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Introduction: Breast cancer detection using thermal imaging relies on accurate 
segmentation of the breast region from adjacent body areas. Reliable 
segmentation is essential to improve the effectiveness of computer-aided 
diagnosis systems.
Methods: This study evaluated three segmentation models—U-Net, U-Net with 
Spatial Attention, and U-Net++—using five optimization algorithms (ADAM, 
NADAM, RMSPROP, SGDM, and ADADELTA). Performance was assessed through 
k-fold cross-validation with metrics including Intersection over Union (IoU), Dice 
coefficient, precision, recall, sensitivity, specificity, pixel accuracy, ROC-AUC, 
PR-AUC, and Grad-CAM heatmaps for qualitative analysis.
Results: The ADAM optimizer consistently outperformed the others, yielding 
superior accuracy and reduced loss. Among the models, the baseline U-Net, 
despite being less complex, demonstrated the most effective performance, 
with precision of 0.9721, recall of 0.9559, specificity of 0.9801, ROC-AUC of 
0.9680, and PR-AUC of 0.9472. U-Net also achieved higher robustness in breast 
region overlap and noise handling compared to its more complex variants. The 
findings indicate that greater architectural complexity does not necessarily lead 
to improved outcomes.
Discussion: This research highlights that the original U-Net, when trained with 
the ADAM optimizer, remains highly effective for breast region segmentation 
in thermal images. The insights contribute to guiding the selection of suitable 
deep learning models and optimizers for medical image analysis, with the 
potential to enhance the efficiency and accuracy of breast cancer diagnosis 
using thermal imaging.
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breast region segmentation, thermal images, thermography, deep learning, deep neural 
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 1 Introduction

Breast cancer remains a global health concern, underscoring the critical importance of 
early detection for improved patient prognosis (Sung et al., 2021). Recent advancements 
in medical imaging, particularly thermal imaging, offer potential for enhancing early
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detection capabilities (Allugunti, 2022). However, the effectiveness 
of these technologies relies heavily on the precision of image 
segmentation, particularly in isolating the breast region from 
surrounding anatomical structures (Dafni Rose et al., 2022). This 
study addresses the pressing need for accurate and efficient breast 
region segmentation in thermal images, with the overarching goal 
of advancing early breast cancer detection.

The motivation for this research stems from the recognition that 
thermal imaging holds promise in detecting breast cancer early, and 
its success hinges on the precision of the segmentation process. To 
optimize thermal imaging pre-processing, we focus on leveraging 
advanced deep learning techniques, specifically U-Net variants. U-
Net’s symmetrical expansive pathway proves advantageous, enabling 
precise delineation of intricate boundaries, a crucial requirement in 
medical imaging (Zhou et al., 2018). The decision to employ U-Net 
variants is informed by their efficiency, precision, and adaptability, 
especially in the challenging task of segmenting the breast region in 
thermal images.

In contrast to alternative models like SegNet, DeepLabv3+, Mask 
R-CNN, and EfficientNet, U-Net variants demonstrate superior 
efficiency and adaptability for sparse data, making them a preferred 
choice for this study (Badrinarayanan et al., 2017). DeepLabv3+ 
and Mask R-CNN, while powerful, pose challenges such as larger 
training datasets and substantial computational loads, limiting their 
suitability for our specific application (Chen et al., 2018; He et al., 
2017). The adoption of U-Net variants is poised to significantly 
enhance the accuracy and efficiency of breast region segmentation, 
aligning with the objectives of this research (Tan and Le, 2019).

Breast region segmentation in thermal images involves 
distinguishing the breast area from surrounding body parts, a 
complex task given variations in size, shape, and orientation across 
individuals (Soomro et al., 2022). Several deep learning models, 
including U-Net, U-Net with Spatial Attention, and U-Net++ 
(Nested U-Net), have shown promise in image segmentation but 
have not been thoroughly explored for breast region segmentation in 
thermal images (Azad et al., 2022; Radhi and Kamil, 2023; Punn and 
Agarwal, 2022; Liu et al., 2022; Gu et al., 2022; Islam Sumon et al., 
2023; Yin et al., 2022; Micallef et al., 2021; Mokhtar et al., 2023; 
Gargari et al., 2022; Zhao et al., 2022). This study not only evaluates 
the performance of these models but also conducts a comprehensive 
comparison of different optimization algorithms, recognizing the 
optimizer’s pivotal role in training deep learning models.

By systematically evaluating various optimizers and identifying 
the most effective one for training segmentation models, this study 
aims to provide a holistic assessment of the segmentation task. The 
research presents a comprehensive evaluation of U-Net, U-Net with 
Spatial Attention, and U-Net++ for breast region segmentation in 
thermal images, coupled with a thorough comparison of different 
optimizers. The insights generated from this study are poised to 
contribute significantly to the advancement of early breast cancer 
detection technologies, benefiting researchers and practitioners in 
the fields of medical diagnostics and artificial intelligence. 

2 Related work

Breast region segmentation in thermal images has emerged 
as a pivotal area of research, given its potential in breast cancer 

detection. Diverse methodologies, ranging from conventional 
image processing techniques to cutting-edge deep learning 
models, have been proposed to improve the precision and 
efficiency of segmentation. The significance of deep learning 
methodologies, particularly their potential to bring beneficial 
effects in enhancing computer-aided medical diagnosis, is 
emphasized in (Al Husaini et al., 2023).

In a study employing Distance-based Metrics and High-
Temperature Region-based Adaptive Thresholding (DM-
HTRAT) (Venkatachalam et al., 2023), an accuracy of 96.5% in 
breast boundary segmentation was achieved, contributing to more 
reliable and effective detection of breast abnormalities. However, 
limitations include susceptibility to unclear boundaries, a low 
signal-to-noise ratio, and poor contrast in thermal images.

Another study proposed an automatic segmentation 
algorithm (Adel et al., 2018) that successfully segmented all types of 
breasts with an accuracy of 98.73%. While demonstrating faster 
runtimes than the Hough transform, challenges may arise in 
real-time applications requiring instantaneous results.

A comprehensive review of various image processing techniques 
for automatic segmentation of clinically significant Regions 
of Interest (ROIs) emphasized the importance of automated 
segmentation for fast and reproducible analysis (Singh and Arora, 
2020). The review also highlighted the potential of deep learning 
for effective computer-aided medical diagnosis, acknowledging the 
limitations of human-based diagnoses influenced by factors such as 
narcissus effect, negligence, visual exhaustion, and mental workload.

A proposed methodology relying on local analysis to 
mitigate the impact of global noise achieved a new alternative 
for automatic segmentation of thermal breast images with 
77.3% accuracy (Sánchez-Ruiz et al., 2018). However, errors were 
observed in images with low contrast in the breast region and those 
depicting amorphous breast structures.

Autoencoder-like convolutional and deconvolutional neural 
networks (C-DCNN) demonstrated the capability to learn 
essential features of breast regions and delineate them in 
thermal images (Guan et al., 2018). The study suggested a need 
for an improved evaluation metric to effectively assess the quality of 
the breast segmentation model.

The MultiResUnet deep-learning segmentation model exhibited 
an average accuracy of 91.47%, surpassing the autoencoder 
by about 2% (Lou et al., 2019). However, limitations in small 
breast segmentation, IoU errors, data augmentation, and manual 
challenges were identified, suggesting areas for improvement.

Utilizing Genetic Algorithms (GA) with a fitness function based 
on cardioids, a method successfully separated the breast region in 52 
out of 58 images without manual seed point selection (Mendes et al., 
2020). However, challenges were faced with ellipse techniques and 
metallic markers, and the algorithm required 60 s for optimal results.

U-Net Convolutional Neural Networks demonstrated 
efficiency for Region of Interest (ROI) segmentation, achieving 
an accuracy of 98.24% over frontal views and 93.6% over 
lateral views (Carlos de Carvalho et al., 2023). Notably, the efficacy 
of the method decreased when applied to lateral views.

A study incorporating Vector Pooling Block (VPB) and AVG-
MAX VPB in Convolutional Neural Networks (U-Net, AlexNet, 
ResNet18, GoogleNet) achieved impressive results, including a 
global accuracy of 99.2% (Mohamed et al., 2022). However, the study 
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noted the need for more efficient exploration of the pooling layer’s 
effect in Convolutional Neural Networks (CNNs) within the existing 
literature. 

3 Materials and methods

This section details the methodological framework adopted in 
this study, encompassing the dataset acquisition and preparation, 
model architectures, experimental setup, and the subsequent 
training and evaluation processes. 

3.1 Dataset acquisition and preparation

The DMR-IR database is a publicly accessible repository 
containing multimodal breast examination data, including infrared 
thermography, digital mammography, and clinical records. For 
this study, only the frontal thermal images of 130 patients 
were used, acquired under the First Static Protocol to ensure 
standardized conditions. Patients included both healthy controls 
and individuals with benign and malignant breast lesions, thereby 
introducing variability essential for robust model evaluation. The 
infrared images were captured using a FLIR SC620 camera, with a 
sensitivity of <0.04 °C and a temperature range of 40 °C–500 °C, at 
a resolution of 640 × 480 pixels. To minimize external variability, 
all acquisitions followed a controlled clinical protocol, where 
patients were acclimatized in a room maintained at 20 °C–23 °C 
for 15 min before imaging. Manual annotations were performed 
by the study authors to generate ground-truth masks, with cross-
verification among annotators to reduce bias. While not performed 
by certified radiologists, this procedure was explicitly designed 
for experimental, non-clinical purposes. The use of the DMR-IR 
database ensures transparency and reproducibility, as the dataset 
is publicly available online (http://visual.ic.uff.br/dmi), allowing 
independent research.

In this study, the dataset utilized for experimentation was 
obtained from an accessible online database. The main objective 
of this research revolves around the comparative analysis of three 
U-Net deep neural network variants. Therefore, leveraging a pre-
existing dataset rather than dedicating resources to the creation of 
a new one is a strategic decision which allowed this study to focus 
on the main objective. 

3.1.1 Data acquisition
A collection of thermal breast images from 130 patients was 

acquired from the Database for Breast Research with Infrared Image 
(DMR-IR) as presented by (Silv et al., 2014). Specifically, frontal 
breast thermal images captured under the First Static Protocol. The 
DMI-IR incorporates infrared images, digitalized mammograms, 
and clinical data acquired from Antônio Pedro University Hospital 
patients. These patients come from the screening department and 
the gynecology department. The DMI-IR contains data on healthy 
patients as well as patients with breast diseases, including cancer.

The infrared images, henceforth referred to as ‘thermal images’ 
were obtained by a FLIR thermal camera, model SC620, with 
a sensitivity of less than 0.04 °C and a capture standard of 
40 °C–500 °C. The pixel dimensions of the infrared images are 

640 × 480. The procurement of the images and their use in 
research have been approved by the hospital’s Ethical Committee and 
registered with the Brazilian Ministry of Health under the following 
CAAE number: 01042812.0.0000.5243. The DMR-IR is accessible 
via an online user-friendly interface (http://visual.ic.uff.br/dmi) for 
managing and retrieving data from breast examinations and clinical 
data from voluntary patients. 

3.1.2 Annotation and mask generation
Manual annotations were performed by the authors to prepare 

masks for thermal images. The breast region in each image was 
delineated, creating a mask that highlights the breast area and 
excludes other regions like the armpit, neck, and lower chest. The 
masks served as the ground truth for training the segmentation 
models. It is important to highlight that the annotation was 
performed only for the purpose of experimentation, and not for 
the use in clinical setup, as it was not performed by a certified 
technician. Figure 1 shows the screenshot of annotation of breast 
area from breast thermal image.

Once the annotations are completed, they are exported in a 
VGG JSON format, which is a structured format to represent these 
annotations. After obtaining the annotations in the VGG JSON 
format, it is then used to generate binary masks for each annotated 
image. A binary mask is a black and white representation where 
the regions of interest are shown in white, and everything else is 
black. A sample of an unsegmented breast thermal image and its 
corresponding binary mask is shown in Figure 2.

3.1.3 Data preprocessing
Data preprocessing was conducted on each thermal image and 

its corresponding binary mask prior to the segmentation process. 
The process involved adjusting the size of the images to a consistent 
dimension of 256x256 pixels, standardizing the pixel values to fall 
within the range of 0–1, and producing diverse versions of data 
augmentation from both the images and masks. The inclusion of this 
data augmentation step enhances the model’s ability to generalize by 
introducing greater diversity into the training dataset.

The following transformations were conducted on both the 
images and their associated binary masks. 

a. Rotation: To accommodate diverse breast orientations, images 
undergo random rotations of up to 20°.

b. Width and Height Shifts: Images are shifted both horizontally 
and vertically by a maximum of 10% of their respective 
dimensions, aiding the model in identifying off-center region.

c. Shear Transformation: The images are slanted with an intensity 
of up to 0.2, introducing a skewing effect.

d. Zooming: Random zooming in or out of images by a factor 
of up to 20%, helping the model adapt to breast region of 
different scales.

e. Flipping: Images are flipped both horizontally and vertically, 
useful for datasets where breast orientation is not consistent.

f. Pixel Fill Strategy: After transformations like rotation or shifts, 
new pixels were created. The ‘reflect’ strategy is used to mirror 
the edge pixels of the image.
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FIGURE 1
Annotation of breast area on breast thermal images.

FIGURE 2
(a) Breast thermal image; (b) Corresponding binary mask.

3.2 Model architectures

To improve breast region segmentation in thermal images, this 
study evaluated three distinct deep learning architectures. Each of 
these models is recognized for their image segmentation ability. 

3.2.1 U-net
U-Net, as introduced in paper (Ronneberger et al., 2015), is 

a deep learning architecture specifically designed for biomedical 
image segmentation. To address the challenge of effectively training 
deep neural networks with a limited number of annotated samples, 
the authors proposed a data augmentation-based approach. U-Net’s 
architecture includes a contracting path for context assimilation and 
an expanding path for granular localization. Despite training on a 
limited image dataset, U-Net outperformed previous methods. The 
network’s structure consists of 23 convolutional layers. The U-Net 
model for the base resolution of 32x32 pixels is depicted in Figure 3. 

Each blue rectangle in this diagram represents a multichannel 
feature map, with the channel count indicated atop each rectangle 
and the x-y dimension indicated at its lower left. The duplicated 
feature maps depicted in white are denoted by arrows, which 
represent various operations.

3.2.2 U-net with spatial attention
In the paper (Guo et al., 2021), a network with reduced 

computational complexity known as Spatial Attention U-Net (SA-
UNet) has been introduced. This network does not require a 
large number of annotated training samples. Alternatively, it can 
be utilized in a data augmentation methodology to optimize 
the utilization of the existing annotated samples. One notable 
characteristic of SA-UNet is its integration of a spatial attention 
module. The attention map along the spatial dimension is inferred 
by this module, then multiplied with the input feature map to 
enable adaptive feature refinement. Furthermore, to mitigate the 
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FIGURE 3
U-net model (Ronneberger et al., 2015).

issue of overfitting, the neural network utilizes structured dropout 
convolutional blocks as a substitute for the original convolutional 
blocks found in the U-Net architecture. Figure 4 illustrates the SA-
UNet model, which consists of a U-shaped encoder on the left side 
and a decoder on the right side.

Each stage of the encoder consists of a structured dropout 
convolutional block and a 2 × 2 max pooling operation. In each 
convolutional block, the convolutional layer is succeeded by a 
DropBlock, a batch normalization (BN) layer, and a rectified linear 
unit (ReLU). Subsequently, the max pooling operation is employed 
to down-sample the data with a stride size of 2. In each down-
sampling step, the number of feature channels is doubled. Each step 
in the decoder involves a 2 × 2 transposed convolution operation for 
up-sampling and reduces the number of feature channels by half. 
This is followed by concatenation with the corresponding feature 
map from the encoder, and then a structured dropout convolutional 
block is applied. The inclusion of a spatial attention module is 
implemented in the intermediate stage between the encoder and the 
decoder. In the ultimate layer, the utilization of a 1x1 convolution 
and the application of the Sigmoid activation function are employed 
to obtain the resulting segmentation map. 

3.2.3 U-Net++
The paper (Zhou et al., 2018) introduces UNet++, a powerful 

medical image segmentation architecture with a deeply-supervised 
encoder-decoder network. The architecture connects encoder and 
decoder sub-networks through nested, dense skip pathways, aiming 
to reduce the semantic gap between feature maps. The optimizer 
handles easier learning tasks when feature maps from decoder and 
encoder networks are semantically similar. Figure 5a depicts an 

overview of the proposed architecture. As can be seen, UNet++ 
begins with an encoder sub-network or backbone, which is followed 
by a decoder sub-network. What differentiates UNet++ from 
U-Net (the black components in Figure 5a) are the redesigned 
skip pathways that connect the two sub-networks (shown in 
green and blue in Figure 5b) and the use of deep supervision 
(shown in red in Figure 5c).

3.3 Experimental setup

3.3.1 Software configuration
The experimental setup utilized advanced software tools 

and frameworks to conduct the research. The primary software 
components included: 

a. Operating System: The experiments were conducted on a 
system running the latest version of Windows 11, providing a 
stable and user-friendly environment for the research tasks.

b. Deep Learning Frameworks: State-of-the-art deep learning 
frameworks such as TensorFlow and Keras were employed 
for model development, training, and evaluation. These 
frameworks offered a rich set of functionalities, making it 
possible to implement complex neural network architectures 
and algorithms efficiently.

c. Image Processing Libraries: OpenCV, a powerful open-
source computer vision library, was employed for various 
image processing tasks. It provided essential tools for image 
manipulation, feature extraction, and visualization, crucial for 
preprocessing thermal images and analyzing the results.
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FIGURE 4
U-Net with Spatial Attention model (Guo et al., 2021).

FIGURE 5
(a) UNet++ is a neural network that bridges the semantic gap between encoder and decoder feature maps before fusion. It uses nested dense 
convolutional blocks to bridge the gap between (X0,0, X1,3). The graphical abstract shows black for original U-Net, green and blue for skip pathways, 
and red for deep supervision. The components distinguish UNet++ from U-Net. (b) Detailed analysis of the first UNet++ skip pathway. (c) UNet++ can 
be pruned at the time of inference if it is trained under intensive supervision (Zhou et al., 2018).
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d. Data Management: Python libraries like NumPy and Pandas 
were utilized for efficient data manipulation and analysis. 
NumPy facilitated numerical operations, while Pandas allowed 
structured data handling, enabling seamless organization and 
processing of experimental data.

e. Visualization: Matplotlib, a versatile plotting library in Python, 
was used for generating visualizations such as graphs, charts, 
and figures. It played a vital role in presenting experimental 
results and analyzing trends in the data.

3.3.2 Hardware configuration
The experimental setup was supported by robust hardware 

configurations, ensuring efficient computation and data processing. 
The key components of the hardware setup included: 

a. Processor: An Intel 13th Gen Core i9-13900HX processor with 
a base clock speed of 2.20 GHz provides substantial computing 
power. Its high processing capabilities enabled swift execution 
of complex algorithms and simulations.

b. Memory: The system was equipped with 32 GB of RAM, 
allowing for the seamless handling of large datasets and 
resource-intensive deep learning tasks. The ample memory 
capacity facilitated smooth multitasking and efficient training 
of neural networks.

c. Graphics Processing Unit (GPU): The experimental setup 
featured an NVIDIA GeForce RTX 4080 Laptop GPU. 
This high-performance GPU accelerated deep learning 
computations, enabling the training of complex neural 
networks and the execution of computationally intensive tasks.

3.4 Model training and evaluation

The training and evaluation of the U-Net, U-Net with Spatial 
Attention, and U-Net++ models were conducted based on the 
flowchart of the algorithm as illustrated in Figure 6.

The algorithm begins by loading grayscale images and its 
corresponding true masks from specified directories, resizes, and 
normalizes their pixel values. To augment the dataset, the images 
and masks are subjected to various transformations as explained in 
Section 4.1.3, thereby introducing variability into the training data. 
A stratified split approach was adopted to split the data into training 
and validation sets, with 20% of the augmented dataset reserved 
for validation. This is specifically for experimental comparison 
between models. This allocation, while not subjected to active 
experimentation, was designed to ensure a balanced representation 
of diverse classes in both training and validation sets. The model 
is then initialized based on the specific model type (U-Net, U-Net 
with Spatial Attention, or U-Net++). The model is compiled using 
the binary cross-entropy loss function and accuracy metric, crucial 
for measuring segmentation precision.

Five different optimizers were evaluated comparatively: ADAM, 
NADAM, RMSPROP, SGDM, and ADADELTA. The evaluation of 
the specific optimizers was based on their widespread usage and 
documented effectiveness in various deep learning applications, 
particularly in image segmentation tasks. The mathematical 
equations that describe how the optimizers update the model 
weights during training are as follows. 

FIGURE 6
Flowchart for the model’s training and evaluation algorithm.

3.4.1 ADAM (adaptive moment estimation)
ADAM combines the advantages of both momentum-based 

optimization and RMSProp. It maintains adaptive learning rates for 
each parameter and keeps an exponentially decaying average of past 
gradients. The Equations 1–5 for ADAM, as described by (Kingma 
and Ba, 2014), are as follows:

mt = β1 ·mt−1 + (1− β1) · gt (1)

vt = β2 · vt−1 + (1− β2) · g
2
t (2)

mcorrected
t =

mt

1− βt
1

(3)

vcorrected
t =

vt

1− βt
2

(4)

θt = θt−1 −
α ·mcorrected

t

√vcorrected
t + ϵ

(5)

Where:
mt and vt are the first and second moments estimates,
gt is the gradient at time step t,
β1 and β2 are exponential decay rates for the moment estimates,
α is the learning rate,
ϵ is a small constant added to prevent division by zero. 
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3.4.2 NADAM (nesterov-adam)
NADAM optimizer combines Nesterov’s accelerated gradient 

with the benefits of ADAM. It uses the same equations as ADAM 
but with Nesterov’s momentum applied to the gradients before 
calculating mt. In standard momentum, the update rule for a 
parameter θ is given by Equations 6, 7:

vt = β · vt−1 + α ·∇ f(θt−1 + β · vt−1) (6)

θt = θt−1 − vt (7)

Where:
α is the learning rate,
∇ f(θt−1 + β · vt−1) is the gradient of the objective function at the 

predicted future position,
β is the momentum parameter.
Nesterov momentum modifies this approach by calculating 

the gradient at a “lookahead” position (Dozat, 2016) as given by 
Equations 8–10.

θlookahead = θt−1 + β · vt−1 (8)

vt = β · vt−1 + α ·∇ f(θlookahead) (9)

θt = θt−1 − vt (10)

 

3.4.3 RMSPROP (root mean square propagation)
RMSPROP adapts the learning rates for each parameter based 

on the average of recent magnitudes of the gradients. It prevents 
vanishing or exploding gradients by scaling the gradients with a 
moving average of their squared values, as captured by Equations 
11, 12 (Tieleman and Hinton, 2012).

E[g2]t = β ·E[g2]t−1 + (1− β) · g2
t (11)

θt = θt−1 −
α · gt

√E[g2]t + ϵ
(12)

Where:
E[g2]t is the moving average of squared gradients,
β is the decay rate for the moving average,
α is the learning rate,
ϵ is a small constant added to prevent division by zero. 

3.4.4 SGDM (stochastic gradient descent with 
momentum)

SGDM incorporates momentum, allowing the optimizer to 
accumulate velocity and dampens oscillations. The momentum term 
helps the optimizer traverse through local minima more effectively. 
The SGDM Equations 13, 14 are derived based on the concept of 
accumulated gradients (Qian, 1999).

vt = β · vt−1 + α · gt (13)

θt = θt−1 − vt (14)

Where:

vt is the velocity or momentum term,
β is the momentum coefficient,
α is the learning rate,
gt is the gradient at time step t. 

3.4.5 ADADELTA
ADADELTA dynamically adapts the learning rates based on past 

gradients without the need for manual tuning. It utilizes moving 
averages of both squared gradients and parameter updates to scale 
the gradients effectively, as shown in Equations 15–17 (Zeiler, 2012).

E[g2]t = ρ ·E[g2]t−1 + (1− ρ) · g2
t (15)

Δθt = −
√Δθ2

t−1 + ϵ

√E[g2]t + ϵ
· gt (16)

θt = θt−1 +Δθt (17)

Where:
E[g2]t is the exponentially decaying average of squared 

gradients,
ρ is the decay rate,
Δθt is the parameter update.
All three models were trained using each of the five optimizers. 

The training was carried out in a controlled environment, ensuring 
the same number of epochs, batch size, and data augmentation 
techniques. The model is trained using the training data for a total 
of 30 epochs and a batch size of 20. The choice of 30 epochs was 
based on preliminary experiments, where we observed that all three 
models consistently converged within this range without signs of 
overfitting. Using a fixed number of epochs ensured fairness and 
comparability across models and optimizers. Moreover, callbacks 
were implemented to dynamically adjust the learning rate during 
training. While the dataset size (130 patients) is relatively small, it 
was chosen due to its availability in the DMR-IR database and the 
variability it provides across healthy, benign, and malignant cases. 
This limitation is acknowledged, but the use of data augmentation 
and k-fold cross-validation helped to mitigate its impact. The 
number of epochs and batch size, while not subjected to active 
experimentation, were chosen specifically to facilitate a fair and 
systematic experimental comparison between the models. Callbacks 
function, are used to dynamically adjust the learning rate during 
training based on the validation loss, allowing the model to adapt 
as it learns. The start and end times of the training are recorded, 
and the total training time is computed to assess the computational 
efficiency of the training process. Upon completion of the training, 
the performance of the model is evaluated on the entire dataset, 
and the final loss and accuracy are observed. The results are 
presented in Section 5.1. 

3.5 Quantitative analysis

Quantitative analysis was conducted among the three deep 
learning models: U-Net, U-Net with Spatial Attention, and U-
Net++. The flowchart in Figure 7 outlines the systematic process of 
conducting k-fold cross-validation analysis for evaluating the three 
pre-trained segmentation models.
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FIGURE 7
Flowchart of k-fold cross-validation analysis for model’s quantitative evaluation.

The evaluation begins by loading the pre-trained model. Test 
images and their corresponding masks are then loaded, and the 
dataset is divided into subsets for k-fold cross-validation. Within 
each fold, the data is further split into training and validation sets. 
For each validation image, it is resized to match the model’s input 
shape and then preprocessed. The model predicts masks for these 
images, which are converted into binary format. Various evaluation 
metrics are calculated, and the results, including the original image, 
true mask, and predicted mask, are visualized for inspection. After 
evaluating all validation images in a fold, the metrics are aggregated. 
Mean and standard deviation of the metrics are computed across 
all folds. The results are presented in Section 5.2. These provide a 
comprehensive overview of the model’s overall performance and its 
consistency across different subsets of the dataset. 

3.5.1 Evaluation metrics
The following metrics are considered to evaluate the 

segmentation accuracy of the models, where:
TP (True Positives) are the pixels that are correctly classified as 

positive,

FP (False Positives) are the pixels that are incorrectly classified 
as positive,

TN (True Negatives) are the pixels that are correctly classified as 
negative,

FN (False Negatives) are the pixels that are incorrectly classified 
as negative. 

3.5.2 Intersection over union (IoU)
This metric given in Equation 18 evaluates the overlap between 

the predicted and true masks. A higher IoU indicates better 
segmentation accuracy.

IoU = TP
TP+ FP+ FN

(18)

 

3.5.2.1 Dice coefficient
The Dice coefficient given in Equation 19 is another measure of 

the overlap between two binary images, which provides insights into 
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the model’s precision and sensitivity.

Dice = 2×TP
2×TP+ FP+ FN

(19)
 

3.5.2.2 Precision and recall
Precision quantifies the number of correct positive predictions 

made by the model, as given by Equation 20, while recall, in Equation 
20, measures the model’s ability to identify all positive instances.

Precision = TP
TP+ FP

(20)

Recall = TP
TP+ FN

(21)

 

3.5.2.3 Sensitivity and specificity
Sensitivity in Equation 22 gauges the model’s ability to correctly 

identify positive instances, whereas specificity in Equation 23 
evaluates the model’s performance in correctly identifying negative 
instances.

Sensitivity = TP
TP+ FN

(22)

Specificity = TN
TN+ FP

(23)

 

3.5.2.4 Pixel accuracy
This metric in Equation 24 determines the percentage of pixels 

that are correctly classified, offering a straightforward measure of the 
model’s accuracy at the pixel level.

Pixel Accuracy = TP+TN
TP+TN+ FP+ FN

(24)
 

3.5.2.5 ROC-AUC
The Receiver Operating Characteristic Area Under the Curve 

provides a measure of the model’s ability to distinguish between the 
classes, with a value closer to 1 indicating superior performance. 

3.5.2.6 PR-AUC
The Precision-Recall Area Under the Curve evaluates the 

model’s precision-recall trade-off, especially useful when classes are 
imbalanced. 

4 Qualitative analysis

A qualitative analysis of the segmentation results generated 
by the three pre-trained segmentation models is performed 
through the utilization of Grad-CAM (Gradient-weighted 
Class Activation Mapping) heatmaps. The process of Grad-
CAM heatmap visualization is outlined in the flowchart of
Figure 8.

Grad-CAM heatmaps serve as a crucial tool for understanding 
the decision-making process of deep learning models, particularly 
in the context of image segmentation. The Grad-CAM heatmap 
visualization begins with the loading of the pre-trained 

segmentation model. Grayscale test images, representative of 
thermal data, are then loaded into the system. Each test image 
undergoes resizing to align with the pre-trained segmentation 
model’s input dimensions, accompanied by pre-processing steps 
to ensure compatibility with the model’s expectations. Subsequently, 
the pre-trained model processes the loaded test images, generating 
predictions while employing Grad-CAM to visualize regions of 
interest significantly contributing to the model’s decision.

The Grad-CAM heatmap computation involves leveraging 
gradients of the target class, specifically features indicative of 
breast tissue, with respect to the model’s final convolutional 
layer. These gradients are globally average-pooled to derive 
importance weights for each feature map. The identification 
of regions of interest is then accomplished by using these 
weights to highlight areas crucial for the model’s decision-making. 
The ensuing step involves overlaying the generated Grad-CAM 
heatmaps onto the original grayscale images, visually elucidating 
the correspondence between highlighted regions and actual features 
in the thermal images. This overlay process is systematically 
repeated for all test images, facilitating a comprehensive qualitative 
analysis of the model’s predictions and the corresponding regions of
interest.

Grad-CAM heatmaps serve as a crucial tool for understanding 
the decision-making process of deep learning models, particularly 
in the context of image segmentation. The Grad-CAM heatmap 
visualization begins with the loading of the pre-trained 
segmentation model. Grayscale test images, representative of 
thermal data, are then loaded into the system. Each test image 
undergoes resizing to align with the pre-trained segmentation 
model’s input dimensions, accompanied by pre-processing steps 
to ensure compatibility with the model’s expectations. Subsequently, 
the pre-trained model processes the loaded test images, generating 
predictions while employing Grad-CAM to visualize regions of 
interest significantly contributing to the model’s decision. The Grad-
CAM heatmap computation involves leveraging gradients of the 
target class, specifically features indicative of breast tissue, with 
respect to the model’s final convolutional layer. These gradients 
are globally average-pooled to derive importance weights for 
each feature map. The identification of regions of interest is then 
accomplished by using these weights to highlight areas crucial for the 
model’s decision-making. The ensuing step involves overlaying the 
generated Grad-CAM heatmaps onto the original grayscale images, 
visually elucidating the correspondence between highlighted 
regions and actual features in the thermal images. This overlay 
process is systematically repeated for all test images, facilitating a 
comprehensive qualitative analysis of the model’s predictions and 
the corresponding regions of interest.

Grad-CAM involves computations that are succinctly expressed 
through the following formulas (Selvaraju et al., 2016). 

4.1 Gradient-weighted global average 
pooling

Grad-CAM calculates the importance weights by performing 
global average pooling on the gradients of the target class 
with respect to the feature maps. This is mathematically 
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FIGURE 8
Flowchart of Grad-CAM heatmap visualization for model’s qualitative evaluation.

represented by Equation 25 as:

αc
k =

1
Z
∑

i
∑

j

∂Yc

∂Ak
ij

(25)

Where:
αc

k is the importance weight for the k− th feature map in the c−
th class,

Z is the normalization factor,
Yc is the final prediction score for class c,
Ak

ij is the activation in the k− th feature map at position (i, j). 

4.2 Weighted sum of feature maps

The weighted sum of feature maps is computed using Equation 
26 to obtain the heatmap, denoted as Lc

Grad‐CAM:

Lc
Grad‐CAM = ReLU(∑

k
αc

kAk) (26)

Where:

Ak represents the k-th feature map. 

4.3 Overlaying heatmap onto original 
image

The overlay operation in Equation 27 involves combining the 
Grad-CAM heatmap (Lc

Grad‐CAM) with the original image (I):

Resultant Image =Heatmap Weight

× Lc
Grad‐CAM + (1−Heatmap Weight) × I (27)

Where:
The Heatmap Weight determines the intensity of the 

heatmap overlay.
The Grad-CAM heatmap visualization offers valuable insights 

into the interpretability of the model. It aids in understanding which 
regions of the input images are pivotal for the model’s predictions, 
thereby contributing to the overall assessment of the model’s 
performance in thermography-based breast region segmentation. 
The results of the qualitative analysis are presented in Section 5.3. 
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4.3.1 Evaluation criteria
The segmentation outputs generated by each model are visually 

inspected from the Grad-CAM heatmaps to qualitatively assess the 
performance. The following criteria are analyzed: 

4.3.1.1 Breast region overlap
The extent to which the Grad-CAM heatmap aligns with 

the actual breast region in the thermal images is examined. The 
following scoring system is employed: 

5 (Excellent): The Grad-CAM heatmap effectively highlights the 
component of breast region, aligning precisely with the breast 
boundaries.

4 (Good): The heatmap predominantly covers the breast area 
with minor inconsistencies in the highlighting.

3 (Moderate): The heatmap shows activations over parts of the 
breast, but with gaps or inaccuracies.

2 (Poor): Activations in the heatmap are sparse over the breast 
region, lacking coverage, and accuracy.

1 (Very Poor): The heatmap does not effectively highlight 
the breast region, lacking clear correlation with the actual 
boundaries.

4.3.1.2 Noise Handling
The presence of noise or random activations in non-relevant 

areas of the Grad-CAM heatmap is observed: 

5 (Excellent): There is minimal to no noise, with activations 
concentrated on the breast area.

4 (Good): There are a few minor instances of noise, limited and 
not significantly affecting the heatmap quality.

3 (Moderate): Some noise is present in non-relevant areas but 
does not obscure the breast region entirely.

2 (Poor): Noticeable noise patterns interfere with the clear 
depiction of the breast region.

1 (Very Poor): The heatmap is predominantly noisy with little 
meaningful activation in the breast region, making accurate 
identification impossible.

The color scheme used in the generated heatmaps utilized ‘jet’ 
colormap, where cool colors show low activations, and warm colors 
represent high activations. The interpretation of these colors is 
aligned with the model’s confidence levels, with warmer colors 
indicating higher confidence in the presence of breast tissue. The 
following aspects are considered: 

1. Cool Colors (Blue/Green): Regions in the heatmap represented 
by cooler colors indicate low activations. These areas might 
correspond to regions where the model is less certain about 
the presence of breast tissue. The alignment of these low 
activation areas with non-breast regions or ambiguous features 
is examined.

2. Warm Colors (Yellow/Red): Areas in the heatmap represented 
by warmer colors indicate high activations. These regions 
correspond to the areas where the model is most confident 
about the presence of breast tissue. The accuracy of these high 
activation areas in capturing the actual breast tissue is assessed.

3. Transition Zones (Green to Yellow to Red): Transitional 
areas between cool and warm colors are analyzed. Smooth 
transitions from cool to warm colors along the boundaries of 

TABLE 1  Final loss of different optimizers across U-net, U-net with 
spatial attention, and U-Net++ models.

Optimizer U-Net U-Net with spatial 
attention

U-Net++

ADAM 0.0357 0.0437 0.0381

NADAM 0.0514 0.0502 0.0584

RMSPROP 0.0416 0.0442 0.0424

SGDM 0.2041 0.2860 0.2800

ADADELTA 0.6732 0.6806 0.6777

the breast tissue indicate gradual changes in activation levels, 
demonstrating accurate localization and segmentation.

5 Results

As stated, the annotations were carried out solely for 
experimental purposes and not for clinical application, since they 
were not performed by certified technicians. To mitigate potential 
bias, we followed standardized guidelines and performed cross-
verification among the authors to ensure consistency and accuracy 
of the masks. We believe that this limitation does not compromise 
the reliability of the reported findings. Nevertheless, we fully agree 
that the inclusion of annotations from certified medical experts 
would add another layer of validation, and we consider this an 
important direction for future work. 

5.1 Model training and evaluation results

To determine the optimal optimizer for training the deep 
learning models, a thorough comparative evaluation was conducted 
using five different optimizers: ADAM, NADAM, RMSPROP, 
SGDM, and ADADELTA. The evaluation focused on three key 
metrics: final loss, final accuracy, and training time. These metrics 
provide insight into the efficacy and efficiency of each optimizer 
in training the segmentation models. The final loss measures how 
well the model fits the training data, the final accuracy indicates the 
proportion of training data correctly classified by the model, and 
the training time reflects the optimizer’s computational efficiency. 
The results of this comparative evaluation are presented in Table 1–3. 
Which are also graphically represented in Figures 9–11.

The findings presented demonstrate significant variations in 
the efficacy of different optimization algorithms when applied 
to the three distinct deep learning models, U-Net, U-Net with 
Spatial Attention, and U-Net++. ADAM emerges as the preeminent 
optimizer for these models, consistently yielding the most favorable 
outcomes in terms of reduced loss values and heightened accuracy 
scores. The U-Net model, when trained using the ADAM optimizer, 
demonstrated notable performance with a final loss of 0.0357 and 
an accuracy of 0.9637. These results are highly competitive when 
compared to the others. In relation to the duration of the training, 
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TABLE 2  Final accuracy of different optimizers across U-net, U-net with 
spatial attention, and U-Net++ models.

Optimizer U-Net U-Net with spatial 
attention

U-Net++

ADAM 0.9637 0.9613 0.9631

NADAM 0.9584 0.9590 0.9561

RMSPROP 0.9617 0.9614 0.9622

SGDM 0.9030 0.8679 0.8702

ADADELTA 0.6598 0.6675 0.6605

TABLE 3  Training time of different optimizers across U-net, U-net with 
spatial attention, and U-Net++ models.

Optimizer U-Net U-Net with spatial 
attention

U-Net++

ADAM 663.81 s 687.92 s 1,036.33 s

NADAM 709.93 s 711.29 s 1,059.80 s

RMSPROP 677.83 s 743.26 s 1,054.91 s

SGDM 691.45 s 702.98 s 1,068.53 s

ADADELTA 679.32 s 704.77 s 1,082.66 s

both the U-Net and U-Net with Spatial Attention architectures 
exhibit a notable level of efficiency, demonstrating comparable or 
reduced training times when compared to the U-Net++ model, 
regardless of the optimizer employed. The U-Net++ model exhibits 
a consistently longer training duration, which can be attributed 
to its intricate architectural design. The NADAM and RMSPROP 
optimizers exhibit comparable performance, albeit with marginally 
elevated loss values and diminished accuracy scores in comparison 
to the ADAM optimizer. In contrast, SGDM demonstrates notably 
elevated loss values and diminished accuracy scores across all three 
models, suggesting that it may not be the optimal selection for these 
specific models. Among the five optimizers, ADADELTA exhibits 
the poorest performance, characterized by significantly elevated loss 
values and notably decreased accuracy scores, along with relatively 
long training durations.

Using 20%–30% of the data for validation is a common 
practice in deep learning and medical image classification studies, 
as it provides a balance between training and validation sizes 
(Szegedy et al., 2016). While this proportion allows for an initial 
assessment of model performance, we acknowledge that the dataset 
size remains limited for testing the model’s generalizability to 
new or unseen data. Regarding the fixed 30 training epochs, 
this number was chosen to maintain consistency across all 
models and optimizers, with careful monitoring of training and 
validation loss to ensure convergence and prevent overfitting. 
Through our experiments, these settings proved suitable for 
all models to achieve optimal performance within the current 
dataset scope (Ding et al., 2022).

In conclusion, the ADAM optimizer is implemented for 
the training of the three segmentation models for its superior 
performance in this study. The training process of the models, using 
the ADAM optimizer, is visualized using their loss and accuracy 
graphs over the number of epochs. Figure 12, depict the convergence 
of each model throughout the training process. The training loss 
metric serves as a measure of the model’s ability to fit the data, 
whereas the accuracy metric reflects the frequency with which the 
model’s predictions align with the actual outcomes. Over the course 
of 30 epochs, the models demonstrated a progressive decline in the 
loss values and a steady improvement in accuracy, while guided by 
the ADAM optimizer.

5.2 Quantitative analysis results

K-fold cross-validation analysis was conducted to evaluate 
the three pre-trained segmentation models using 30% of the 
entire dataset. Detailed metrics, as outlined in Section 4.5, were 
meticulously examined. The evaluation results for U-Net, U-Net 
with Spatial Attention, and U-Net++ are presented in Tables 4–6, 
respectively. Each table provides a detailed breakdown of metrics 
such as Intersection over Union (IoU), Dice coefficient, precision, 
recall, sensitivity, specificity, pixel accuracy, ROC-AUC, and PR-
AUC for every fold (k = 1–10).

The U-Net model exhibited robust performance with an average 
IoU of 0.9292 and a standard deviation of 0.0136. Notably, the 
Dice coefficient averaged at 0.9630, indicating a high degree 
of accuracy in segmentation. Precision, recall, and specificity 
consistently maintained their values across folds, underscoring the 
model’s effectiveness in classifying true positives and negatives. Pixel 
accuracy reached an average of 0.9703, signifying precise pixel-level 
segmentation. The model’s discriminative ability, as measured by 
ROC-AUC and PR-AUC, was substantial, averaging at 0.9680 and 
0.9472, respectively.

The U-Net with spatial attention model exhibited competitive 
results, with an average IoU of 0.9290 and a low standard 
deviation of 0.0095. The Dice coefficient showed a mean value of 
0.9630, underlining accurate segmentation. Precision and specificity 
demonstrated consistent values across folds, indicating reliable 
positive classification. The ROC-AUC and PR-AUC averaged 
0.9704 and 0.9466, respectively, emphasizing the model’s strong 
discriminative ability.

The U-Net++ model showcased competitive performance, with 
an average IoU of 0.9251 and a standard deviation of 0.0128. The 
Dice coefficient reached an average of 0.9608, indicating accurate 
segmentation results. Precision and specificity displayed consistent 
values, highlighting the model’s ability to accurately classify positive 
samples. The ROC-AUC and PR-AUC, measuring the model’s 
discriminative ability, averaged 0.9665 and 0.9389, respectively.

Comparative analysis of the results from each segmentation 
model is conducted by observing the mean and standard deviation 
for the evaluation metrics which are summarized in Tables 7 and 8, 
which are also graphically represented in Figures 13, 14.

In terms of IoU, U-Net and U-Net with Spatial Attention 
demonstrate similarly high values of 0.9292 and 0.9290, respectively, 
with U-Net++ slightly lower at 0.9251. This metric reflects the degree 
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FIGURE 9
Graph of Final Loss of different optimizers across U-Net, U-Net with Spatial Attention, and U-Net++ Models.

FIGURE 10
Graph of Final Accuracy of different optimizers across U-Net, U-Net with Spatial Attention, and U-Net++ Models.

FIGURE 11
Graph of Training time of different optimizers across U-Net, U-Net with Spatial Attention, and U-Net++ Models.

of overlap between the predicted and ground truth segmentations, 
indicating the models’ effectiveness in capturing the target region.

The Dice Coefficient, another measure of segmentation 
accuracy, exhibits comparable performance among the models, 

with U-Net leading at 0.9630, followed closely by U-Net with Spatial 
Attention and U-Net++.

Precision, Recall, and Sensitivity metrics focus on different 
aspects of classification accuracy. U-Net consistently outperforms 
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FIGURE 12
(a) Loss and (b) Accuracy of U-Net, (c) Loss and (d) Accuracy of U-Net with Spatial Attention, and (e) Loss and (f) Accuracy of U-Net++ over number of 
epochs using ADAM optimizer.

the other models in Precision, emphasizing its ability to minimize 
false positives. On the other hand, U-Net with Spatial Attention and 
U-Net++ show competitive performance in Recall and Sensitivity, 
highlighting their capacity to identify true positives.

Specificity measures the models’ ability to correctly identify true 
negatives, and U-Net maintains a slight advantage over the others in 
this regard. Pixel Accuracy, reflecting the overall accuracy of pixel-
wise classification, indicates similar performance across the models.

The ROC-AUC and PR-AUC values, assessing the models’ 
discrimination and precision-recall trade-offs, exhibit minor 
variations among the models. Tables 4–6 provide the performance 
metrics measurement for UNet, UNet++ and UNet with spatial 
Attention and are discussed in Appendix A.

The standard deviations provided in Table 7 offer insights into 
the stability and consistency of each model’s performance across 
different metrics. Generally, U-Net demonstrates lower standard 
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TABLE 4  Evaluation metrics for the breast region segmentation folds using U-net model.

Metric k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

IoU 0.9283 0.9393 0.9421 0.9084 0.9135 0.9374 0.9396 0.9282 0.9464 0.9087

Dice Coefficient 0.9627 0.9687 0.9702 0.9513 0.9544 0.9676 0.9688 0.9627 0.9725 0.9514

Precision 0.9545 0.9862 0.9875 0.8681 0.9889 0.9867 0.9914 0.9903 0.9753 0.9922

Recall 0.9380 0.9619 0.9583 0.9652 0.9388 0.9549 0.9552 0.9568 0.9749 0.9549

Sensitivity 0.9380 0.9619 0.9583 0.9652 0.9388 0.9549 0.9552 0.9568 0.9749 0.9549

Specificity 0.9737 0.9876 0.9924 0.9087 0.9950 0.9908 0.9949 0.9926 0.9729 0.9927

Pixel Accuracy 0.9605 0.9752 0.9792 0.9304 0.9768 0.9758 0.9799 0.9768 0.9740 0.9741

ROC-AUC 0.9559 0.9747 0.9753 0.9369 0.9669 0.9728 0.9751 0.9747 0.9739 0.9738

TABLE 5  Evaluation metrics for the breast region segmentation folds using U-net with spatial attention model.

Metric k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

IoU 0.9267 0.9235 0.9422 0.9239 0.9239 0.9451 0.9373 0.9230 0.9316 0.9125

Dice Coefficient 0.9617 0.9601 0.9702 0.9601 0.9603 0.9717 0.9676 0.9598 0.9646 0.9535

Precision 0.9216 0.9782 0.9893 0.8966 0.9633 0.9849 0.9907 0.9764 0.9634 0.9924

Recall 0.9595 0.9665 0.9644 0.9769 0.9644 0.9704 0.9583 0.9641 0.9690 0.9593

Sensitivity 0.9595 0.9665 0.9644 0.9769 0.9644 0.9704 0.9583 0.9641 0.9690 0.9593

Specificity 0.9520 0.9801 0.9934 0.9299 0.9825 0.9893 0.9945 0.9816 0.9597 0.9928

Pixel Accuracy 0.9548 0.9736 0.9822 0.9479 0.9767 0.9814 0.9808 0.9739 0.9646 0.9763

ROC-AUC 0.9558 0.9733 0.9789 0.9534 0.9735 0.9799 0.9764 0.9728 0.9644 0.9761

PR-AUC 0.8992 0.9615 0.9679 0.8847 0.9405 0.9681 0.9652 0.9572 0.9498 0.9721

TABLE 6  Evaluation metrics for the breast region segmentation folds using U-Net++ model.

Metric k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

IoU∗ 0.9340 0.9352 0.9252 0.8994 0.9187 0.9469 0.9243 0.9113 0.9342 0.9215

Dice Coefficient 0.9657 0.9664 0.9610 0.9460 0.9575 0.9727 0.9606 0.9535 0.9659 0.9588

Precision 0.9294 0.9883 0.9732 0.8377 0.9749 0.9848 0.9877 0.9633 0.9707 0.9860

Recall 0.9616 0.9653 0.9690 0.9695 0.9489 0.9658 0.9575 0.9619 0.9651 0.9569

Sensitivity 0.9616 0.9653 0.9690 0.9695 0.9489 0.9658 0.9575 0.9619 0.9651 0.9569

Specificity 0.9571 0.9894 0.9832 0.8831 0.9884 0.9893 0.9927 0.9711 0.9680 0.9868

Pixel Accuracy 0.9588 0.9779 0.9777 0.9163 0.9756 0.9795 0.9794 0.9671 0.9665 0.9721

ROC-AUC∗ 0.9593 0.9774 0.9761 0.9263 0.9686 0.9775 0.9751 0.9665 0.9666 0.9719

PR-AUC∗ 0.9079 0.9706 0.9550 0.8239 0.9415 0.9654 0.9618 0.9434 0.9550 0.9648
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TABLE 7  Mean of evaluation metrics for U-net, U-net with spatial 
attention, and U-Net++ models.

Metric U-Net U-Net with spatial 
attention

U-Net++

IoU 0.9292 0.9290 0.9251

Dice Coefficient 0.9630 0.9630 0.9608

Precision 0.9721 0.9657 0.9596

Recall 0.9559 0.9653 0.9621

Sensitivity 0.9559 0.9653 0.9621

Specificity 0.9801 0.9756 0.9709

Pixel Accuracy 0.9703 0.9712 0.9671

ROC-AUC 0.9680 0.9704 0.9665

PR-AUC 0.9472 0.9466 0.9389

TABLE 8  Standard deviation of evaluation metrics for U-net, U-net with 
spatial attention, and U-Net++ models.

Metric U-Net U-Net with spatial 
attention

U-Net++

IoU 0.9292 0.9290 0.9251

Dice Coefficient 0.9630 0.9630 0.9608

Precision 0.9721 0.9657 0.9596

Recall 0.9559 0.9653 0.9621

Sensitivity 0.9559 0.9653 0.9621

Specificity 0.9801 0.9756 0.9709

Pixel Accuracy 0.9703 0.9712 0.9671

ROC-AUC 0.9680 0.9704 0.9665

PR-AUC 0.9472 0.9466 0.9389

deviations compared to U-Net with Spatial Attention and U-Net++, 
suggesting more consistent results.

In summary, the evaluation metrics collectively suggest that 
U-Net performs competitively, demonstrating strong segmentation 
accuracy and consistency. U-Net with Spatial Attention and U-
Net++ exhibit comparable performance, with slight variations in 
specific metrics. These findings contribute valuable information for 
selecting an appropriate model based on the desired trade-offs in 
thermography-based breast region segmentation. 

5.3 Qualitative analysis results

Visual inspection of the segmentation results was conducted 
using the Grad-CAM heatmaps, focusing on the predicted region of 

interest generated by each model. Figures 15–17 display the Grad-
CAM heatmaps for U-Net, U-Net with Spatial Attention, and U-
Net++, respectively. The color patterns and transitions are observed 
from the heatmaps, providing a visual representation of how the 
model assigns importance to different areas in the thermal images. 
This visual inspection aids in understanding which regions the 
model identifies as crucial for predicting the presence of breast 
tissue, contributing to the interpretability of the model’s decision-
making process.

Table 9 presents the comparative scores of Breast Region 
Overlap (BRO) and Noise Handling (NH) for U-Net, U-Net with 
Spatial Attention, and U-Net++ across 30% test images. The scores 
range from 1 (Poor) to 5 (Excellent) which were explained in 
Section 4.6.1.

Table 10 presents the comparative averaged scores of qualitative 
evaluations for the U-Net, U-Net with Spatial Attention, and 
U-Net++ models across two criteria: Breast Region Overlap 
and Noise Handling. A corresponding visual representation is 
provided in Figure 18, depicting the average scores for these models.

In terms of Breast Region Overlap, U-Net stands out with an 
impressive average score of 4.10, indicating a significant ability 
to align precisely with the breast boundaries in thermal images. 
On the other hand, both U-Net with Spatial Attention and U-
Net++ exhibit lower average scores of 2.10 and 2.13, respectively, 
suggesting a diminished capability to accurately overlap with the 
actual breast region.

In terms of Noise Handling, U-Net excels with a high average 
score of 4.7, show-casing robust noise handling and concentrated 
activations on the breast area. In contrast, U-Net with Spatial 
Attention and U-Net++ struggle with noise, as indicated by their 
average scores of 2.53 and 1.83, respectively. These models face 
challenges in maintaining clarity in depicting the breast region due 
to noticeable noise patterns.

The overall analysis highlights U-Net’s superior performance in 
both Breast Region Overlap and Noise Handling compared to U-
Net with Spatial Attention and U-Net++. Furthermore, U-Net with 
Spatial Attention and U-Net++ exhibit comparable performance, 
with U-Net++ showing a slight improvement. 

6 Discussion

The results of the comprehensive evaluation of different 
optimizers for training deep learning models in breast region 
segmentation reveal notable variations in efficacy across U-Net, U-
Net with Spatial Attention, and U-Net++. The ADAM optimizer 
consistently outperforms other algorithms, demonstrating reduced 
loss values and heightened accuracy scores. Surprisingly, the 
foundational U-Net, trained with ADAM, stands out in terms of 
effectiveness, challenging conventional assumptions regarding the 
necessity of architectural complexity for improved outcomes.

The competitive performance of U-Net, despite its foundational 
design, prompts a reconsideration of the presumed direct correlation 
between architectural complexity and segmentation accuracy. The 
nuanced perspective emerging from this study questions the 
prevailing notion that more intricate models necessarily yield 
superior results in the specific context of breast region segmentation 
in thermal images.
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FIGURE 13
Mean of evaluation metrics chart for U-Net, U-Net with Spatial Attention, and U-Net++ models.

FIGURE 14
Standard Deviation of evaluation metrics chart for U-Net, U-Net with Spatial Attention, and U-Net++ models.

The comparative analysis of quantitative results across 
evaluation metrics provides valuable insights. U-Net exhibits strong 
segmentation accuracy and consistency, outperforming U-Net with 
Spatial Attention and U-Net++. Despite comparable outcomes 
in certain metrics, U-Net maintains lower standard deviations, 
indicating more stable and consistent performance.

The findings highlight the significance of U-Net’s foundational 
architecture, challenging assumptions about the need for complex 
models in breast region segmentation. The study’s outcomes 
contribute valuable information for selecting models based 
on desired trade-offs in thermography-based breast region 
segmentation.

Visual inspection of Grad-CAM heatmaps reinforces the study’s 
quantitative findings. U-Net’s impressive Breast Region Overlap and 

Noise Handling scores suggest its robustness in precisely aligning 
with breast boundaries and handling noise. In contrast, U-Net with 
Spatial Attention and U-Net++ face challenges in noise handling, 
indicating potential areas for improvement in these models.

The averaged scores further underscore U-Net’s superior 
performance in both criteria, highlighting its effectiveness in breast 
region segmentation. This aligns with the quantitative results and 
strengthens the argument for considering foundational U-Net as a 
viable option in this application.

The study opens avenues for future research by challenging 
established assumptions and providing a nuanced perspective on the 
relationship between model architecture, optimization strategies, 
and segmentation efficacy. Further investigations could explore 
the transferability of these findings to other medical imaging 
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FIGURE 15
Grad-CAM heatmaps of Predicted Region of Interest for U-Net.
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FIGURE 16
Grad-CAM heatmaps of Predicted Region of Interest for U-Net with Spatial Attention.
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FIGURE 17
Grad-CAM heatmaps of Predicted Region of Interest for U-Net++.

Frontiers in Bioinformatics 21 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1609004
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Rosli et al. 10.3389/fbinf.2025.1609004

TABLE 9  Comparative scores of breast region overlap (Bro) and noise 
handling (Nh) for U-net, U-net with spatial attention, and U-Net++ 
models across test images.

Test image U-Net U-Net with 
spatial 

attention

U-Net++

BRO NH BRO NH BRO NH

H81 4 4 2 3 2 2

H82 5 5 2 2 2 2

H83 4 4 2 2 2 1

H84 5 5 2 3 2 2

H85 5 5 2 3 2 2

H86 4 5 3 2 2 2

H87 4 5 2 3 2 2

H88 4 5 2 3 2 2

H89 5 5 2 3 2 2

H90 4 4 2 2 2 2

H91 3 3 3 1 1 1

H92 3 3 2 2 2 2

H93 4 5 3 3 3 2

H94 3 5 2 3 3 2

H95 3 5 2 3 2 2

H96 4 5 2 2 3 2

H97 4 5 2 3 2 2

H98 4 5 2 3 2 1

H99 3 4 3 2 2 1

H100 4 5 2 3 2 2

S21 4 4 2 3 2 2

S22 5 5 2 2 3 2

S23 4 5 2 1 3 1

S24 4 5 2 3 2 2

S25 4 5 2 3 2 2

S26 5 5 1 2 2 2

S27 5 5 2 2 2 2

S28 5 5 2 3 2 2

S29 4 5 2 3 2 2

S30 3 5 2 3 2 2

TABLE 10  Comparative averaged scores of qualitative evaluations for 
U-net, U-net with spatial attention, and U-Net++ models.

Criterion U-Net U-Net with 
spatial 

attention

U-Net++

Breast Region Overlap 4.10 2.10 2.13

Noise Handling 4.7 2.53 1.83

FIGURE 18
Averaged scores of qualitative evaluations for U-Net, U-Net with 
Spatial Attention, and U-Net++ Models.

applications and datasets. Additionally, efforts to enhance the noise 
handling capabilities of more complex models like U-Net with 
Spatial Attention and U-Net++ may lead to improved overall 
performance.

In conclusion, this study challenges the status quo in deep 
learning for breast region segmentation by showcasing the 
effectiveness of the foundational U-Net with the ADAM optimizer. 
The findings have broader implications for the development of 
deep learning models in medical image analysis, encouraging 
researchers to reconsider the balance between model complexity 
and performance in specific applications. Table 11 compares 
performance of three models, showing that U-Net achieves highest 
boundary accuracy, robustness to noise, and faster training with 
greater stability when optimized with ADAM, making it the most 
effective for breast region segmentation. Although U-Net with 
Spatial Attention and U-Net++ offer marginal improvements in 
some quantitative metrics, they struggle more with noise handling 
and require longer, less stable training periods, with ADAM 
remaining the optimal optimizer across all models.

The choice of optimizer, particularly ADAM, proved to be 
crucial across all models, with U-Net trained using ADAM 
consistently achieving the lowest loss (∼0.0357) and the highest 
average accuracy, demonstrating its effectiveness in minimizing 
errors and enhancing model performance. Grad-CAM heatmaps 
further highlighted that simpler models like U-Net more effectively 
delineate breast borders and exhibit greater resilience under noisy 
conditions, which is essential for medical imaging applications. 
Although attention mechanisms are generally intended to improve 
model focus on relevant regions, empirical results indicated they 
do not significantly outperform the baseline U-Net in noisy 
thermography images and may introduce additional training 
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TABLE 11  Comparative chart summarizing the performance of U-Net, U-Net with Spatial Attention, and U-Net++.

Model Key 
performance 

metrics

Qualitative 
observations

Observations on 
Noise handling

Training time 
and stability

Optimal 
optimizer

U-Net -IoU (∼0.935–0.945)
Dice (∼0.961–0.972)

- Precision 
(∼0.929–0.987)

- ROC-AUC 
∼0.955–0.979

- Strong Boundary and 
Overlap scores
- Robustness 

demonstrated via 
Grad-CAM heatmaps

- Handles noise 
effectively (scores ∼4.7/5 

in qualitative 
assessment)

- (lower standard 
deviation)

- Faster training (∼30 
epochs)

ADAM

U-Net with Spatial 
Attention

- Slight improvements in 
some metrics but limited 

evidence of clear 
advantage

- Slightly better in some 
cases but faces 

challenges with noise

- Struggles with noise, 
noisier Grad-CAM 
heatmaps (∼2.53/5)

- Slightly longer training 
time; more complex; less 

stable

ADAM

U-Net++ - IoU (∼0.913–0.945)
- Dice (∼0.953–0.971)

- Precision 
(∼0.837–0.990)

- Slight improvement in 
some metrics but less 
transparent in noise 

handling

- Less effective noise 
suppression; higher 

noise artifacts observed

- Longer training 
durations due to 

architectural complexity

ADAM

instability. Overall, this comparison suggests that the foundational 
U-Net—when optimized with ADAM—strikes an optimal balance 
of simplicity, robustness, interpretability, and computational 
efficiency, whereas the added architectural complexity of U-
Net++ and attention-based models does not substantially enhance 
performance and may even create vulnerabilities in handling noisy 
thermal data for breast region segmentation. 

6.1 Statistical validation and key insights

While the evaluation metrics demonstrate strong performance 
across all three U-Net variants, statistical validation is essential to 
assess whether the observed differences are significant. A pairwise 
Wilcoxon signed-rank test was applied across the folds of cross-
validation for IoU and Dice scores, comparing U-Net against U-
Net++ and U-Net with Spatial Attention. Results indicated no 
statistically significant improvement (p > 0.05) for the more complex 
models over baseline U-Net. This suggests that architectural 
sophistication does not guarantee superior outcomes in breast 
region segmentation using thermal images.

A critical insight from this study is the effectiveness of simpler 
models. The baseline U-Net with ADAM optimizer consistently 
produced high Dice (0.9630), IoU (0.9292), and specificity (0.9801) 
while maintaining computational efficiency and stability. These 
findings highlight that in medical image analysis, especially with 
limited datasets, robust optimization and careful training can 
outweigh added architectural complexity. Thus, for clinical or 
resource-constrained applications, standard U-Net trained with 
ADAM offers the best balance between accuracy, interpretability, 
and computational cost, making it a practical and reliable choice. 

6.2 Novelty and contribution

This study makes a significant contribution to the field of 
thermography-based breast region segmentation by systematically 

evaluating and comparing the performance of three deep learning 
models—U-Net, U-Net with Spatial Attention, and U-Net++. The 
novelty of this research lies in its comprehensive analysis of 
the impact of different optimizers on model training, focusing 
on ADAM, NADAM, RMSPROP, SGDM, and ADADELTA. 
Beyond technical benchmarking, the study emphasizes dataset 
transparency, explicitly detailing the source, acquisition protocol, 
imaging device, and availability of the DMR-IR dataset, thereby 
ensuring reproducibility and reliability for future studies. A 
key finding is the superior performance of the baseline U-Net, 
particularly when trained with the ADAM optimizer. Despite 
being less complex than its variants, U-Net demonstrated high 
segmentation accuracy, interpretability through Grad-CAM, and 
reduced computational cost—highlighting that simplicity coupled 
with robust optimization can outperform architectural complexity.

From a clinical perspective, these results are highly relevant. U-
Net’s ability to deliver strong precision and specificity reduces false 
positives, which is critical in breast cancer screening workflows. 
Meanwhile, the attention-based U-Net, with its improved sensitivity, 
may be suited to applications requiring the detection of subtle 
or ambiguous abnormalities. Together, these findings suggest 
that thermography, combined with deep learning segmentation, 
has potential as a low-cost adjunct to existing screening tools, 
particularly in resource-limited settings. This research contributes 
valuable insights into the selection of model architectures and 
optimizers for accurate and interpretable breast region segmentation 
in thermal images. The results provide a foundation for future 
research, guiding the development of advanced methodologies in 
medical imaging while also reinforcing the translational potential 
of thermography for clinical decision support. A key limitation of 
this study is that the manual annotations used to generate ground-
truth masks were performed solely by the authors. Although cross-
verification procedures were applied to minimize bias, the absence 
of certified radiologist annotations restricts the clinical validity of 
the segmentation masks. Future work will address this limitation 
by incorporating expert medical annotations to further strengthen 
reliability.
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Appendix A

Since our results reported for each fold of the ten-fold cross-
validation (Tables 4–6), we conducted a paired statistical analysis 
across the folds. We used the Friedman test for the three models, 
followed by pairwise Wilcoxon tests with Holm correction, and 
also reported effect sizes (Cohen’s dz). The analysis showed no 
statistically significant differences between the models in IoU and 

Dice across the folds (e.g., Friedman for IoU: p ≈ 0.90, Dice: p ≈ 0.84; 
all pairwise comparisons were non-significant after correction). This 
result is consistent with the small observed differences and the 
difficulty of achieving substantial improvement over the baseline 
U-Net model. We note that the tests were conducted on cross-
validation folds, which are not fully independent, making the 
analysis conservative; hence, we used non-parametric paired tests 
to account for this.
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