yáñez, 2022;
Piles et al., 2021; Luo et al., 2021).

In this study, we propose a novel GO-guided marker subset
selection method called binGO-GS. The key idea is to leverage
prior biological knowledge from GO annotations and combine it

with a bin-based combinatorial selection strategy. We first select
GO terms that are mapped with a sufficient number of SNPs
and then apply a Monte Carlo strategy to estimate the optimal
marker subset size. The SNPs are stratified based on p-values of
genome-wide association study (GWAS) and iteratively combined
to form the final subset using a heuristic bin-based optimization
process. This approach captures both strong-effect and weak-effect
markers while significantly reducing computational complexity.
We validated the effectiveness of binGO-GS on two Arabidopsis
thaliana datasets across nine quantitative traits and demonstrated
its superiority over the full marker set and randomly selected
markers across seven regression models, including GBLUP, RKHS
(Gianola and Van Kaam, 2008), four Bayesian methods (Bayes
A/B/C/LASSO) (Pérez and de Los Campos, 2014), and a deep
learning model, DNNGP (Wang et al., 2023). The selected marker
subsets also revealed trait-specific patterns consistent with the
polygenic model, supporting the utility of biologically informed
feature selection in GS applications.

2 Materials and methods

2.1 The A. thaliana datasets and quality
control

The genotype data were retrieved from the genomes of 1,135
naturally inbred lines of Arabidopsis thaliana (Alonso-Blanco et al.,
2016) and the GMI-MPI project of Arabidopsis 1,001 Genomes
Project (https://1001genomes.org/data/GMI-MPI/releases/v3.1/),
which includes high-quality resequencing data collected from
across Eurasia, North Africa, and North America. These accessions
represent the native distribution of A. thaliana and capture its
global polymorphism landscape. The initial dataset contained
10,709,949 SNPs.

Two phenotypic datasets associated with the 1,001 Arabidopsis
Genomes Project were used in this study. The first dataset includes
944 samples and five quantitative traits: two morphological traits
(stem branching number (CL) and rosette leaf number (RL))
and three flowering time traits (days to 1 cm inflorescence stem
elongation (DTF2), days to first flower opening (DTF3), and days
from sowing to visible floral buds at the rosette center (DTF1))
(Grimm et al., 2017). The second dataset comprises 407 samples
with four quantitative traits: one yield trait (rosette dry mass at
fruit maturity, DM), two stem growth traits (scaling exponent, SE,
and mean growth rate, GR), and one fruit development trait (fruit
number at maturity, FN) (Vasseur et al., 2018). For clarity, these
datasets hereafter referred to Arabi944 and Arabi407, respectively,
based on their sample sizes.

Genotype data were subjected to the following quality control
(QC) procedures using PLINK 1.9 (Purcell et al., 2007): SNPs
with minor allele frequency (MAF) < 0.01 were removed; all
markers passed Hardy‒Weinberg equilibrium filtering; linkage
disequilibrium (LD) pruning was performed using a sliding window
of 50 SNPs, a step size of 5, and an r2 threshold of 0.95. After QC,
2,053,821 and 1,882,667 SNPs were retained for the Arabi944 and
Arabi407 datasets, respectively. All subsequent analyses were based
on these filtered markers. Samples with missing phenotypes were
excluded on a per-trait basis. In the Arabi944 dataset, the number
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TABLE 1 Summary of phenotypes, genotypes, and estimated genomic
heritability in Arabidopsis thaliana datasets.

Dataset (No. SNPs) Trait No. Samples h2

Arabi944 (2053821)

CL 904 0.6715

RL 850 0.7774

DTF2 931 0.8915

DTF3 923 0.8544

DTF1 936 0.8812

Arabi407 (1882667)

DM 407 0.7976

SE 407 0.7603

GR 407 0.7296

FN 396 0.6746

of retained samples per trait was 904 (CL), 850 (RL), 931 (DTF1),
923 (DTF2), and 936 (DTF3). In theArabi407 dataset, the number of
valid samples was 407 for DM, SE, andGR, and 396 for FN (Table 1).

2.2 Genomic heritability estimation

Genomic heritability for each quantitative trait was estimated
using GCTA (version: 1.93.3beta2) (Yang et al., 2011), providing
a basis for comparing the predictive performance across traits
(Table 1). The estimation involved two steps: first, a genomic
relationship matrix (GRM) was constructed based on SNP markers;
second, a linear mixed model was fitted using restricted maximum
likelihood (REML) (Kenward and Roger, 1997) to partition
phenotypic variance into genomic and residual components.
Genomic heritability was then calculated as the proportion of total
phenotypic variance explained by the genomic component.

2.3 Development of the binGO-GS pipeline

2.3.1 Initial screening of marker subsets based on
GO biological priors

The phenotypic variation of complex quantitative traits is
typically influenced by intricate regulatory networks involving
multiple genes. The Gene Ontology (GO) database, which provides
a structured representation of gene function across biological
processes, molecular functions, and cellular components, offers a
valuable biological prior for identifying SNPmarkers related to gene
regulatory networks. Specifically, each GO term consists of a group
of genes associated with that term or its subordinate terms.

In this study, we first mapped GO terms to genes using
the “org.At.tairGO2ALLTAIRS” function from the R package
“org.At.tair.db”, which retrieves comprehensive and propagated gene
sets for each GO term, including all subordinate terms. SNPs
were then linked to these GO-annotated genes based on genomic

positions, thereby establishing the association between GO terms
and SNP markers (Farooq et al., 2021).

Through this procedure, we identified 7,645 GO terms, each
associated with at least one SNP marker. To refine the candidate
marker set, SNPs linked to genes with GO terms unrelated to
the traits of interest (e.g., basic metabolic processes or stress
responses) were excluded. Priority was given to SNPs annotated
under GO terms biologically relevant to the target traits (e.g.,
photosynthesis, flowering regulation). Additionally, only GO terms
whose associated gene regions collectively contained more than 200
SNPs were retained, ensuring adequate marker representation per
GO term. As a result, 4,645 GO terms met the selection criteria.
The SNP markers corresponding to these terms were merged and
deduplicated, yielding 716,860 SNPs for the Arabi944 dataset and
660,238 SNPs for the Arabi407 dataset.

2.3.2 Determining the upper limit of marker
subset size

Following the initial GO-based screening, the spatial
distribution of SNP markers across the genome was altered,
potentially introducing local marker redundancy due to linkage
disequilibrium (LD). To address this, we performed LD pruning
using PLINK (Purcell et al., 2007) to reduce redundant information
and ensure that the remaining markers were relatively independent.

Determining an appropriate upper limit for the number of
SNP markers is critical for balancing prediction accuracy and
model parsimony. While using all available markers can maximize
information, it may also introduce noise and computational burden.
Conversely, retaining too few markers risks omitting those linked
to key QTLs. Prior studies have shown that randomly selecting
a moderate number of markers (e.g., 100,000) evenly distributed
across the genome does not lead to a significant decline in prediction
accuracy. However, the optimal number of informative markers
should ideally be determined in a data-driven manner.

In this study, we used a Monte Carlo approach to identify
the upper limit of marker subset size. Specifically, we randomly
sampled subsets of SNPs of increasing size, ranging from 1,000 to
80,000 (approximately 10% of the post-LD-pruned marker pool).
For subset size under 10,000, the size was incremented by 1,000; for
those above 10,000, increments of 2,000 were used. At each marker
size, 50 random replicates were performed to evaluate prediction
accuracy. We plotted the number of markers (X-axis) against the
mean accuracy (Y-axis) across the 50 replicates (Figure 1).

To identify the point at which prediction accuracy plateaued,
we implemented an automated inflection point detection strategy
(Equations 1, 2). The curve was smoothed using a moving average
over 3 or 5 sampling points:

MA(t) =
y(t) + y(t− 1) + y(t− 2)

3
(1)

The slope of the smoothed curve was then calculated as:

Slope(t) =MA(t) −MA(t− 1) (2)

We considered the curve to have plateaued when the slope
remained near zero or declined significantly over at least
three consecutive intervals, or when a slope drop of over 20%
relative to its prior average was observed. The corresponding
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FIGURE 1
Determination of the optimal upper limit of marked subset size for the trait CL. The raw accuracy curve (red) represents the average prediction
accuracy over 50 random samplings at each SNP subset size, while the smoothed curve (green) shows the moving average used to capture the overall
trend. The dashed vertical line marks the point where the accuracy gain begins to plateau, indicating the selected upper limit of subset size.

marker quantity at the first point of this stable region was
designated as the upper limit for subset size (Figure 1). Based
on this procedure, the optimal marker subset sizes for the
nine traits were determined as follows: CL, 58,000; RL, 54,000;
DTF2, 54,000; DTF3, 54,000; DTF1, 50,000; DM, 56,000; SE,
46,000; GR, 44,000; FN, 66,000.

2.3.3 Marker subset selection via bin-based
combinatorial optimization

Incorporating SNPs identified through GWAS as fixed
effects into genomic prediction models can significantly enhance
prediction accuracy for quantitative traits (Zhang et al., 2014).
To reduce spurious associations caused by population structure
and relatedness, we performed GWAS by including three principal
components (PCs) derived from the training set and a kinship
matrix based on the full set of genome-wide markers as covariates
in a linear mixed model (LMM). The analysis was implemented
using GEMMA software (Zhou and Stephens, 2012).

For each SNP, a p-value was computed, and markers with
p < 0.01 were retained. This threshold was selected based
on empirical evaluation to balance signal strength and subset
manageability. Using p < 0.05 included about 35,000 SNPs per trait
on average, introducing excessive weak-effect markers that reduced
complementarity with downstream bin-based optimization.
Conversely, p < 0.005 typically retained fewer than 5,000 SNPs,
necessitating more rounds of optimization to reach the desired
subset size and increasing computational complexity. The threshold
of 0.01 thus provided a practical compromise. These significant
markers were further subjected to LD pruning to eliminate
redundancy. The resulting marker set, enriched for SNPs likely
to have strong associations with the target traits, was defined
as Subset I.

While using only highly significant markers can help reduce
noise, it may omitmany informative variants withmoderate or small
effects. Exhaustively searching for the optimal SNP combination
from the entire genome is computational infeasible (NP-hard).
Therefore, we developed a bin-based combinatorial optimization
strategy, which integrates Subset I (strong-effect markers) and its
complement set (containing potentially weak-effect markers). The
procedure consists of the following steps:

1) Segmentation into bins and groups. The remaining SNPs
(excluding Subset I) were first divided into 10 bins based
on their GWAS p-values in ascending order: [0.01–0.1],
[0.1–0.2], …, [0.9–1.0]. To further control subset size and
ensure diversity within each bin, we grouped the SNPs in
each bin into 10 subgroups using a sliding window of 0.01
on the p-values. Markers in lower-ranked groups of a bin
could be complemented with markers from subsequent bins if
necessary.

2) Chain-wise rolling combination search. To explore diverse
combinations of weak-effect markers across bins without
exhaustive testing (which would require evaluating 1010

combinations), we designed a multi-round chain-wise
rolling strategy (Figure 2). Conceptually treating bins as
experimental factors and groups within bins as their levels,
we systematically rotated through the groups. For instance,
in a scenario with 5 bins (A–E) and 4 groups per bin (1–4),
the first combination would be A1-B1-C1-D1-E1, followed by
B1-C1-D1-E1-A2, and so forth, until all group permutations
were covered (e.g., E4-A1-B1-C1-D1). This strategy ensures
that every group participates in at least one combination
while maintaining good representation and orthogonality
across bins.
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FIGURE 2
Illustration of the combinatorial optimization process using the
chain-wise rolling strategy. Bins (A–E) represent different ranges of
p-values, and each bin is further divided into four groups (1–4) based
on ascending p-values (left table). A total of 20 SNP combinations are
constructed by sequentially rotating the leading group across bins. For
each combination, the SNPs are merged with those from Subset I, and
cross-validation is performed to assess genomic prediction accuracy
(orange frame). The combination yielding the highest accuracy is
retained, and its leading group (e.g., B1) is excluded from subsequent
selection rounds (green frame: pseudocode representation).

3) Selection of optimal combinations per round. In each rolling
round, the SNPs from one group combination were merged
with Subset I, followed by LD pruning to remove redundant
markers. The prediction accuracy was assessed via cross-
validation on the training set. The combination yielding the
highest accuracy was retained, and its associated markers
were added to the final marker subset. The leading group of
that combination was then excluded from further selection.
The remaining 99 combinations proceeded to the next
rolling round.

4) Subsequent rolling rounds. In subsequent rounds, it was no
longer necessary to ensure that all bins were represented
in every combination. Each new combination was merged
with all previously selected markers (including Subset I),
followed by LD pruning and cross-validation to identify
the optimal combination for that round. This process was
repeated iteratively until the total number of selected SNPs
reached the upper limit of the marker subset size. After the
final SNP set was determined, the complementary marker
subset, i.e., all selected markers not present in Subset I, was
designated as Subset II. This allowed us to evaluate the relative
contribution of weak-effect versus strong-effect markers in
genomic prediction.

To provide a clear overview of the proposed approach,
we designed a schematic workflow of the entire binGO-
GS pipeline (Figure 3). This diagram summarizes the key steps,
including GO-based marker screening, determination of the upper
limit for marker subset size, bin-based combinatorial optimization,
and model evaluation, offering a comprehensive visualization of the
analytical process.

2.4 Computational complexity and runtime

The combinational optimization within bins involves selecting
a subset of markers within each bin based on performance in
cross-validation. Let B be the number of bins (set as 10 in this

study), G the number of groups per bin (10 in this study), and F
the number of cross-validation folds.The total computational cost is
approximately O(B × G × F).

In our implementation, the optimization was run on a
workstation with 2.3 GHz Intel Xeon Platinum 9242 CPU (96 cores)
and 376 GB RAM. Each trait required about 10 min of processing
time with peak memory usage under 32 GB.

2.5 Reference models and evaluation
strategy

To evaluate the effectiveness of the proposed binGO-GS
method–which leverages GO biological priors and bin-based
combinatorial optimization for SNP marker subset selection–we
conducted a comprehensive comparison with several classical
genomic prediction models. The benchmark models include
five parametric approaches: GBLUP, Bayes A/B/C, and Bayesian
LASSO; a semiparametricmethod: reproducing kernelHilbert space
(RKHS) regression; and a deep learning model: DNNGP. Among
them, GBLUP is also adopted as the base prediction model within
the binGO-GS framework.

Model implementations were carried out using either R or
Python. GBLUP was implemented via the R package “rrBLUP”;
Bayes A/B/C, Bayesian LASSO, and RKHS were implemented
using the R package “BGLR”; and DNNGP was implemented with
the original DNNGP model (Python-based). For each trait, we
randomly portioned the population into training (75%) and testing
(25%) sets across 15 independent replicates. SNP marker selection
was performed exclusively within the training set, and phenotype of
the testing individuals were predicted using the selectedmarkers. To
ensure fair comparison, all models used the same data partitions in
each replicate. Predictive performance was assessed using the mean
coefficient of determination (r2) between observed and predicted
phenotypic values in the testing set across the 15 replicates. To
evaluate the contribution of the final subset to genomic prediction
across different traits andmodels, we compared its performancewith
that of the full marker set and a randomly selected subset of the same
size. Given the hypothesis that the final subset would outperform
either baseline, one-tailed paired t-tests were conducted to assess the
significance of the differences.

3 Results and discussion

3.1 GO-based biological priors exhibit
potential in genomic prediction

The genomic prediction method proposed in this study, binGO-
GS, leverages GO-based biological prior knowledge to substantially
reduce the number of SNP markers used in prediction. Specifically,
only approximately 35% of the full marker set was retained,
i.e., 716,860 out of 2,053,821 SNPs for the Arabi944 dataset and
660,238 out of 1,882,667 SNPs for the Arabi407 datasets. Despite
this reduction, the resulting SNP sets are still large (∼700 K),
posing challenges for both computational efficiency and model
interpretability. To assess the predictive utility of biological priors
derived from GO, we first evaluated the genomic prediction
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FIGURE 3
Overall workflow of the binGO-GS pipeline.

accuracy based on SNPs associated with each of the top 10
GO terms (ranked by SNP count) (Table 2). Although the SNPs
counts for these GO terms were comparable, prediction accuracies
varied widely across traits, highlighting the functional diversity
of these GO categories. When using only the SNPs linked to
a single GO term, the GP accuracy declined by 5.1%–12.7%
compared to using the full marker set, suggesting that individual
GO terms alone are insufficient to support effective genomic
prediction. We then aggregated SNPs across all effective GO
terms (∼700 K markers stated above) and found that the average
prediction accuracy improved by 2.5% across traits compared
to using all SNPs. This result demonstrates the potential of
integrating rich GO-based biological priors and reinforces the
importance of marker subset selection in improving genomic
prediction.

3.2 Genomic prediction with different
models

Starting from the GO-informed initial marker subset, the
final subset was derived through the bin-based combinatorial

optimization procedure embedded in binGO-GS. Compared with
the full marker set, the final subset significantly improved genomic
prediction accuracy across nine traits using the GBLUP model
(p = 0.0134; Table 3). An effective SNP marker subset should
consistently enhance prediction performance across variousmodels.
To further validate the robustness and generalizability of binGO-GS,
we compared the predictive performance of the selected final subset
with that of the full marker set and Subset I (representing strong-
effect markers) across nine traits using six additional reference
models (Table 3; Figures 4, 5).

3.2.1 Improvement in GP accuracy across
different models for each trait

The models presenting significant improvements varied across
traits (Figure 4). For the CL trait in the Arabi944 dataset (with
a heritability of 0.6715), significant improvements (p < 0.05) in
prediction accuracy were observed using the Bayes A/C, Bayesian
LASSO, andDNNGPmodels. For theRL trait (h2 =0.7774), all seven
models demonstrated significant improvements. For the DTF2 trait
(h2 = 0.8915), significant gains were seen with Bayes A/B/C and
Bayesian LASSO. For the DTF3 trait (h2 = 0.8544), all models
except GBLUP achieved significant improvements. For the DTF1
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TABLE 2 GP accuracies using SNPs associated with the top 10 or all effective GO terms.

Marker set No.b CL RL DTF2 DTF3 DTF1 DM SE GR FN Trend (%)c

All SNPs ∼2 M/∼1.8M 0.4284 0.5550 0.6750 0.6686 0.6667 0.3849 0.4512 0.3616 0.2902

GO:0097367a 36,174 0.3648 0.4547 0.5800 0.5618 0.5743 0.3693 0.4150 0.3326 0.2614 −12.7

GO:0032553 35,219 0.3609 0.4516 0.5805 0.5606 0.5743 0.3757 0.4215 0.3358 0.2646 −12.4

GO:0017076 34,492 0.3598 0.4522 0.5803 0.5597 0.5719 0.3783 0.4263 0.3391 0.2640 −12.3

GO:0032555 34,302 0.3604 0.4522 0.5802 0.5594 0.5726 0.3761 0.4243 0.3369 0.2638 −12.4

GO:0030554 31,663 0.3589 0.4501 0.5802 0.5584 0.5707 0.3757 0.4215 0.3363 0.2566 −12.8

GO:0032559 31,513 0.3594 0.4505 0.5802 0.5584 0.5714 0.3734 0.4196 0.3343 0.2563 −12.9

GO:0009620 29,930 0.3929 0.5225 0.6418 0.6170 0.6299 0.3312 0.4215 0.3155 0.2665 −7.6

GO:0030054 29,304 0.3857 0.5126 0.6518 0.6409 0.6465 0.3764 0.4172 0.3496 0.2729 −5.1

GO:0005911 29,292 0.3857 0.5128 0.6519 0.6408 0.6465 0.3768 0.4168 0.3497 0.2731 −5.1

GO:0080134 28,331 0.3915 0.5014 0.6252 0.6155 0.6202 0.3633 0.4213 0.3347 0.2758 −7.4

Effec. GO ∼717 K/∼660K 0.4400 0.5740 0.6843 0.6792 0.6771 0.4034 0.4604 0.3740 0.3015 2.5

aGO, terms containing the largest number of markers.
bNumber of SNPs. c: Average percentage change in prediction accuracy across traits relative to using all SNPs (negative values indicate a decline; positive ones indicate an improvement).

trait (h2 = 0.8812), all models except DNNGP showed significant
improvements.The number of models achieving performance gains
generally increased with trait heritability, suggesting that higher-
heritability traits are more likely to benefit from the proposed
marker selection strategy. However, when considering the overall
prediction accuracy across models for each trait, only the CL
trait showed a significant improvement (Table 3). This discrepancy
may be attributed to the relatively low prediction accuracy of the
Bayesian LASSO model for the other four traits when using all
SNPs (Table 3; Figure 4), resulting in high variability and reduced
statistical power in the significance tests. Despite this, the average
percentage improvement in prediction accuracy per trait provides
a complementary perspective: CL (4.07%), RL (9.63%), DTF2
(9.64%), DTF3 (10.78%), and DTF1 (9.72%).These results highlight
a clear trend of performance enhancement, even when statistical
significance is not always reached.

For the Arabi407 dataset, all models except DNNGP exhibited
significant improvements in GP accuracy for the DM trait
(h2 = 0.7976) when using the final marker subset. For the
SE trait (h2 = 0.7603), significant improvements were observed
with GBLUP, Bayes A/C, and Bayesian LASSO. In the case of
the GR trait (h2 = 0.7296), GBLUP, Bayes C, and Bayesian
LASSO models showed significant gains. For the FN trait (h2

= 0.6746), significant improvements were achieved with Bayes
B/C, Bayesian LASSO, and notably, DNNGP (Figure 5). Consistent
with previous findings, traits with higher heritability generally
benefited from a greater number of models exhibiting improved
accuracy. Notably, the deep learning model DNNGP showed
significant improvement for the FN trait, despite the relatively
small sample size. This is particularly interesting given that

deep learning models typically require large dataset to achieve
competitive performance in most pattern recognition tasks. In this
context, the carefully selected feature subset may have facilitated
model’s ability to learn complex phenotypic patterns from limited
training data.

When evaluating the overall prediction performance across
models for each trait, only the GR trait exhibited a significant
improvement (Table 3). However, the percentage improvements
in accuracy provided a more nuanced view: DM (30.06%) (DM),
SE (4.97%), GR (9.84%), and FN (25.02%), highlighting that the DM
and FN traits benefited the most in terms of practical performance
gains, despite not always reaching statistical significance in formal
tests. Interestingly, when the Bayesian LASSO model was excluded
from significance tests, three out of four traits (except SE) showed
significant improvements, aligning more closely with observed
percentage gains (Figure 6B). Similarly, for the Arabi944 dataset,
all traits except the DTF2 showed significant improvements
after omitting the Bayesian LASSO model (Figure 6A).
Overall, the binGO-GS method demonstrated varying yet
generally positive effects on genomic prediction accuracy across
different traits.

3.2.2 Improvement in GP accuracy across
different traits for each model

We then evaluated the contribution of the final subset to
each model across multiple traits (Table 3; Figures 4, 5). For the
GBLUP model, significant improvements were observed for the
RL and DTF1 traits in the Arabi944 dataset, and for all traits
except FN in the Arabi407 dataset. For lower-heritability traits
such as CL and FN, the performance using the final subset was
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TABLE 3 Genomic prediction performance for nine quantitative traits in A. thaliana using different models.

Models CL RL DTF2 DTF3 DTF1 DM SE GR FN p-value

GBLUP

0.4284a 0.5550 0.6750 0.6686 0.6667 0.3849 0.4512 0.3616 0.2902 0.0134f

0.3827b 0.5243 0.6273 0.6298 0.6167 0.3934 0.4415 0.3525 0.2713 g1.77 × 10−4

0.4308c 0.5652 0.6736 0.6729 0.6725 0.4061 0.4590 0.3692 0.2885

RKHS

0.4267 0.5552 0.6733 0.6656 0.6667 0.3845 0.4530 0.3652 0.2939 0.0086

0.3842 0.5258 0.6323 0.6335 0.6238 0.3945 0.4434 0.3503 0.2723 9.19 × 10−5

0.4314 0.5668 0.6729 0.6728 0.6742 0.4059 0.4601 0.3723 0.2907

BayesA

0.4156 0.5353 0.6484 0.6474 0.6511 0.3627 0.4312 0.3482 0.2730 2.35 × 10−5

0.3818 0.5215 0.6273 0.6290 0.6202 0.3951 0.4415 0.3481 0.2676 7.19 × 10−4

0.4259 0.5589 0.6668 0.6647 0.6666 0.3934 0.4550 0.3611 0.2834

BayesB

0.4161 0.5371 0.6581 0.6567 0.6506 0.3613 0.4388 0.3524 0.2727 6.45 × 10−4

0.3836 0.5209 0.6192 0.6244 0.6140 0.3903 0.4397 0.3477 0.2698 8.33 × 10−4

0.4196 0.5613 0.6682 0.6693 0.6688 0.3947 0.4484 0.3614 0.2848

BayesC

0.3976 0.5155 0.6211 0.6195 0.6243 0.3094 0.3606 0.2808 0.2310 4.02 × 10−5

0.3835 0.5252 0.6244 0.6271 0.6195 0.3946 0.4417 0.3474 0.2720 2.7 × 10−4

0.4273 0.5583 0.6676 0.6716 0.6654 0.4039 0.4551 0.3643 0.2850

BL

0.4082 0.3573 0.3429 0.3288 0.3500 0.0107 0.4295 0.3206 0.0213 0.0011

0.3816 0.5251 0.6279 0.6290 0.6241 0.3926 0.4428 0.3499 0.2742 0.0016

0.4259 0.5603 0.6700 0.6670 0.6657 0.3875 0.4618 0.3716 0.2730

DNNGP

0.2960 0.4772 0.6108 0.5943 0.6268 0.2209 0.1789 0.1498 0.1202 0.0236

0.3154 0.5351 0.6214 0.6253 0.6328 0.2625 0.0773 0.0641 0.1650 0.1394

0.3413 0.5020 0.6183 0.6135 0.6349 0.2544 0.1401 0.1930 0.1728

p-value

0.0185d 0.0557 0.1226 0.1056 0.11 0.063 0.1226 0.0168 0.0837

e4.24×
10–6

0.0172 8.01×
10–4

0.0024 4.53×
10–4

0.1695 0.0105 0.0413 0.0016

Note: GP, accuracies were obtained using (a) all SNP, markers, (b) Subset I, and (c) the final marker subset selected by binGO-GS., Significant differences across seven models between the final
subset and the full marker set (d) (or Subset I (e)) for each trait are indicated in the last two rows. Significant differences across nine traits between the final subset and the full marker set (f) (or
Subset I (g)) for each model are shown in the last column.

comparable to that using the full marker set. Overall, the final
subset generally enhanced GBLUP performance. For the RKHS
model, significant improvements were observed in the RL, DTF3,
and DTF1 traits of the Arabi944 dataset, and only the DM trait
in the Arabi407 dataset. The limited improvement in the second
dataset may be due to the RKHS model’s reliance on a Gaussian
kernel, which typically requires larger sample sizes for optimal
performance.

For the Bayes series ofmodels, BayesAmodel showed significant
improvement in 7 out of 9 traits (except GR and FN in Arabi407),
highlighting the benefit of the final marker subset. This may be

attributed to BayesA’s assumption that all markers have effects
following a normal distribution with marker-specific variances
drawn from a scaled inverse chi-square distribution. Such a flexible
yet broad assumption leaves room for performance enhancement
through informative marker selection, which can compensate for
potential model misfit. BayesB, which assumes that only a small
proportion of markers have effects, further aligns with the concept
of feature selection. Accordingly, it showed improvements in six
traits. BayesC, a computationally simplified version of BayesB
that assumes a common effect variance among non-zero markers,
initially performed worse than BayesB when using the full marker
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FIGURE 4
Comparison of GP performance using different models based on the full SNP set and the final subset in the Arabi944 dataset. Boxplots represent
prediction accuracies across 15 replicates for each model. Different letters indicate statistically significant differences (p < 0.05) between the two
marker sets.
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FIGURE 5
Comparison of GP performance using different models based on the full SNP set and the final subset in the Arabi407 dataset. Boxplots represent
prediction accuracies across 15 replicates for each model. Different letters indicate statistically significant differences (p < 0.05) between the two
marker sets.

set–likely due to its restrictive assumption being unsuitable for large,
noisy feature sets. However, when applied to the final subset, BayesC
achieved significant improvements across all traits, indicating
that once non-informative markers are removed, even simpler
models can perform well. In contrast, the Bayesian LASSO model
performed poorly on 6 of 9 traits when using all markers, likely
due to a mismatch between the assumed Laplace distribution
of marker effects and the underlying genetic architecture.
However, when using the final subset, its prediction performance
normalized across all traits. This suggests that inclusion of key
causal variants can substantially mitigate model-assumption

mismatches, enabling robust prediction even under non-ideal
assumptions.

For DNNGP, significant improvements were observed in 4 out 9
traits, with slight increases seen in the others except for SE. However,
its overall prediction accuracies, regardless of using the full marker
set or the final subset, remained lower than those of other models.
This aligns with the known limitation of deep learning models,
which typically require larger sample sizes to fully realize their
predictive potential.

We subsequently assessed whether the use of the optimized
marker subsets could enhance the overall prediction performance of
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FIGURE 6
Comparison of GP performance for each trait across different models (excluding Bayesian LASSO) based on the full SNP set and the final subset in (A)
the Arabi944 and (B) the Arabi407 dataset. Each dot in the boxplot represents the mean accuracy of 15 replicates for one model. Different letters above
the boxplots indicate statistically significant differences (p < 0.05) between the two marker sets.

eachmodel acrossmultiple traits (Table 3). Despite notable variation
in accuracy among traits, all seven models exhibited significant
improvements (Figure 7). In summary, while the optimized subsets
generated by the binGO-GS algorithm may not improve prediction
performance for every individual trait or model, the consistent and
often substantial improvements observed across most models and
traits underscore the effectiveness and robustness of binGO-GS in
genomic selection.

3.3 The SNP subset selected by binGO-GS
significantly outperforms randomly
selected markers

Quantitative traits in Arabidopsis thaliana are often polygenic,
with each gene exerting a small effect (Zan and Carlborg, 2019;
Kearsey et al., 2003). As such, randomly sampling a large number
of SNPs across the genome may still yield acceptable prediction
accuracy due to the coverage of multiple QTLs through linkage
disequilibrium (LD) (Shikha et al., 2017; Li et al., 2018). To verify
the effectiveness of marker subsets identified by binGO-GS, we
compared them with randomly selected SNP subsets of equal size
across 15 replicates for each trait. The final subset contained on
average 48,910 ± 7,194 (CL), 41,397 ± 7,057 (RL), 47,419 ± 4,014
(DTF2), 47,667 ± 3,856 (DTF3), and 45,399 ± 2,670 (DTF1) SNPs in

the Arabi944 dataset; and 43,858 ± 6,358 (DM), 34,895 ± 5,681 (SE),
40,235 ± 4,685 (GR), and 54,873 ± 10,308 (FN) SNPs in theArabi407
dataset. In each replicate, training and testing partitions were
hold constant, and 500 random subsets were generated. Genomic
prediction was performed using GBLUP, and the average accuracy
across the random subsets was compared to that of binGO-GS.

Results showed that for all traits in both datasets, binGO-
GS consistently outperformed random subsets with high statistical
significance: for Arabi944 with p-values of 1.32 × 10−6 (CL),
2.85 × 10−6 (RL), 1.49 × 10−4 (DTF2), 2.71 × 10−5 (DTF3),
and 1.38 × 10−7 (DTF1) (Figure 8A); for Arabi407 with p-values
of 6.23 × 10−5 (DM), 3.52 × 10−4 (SE), 8.08 × 10−6 (GR),
and 0.003(FN) (Figure 8B). These findings confirm the validity
of binGO-GS in identifying informative marker subsets. While
randomly selected SNPs can still retain reasonable prediction
performance, like due to coverage of QTLs via LD, they lack
consistency and interpretability. Moreover, the number of markers
needed in such random schemes is difficult to determine in
practice. Our previous work has also demonstrated that the
inclusion of non-causal variants can significantly impair prediction
accuracy, especially in cross-population scenarios (Dai et al., 2020).
Additionally, even though a Monte Carlo-based upper limit for
marker subset size can be estimated, randomly selected SNPs are
less practical for downstream breeding applications or biological
interpretation.
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FIGURE 7
Comparison of GP performance across nine traits for each model using all SNP markers and the final subsets. Each dot in the boxplot represents the
mean accuracy of 15 replicates for a single trait. Different letters above the boxplots indicate statistically significant differences (p < 0.05) between the
two marker sets.

FIGURE 8
Comparison of GP performance for each trait using GBLUP based on marker subsets selected by binGO-GS and randomly selected markers in (A) the
Arabi944 and (B) the Arabi407 dataset. Each dot in the boxplot represents the mean accuracy across 15 replicates. Different letters above the boxplots
indicate statistically significant differences (p < 0.05) between the two marker sets.
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TABLE 4 Genomic prediction accuracy and marker set sizes for different
subsets involved in binGO-GS.

Dataset Trait Subset I Subset II Final
subset

Arabi944

CL

7,063 ± 289a 41,990 ± 5,681 48,910 ± 7,194

0.3827 ±
0.0562b

0.4307 ±
0.0404

0.4308 ±
0.0582

RL

6,306 ± 80 35,180 ± 6,026 41,397 ± 7,057

0.5243 ±
0.0535

0.562 ± 0.0375 0.5652 ±
0.0519

DTF2

6,938 ± 207 40,863 ± 3,587 47,419 ± 4,014

0.6273 ±
0.0312

0.6732 ±
0.0204

0.6736 ±
0.0304

DTF3

6,862 ± 154 40,927 ± 3,436 47,667 ± 3,856

0.6298 ± 0.033 0.6709 ±
0.0194

0.6729 ±
0.0279

DTF1

6,762 ± 157 38,753 ± 2,245 45,399 ± 2,670

0.6167 ±
0.0370

0.6729 ±
0.0285

0.6725 ±
0.0369

Arabi407

DM

8,595 ± 151 35,363 ± 4,687 43,858 ± 6,358

0.3934 ±
0.0831

0.3988 ±
0.0682

0.4061 ±
0.0834

SE

6,632 ± 232 28,340 ± 6,193 34,895 ± 5,681

0.4415 ±
0.0688

0.4589 ±
0.0566

0.459 ± 0.0733

GR

6,695 ± 211 33,611 ± 3,977 40,235 ± 4,685

0.3525 ±
0.0691

0.3697 ±
0.0545

0.3692 ±
0.0652

FN

5,417 ± 79 49,555 ± 8,113 54,873 ±
10,308

0.2713 ±
0.0561

0.2855 ±
0.0528

0.2885 ±
0.0614

aAverage number of markers (with standard deviations) across 15 replicates
bAverage prediction accuracy (with standard deviations) across15 replicates.

3.4 Contribution of weak-effect markers in
binGO-GS to genomic prediction

As described in the Methods section, once the final marker
subset was determined, we defined the marker set excluding the
strong-effect markers in Subset I as Subset II, which primarily
contains weak-effect markers. To evaluate its contribution, we
compared the genomic prediction performance andmarker set sizes
across subsets. Using the full marker set as a baseline, Subset I alone
led to a 5.06% average decrease in GP accuracy across nine traits,
despite comprising only 6,808 SNPs on average (Table 3 and 4).This

suggests that relying solely on strong-effect markers is insufficient to
capture the full genetic architecture of complex traits. In contrast,
Subset II achieved a slight but statistically significant improvement
in prediction accuracy (p = 0.0209), despite excluding the strong-
effect markers.The average size of Subset II was 38,287 SNPs, which
is substantially smaller than the full set, indicating that genome-
wideweak-effectmarkers still carry sufficient information to capture
LD with potential causal variants (Table 4). Combining Subset I and
II into the final subset led to further improvements in prediction
accuracy (p = 0.0134), with an average of 44,961 SNPs (Table 4).
This highlights the necessity of integrating both strong- and weak-
effect markers to enhance prediction by capturing complementary
LD signals related to true quantitative trait nucleotides (QTNs).

Trait-level comparisons revealed that Subset II improved
prediction accuracy over Subset I for all nine traits, with increases
ranging from 6.53% to 12.54% in Arabi944% and 1.37%–5.23%
in Arabi407. Moreover, the final subset outperformed Subset II
for seven of the nine traits (Table 4), though with modest gains.
Importantly, Subsets I and II had no overlapping markers for
any trait, indicating that they capture distinct yet complementary
genetic signals.These findings suggest that both strongly and weakly
associated markers contribute synergistically to genomic prediction
by jointly modeling diverse genetic effects. Overall, the final subset
effectively integrates these complementary signals, resulting in
enhanced prediction accuracy.

3.5 Distribution of marker subsets across
the genome

The genomic distribution of SNP markers associated with
different traits in Arabidopsis thaliana can vary considerably. We
analyzed the preferred distribution patterns of selected SNPs from
two perspectives: (1) their distribution across different effect-size
intervals (based on p-values), and (2) their genomic locations
in relation to gene-coding/noncoding regions. Because the GP
accuracy of binGO-GS was evaluated based on the average of 15
replicates, each trait resulted in 15 sets of marker subsets. Taking the
intersection of these setsmay omit informative SNPs, whereas taking
the union may introduce non-representation markers. Therefore,
to explore the genomic distribution characteristics, binGO-GS was
applied once per trait using the full sample set to generate a
representative marker subset. For the five quantitative traits in the
Arabi944 dataset, the number of selected SNPs ranged from 41,296
to 51,700, corresponding to 2.01%–2.52%of allmarkers. For the four
traits in the Arabi407 dataset, the number ranged from 37,399 to
62,025, representing 1.99%–3.29% of total markers.

We first examined the distribution of selected markers across
effect-size intervals (p-value intervals: 0.01–0.1, 0.1–0.2…, 0.9–1).
Markers with p-value <0.01 showed relatively consistent numbers
across traits and were thus excluded from comparative analysis.
Interestingly, although both CL (stem branching number) and
RL (rosette leaf number) are morphological traits, their marker
distributions differed (Figure 9A). This is likely due to their
anatomical differences, with CL being a stem-coordinate trait
and RL an organ-structural trait. The three flowering time traits
(DTF2, DTF3, DTF1) exhibited similar distribution patterns,
with particularly close resemblance between DTF2 and DTF3
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FIGURE 9
(A) Morphological traits, including CL and RL; (B) Flowering time traits, including DTF2, DTF3, and DTF1; (C) Yield (DM), growth-related traits (SE and
GR), and fruit growth and development trait (FN).

(Figure 9B). Traits such as DM (yield-related) and GR (growth-
related) belong to different functional categories but both related
to plant dry weight, which may explain their similar marker
distribution. In contrast, the FN (fruit growth and development)
showed a more distinct distribution pattern (Figure 9C).

Overall, traits within the same biological category (e.g., DTF2
and DTF1) tended to have similar distributions across p-value
intervals, reflecting shared genetic architectures. Even among
traits within the same category but differing in anatomical or
developmental context (e.g., SE, GR, FN), subtle differences in
marker distribution were observed. These results suggest that the
consistency of distribution patterns across effect-size intervals can

provide insight into the genetic relatedness of traits, and further
serve as an auxiliary strategy to evaluate the biological validity of
marker subset selection methods.

Further analysis was performed to investigate the distribution
of the final marker subsets across coding regions, noncoding
regions, anduntranslated regions (UTRs) in the genome.Noncoding
regions were defined to include various types of noncoding
RNAs, such as lncRNAs, rRNAs, and tRNAs, while UTRs
were considered separately. To ensure comparability of marker
numbers across different traits within each genomic region,
the proportion of markers for each trait in a specific region
(i.e., the proportion of markers in the coding region relative to
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FIGURE 10
Distribution of the final marker subset across genomic regions, including coding, noncoding, and untranslated regions (UTR). Noncoding regions
include various noncoding RNAs such as lncRNAs, rRNAs, and tRNAs. For each trait, the proportion of markers in each region was scaled to a common
range (5–15) to allow cross-trait comparison. The original proportion was marked above each bar.

the total number across all regions) was scaled to a range of
5–15 (Figure 10).

For the CL trait, the rank of the proportions of markers in the
coding and UTR regions were similar and substantially higher than
that in the noncoding region. In contrast, for the RL trait, the rank
of proportion in the UTR region dominated over the other two,
consistent with the findings from the effect-size interval comparison
between these two traits. For the developmental traits DTF2 and
DTF1, the distribution of SNP markers across the genomic regions
was generally similar, with comparable proportions in the UTR and
noncoding regions.DTF3 andDMexhibited highly consistentmarker
proportions across all three regions. Although DM is a yield-related
trait (rosettemass) andDTF3 is related toflowering time, the similarity
in marker distribution may suggest a potential association between
rosette biomass and flowering time.The traits SE andGR, both related
to stem growth and development, showed similar overall distribution
patterns, although the proportions in theUTR andnoncoding regions
differed. FN, a trait related to fruit growth and development, exhibited
a more distinct distribution, with a higher proportion of markers
located in coding regions.Notably, the prediction performance for FN
was much lower than that of the other traits, which may be attributed
to the exclusion of causal variants located in the untranslated regions
during marker subset selection.

3.6 Practical considerations and
opportunities for cost-effective genotyping
using binGO-GS

Although binGO-GS provides a theoretically efficient subset
of informative SNPs, its practical implementation in breeding

programs faces technical and economic constraints. Most existing
genotyping platforms, such as fixed-content SNP arrays (e.g.,
Illumina chips), are not designed to accommodate small, customized
SNP panels (Rasheed et al., 2017). Even when only a few hundred
SNPs are selected by binGO-GS, breeders are required to pay for the
entire chip. Targeted sequencing offers flexibility for SNP selection
but is limited by high setup costs for small-scale use, including probe
design and validation (Thomson, 2014).

Nonetheless, in scenarios where custom genotyping is
technically feasible, such as in high-value breeding targets (e.g.,
hybrid rice parental lines or dairy bulls) or research-driven
programs, binGO-GS-selected panels can offer cost advantages.
For such populations, which require repeated genotyping over time,
the marginal cost of applying a low-density, binGO-GS-guided
panel (e.g., via targeted sequencing) can be lower than full-genome
sequencing or fixed chips. For users limited to commercial arrays, a
practical compromise is to intersect binGO-GS SNPs with existing
chip content and use overlapping markers, avoiding additional
genotyping costs while retaining part of the method’s predictive
advantage.

With the advancement of flexible genotyping platforms, such as
liquid-phase SNP chips (e.g., Axiom) and cost-efficient multiplex
PCR systems (e.g., GT-seq), the technical barriers to custom
SNP panel deployment are gradually decreasing (Campbell et al.,
2015). In the future, binGO-GS may be integrated with genotype
imputation approaches, allowing low-density panels to recover high-
resolution genotypes by referencing dense panels. Such strategies
can further enhance prediction accuracy without increasing
genotyping costs, making binGO-GS a forward-looking approach
with practical potential for low-cost, high-efficiency genomic
selection.
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3.7 Characteristics and limitations of
binGO-GS

The GO-informed selection of marker subset was inspired by
a previous study (Farooq et al., 2021). They incorporated gene
ontology information into genomic prediction bymodeling eachGO
term as a separate genomic component in the GFBLUP framework.
Specifically, markers associated with a given GO term were used to
construct a genomic relationship matrix (Gf), and the remaining
markers formed a second matrix (Gr), allowing partitioning of
the total genomic value. The predictive power of each GO term
was then assessed across 7,297 terms using repeated 8-fold cross-
validation, resulting in over 583,000models per trait.While effective
in identifying informative GO terms, this exhaustive modeling is
computationally intensive and impractical for large-scale breeding
programs. Moreover, relying solely on the top-performing GO term
may miss relevant genetic signals, while combining all associated
GO terms risks redundancy and diminished accuracy.

In contrast, binGO-GS integrates GO knowledge prior to
model training. It first aggregates markers from GO terms that
meet a minimum size threshold (e.g., ≥200 markers) to retain
robust biological context. These markers are then subjected to
supervised selection through combinatorial optimization within
effect-size–based bins defined by GWAS p-values. This design
leverages both biological priors and trait association strength, while
avoiding model proliferation and redundancy issues observed in
previous studies.

Despite the promising results obtained on two Arabidopsis
datasets covering nine traits, the generalizability of the proposed
method to other species remains to be further explored. Arabidopsis
was chosen primarily due to its status as a model plant with
abundant high-quality genomic and phenotypic data. Crops such
as maize and rice differ in genome complexity, LD patterns, and
marker density, which may affect the performance of biologically
informed feature selection methods. Additionally, some traits in the
Arabi407 dataset, such as FN with a sample size of 396, involve
relatively small populations, which may raise concerns about model
stability. To mitigate this issue, we employed repeated experiments
and ensured that the model performance is not dominated by data
partitioning variance. Nonetheless, small sample sizes inherently
limit statistical power and might restrict the model’s ability to
generalize. This constraint should be carefully considered when
interpreting the results. Future work will apply binGO-GS to
additional species and explore the integration of crop-specific GO
annotations. Moreover, simulation-based evaluations could serve as
an intermediate step to assess themethod’s robustness across varying
genomic architectures.

4 Conclusion

In this study, we proposed a biologically informed SNP
selection method, binGO-GS, to enhance genomic prediction
for nine quantitative traits across two Arabidopsis datasets. By
integrating gene ontology knowledgewithmarker selection, binGO-
GS effectively identifies trait-informative SNP subsets, enabling
improved prediction accuracy, minimized marker redundancy, and

potentially reduced genotyping costs. Across all nine traits, binGO-
GS significantly outperformed random marker selection in terms
of predictive performance. Moreover, when compared to using the
full marker set, binGO-GS consistently achieved higher prediction
accuracy across seven statistical models. These results demonstrate
the method’s robustness and generalizability. binGO-GS provides
a practical framework for designing low-density genotyping panels
while maintaining high prediction accuracy. It also offers a valuable
tool for dissecting the genetic architecture of complex traits,
contributing to more efficient genomic selection and accelerating
progress in crop improvement and germplasm innovation.
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