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Introduction: Lung adenocarcinoma (LUAD) is the most common subtype of 
non-small cell lung cancer, and its benefit from immune checkpoint inhibitors 
(ICIs) is controversial, especially for patients without driver gene mutations. The 
potential of immunoregulation-related genes (IRGs) in predicting the prognosis 
of LUAD and the efficacy of immunotherapy becomes emerging. There is an 
urgent need to establish a reliable IRGs-based predictive model of ICI response.
Methods: Extract and merge LUAD RNA sequencing data and clinical data 
from GEO database. The differences in genomic and tumor microenvironment 
(TME) cell infiltration landscape between normal lung tissue and tumor tissue 
were comprehensively analyzed. Unsupervised consistent cluster analysis based 
on genes related to immune regulation was performed on the samples. 
ESTIMATE and TIMER algorithms were used to analyze the infiltration of 
immune cells in different groups, and TIDE score was used to evaluate the 
effectiveness of immunotherapy. Then, lasso regression was used to establish 
a prognostic model based on identified key IRGs. XGBoost machine learning 
algorithm was further developed, with SHapley Additive exPlanations (SHAP) to 
interpret the model.
Results: The GEO LUAD cohort was divided into two clusters based on 
IRG expression, with significantly better survival outcomes and immune cell 
infiltration in the IRG-high group compared to the IRG-low group. TIDE scores 
indicated that the group with high IRG pattern showed a better response 
to ICI treatment. Then, we developed an IRG index (IRGI) model based on 
identified 2 key IRGs, GREM1 and PLAU, and IRGI effectively divided patients 
into high-risk and low-risk groups, revealing significant differences in prognosis, 
mutational profiles, and immune cell infiltration in the TME between two groups. 
Subsequently, the interpretable XBGoost machine learning model established 
based on IRGs could further improve the predictive performance (AUC = 0.975), 
and SHAP analysis demonstrated that GREM1 had the greatest impact on the 
overall prediction.  

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1613761
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1613761&domain=pdf&date_stamp=
2025-09-17
mailto:binan_email@163.com
mailto:binan_email@163.com
https://doi.org/10.3389/fbinf.2025.1613761
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1613761/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1613761/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1613761/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1613761/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1613761/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1613761/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Wang et al. 10.3389/fbinf.2025.1613761

Discussion: IRGI can be used as a valuable biomarker to predict LUAD patient 
prognosis and response to ICIs. IRGs play a crucial role in shaping the diversity 
and complexity of TME cell infiltration, which may provide valuable guidance for 
ICI treatment decisions for LUAD patients.

KEYWORDS

lung adenocarcinoma, immunotherapy efficacy, risk model, single-cell analysis, 
machine learning, prognosis 

Highlights

• IRGs correlate with patient prognosis and tumor immune cell 
infiltration

• High/low IRG patterns show distinct mutation profiles and 
tumor environment

• IRG index (IRGI) risk score predicts outcomes and 
immunotherapy response

• Interpretable machine learning model on IRGs improves 
predictive power

1 Background

Lung adenocarcinoma (LUAD) is the most common subtype of 
non-small cell lung cancer (NSCLC), accounting for a significant 
proportion of cancer-related deaths worldwide (Siegel et al., 2023; 
Zeng H. et al., 2024). Despite advancements in early detection and 
targeted treatment, the prognosis for patients with LUAD remains 
poor, particularly in the advanced stages. Among LUAD patients, 
those without driver gene mutations represent a particularly 
challenging patient subgroup, as they lack targeted therapeutic 
options and may not respond well to chemotherapy (Kim et al., 
2019). The advent of immune checkpoint inhibitors (ICIs) has 
revolutionized the treatment landscape for LUAD, demonstrating 
significant clinical benefits in some patients (Wang et al., 2023). 
However, patient responses to ICIs are highly heterogeneous, 
with only a subset of patients achieving durable responses, which 
highlights the urgent need for predictive biomarkers that can 
effectively differentiate between patients most likely to benefit from 
ICI and those may require alternative treatment strategies.

Recent research has demonstrated that immunoregulation-
related genes (IRGs) played a pivotal role in the complex interplay 
between the tumor and the immune system (Chen Y. et al., 
2021). They modulate tumor microenvironment (TME) and 
influence the balance between immune activation and suppression, 
and their expression levels can serve as early predictors of 
prognosis and response to immunotherapy (Nahar et al., 2018; 
Usó et al., 2017; Wang et al., 2024). In the context of LUAD, 
particularly in patients without driver gene mutations, IRGs could 
hold the key to unlocking the potential of immunotherapy and 
guiding more personalized treatment approaches.

The GTPase of immunity-associated protein (GIMAP) family 
genes, for instance, have been implicated in the tumorigenesis of 
LUAD and associated with immune cell infiltration and immune 
checkpoint molecules (Zhang et al., 2024; Moreira et al., 2023). Their 
expression levels in tumor tissue were significantly correlated with 

overall survival, suggesting their potential as prognostic biomarkers 
and predictors of immunotherapy response (Qin et al., 2022; 
Huang et al., 2016). Moreover, the development of IRG prognostic 
index has revealed the ability to predict patient prognosis and 
response to immunotherapy, reflecting the complex interactions 
within the TME and the diverse immunological characteristics of 
LUAD (Liu et al., 2023; He et al., 2023). In this study, we aim 
to provide an overview of the current understanding of IRGs for 
LUAD patients, focusing on their role in early prediction of patient 
prognosis and response to immunotherapy. We further discuss 
the biological mechanisms by which these genes influence tumor 
immunity, and the potential for integrating IRG-related biomarkers 
into the clinical practice to facilitate personalized therapeutic 
decision-making. 

2 Methods

The messenger RNA (mRNA) data and corresponding clinical 
parameters of a cohort comprising 226 normal samples and 
642 tumor samples from LUAD patients were extracted from 
the Gene Expression Omnibus (GEO) database. Among these, 
samples with missing survival information or an overall survival 
(OS) of less than 1 month were excluded. Immune-related genes 
were identified using Weighted Gene Co-expression Network 
Analysis (WGCNA), Cytoscape and other methods, followed by 
unsupervised consensus clustering based on IRGs. The ESTIMATE 
and TIMER algorithms were employed to analyze immune 
cell infiltration across different groups, and Tumor Immune 
Dysfunction and Exclusion (TIDE) scores were deployed to predict 
the efficacy of immunotherapy (Chi et al., 2020; Zeng D. et al., 
2024). Subsequently, a prognostic model of genes associated with 
patient outcomes was constructed using a least absolute shrinkage 
and selection operator (LASSO) Cox regression model. This 
model was independently validated in both the TCGA dataset 
and immunotherapy datasets, with potential therapeutic drugs 
identified. Finally, we used the XGBoost machine learning algorithm 
to evaluate the importance of variables, with SHapley Additive 
exPlanations (SHAP) employed to interpret the model. 

2.1 Collection of database data

A systematic search of the GEO database for LUAD gene 
expression data was conducted. Our analysis included four LUAD 
expression profile cohorts: GSE10072, GSE32863, GSE40791, 
and GSE68465 (Landi et al., 2008; Shedden et al., 2008; 
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Selamat et al., 2012; Zhang et al., 2012). We downloaded the 
matrix files for each GEO cohort for further analysis. All acquired 
RNA expression profiles were normalized using log2 (TPM +1) 
transformation. In total, we included 654 LUAD tumor tissue 
samples and 226 normal samples. To correct for batch effects 
caused by non-biological technical variation, we used the ComBat 
algorithm from the svaR package. 

2.2 Functional analyses

Differentially expressed genes (DEGs) between normal tissues 
and LUAD samples were identified using empirical Bayes methods 
in the limma R package (Ritchie et al., 2015). Significant DEGs 
were identified based on the cutoff of P < 0.05 and a dynamic 
threshold of |logFC| ≥ 0.828 (calculated as |logFC| ≥ [mean(|logFC|) 
+ 2sd(|logFC|)]) (Rong et al., 2020). Additionally, we performed 
a protein-protein interaction (PPI) analysis using the STRING 
database (https://cn.string-db.org) to explore the relationships 
among the DEGs. The PPI network was constructed with Cytoscape 
software, and key hub genes were identified by calculating 
Degree scores using the CytoHubba plugin (Shannon et al., 
2003). Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes (GO/KEGG) pathway enrichment analyses were deployed 
to identify the potential functions of DEGs. 

2.3 Consensus clustering

By utilizing the ConsensusClusterPlus (Wilkerson and Hayes, 
2010), an unsupervised consensus clustering analysis was performed 
to investigate the expression profile data of prognostic genes. The 
optimal number of clusters was determined based on the cumulative 
distribution curve, and the process was repeated 1,000 times to 
ensure the stability of the results. We have uploaded the complete 
code and parameter settings of ComBat and ConsensusClusterPlus 
to GitHub. For more details, please visit: https://github.com/
mikelu1997/consensus. 

2.4 Tumor immune microenvironment

Multiple algorithms, including ESTIMATE (Liu et al., 2020) 
and TIMER (Zhou et al., 2020), were employed to analyze the tumor 
immune microenvironment. The ESTIMATE algorithm was used 
to evaluate ESTIMATE scores, immune scores, and stromal scores, 
while the TIMER algorithms was utilized to assess the abundance of 
immune cell infiltration across different categories. 

2.5 Prediction of immunotherapy response

The TIDE score is an online tool (http://tide.dfci.harvard.edu/)
designed to evaluate the efficacy of immunotherapy in different 
risk groups and assess the likelihood of tumor immune evasion 
(Wang et al., 2022). A higher TIDE score indicates poorer response 
to ICIs. In this study, we identified LCN2, MUC4, CDH17, COMP, 
GREM1, COL11A1, MMP9, THBS2, COL1A2, COL3A1, PLAU, 

CNTF, CXCL13, CXCL9, and CCL19 genes were associated with 
response to ICIs (Chen D. et al., 2021). We further extracted the 
expression values of these 15 genes to analyze the expression patterns 
of immune checkpoint-related genes in different groups. 

2.6 Construction and validation of 
IRG-related risk signature

We developed a RiskScore signature to comprehensively 
evaluate the role of IRGs in patient prognosis and response to 
immunotherapy. The glmnet R package was used to perform 
LASSO-Cox regression analysis with 10-fold cross-validation. 
Ultimately, a linear equation for immunoregulation-related gene 
index (IRGI) was constructed to predict overall survival (OS) of 
early-stage LUAD patients: RiskScore = [coef (Siegel et al., 2023) 
× GeneExp (Siegel et al., 2023)] + [coef (Zeng H. et al., 2024) 
× GeneExp (Zeng H. et al., 2024)] + …+ [coef(i) × GeneExp(i)] 
(Zhou et al., 2019). Kaplan-Meier curves were generated using the 
survival and survminer R packages to conduct prognostic analysis 
and to evaluate 2-year, 3-year, and 4-year survival rates in the test 
cohort. To validate the effect of IRGI risk model in predicting patient 
prognosis and therapeutic response to immunotherapy, external 
datasets, including GSE72094, the Cho cohort (Cho et al., 2020), and 
VanAllen cohort (Van Allen et al., 2015), were utilized. 

2.7 Single-cell RNA sequencing analysis

The GSE229353 (Hui et al., 2023) data set includes single-cell 
RNA-sequencing (scRNA-seq) data from six LUAD samples treated 
with immunotherapy. Quality control procedures were applied to 
filter single cells based on the following criteria: 1) Each gene was 
expressed in more than 200 genes and in more than 3 cells; 2) The 
number of genes expressed in a cell ranged from 500 to 50,000; 
3) The percentage of mitochondrial genes in a single cell was less 
than 15% (Yates et al., 2025). After applying these filters, a total 
of 15,293 cells were retained. The SEURAT R package was used 
to process the scRNA-seq data. To eliminate batch effects across 
the six samples, the “FindIntegrationAnchors” and “IntegrateData” 
functions were applied. Next, the “ScaleData” function was used to 
scale scRNA-seq data, and principal component analysis (PCA) was 
performed to reduce dimensionality. Moreover, “FindClusters” and 
“FindNeighbors” functions were executed with parameters set to 
dim = 9 and resolution = 0.1 to cluster the single cells into different 
subgroups. We obtained cell markers for different cell types from 
CellMarker 2.0 (Hu et al., 2023) and used these markers to annotate 
the single cells. Finally, single cells were visualized using t-SNE plot 
generated by the “RunTSNE” function. 

2.8 Interpretable machine learning

The XGBoost model-related packages were loaded in R, 
and data was divided into training (70%) and validation (30%) 
sets using a stratified random sampling method. The XGBoost 
machine learning model was trained on the training set, and 
the predictive performance was evaluated using area under the 
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curve (AUC) values. To achieve a deeper understanding of the 
contribution of each feature in the model prediction, we applied 
SHAP to interpret the XGBoost model. The shap package was 
used to calculate the contribution values of each feature for 
individual samples. SHAP value analysis was conducted to rank the 
importance of each feature and identify its directional impact within 
the model. Furthermore, we generated feature importance plots, 
dependence plots, and force plots to visually represent the SHAP
analysis results. 

2.9 Quantitative reverse transcription PCR 
(qRT-qPCR)

Total RNA was extracted from normal human lung epithelial 
cells (BEAS-2B) and A549 lung adenocarcinoma cell lines using 
Trizol (Thermo Fisher Scientific, Sweden) (all cell lines were 
maintained according to the supplier’s recommendations). Reverse 
transcription was performed according to the instructions of the 
Takara Kit (Takara, Maebashi, Japan). SYBR Green Premix Ex 
Taq kit (Takara) was used to quantitatively detect PLAU and 
GRME1 in normal cells and lung adenocarcinoma cells. QRT-
PCR was performed using the Roche Applied Science Light 
Cycler 480 instrument. The cycle threshold (CT) (2–△△CT) 
method was employed to calculate the data. The normalized 
expression levels were compared with those of β-actin using the 
comparative CT method. The primers used in this study are 
presented in Supplementary Table S3. 

2.10 Statistical analysis

All data calculations and statistical analyses were performed 
using R programming (version 4.2.1). The Kaplan-Meier method 
was applied for survival analysis, and the predictive performance 
of the risk model was evaluated using time-dependent receiver 
operating characteristic (ROC) curves via the timeROC package. 
For comparisons between two groups of continuous variables, 
independent Student’s t-tests were used to analyze normally 
distributed variables, while the Mann-Whitney U test was 
employed for non-normally distributed variables. All two-sided 
statistical p-values less than 0.05 were considered statistically
significant. 

3 Results

3.1 Identification of DEGs and functional 
pathways regulating tumor immune 
microenvironment

The flow chart of this research is presented in Figure 1. 
First, to explore DEGs and their functional roles in regulating 
TME, we integrated four publicly available datasets in LUAD: 
GSE10072, GSE32863, GSE40791, and GSE68465. A comprehensive 
comparison of gene expression between normal and tumor samples 
determined 484 DEGs, consisting of 276 downregulated and 208 
upregulated genes (Figure 2A). To further identify key genes that 

regulate TME, we constructed a PPI network using the STRING 
database (network type: physical subnetwork, minimum required 
interaction score: 0.4) and Cytoscape software (Cytohubba plugin, 
Degree >15). This analysis identified a core PPI network comprising 
178 genes (Figure 2B). These genes were hypothesized to be involved 
in the regulation of TME and LUAD progression. To assess whether 
these crucial genes could distinguish between LUAD and normal 
tissue, we performed PCA to reduce the dimensionality of the 
gene expression data. The PCA results revealed two completely 
separate clusters, with normal samples and LUAD tumor samples 
forming distinct groups, suggesting significant differences in 
the expression patterns of key genes between the two groups 
(Figure 2C). A heatmap of these genes further emphasized their 
differential expression patterns across the samples (Figure 2D). 
Moreover, we conducted GO and KEGG enrichment analyses 
on the identified genes to uncover their biological functions. 
The enriched results revealed that the DEGs were significantly 
associated with immune response, metabolic processes, cell 
signaling, and cell proliferation and regulation (Figures 2E,F). 
These findings suggest that the identified DEGs may play 
pivotal roles in immune regulation and tumor progression, 
thereby highlighting their potential as therapeutic targets or
biomarkers in LUAD.

3.2 WGCNA detection of tumor-related 
modules and identification of key IRGs

We performed WGCNA to further identify co-expression 
modules and determine immune-regulatory key genes related to 
LUAD progression. A co-expression network was constructed based 
on mRNA expression data, which allowed to uncover tumor-
associated modules and genes (Figure 3A). To construct the scale-
free network, the optimal soft-thresholding power was determined 
to be β = 3, as evidenced by the analysis of network topology 
(Figures 3B,C). The co-expression network revealed a total of 
10 distinct modules. Notably, the black module exhibited the 
strongest correlation with immune clusters (r = 0.38, P = 7e-31, 
Figure 3D). This module contained 1,181 genes that significantly 
correlated with tumor biology (Supplementary Table S1). To further 
visualize the gene relationships within the black module, we 
generated a Topological Overlap Matrix (TOM) heatmap, which 
illustrated the degree of association and co-expression between 
genes (Figure 3E). Next, we intersected the DEGs, WGCNA tumor-
related modules, and immune-related genes from the ImmPort 
database (https://www.immport.org/shared/) (Xin et al., 2021), 
leading to the identification of 15 candidate IRGs (Figure 3F). 
These genes were significant upregulation in LUAD tumor samples 
compared to normal tissues (Figure 3G). Finally, we investigated 
the mutation landscape of these IRGs. Among the 517 LUAD 
samples, 35.0% of the patients exhibited mutations in at least one 
of the key genes. COL11A1 was the most frequently occurred 
mutation, followed by COL3A1, THBS2,COL1A2, CDH17, MUC4, 
MMP9, and COMP (Figure 3H). These findings highlight the pivotal 
role of these IRGs in LUAD, including their prognostic value as 
immune regulatory factors in cancer biology, and their predictive 
effect for immunotherapy efficacy.
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FIGURE 1
Flow chart of this study.

3.3 Consensus clustering analysis of 
immune-related gene expression

In order to investigate the relationship between immune-related 
prognostic genes and LUAD subtypes, we performed consensus 
clustering analysis. Based on the cumulative distribution function 
(CDF) values, we classified LUAD patients into two distinct 
clusters (k = 2, Figures 4A–D). Cluster 1 (n = 438) exhibited high 
expression levels of these immune-related genes and was defined 
as the IRG-high pattern, while Cluster 2 (n = 215) displayed low 
expression levels, categorized as the IRG-low pattern (Figure 4E). 
Notably, survival analysis revealed a significant survival difference 
between the two patterns. The IRG-high pattern was associated 
with a more favorable prognosis, while the IRG-low pattern was 
linked to poorer survival outcomes (Figure 4F). These results 
suggest that the expression levels of immune-related genes play 
a crucial role in influencing the prognosis of LUAD patients and 

could serve as a potential biomarker for patient stratification and 
therapeutictargeting.

3.4 Tumor microenvironment landscape in 
two molecular patterns

We utilized the ESTIMATE algorithm to compare the immune 
microenvironment between the two molecular patterns. The 
results demonstrated that the IRG-high model exhibited higher 
ESTIMATE, immune, and stromal scores compared to the IRG-
low model (Figure 4G). Additionally, according to TIMER scores, 
the IRG-high pattern was associated with increased abundance 
of immune cells, including B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, and dendritic cells (DC), as shown in Figure 4H. TIDE 
scores were also calculated to assess the potential clinical efficacy of 
immune therapy in different risk groups (Fu et al., 2020). TIDE is 
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FIGURE 2
Identifies LUAD genes related to TME regulation. (A) Volcano atlas showed differentially expressed genes between normal group and LUAD group (|FC| 
>0.83, P < 0.05). (B) Constructing protein-protein interaction (PPI) network between differentially expressed genes using STRING database. (C) Principal 
component analysis (PcoA) of key genes revealed two completely disjoint populations, indicating that these key genes could well distinguish tumor 
tissue from normal tissue. (D) Heat maps showed the differential expression patterns of key genes in tumor tissue and normal tissue. (E) GO enrichment 
analysis of differentially expressed genes. (F) KEGG enrichment analysis of differentially expressed genes.
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FIGURE 3
WGANA detection immune-related module. (A) Sample clustering trees and trait heat maps based on GEO transcriptome data present tumor-related 
modules. (B) Analysis of the scale-free fit index of the various soft threshold capabilities and the average connectivity of the various soft threshold 
capabilities. (C) Heat maps identify associated feature genomes called meta modules. (D) Thermal maps of the LUAD module and clinical features. (E)
TOM maps of all filtered genes based on their co-expression relationships are visualized by heat maps. (F) Venn diagrams showing common genes 
where key module genes, DEG and immune-related genes intersect. (G) Differential expression of IRGs between tumor and normal tissues. (H)
Mutational landscape of genes associated with immune activation.∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001.

a computational tool that reflects the potential for tumor immune 
evasion. Higher TIDE scores are generally associated with poorer 
efficacy of ICIs. In this study, we revealed that the IRG-low pattern 
had significantly higher TIDE scores compared to the IRG-high 

pattern, suggesting that patients in the IRG-high group might benefit 
more from ICI therapy (Figures 4I,J). These findings underscore the 
differences in the tumor immune microenvironment between the 
IRG-low and high groups, as well as their impact in determining 
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FIGURE 4
Subtype identification, survival analysis and tumor immune microenvironment analysis. (A) Consensus clustering shows that 2 clusters are the most 
stable. (B–D) Consensus clustering model, using the cumulative distribution function (CDF), with k values from 2 to 9. (E) Expression of IRG in both 
modes. (F) The difference in prognosis between the two models. (G) ESTIMATE score, immune score and matrix score for both models. (H) Abundance 
of immune cell infiltration calculated by TIMER algorithm. (I) TIDE analysis bar plot and heatmap. (J) TIDE scores for IRG-high and IRG-low groups.

the prognosis of LUAD patients and their potential response to 
immunotherapy. The differential TIDE scores further highlight the 
potential for personalized treatment strategies based on immune-
related molecular patterns. 

3.5 Construction of immunoregulation 
related gene index risk model

Using Spearman correlation analysis, we observed that 
most of the IRGs exhibited positive correlations with each 
other (Figure 5A). Furthermore, expression of some molecules, 

such as GREM1, MMP9, PLAU, CXCL13, CXCL9, and 
CCL19, was positively correlated with immune checkpoint 
molecules, especially programmed cell death-ligand 1 (PD-
L1) and cytotoxic T-lymphocyte associated protein-4 (CTLA-
4), with PLAU and GREM1 showing particularly significant 
correlations (Figures 5B–D). Based on the results from LASSO-
Cox regression analysis (Figures 5E,F), we selected PLAU and 
GREM1 as the optimal indicators for constructing the prediction 
model. GO/KEGG analysis indicated that both PLAU and 
GREM1 were enriched in the pathways of immune response 
regulation, immune cell infiltration, and the remodeling of the 
extracellular matrix. PLAU was involved in angiogenesis, cell 
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migration and invasion, and GREM1 was associated with the 
transforming growth factor (TGF)-beta signaling pathway, which 
was important for tumor progression and immune evasion 
(Supplementary Figure S1). We also explored single nucleotide 
variants and copy number variations correlation with the targeted 
PLAU and GREM1 gene expression, and both high PLAU and 
GREM1 expression was significantly associated with more TP53, 
CSMD3, and LRP1B mutations (Supplementary Figure S2). Upon 
reviewing the Human Protein Atlas (HPA) database, we analyzed 
immunohistochemistry (IHC) data for these key molecules and 
qualitatively observed obvious expression differences between 
normal and LUAD samples (Figure 5G).

Furthermore, we integrated four databases, including hTFtarget, 
ENCODE, GTRD and ChIP-Atlas, and identified five upstream 
regulatory transcription factors, namely CTCF, EP300, MAX, 
RAD21, and KDM4A, which are common to both PLAU and 
GREM1(Supplementary Figure S3). The risk score was calculated as 
follows: RiskScore = (−0.095) × (GREM1 expression) + (−0.002) 
× (PLAU expression). These results were then incorporated into 
the IRGI risk model. We calculated the IRGI risk score for each 
patient in the LUAD dataset based on the expression levels and risk 
coefficients of two key IRGs (PLAU and GREM1; Figure 5H). Low-
risk patients had significantly longer OS than high-risk patients (P 
< 0.001, hazard ratio [HR] = 0.49 [0.36–0.66]; Figure 5I). The ROC 
curve indicated the accuracy of this model, yielding an AUC value 
of 0.794 (95% confidence interval [CI]: 0.743–0.844) (Figure 5J). 
Furthermore, in the TCGA validation cohort, we confirmed OS 
of low-risk patients was significantly higher than that of high-
risk patients (p = 0.032, HR = 1.52 [1.04–2.24]) (Figure 5K). 
To further evaluate the efficacy of this model, we utilized time-
dependent ROC curves, which demonstrated good predictive ability 
of this IRGI risk model over a 4-year period (Figure 5L). We also 
performed chemotherapeutic drug predictions for patients with 
LUAD in the high-risk and low-risk groups to provide optimal 
treatment regimens. Cisplatin, Cyclophosphamide, Gemcitabine, 
Paclitaxel, Vinorelbine and Doceaxel were more effective for the 
high-risk group (Supplementary Figure S4). 

3.6 Validation of IRGI risk model in immune 
cohorts from GEO, external databases, and 
single-cell analysis

To validate the predictive value of the IRGI risk model in ICI 
therapy, we applied independent GSE and external datasets. In 
the GSE72094 validation cohort, patients with high expression of 
PLAU (P = 0.006; Figure 6A) and GREM1 (P < 0.001; Figure 6B) 
showed significantly worse OS compared to patients with low 
expression of these genes. However, when evaluating ICI therapy 
response in the Cho and VanAllen cohorts, high expression of 
PLAU and GREM1 was significantly associated with better survival 
outcomes, suggesting that these genes might be predictive of 
improved efficacy of anti-programmed death 1 (PD-1)/PD-L1 and 
anti-CTLA-4 therapy (Figures 6C–F). Further validation was carried 
out using the scRNA-seq data from GSE229353, which included 
6 NSCLC patients who underwent neoadjuvant chemotherapy or 
combination immunotherapy with chemotherapy. A total of 26,930 
single cells were initially obtained, with 15,293 cells remaining after 

stringent quality control procedures for subsequent analysis. The 
gene expression levels were normalized, and the single cells were 
clustered into 20 distinct clusters (Figure 6G). Moreover, based on 
markers from CellMarker2.0, the clusters were categorized into 7 
cell types (Figures 6H–J; Supplementary Table S2). The majority of 
the cells were identified as monocytes/macrophages and T-cells 
(both CD4+ and CD8+ T-cells), which are key participants in the 
immune response. These findings support that ICI therapy leads to 
increased T-cell infiltration and a better immune response, further 
corroborating the potential of the IRGI risk model in predicting the 
efficacy of immunotherapy.

3.7 Interpretable XGBoost machine 
learning model on IRGs with improved 
predictive performance

Sankey diagram showing the distribution of patients across 
different characteristics, and most of patients with the IRG-high 
pattern had IRGI low-risk score (Figure 7A). The combined model 
integrating IRG signature patterns with IRGI risk score also 
confirmed that patients with IRG-high pattern and IRGI low-risk 
score exhibited the significantly best survival, while patients with 
IRG-low pattern and IRGI high-risk score had the worst survival 
outcomes (P < 0.001; Figure 7B). To further improve the predictive 
effect, we developed XGBoost machine learning predictive model 
using pre-identified IRGs, and AUC value of the XGBoost model 
was strikingly improved to 0.975 (95% CI, 0.962–0.989; Figure 7C). 
SHAP analysis indicated that GREM1, CCL19, COMP genes 
ranked in the top three important contributions to the XGBoost 
model predictions (Figure 7D). The impact of each IRG feature 
on the prediction is illustrated in SHAP waterfall and force plots 
(Figures 7E,F). With the basal prediction of −0.172 in the XGBoost 
model, COL11A1, MMP9, CCL19, and PLAU increased the 
overall prediction by +1.36, +1.35, +0.802, and +0.605, respectively 
(Figures 7E,F). SHAP importance scatter plot demonstrated the 
SHAP values and feature values for a specific IRG (Figure 7G). 
Each dot represents a patient, and the color indicates the feature 
value. GREM1 had the highest median SHAP values, indicating the 
greatest impact on the overall prediction.

3.8 The mRNA expression levels of 
prognosis-related genes

The RT-qPCR results showed the mRNA expression levels of the 
two genes (GREM1 and PLAU) involved in our IRGI risk model in 
LUAD cells and normal lung epithelial cells. Specifically, compared 
with BEAS-2B cells, the mRNA expressions of GREM1 and PLAU 
in A549 cells were significantly upregulated, consistent with our 
database analysis findings (Figure 8).

4 Discussion

In this study, we utilized comprehensive RNA-seq datasets 
and multiple bioinformatic methods to accurately predict the 
prognosis and immunotherapy response of LUAD patients. Our 
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FIGURE 5
Construction of prognostic signature by IRGI. (A) Spearman was used to analyze the relationship among 15 IRGs. Negative correlation is blue and 
positive correlation is red. (B) Correlation of 15 IRGs with immune checkpoint molecules. (C) Correlation between PLAU expression and PD-L1 
expression. (D) The correlation between GREM1 expression and PD-L1 expression. (E,F) LASSO-Cox regression analysis based on 15 prognostic genes.
(G) The immunohistochemical staining results revealed significant differences of key molecules at the protein expression between normal and tumor 
tissues. (H) Proportion of deaths in high and low risk groups as RiskScore values increased. (I) Prognostic analysis of two risk groups in the GEO LUAD 
cohort. (J) ROC curve analysis of GEO LUAD cohort risk model over time. (K) Prognostic analysis of two risk groups in the TCGA LUAD cohort. (L)
Time-dependent ROC analysis of the TCGA LUAD cohort.
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FIGURE 6
Validation of external database data and Single-Cell analysis of single-cell sequencing data analysis. (A,B) Prognostic analysis of PLAU and GREM1 risk 
groups in the GSE72094 validation cohort. (C–F) In Cho and VanAllen cohorts, PLAU and GREM1 both effectively predicted the therapeutic efficacy of 
ICI. (G) t-SNE diagram after cell clustering. (H) Expression of marker genes in 7 cell types. (I) The distribution of 7 cell types is shown in the t-SNE 
diagram. (J) The ratio of mononuclear/macrophages to T cells (CD4+ and CD8+ T cells) in the six samples.

findings underscore the critical role of IRGs in survival prognosis 
and immunotherapy response. Based on IRGs, LUAD patients 
were stratified into two distinct subtypes: IRG-high and IRG-low 
patterns. Patients with the IRG-high pattern exhibited favorable 
survival outcomes. We further applied ESTIMATE and TIMER 
algorithms to assess immune infiltration, and demonstrated that the 
IRG-high patient subgroup exhibited a higher level of immune cell 
infiltration, including B cells, neutrophils, CD4+ T cells, and CD8+ T 

cells. Hence, the IRG-based subtyping could serve as a potential 
biomarker for prognostic risk stratification, especially through the 
construction of an interpretable machine learning model with 
robustly improved predictive performance. The IRGI risk score, 
which incorporates PLAU and GREM1, offers a novel approach 
to predicting outcomes and informing the identification of LUAD 
patients who are more likely to benefit from ICIs. Our results align 
with the growing body of literature that supports the integration 
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FIGURE 7
Interpretable XGBoost machine learning model construction. (A) Sankey maps based on IRG pattern, risk score, sex, age, smoking, and pathological 
stage. (B) Survival analysis based on IRG signature patterns and risk scores. (C) Receiver operating characteristic (ROC) curve for the predictive effect of 
IRG-based XGBoost machine learning model. (D) Bar plot showing the mean SHapley Additive exPlanations (SHAP) values for each IRG in the XGBoost 
model. IRGs are ranked by their relative importance in the overall model. SHAP waterfall plot (E) and force plot (F) showing the contribution of each 
IRG to the overall XGBoost model prediction. (G) SHAP beeswarm plot illustrating the impact of each IRG on the overall prediction. IRGs are ranked by 
their mean SHAP values, with points colored according to feature values (red for high, blue for low).

of immunogenomic profiling in personalized immunotherapy for 
LUAD (Zhang J. et al., 2020; Skoulidis and Heymach, 2019; 
Zhang C. et al., 2020; Zuo et al., 2020).

To evaluate the potential immune evasion capacity and predict 
patient responses to immunotherapy, we utilized the TIDE analysis 

and revealed that patients with IRG-high pattern had significantly 
lower TIDE scores compared to those with IRG-low, indicating that 
the IRG-high patient subgroup could benefit more from ICIs. The 
integration of IRGs into current therapeutic strategies for LUAD 
patients could potentially enhance treatment efficacy (Jiang et al., 
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FIGURE 8
Relative mRNA expression levels of GREM1 (A) and PLAU genes (B) in BEAS-2B cell line (left, black) and A549 (right, grey). Data were means ± SEM. 
Experiments were repeated three times.

2020; Song et al., 2020). By identifying patients with different 
IRG patterns, clinicians could tailor immunotherapy to those most 
likely to respond, thereby personalizing treatment approaches. Our 
findings also suggest the integration of IRG expression analysis 
with XGBoost machine learning algorithm could notably improve 
the effectiveness of risk assessment and treatment decision-making. 
To our knowledge, this is the first research leveraging the SHAP 
method to optimize and interpret the bioinformatic analysis results 
on IRGs. Future studies should further explore the synergistic 
effects and clinical utility of integrating IRGs with explainable 
artificial intelligence techniques to refine patient management 
strategies (Novakovsky et al., 2023).

In addition, we constructed the IRGI risk score signature based 
on two pivotal genes associated with immune activation: PLAU 
and GREM1. PLAU is a serine protease that promotes tumor cell 
migration and invasion by converting plasminogen to plasmin, 
which facilitates extracellular matrix degradation (Li et al., 2013; 
Maynard et al., 2020). Its high expression is often associated with 
increased tumor aggressiveness and poor prognosis in cancers 
such as colon cancer and NSCLC (Li et al., 2013; Maynard et al., 
2020). Meanwhile, PLAU may suppress anti-tumor immunity 
by altering the TME and facilitating immune evasion. GREM1 
acts as an antagonist of the bone morphogenetic protein (BMP) 
signaling pathway, primarily by inhibiting BMP2 and BMP4 
(Fregni et al., 2018; Liu et al., 2021; Verheyden and Sun, 2008). 
Aberrant expression of GREM1 could promote tumor angiogenesis, 
extracellular matrix remodeling, and suppression of BMP-mediated 
anti-tumor signaling, thereby accelerating tumor cell proliferation 
and migration. In our study, the functional validation of PLAU 
and GREM1 provided new avenues for therapeutic intervention, 
particularly considering the dynamic nature of TME and how 
it evolves in response to ICIs (Cai et al., 2020). Recent studies 

have highlighted the pivotal roles of PLAU and GREM1 in 
modulating tumor treatment responses. Under conventional 
therapeutic regimens, elevated PLAU expression promotes 
platinum-based chemotherapy resistance by enhancing DNA repair 
mechanisms and facilitating epithelial-mesenchymal transition 
(EMT) (Cui et al., 2024; Zheng et al., 2024). Furthermore, PLAU-
mediated extracellular matrix (ECM) remodeling fosters a hypoxic 
TME, shielding cancer cells from radiation-induced apoptosis 
and thereby contributing to radiotherapy resistance (Bigos et al., 
2024; Minchenko et al., 2014). GREM1 drives chemoresistance by 
antagonizing bone morphogenetic protein (BMP) signaling, thereby 
sustaining cancer stemness and suppressing apoptotic pathways 
(Yu et al., 2024; Hiroki et al., 2020). Notably, in EGFR-mutant 
LUAD, GREM1 overexpression perpetuates PI3K/AKT/mTOR 
pathway activation, sustaining tumor cell survival and proliferation, 
which consequently attenuates the efficacy of EGFR-TKIs such 
as osimertinib (Sin-Aye et al., 2020; Andreas et al., 2022). These 
findings posit GREM1 as a promising predictive biomarker for 
targeted therapy resistance. The immunomodulatory functions of 
these molecules hold significant implications for immunotherapy. 
High PLAU levels correlate with an immunosuppressive TME 
characterized by increased M2-like tumor-associated macrophages 
(TAMs) and reduced CD8+ T-cell infiltration—features consistently 
associated with poor responses to ICIs (Fan et al., 2021; Zhou et al., 
2021). Similarly, GREM1 orchestrates myeloid cell polarization, 
promoting recruitment of M2 macrophages and regulatory T 
cells (Tregs), while stimulating the release of immunosuppressive 
cytokines (e.g., L-10, TGF-β) and impairing DC function. These 
mechanisms collectively diminish the therapeutic efficacy of PD-
1 inhibitors (Liberty et al., 2023; Shipeng et al., 2024; Aji et al., 
2025).The integration of scRNA-seq data, as demonstrated in this 
study, offers a promising approach to dissect the heterogeneity 
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of LUAD and enhance our understanding of IRGs in tumor
progression and response to therapy.

Our study has several limitations. The retrospective nature 
of and the reliance on public datasets may introduce biases 
that could affect the generalizability of the results, and thus 
further validation in larger, prospective cohorts is warranted. 
Meanwhile, the complexity of the immune response and 
the functional implications of the identified IRGs should be 
considered in future research. Despite these limitations, this 
study shed light on the development of immunogenomic-based 
prognostication and personalized treatment strategies for LUAD
patients. 

5 Conclusion

This study has significant clinical implications. By integrating 
scRNA-seq with bulk RNA-seq data to construct IRG-based 
model, which could serve as a reliable and independent 
biomarker for predicting patient outcomes and immune cell 
infiltration levels. We further deployed an interpretable XGBoost 
machine learning algorithm to robustly improve the predictive 
performance, allowing for more personalized risk stratification 
and clinical decision-making. Additionally, we identify two 
novel key molecules significantly associated with LUAD patient 
prognosis and therapeutic response to immunotherapy. IRG-based 
signature enhances our understanding of the heterogeneity and 
complexity of immune cell infiltration and function in the TME, 
providing valuable insights into individualized immunotherapy
strategies.
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