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DeepPredict is a freely accessible web server that integrates Porter6 and
PaleAle6, two state-of-the-art deep learning models designed for protein
secondary structure prediction (PSSP) and relative solvent accessibility (RSA)
prediction, respectively. Built on an advanced deep learning framework,
DeepPredict leverages pre-trained protein language models (PLMs), specifically
ESM-2, to eliminate the need for multiple sequence alignments (MSAs), enabling
rapid and accurate predictions. Compared to existing methods, DeepPredict
outperforms in both PSSP and RSA prediction tasks, delivering state-of-the-
art performance. The server offers a user-friendly interface, catering to both
computational biologists and experimental researchers. DeepPredict is available
at [ https://pcrgwd.ucd.ie/wafa/] with comprehensive online documentation
and downloadable example datasets.
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1 Introduction

Accurately predicting protein secondary structure and relative solvent accessibility
is essential for understanding protein function, stability, and interactions. Traditional
methods rely on evolutionary information derived from multiple sequence alignments
(MSAs), which can be computationally expensive and ineffective for proteins with
limited homologous sequences. Recent advancements in deep learning and protein
language models (PLMs) have enabled the development of highly accurate, MSA-free
predictors that significantly enhance computational efficiency while maintaining high
predictive accuracy (Ismi et al., 2022).

DeepPredict integrates two state-of-the-art tools to advance protein structural
analysis. It employs Porter6 (Alanazi et al., 2025a) for secondary structure prediction,
offering both three-state (SS3) and eight-state (SS8) classifications. Additionally, it
incorporates PaleAle6 (Alanazi and Meng, 2025) for relative solvent accessibility (RSA)
prediction, supporting binary classification (RSA_2C), four-class classification (RSA_4C),
and real-valued RSA predictions. By combining these powerful models, DeepPredict
delivers comprehensive insights into protein secondary structure and solvent accessibility.
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Designed as a unified platform, DeepPredict provides a seamless
solution for protein structural analysis, offering both secondary
structure and solvent accessibility predictions in a single tool. The
DeepPredict web server builds on these advancements, delivering a
freely accessible, user-friendly interface for researchers at all levels. It
enables rapid and accurate predictions for both large-scale datasets
and individual protein sequences, catering to diverse research needs
in structural bioinformatics.

While DeepPredict focuses on one-dimensional protein
structural properties—secondary structure and solvent
accessibility—complementary tools such as AlphaFold and
ESMFold predict full 3D protein structures. These 3D predictors
are typically computationally intensive; AlphaFold, for example,
relies on alignment-derived features and structural templates
(Bertoline et al., 2023; Alanazi et al., 2025b). In contrast,
DeepPredict provides rapid and lightweight per-residue structural
insights, making it well-suited for high-throughput screening and
for use as input features in downstream 3D modeling or protein
function prediction pipelines.

This manuscript presents the design, implementation, and
performance of the DeepPredict web server while exploring its
potential applications in computational biology and structural
bioinformatics. The DeepPredict web server is freely accessible at
[https://pcrgwd.ucd.ie/wafa/].

2 Materials and methods

2.1 Overview of prediction algorithm

DeepPredict leverages a deep learning framework optimized
for protein secondary structure and relative solvent accessibility
(RSA) prediction. At its core, the framework integrates a hybrid
convolutional bidirectional recurrent neural networks (CBRNN)
architecture, which synergistically combines the strengths of
convolutional neural networks (CNNs) and bidirectional recurrent
neural networks (BRNNs). This integration allows the model to
effectively capture both local sequence motifs and long-range
dependencies within protein sequences.

Moreover, DeepPredict leverages pre-trained protein language
model (PLM) embeddings, specifically ESM-2 (Lin et al., 2023), to
achieve high predictive accuracy while maintaining computational
efficiency. Unlike traditionalmethods that rely onmultiple sequence
alignments (MSAs), DeepPredict eliminates the need for MSAs,
significantly reducing computational overhead while preserving
predictive performance.

DeepPredict consists of two primary predictionmodels. Porter6
is used for secondary structure prediction and employs a hybrid
CBRNN architecture that efficiently captures both local sequence
dependencies and long-range interactions, enabling predictions in
both three-state (SS3) and eight-state (SS8) classifications. PaleAle6
is responsible for RSA prediction and uses a deep learning approach
to predict RSA in three formats: binary classification (RSA_2C),
four-class classification (RSA_4C), and continuous real-valued RSA
predictions.

The integration of ESM-2 embeddings significantly enhances
DeepPredict’s ability to infer secondary structure and solvent
accessibility without relying on traditionalMSAs.These embeddings

are derived from transformer-based protein language models
trained on large-scale protein sequence databases, allowing the
model to capture both local and global sequence dependencies. By
leveraging ESM-2, DeepPredict improves predictive performance
for both Porter6 and PaleAle6 while eliminating the computational
costs associated with evolutionary profile-based methods such as
Porter5 (Torrisi et al., 2019) and PaleAle5 (Kaleel et al., 2019).

DeepPredict’s model architecture efficiently processes protein
sequences using CBRNN layers and ESM-2 embeddings. Due to
limitations of the ESM-2model, DeepPredict supports sequences up
to 1,022 residues. The convolutional layers capture local sequence
dependencies, while the bidirectional recurrent layers extract long-
range interactions, ensuring accurate secondary structure and RSA
predictions within the supported sequence length range. Despite
the depth of the model, DeepPredict remains computationally
efficient, balancing high predictive accuracy with minimal resource
consumption.

By integrating these advanced deep learning architectures
and embedding techniques, DeepPredict provides a fast, scalable,
and reliable solution for protein secondary structure and solvent
accessibility predictions.Thismakes it a valuable tool for researchers
in structural bioinformatics, offering an efficient alternative to
traditional MSA-dependent methods.

2.2 Data sources and benchmarking

DeepPredict was trained and validated using high-quality
datasets derived from experimentally resolved protein structures
available in the Protein Data Bank (PDB) (Burley et al., 2019).These
datasets were curated to ensure diversity and minimize redundancy,
allowing the model to generalize effectively across different protein
families. To construct a robust dataset, sequences were clustered
at 30% and 80% sequence identity thresholds, ensuring that the
training and test sets remained non-redundant.

For secondary structure prediction, Porter6 was trained on
experimentally annotated secondary structure assignments derived
from the DSSP (Cuff and Barton, 1999) (Define Secondary
Structure of Proteins) program. DSSP assigns secondary structure
elements based on hydrogen bonding patterns in high-resolution
crystal structures. Protein secondary structure prediction (PSSP)
is typically divided into three-state (SS3) and eight-state (SS8)
classifications, with the latter providing a more detailed description
of structural elements, including additional motifs such as the 310-
helix (G), isolated β-bridge (B), bend (S), turn (T), and π-helix (I).
Secondary structure is mapped from the 8 DSSP classes into three
classes as follows: H, G, I → Helix; E, B → Strand; S, T,. → Coil.

For relative solvent accessibility (RSA) prediction, PaleAle6
was trained on solvent accessibility values computed from DSSP-
derived absolute solvent accessibility (ASA) values. These values
were normalized using the standard formula (Equation 1):

RSAi =
SAi

MAXi
  ∗ 100% (1)

where SAi is the solvent accessibility of residue i (in Å2) from
DSSP, and MAXi is the maximum solvent accessibility for that
amino acid i (in Å2) type [19]. For classification, amino acids were
grouped into four RSA classes: [0%–3%], [4%–24%], [25%–49%],
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TABLE 1 Results of 2022 test set validation.

Prediction task Metric DeepPredict performance (2022 test set)

Secondary Structure (SS3) Accuracy (ACC) 86.34%

Secondary Structure (SS8) Accuracy (ACC) 75.23%

Binary RSA (RSA_2C) Accuracy (ACC) 82.48%

Four-Class RSA (RSA_4C) Accuracy (ACC) 59.60%

Real-Valued RSA Pearson’s (PCC) 77.88

and [50–∞%], chosen to maintain balanced class distributions. For
binary classification, the ranges [0%–24%] and [25–∞%]were used.

To rigorously assess DeepPredict, the model was evaluated
on the 2022 Test Set (Alanazi et al., 2025a) and an independent
2024 Test Set (Alanazi et al., 2025a), and compared with other
state-of-the-art prediction tools.

• 2022 Test Set: Consisting of 5,130 non-redundant protein
sequences, this dataset was curated using a 30% sequence
identity threshold to minimize homology bias and ensure
diversity.

• 2024 Test Set: An independent benchmark dataset containing
692 newly released PDB entries, clustered at 30% sequence
identity against the training set, ensuring an unbiased
evaluation of the model’s generalization ability.

This benchmarking framework ensures that DeepPredict
maintains high predictive accuracy and robustness across different
protein families, demonstrating its effectiveness in protein
secondary structure and solvent accessibility prediction.

2.3 Performance

DeepPredict was rigorously validated using the 2022 test set,
which consists of 5,130 non-redundant protein sequences clustered
at 30% sequence identity. The model was further evaluated on
the 2024 test set, an independent dataset of 692 newly released
PDB sequences, ensuring a fair assessment of generalization. The
evaluation metrics included:

• Accuracy (ACC) for secondary structure prediction
(Q3 and Q8).

• Pearson Correlation Coefficient (PCC) for real-valued RSA
prediction.

• Accuracy (ACC) for RSA_2C and RSA_4C classifications.

2.3.1 Performance on the 2022 test set
DeepPredict achieved high accuracy across all prediction tasks,

demonstrating state-of-the-art performance, as shown in Table 1. It
successfully balances computational efficiency and predictive power
by eliminating the need for multiple sequence alignments (MSAs)
while maintaining high predictive accuracy.

2.3.2 Comparison with other state-of-the-art
predictors (2024 test set)

The performance of DeepPredict was compared against
state-of-the-art secondary structure and RSA predictors,
including NetSurfP-3.0 (Høie et al., 2022), NetSurfP-2.0
(Klausen et al., 2019), SPOT-1D-LM (Singh et al., 2022), Porter5
(Torrisi et al., 2019), and PaleAle5 (Kaleel et al., 2019)models, as
summarized in Table 2. DeepPredict demonstrated competitive
performance, outperforming previous predictors in RSA prediction
while maintaining high accuracy in secondary structure prediction.
By leveraging ESM-2 embeddings instead of traditional MSA-based
approaches, DeepPredict achieves high efficiencywithout sacrificing
predictive power, making it an optimal tool for large-scale and
single-sequence protein structural analyses.

3 Web server description

DeepPredict is a user-friendly web server designed for real-
time protein structure prediction, targeted at both bioinformatics
and structural biology researchers. The interface allows users to
submit sequences in FASTA format and receive structured results
with confidence scores.

3.1 Web interface overview

The website framework includes three primary web pages to
facilitate user interaction and access to DeepPredict web server’s
functionalities (web pages section, left part in Figure 1):

• Home Page: This serves as the primary interface, offering
users multiple options to submit protein sequences in FASTA
format, track the status of submitted tasks, and access essential
information about DeepPredict. Additionally, it provides a
direct link to theDownload Page, allowing users to explore local
installation options.

• TaskResult Page:Once a sequence has been submitted, this page
provides a unique task identifier and displays the current status
of the process, indicating whether the prediction is pending
or completed. Users can download the final results upon task
completion.

• Download Page: This section provides comprehensive
installation instructions for those who wish to run DeepPredict
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TABLE 2 Performance comparison with other predictors on the 2024 test set.

Method SS3 (Q3) SS8 (Q8) RSA_2C ACC RSA_2C
F1

RSA_4C ACC RSA_4C
F1

Real-value
RSA PCC

DeepPredict (Porter6
& PaleAle6)

84.56% 74.18% 79.74% 0.79 55.30% 0.54 73.08%

NetSurfP-3.0 82.92% 71.84% 77.35% 0.78 — — 69.22%

NetSurfP-2.0 81.37% 70.06% 77.17% 0.78 — — 68.60%

Porter5 81.03% 70.03% — — — —

PaleAle 5.0 — — 77.01% 0.76 51.54% 0.51 —

SPOT-1D-LM 84.30% 74.09% 78.34% 0.79 — — 70.50%

DeepPredict (Porter6 and PaleAle6) consistently outperformed existing methods across all tasks.

FIGURE 1
DeepPredict Web Server Framework. The diagram depicts the structural layout of the DeepPredict web server. The left section represents the primary
web pages: (1) the Home Page, which allows users to submit tasks, check status updates, access general information, and download links; (2) the Task
Result Page, where users can view task-specific details and download outputs; and (3) the Download Page, which provides installation guidelines for
local deployment. The right section illustrates the back-end architecture, highlighting key components such as page interactions, Celery-based task
management, data processing, and the execution of prediction tasks.

(Porter6 & PaleAle6) locally. It outlines the installation method
and directs users to the software repository on GitHub.

The web server is designed to be intuitive and efficient, ensuring
a smooth user experience while enabling fast and accurate protein
structure predictions with minimal computational complexity.

3.2 Back-end implementation

The DeepPredict web server is developed using the Django
(Django Software Foundation, 2024) framework, with Python
managing the back-end operations and HTML and JavaScript

supporting the front-end interface. User requests are processed
asynchronously, with each request handled as an independent
task. To facilitate this, Celery (Solem, 2023) is integrated, allowing
prediction tasks to be executed separately from themain application
thread. This asynchronous architecture enables users to check their
task status later using a unique task ID, eliminating the need to keep
the page open during processing.

Prediction results are retained for 1 week, giving users sufficient
time to download and analyse their data. Since DeepPredict does
not depend on MSAs and operates with ESM-2 embeddings, which
require minimal computational resources, the overall system load
is kept low, processing approximately 50 sequences per batch.
Tasks are managed in a first-come, first-served queue within
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Celery, ensuring an efficient workflow without overloading system
resources. This approach minimizes wait times while maintaining
fast prediction speeds.

To efficiently manage data, DeepPredict employs a hybrid
storage solution (Figure 1, right side), comprising:

• Relational Database (PostgreSQL) (PostgreSQL Global
Development Group, 2023): Stores essential metadata for each
task, including task ID, timestamps, file paths to input/output
files, and other relevant details. By restricting database storage
to metadata, server performance is optimized, preventing
unnecessary load.

• File System Storage: Large files, such as sequence data
and prediction results, are stored directly on the server’s
disk. This prevents database congestion, ensuring users can
efficiently download large result files without impacting
overall database performance.

This architecture ensures that theweb server can handlemultiple
concurrent users and large datasets efficiently, while keeping
computational and operational costs low.

3.3 Implementation and run time

DeepPredict is designed for efficient deep learning inference,
utilizing asynchronous task management via Celery to ensure
smooth processing of user requests, even under heavy traffic.

The system runs on a Linux-based environment, powered by
a 24-core CPU, 256 GB DDR5 RAM, and an NVIDIA RTX 4000
ADA GPU (20 GB VRAM). Storage includes 6 TB across high-
speed NVMe and SATA SSDs, with a RAID 1 configuration for data
redundancy and reliability.

With GPU acceleration, high-speed SSDs, and optimized
multi-core processing, DeepPredict efficiently handles large-scale
sequence analyses, batch processing, and real-time predictions.
DeepPredict also supports input files up to 40MB, making it well-
suited for high-throughput applications.

Using the UniProt Reviewed Swiss-Prot15 human
proteome dataset (The UniProt Consortium et al., 2023), which
originally contained 20,421 sequences and was reduced to 18,115 by
excluding sequences longer than 1,022 residues (totaling 8.8 MB),
our server successfully completed the predictions in 9,938.89 s,
achieving an average runtime of 0.55 s per sequence. When
estimating prediction time for a 1,000-residue sequence, ourmethod
yields an average of 1.33 s, demonstrating efficiency for large-scale
and high-throughput applications.

3.4 User guide

As shown in Figure 1, users can submit a query from the
homepage by either entering one or more protein sequences directly
into the text area or uploading a FASTAfile (.fasta). Regardless of the
submission method, the input must be formatted in FASTA format.

For example, submitting a file named p49913.fasta, containing
a UniProt sequence (P68871), will initiate a prediction task. Once
the query is submitted, a task is created immediately, and the user

FIGURE 2
This screenshot shows the prediction result of Uniprot
sequence P49913.

is redirected to the Task Result Page, where a unique task ID (e.g.,
a853da32-9fe5-4c73-8f85-7c6324c194ac) is assigned.

Users can refresh the result page or save the task ID to check
the task status later from the homepage. Once the prediction is
completed, a download link appears, enabling users to download the
results as CSVfiles, with all sequences saved in a separate file for each
prediction type (illustrated in Figure 2 for sequence P68871).

4 Limitations and Future work

While DeepPredict achieves state-of-the-art performance
without relying on MSAs, certain limitations remain. The model’s
performance may be affected for sequences approaching the
maximumsupported length of 1,022 residues, as ESM-2 embeddings
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are truncated beyond this point. Future versions may explore
improved handling of longer sequences and additional output
features to support integration into broader structural biology
workflows.

5 Conclusion

DeepPredict integrates Porter6 for secondary structure and
PaleAle6 for solvent accessibility prediction, offering a fast, accurate
platform for protein structural analysis. Its high-performance
architecture enables both high-throughput analyses and detailed
individual investigations, delivering state-of-the-art predictions
without relying on MSAs.

Leveraging pre-trained language models and deep learning,
DeepPredict ensures precision and speed, making it a valuable
resource for the bioinformatics community. The user-friendly
interface features well-structured pages for query submission and
task status monitoring, while a robust data management system
securely handles large datasets, temporarily storing results for user
retrieval and analysis.

With free access, clear documentation, and downloadable
resources, DeepPredict serves as a versatile tool for researchers
in bioinformatics and structural biology. Thanks to its scalable
architecture and flexibility, DeepPredict represents a sustainable
long-term solution for protein secondary structure and
solvent accessibility prediction. The complete training and
evaluation datasets, including PDB IDs, are freely available
via the GitHub repositories, supporting transparency and
reproducibility.
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