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Background: Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition
with limited effective treatments, necessitating novel therapeutic strategies.
Bioinformatics offers a promising approach to identify new targets by analyzing
gene expression and drug interactions.

Objective: This study aims to identify novel therapeutic targets for NAFLD
through bioinformatics, focusing on drug repositioning and traditional Chinese
medicine (TCM) components.

Methods: Three NAFLD-related gene expression datasets (GSE260666,
GSE126848, GSE135251) were analyzed to identify differentially expressed
genes. Protein-protein interaction networks were constructed using STRING
and visualized with Cytoscape. Pathway enrichment analysis was performed,
and drug-gene interactions were explored using the DGIdb database. TCM
components were screened via the HERB database, with molecular docking
conducted to assess binding affinities.

Results: Key hub genes (CXCL2, CDKN1A, TNFRSF12A, HGFAC) were identified,
with significant enrichment in cell proliferation and PI3K-Akt signaling
pathways. Cyclosporine emerged as a potential repurposed drug, while TCM
components (curcumin, resveratrol, berberine) showed strong binding affinities
to NAFLD targets.

Conclusion: Cyclosporine and TCM compounds are promising candidates for
NAFLD treatment, warranting further experimental validation to confirm their
therapeutic potential.

KEYWORDS

non-alcoholic fatty liver disease, bioinformatics, drug repositioning, traditional Chinese
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is a multifactorial
and complex disorder recognized as a significant etiological factor
for liver cancer (McVey et al., 2022), although its pathogenesis
remains incompletely understood (Wang et al., 2017). NAFLD is
prevalent globally, with an estimated prevalence of approximately
30% in the general population and a significantly higher prevalence
in males (40% vs. 26%) (Zhang et al., 2021; Riazi et al., 2022;
Younossi et al., 2023). Most patients with NAFLD remain
asymptomatic; however, individuals progressing to metabolic-
associated steatohepatitis may experience symptoms such as
fatigue, malaise, and vague discomfort in the right upper quadrant
(Younossi et al., 2011; Le et al., 2023). The long-term prognosis of
NAFLD is primarily influenced by the presence of atherosclerotic
cardiovascular disease and extrahepatic malignancies. In cases
of advanced fibrosis, liver-related events, including hepatic
decompensation, hepatocellular carcinoma, liver transplantation,
and liver-related mortality, increase significantly (Sun et al., 2023;
Toader et al., 2025). Current therapeutic strategies for NAFLD
primarily encompass lifestyle modifications and pharmacological
interventions, including weight reduction, antihypertensive agents,
and hypoglycemic medications (Tsamos et al., 2023). However, due
to limited efficacy and generally suboptimal clinical outcomes, the
development of novel therapeutic agents remains a critical area of
research.

Drug repositioning entails identifying new indications for
approved drugs (Wang et al., 2025). This approach is distinguished
by its low risk and high efficiency, effectively addressing the
challenges of high costs and low success rates in new drug
development while expediting the market availability of therapeutic
agents, particularly for rare diseases (Hurle et al., 2013). Drug
repositioning has evolved from traditional random screening for
new indications to a more precise, computer-assisted research
phase. Nevertheless, computational drug-repositioning efforts are
hindered by algorithmic bias arising from incomplete or noisy omics
data, heterogeneous disease definitions, and the frequent absence
of prospective experimental validation, all of which can limit the
translational success of in silico predictions (Loscalzo, 2024).This
process involves integrating data from small-molecule ligand and
protein receptor databases, along with experimental validation,
to evaluate the feasibility of repurposing existing drugs for new
indications.

The Drug-Gene Interaction Database (DGIdb) is a specialized
and efficient resource that integrates drug-gene interaction
relationships (Huang et al., 2024). DGIdb can be accessed through
a programmatic interface or its web-based user interface for
interactive operations. The HERB database (Fang et al., 2021)
analyzes the gene expression profiles of traditional Chinese
medicines (TCMs) and their components, correlating these
profiles with the world’s largest pharmacogenomics database, the
Connectivity Map, to establish systematic links between TCM
components and modern drugs. In this study, bioinformatics
methods were employed to investigate differentially expressed genes
associated with NAFLD, thereby identifying novel therapeutic
agents for NAFLD and providing new directions for subsequent
drug development.

2 Materials and methods

2.1 Acquisition of gene expression
microarray data and screening for
differentially expressed genes

Relevant microarray datasets associated with NAFLD were
retrieved from the GEO microarray database (Clough et al., 2024)
(GEO, https://www.ncbi.nlm.nih.gov/geo/) using the keywords
“non-alcoholic fatty liver disease” and “NAFLD”. After comparison
and screening, three datasets (GSE260666, GSE126848, and
GSE135251) were ultimately selected for the study. Only human-
liver RNA-seq studies providing raw counts, ≥10 samples and
full NAFLD histology without drug-treatment confounders met
the eligibility criteria. To minimise cross-study batch effects,
differential expression was calculated inside each dataset with
GEO2R; subsequent analyses used the intersection of significant
genes across the three datasets, a strategy that bypasses direct data
merging and reduces technical bias. Expression data from NAFLD
liver tissues and normal liver tissueswere extracted from the samples
for comparative analysis. Differential expression was determined
using a combined criterion of |log2FC| ≥ 1 and an adjusted P value
<0.05; genes meeting these thresholds were classified as significantly
up- or downregulated accordingly. Finally, the intersection of
differentially expressed genes from the three datasets was identified,
and the shared genes were designated as the key differentially
expressed genes (DEGs) for this study.

2.2 Construction and visualization of
protein-protein interaction networks

The differentially expressed genes were entered into the
STRING database (Franceschini et al., 2013) (https://string-db.
org/) to construct a protein-protein interaction (PPI) network,
with an interaction threshold set at 0.400, which corresponds
to STRING’s medium-confidence score and is widely used to
achieve a balance between capturing biologically meaningful
interactions and minimizing false positives in large-scale analyses,
to identify proteins with significant interactions. Subsequently,
the PPI network was visualized using Cytoscape software
(version 3.9.1) (Shannon et al., 2003), and highly interconnected
protein interaction modules were identified using the MCODE
plugin to create corresponding visual network diagrams.The specific
parameters were set as follows: degree = 2, node score cutoff = 0.2,
k-core = 2, and maximum depth = 100.

2.3 GO enrichment analysis and KEGG
pathway analysis of differentially expressed
genes

The Omicshare online analysis tool (http://www.omicshare.
com/tools/index.php/) was utilized to perform Gene Ontology
(GO) secondary classification enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis on differentially expressed genes. Enrichment significance
was assessed with the hypergeometric test, and the resulting
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FIGURE 1
Venn diagram of differentially expressed genes.

FIGURE 2
Protein-protein interaction network (A). Module analysis and screening of core differentially expressed genes (B).

P values were corrected for multiple comparisons using the
Benjamini–Hochberg false-discovery rate method; pathways with
an adjusted P < 0.05 were considered significant. The species
selected for this analysis wasHomo sapiens, and the results included
biological processes, molecular functions, and cellular components
from the GO enrichment analysis, as well as related biological
pathway enrichment outcomes.

2.4 Analysis of drug-gene interactions

The identified differentially expressed genes associated
with NAFLD were entered into the DGIdb database (https://
dgidb.org) (Cannon et al., 2024) to identify potential drugs

that may target these core genes. Drugs predicted to exhibit
known interaction types with the core genes of NAFLD are
considered potential candidates for treating this condition.
Subsequently, the interactions between the potential drugs and
their corresponding target genes were visualized using Cytoscape
software.

2.5 Screening and prediction of potential
traditional Chinese medicine components
for the treatment of NAFLD

The differentially expressed genes were entered into the
HERB database (Fang et al., 2021) (http://herb.ac.cn/) to
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FIGURE 3
Bubble diagram of GO biological process enrichment analysis (A). Bubble diagram of functional enrichment analysis of GO molecules (B). Bubble chart
of GO Cellular Component enrichment analysis (C). The KEGG pathway enrichment circle plot places a scale for gene counts on its periphery; the first
ring presents the enriched categories and pathway IDs, with red indicating human diseases, blue denoting biological systems, and green representing
environmental information processing; in the second ring, bar length corresponds to the number of background genes and colour depth maps the
P-value, darker shades signifying smaller values; the third ring displays the total number of foreground genes; the fourth ring charts the enrichment
metric Rich Factor, where each minor gridline equals 0.1 and larger values denote stronger enrichment (D).

filter out traditional Chinese medicine components that have
a statistically significant mapping relationship (P < 0.05)
with these genes. A statistical analysis was conducted on
these traditional Chinese medicine components to examine
the distribution of their meridian affinities and efficacy
categories.

2.6 Molecular docking

The three-dimensional (3D) structure of the target compound
was downloaded from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/). Target protein structures were then selected
from the Protein Data Bank based on the following criteria: a
resolution below 2.5 Å and the presence of co-crystallized small-
molecule ligands. Subsequently, the selected compounds and target
proteins were submitted to the receptor-ligand docking platform
DockThor (https://dockthor.lncc.br/v2/) for molecular docking
analysis. The top-ranked docking results were visualized using
PyMOL 2.4.0 software. The binding stability between the molecules
was assessed by analyzing the docking affinity scores.

3 Results

3.1 Selection and screening of gene
expression data

The gene expression data selected for this study includes:
① A study published in 2004 by Xiangya Second Hospital of
Central South University, which analyzed the differential gene
expression in liver tissues of patients with NAFLD compared to a
control group. The dataset is identified as GSE260666 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE260666), comprising
a total of 16 samples, including 10 NAFLD samples and 6
normal liver tissue samples; ② A transcriptomic analysis across
the spectrum of non-alcoholic fatty liver disease published in
2020 by Newcastle University, with the dataset identified as
GSE135251 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE135251), comprising a total of 216 samples, including 206
samples at various stages of fibrosis and 10 normal liver tissue
samples; ③ A study published in 2019 by Gubler in Denmark
that compared the hepatic transcriptomic characteristics of patients
with varying degrees of non-alcoholic fatty liver disease to those of
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TABLE 1 KEGG pathway enrichment analysis results.

Pathway P-value

Melanoma 3.40 × 10−3

Glioma 3.77 × 10−3

Cytokine-cytokine receptor interaction 4.66 × 10−3

Lipoic acid metabolism 4.77 × 10−3

Prostate cancer 6.21 × 10−3

PI3K-Akt signaling pathway 1.34 × 10−2

JAK-STAT signaling pathway 1.68 × 10−2

MicroRNAs in cancer 1.73 × 10−2

Kaposi sarcoma-associated herpesvirus infection 2.23 × 10−2

Focal adhesion 2.47 × 10−2

Regulation of actin cytoskeleton 2.92 × 10−2

Butanoate metabolism 3.30 × 10−2

Linoleic acid metabolism 3.53 × 10−2

Phototransduction 3.53 × 10−2

Transcriptional misregulation in cancer 4.15 × 10−2

Thyroid cancer 4.22 × 10−2

Bladder cancer 4.79 × 10−2

healthy individuals with normal weight. The dataset is identified as
GSE126848 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE126848), comprising a total of 57 samples, including 14 normal
healthy liver tissue samples, 12 normal healthy obese liver tissue
samples, 15 samples of simple steatosis, and 16 samples of non-
alcoholic steatohepatitis with or without fibrosis.

3.2 Acquisition and selection method of
differentially expressed genes

Using P < 0.05 and |log2FC| ≥ 1 as the criteria for selection,
a total of 167 genes were identified in the dataset GSE260666,
including 100 upregulated genes and 67 downregulated genes. In
the dataset GSE135251, a total of 2,166 genes were identified,
including 871 upregulated genes and 1,295 downregulated genes.
In the dataset GSE126848, a total of 1,241 genes were identified,
including 526 upregulated genes and 715 downregulated genes.
By constructing a Venn diagram to analyze the intersection of
upregulated and downregulated genes from the three datasets, a
total of 34 differentially expressed genes were identified, including
16 upregulated and 18 downregulated genes (Figure 1).

3.3 Modular analysis of the protein-protein
interaction network

A total of 34 differentially expressed genes were entered into
the STRING database to construct the PPI network (Figure 2A),
resulting in 22 interactions. The network was then visualized and
analyzed for modularity using Cytoscape software (version 3.9.1)
along with the MCODE plugin, identifying the most significant
module, which is highlighted in red (Figure 2B). Further analysis
revealed that CXCL2, CDKN1A, TNFRSF12A, and HGFAC are
the key regulatory hub genes within this module of differentially
expressed genes.

3.4 Enrichment analysis

This study employed a significance threshold of P < 0.05 for
selection, resulting in a total of 231 entries from the GO enrichment
analysis. Among these, 161 entries pertain to biological processes,
including the negative regulation of DNA biosynthesis, RNA
splicing, and modulation of fibroblast proliferation. Forty-four
entries relate to molecular functions, encompassing interleukin-
33 binding, interleukin-1 receptor activity, and cyclin-dependent
protein kinase activating kinase activity. Additionally, 26 entries
correspond to cellular components, which include integrin α8-
β1 complexes, growth factor complexes, and the extracellular
environment. The top 20 results for biological processes,
molecular functions, and cellular components are illustrated in
bubble charts (Figures 3A–C).

TheKEGG enrichment analysis identified a total of 81 pathways,
of which 17 exhibited a significance level of P < 0.05, as detailed
in Table 1. The results indicate that these pathways are enriched
in several tumor-related processes, including cytokine interactions,
the PI3K-Akt signaling pathway, and butyrate metabolism, with
the melanoma pathway showing the strongest correlation. The
results of the KEGG enrichment analysis are presented in a
circular diagram (Figure 3D).

3.5 Analysis of drug-gene interactions

To explore potential therapeutic strategies, this study utilized
the DGIdb database to predict drugs that target the aforementioned
core genes (Figure 4).The selection criteria included drugs approved
by the U.S. Food and Drug Administration, resulting in a list of
chemical compounds (Table 2). A total of 22 drugs or compounds
targeting the core genes CDKN1A and CXCL2 were identified.
However, no drugs were predicted to potentially regulate the
HGFAC gene. The U.S. Food and Drug Administration has not
yet approved any drugs or compounds targeting TNFRSF12A.
To validate its causal role in NAFLD pathogenesis, an initial step
could involve pooled CRISPR-Cas9 knockout screens in human
hepatocyte-like cells subjected to lipotoxic stress. Subsequent
validation would include arrayed siRNA knock-down assays in
hepatic organoids derived from NAFLD patients. Key convergent
phenotypic readouts such as neutral lipid accumulation, NF-κB
signaling activity, and pyroptotic cytokine release could then
be assessed to confirm mechanistic involvement and identify
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FIGURE 4
Predicted potential drug interactions with core genes.

potential assay formats suitable for future small-molecule discovery.
Additionally, cyclosporine shows potential activity against
CDKN1A and CXCL2, making it a particularly promising novel
candidate compound for NAFLD treatment.

3.6 Results of herbal component screening

After inputting the core genes CXCL2 and CDKN1A, the
search results from the HERB database identified five components:
curcumin, resveratrol, ursolic acid, berberine, and tetrandrine.
Screening through the TCMSP database (https://www.tcmsp-e.
com) revealed that these components can be derived from various
TCMs, including Alpinia officinarum (Gaoliangjiang), Curcuma
longa (Jianghuang), Polygonum cuspidatum (Huzhang), Smilax
glabra (Tufuling), Coptis chinensis (Huanglian), Stephania tetrandra
(Fangji), and Cornus officinalis (Shanzhuyu).

3.7 Molecular docking

This study employs molecular docking techniques to investigate
the binding modes and characteristics of active components
from traditional Chinese medicine with the core genes CXCL2
and CDKN1A. The three-dimensional structures of the proteins
corresponding to the core genes were obtained from the Protein Data
Bank database. As indicated in Table 3, the binding energies of all

active components from traditional Chinese medicine with the target
proteins are below −5 kcal/mol, suggesting a strong binding affinity
betweenthesecomponentsandthecore targets (Wongetal., 2022).The
visualization results of the molecular docking (Figures 5A–E) further
reveal that these small molecules from traditional Chinese medicine
can interact with key amino acid residues of the target proteins
through hydrogen bonds, resulting in stable complex conformations.
Thefindingsof this studynotonlyvalidate thepotentialmechanismsof
action of these active components from traditional Chinese medicine
at the molecular level concerning targets related to NAFLD but
also provide a theoretical basis for their application in NAFLD
treatment. Guided by the principles of traditional Chinese medicine,
the aforementioned active components can be incorporated into
modified prescriptions to support the precise treatment of NAFLD,
thereby enhancing clinical efficacy.

4 Discussion

4.1 Impact of core differentially expressed
genes on the liver

This study utilized gene expression data from the GEO
database to identify differentially expressed genes associated with
NAFLD. The analysis revealed a total of 16 upregulated and 18
downregulated genes, with CXCL2, CDKN1A, TNFRSF12A, and
HGFAC exhibiting the highest composite scores.
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TABLE 2 Predicted drug–gene interactions and their DGIdb
interaction scores.

Gene Drug Interaction score

CDKN1A ARSENIC TRIOXIDE 0.13

CDKN1A CLADRIBINE 0.22

CDKN1A NICOTINE POLACRILEX 0.07

CDKN1A IRINOTECAN HYDROCHLORIDE 0.05

CDKN1A 4-PHENYLBUTYRIC ACID 0.17

CDKN1A CYCLOSPORINE 0.04

CDKN1A FLUOROURACIL 0.04

CDKN1A MELPHALAN 0.17

CDKN1A DICUMAROL 0.42

CDKN1A ACETAMINOPHEN 0.06

CDKN1A CELECOXIB 0.05

CDKN1A ROMIDEPSIN 0.12

CDKN1A EPOETIN ALFA 0.10

CDKN1A PACLITAXEL 0.03

CDKN1A CARBOPLATIN 0.04

CDKN1A PENTETIC ACID 1.12

CDKN1A FLUTAMIDE 0.17

CDKN1A VINBLASTINE 0.10

CDKN1A SODIUM SALICYLATE 0.84

CXCL2 DEFEROXAMINE 0.51

CXCL2 CYCLOSPORINE 0.10

CXCL2 ALTEPLASE 0.41

TABLE 3 Binding energy of Ingredients to genes.

Ingredient name Gene Binding energy
(kcal/mol)

curcumin CXCL2 −7.5

resveratrol CDKN1A −7.1

ursolic acid CDKN1A −8.3

berberine CDKN1A −7.8

tetrandrine CDKN1A −8.8

CXCL2, also known as C-X-C motif chemokine ligand 2, is
a chemokine that plays a crucial role in hepatic inflammatory
responses. Studies indicate that the expression level of CXCL2
is significantly elevated in the liver tissues of NAFLD patients,

primarily synthesized by intrahepatic macrophages (Han et al.,
2022). Ke-Qi Han et al. (Han et al., 2015) found that inhibiting
the expression of CXCL1 can slow the growth of liver tumors in
nude mice and suppress the expression of CXCL2, CXCL3, and
interleukin-1β. Cyclin-dependent kinase inhibitor 1A (CDKN1A),
a member of the Cip/Kip family, is positively correlated with
the inhibition of genes related to cell cycle progression and the
induction of senescence-associated genes (d'Adda di Fagagna, 2008;
Kreis et al., 2019). Lamas-Paz et al. (2025) discovered through
data analysis from various patient cohorts and mouse models
that the expression level of CDKN1A is significantly associated
with non-alcoholic steatohepatitis (NASH), liver fibrosis, and more
severe liver diseases such as cirrhosis and hepatocellular carcinoma,
with its overexpression exacerbating lipid metabolic disorders
and inflammatory responses. Mice with a knockout of CDKN1A
exhibit enhanced tolerance to metabolic liver injury, characterized
by attenuated liver damage, reduced cell death, inhibited fibrotic
progression, and improved lipid metabolism.

The member 12A of the tumor necrosis factor receptor family
(TNFRSF12A) plays a critical role in cholestatic liver disease.
Experiments have shown that hepatocyte apoptosis is closely
associated with the expression of TNFRSF12A, and inhibiting
TNFRSF12A expression can alleviate liver damage (Liao et al., 2023).
Hepatocyte growth factor activator (HGFAC) is secreted by the
liver, circulating in plasma and activated in injured tissues and
tumors (Fukushima et al., 2018). The expression level of HGFAC is
negatively correlated with the methylation of its promoter region,
suggesting that HGFAC expression may be regulated by DNA
methylation. Furthermore, the reduction in HGFAC expression is
significantly associated with a shortened survival period in liver
cancer patients (Yin et al., 2019).

4.2 Research progress on candidate
compounds for NAFLD treatment

This study suggests that Cyclosporine may represent a highly
promising novel candidate compound for the treatment of NAFLD.
Cyclosporine, as a calcineurin inhibitor, primarily functions to
suppress inflammatory responses and alleviate symptoms related to
irritation (Zhong et al., 2020). Clinically, this drug is widely utilized
to prevent graft-versus-host disease (GVHD) post-transplantation
and to treat various autoimmune disorders (Xie et al., 2024). In
recent years, studies have indicated that the potential therapeutic
applications of Cyclosporine in liver diseases have garnered extensive
attention. Studies have reported (Halestrap and Davidson, 1990)
that Cyclosporine can inhibit significant Ca2+-inducedmitochondrial
swelling in the liver and heart, a mechanism likely associated
with its regulatory effects on intracellular calcium homeostasis.
Calcium ions play a pivotal role in cellular signal transduction and
metabolicregulation,andtheirabnormalelevationiscloselyassociated
with the pathogenesis of various liver diseases. Kobayashi et al.
(2022) reported that the immunosuppressive agent Cyclosporine A
(CsA) confers notable neuroprotection in models of ischemic and
traumatic brain injury. This observation supports CsA’s established
role in immunemodulation and implies its potential hepatoprotective
capacity, possibly through the regulation of apoptotic and autophagic
pathways. Additionally, there is evidence to suggest that CsA could
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FIGURE 5
Molecular docking analysis of representative active compounds with core NAFLD-related targets. Curcumin was docked with CXCL2, forming
hydrogen bonds with lysine at position 181 (2.7 Å), glutamine at position 131 (2.5 Å), and glutamic acid at position 131 (2.4 Å) (A). Resveratrol interacted
with CDKN1A, establishing a hydrogen bond with leucine at position 118 (2.7 Å) (B). Ursolic acid bound to CDKN1A, forming hydrogen bonds with
tryptophan at position 47 (2.5 Å) and phenylalanine at position 98 (3.1 Å) (C). Berberine was docked with CDKN1A, generating a hydrogen bond with
glutamic acid at position 112 (2.4 Å) (D). Tetrandrine interacted with CDKN1A, forming hydrogen bonds with asparagine at position 36 (2.4 Å), histidine
at position 152 (2.9 Å), and aspartic acid at position 196 (2.8 Å) (E). These interactions demonstrate the strong binding affinities and structural stability
between natural compounds and NAFLD-related targets.

inhibit the progression of NAFLD by reducing oxidative stress within
hepatocytes. Despite its documented hepatotoxicity, CsA emerged as
themost promising repositioning candidate because it simultaneously
targets the two hub genes CDKN1A and CXCL2 and exhibited
one of the lowest docking free energies in our screen, indicating
a high likelihood of direct, multi-pathway activity against NAFLD.
The drug-vacant status of HGFAC, an extracellular serine protease
that zymogen-activates hepatocyte-growth factor, marks this node
as an attractive de novo target (Sargsyan et al., 2023). Its solvent-
exposed activation loop and trypsin-fold catalytic cleft provide a
tractable pocket for either covalent inhibitors or antibody blockade,
opening a route for first-in-class therapy. Moreover, decades of
pharmacokinetic data and recent advances in liver-targeted nano-
formulations provide realistic avenues to administer CsA at micro-
doses or with tissue-specific delivery, thereby minimizing systemic
exposure and liver injury while preserving therapeutic efficacy.
Nonetheless, the known hepatotoxic potential of CsA necessitates
careful dose management in future studies. Recent metabolomic
studies indicate a clear dose-dependent hepatotoxic effect of CsA: oral
micro-doses (<5 mg kg−1 day−1) administered for 4 weeks resulted
in mild, reversible biochemical changes in rats, whereas higher
doses (≥10 mg kg−1 day−1) significantly elevated circulating bile
acids and induced hepatic lipid accumulation (Yen et al., 2024).

Notably, hepatic lipid accumulation exacerbates NAFLD pathology,
thus conflicting with CsA’s therapeutic objectives (Losurdo et al.,
2018). Consequently, future NAFLD studies employing CsA should
restrict dosing to sub-immunosuppressivemicro-doses, accompanied
by rigorous therapeutic drug monitoring and routine assessments of
bile acids,ALT, andAST, therebymaximizingmetabolic benefitswhile
minimizing hepatotoxic risk.

4.3 Simultaneous treatment of liver and
spleen, clearing heat and resolving
dampness

The clinical manifestations of NAFLD primarily include
nausea, abdominal distension, loss of appetite, and fatigue.
These symptoms can be categorized in traditional Chinese
medicine as “intercostal pain,” “phlegm syndrome,” and
“accumulation.” The pathophysiological mechanisms of this disease
are primarily characterized by liver dysfunction and impaired spleen
transportation. This condition often exhibits a mixed pattern of
deficiency and excess, accompanied by qi and blood deficiency,
with the primary lesions located in the liver, while also involving
the spleen and kidneys, internal damp-heat accumulation, and
obstruction of the liver meridians. Therefore, the therapeutic

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1613985
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Zhang et al. 10.3389/fbinf.2025.1613985

principles should focus on promoting liver function, strengthening
the spleen, and clearing heat while transforming dampness. At
the molecular level, the chemokine CXCL2 drives neutrophil
infiltration and local inflammatory “heat,” mirroring the TCM
concept of damp-heat accumulation in the liver; CDKN1A-induced
cell-cycle arrest leads to hepatocellular stagnation, corresponding
to liver dysfunction; TNFRSF12A mediates bile-acid-triggered
pyroptosis and cholestatic injury, echoing “dampness obstructing
bile flow;” whereas HGFAC activates hepatocyte growth factor to
facilitate hepatic regeneration, functionally akin to reinforcing the
spleen to restore transformation and transportation.Collectively,
these gene–symptom correspondences forge a mechanistic bridge
between modern molecular pathology and traditional concepts,
highlighting why formulas that clear damp-heat, soothe the liver,
and fortify the spleen are rational strategies for correcting NAFLD-
related gene dysregulation. The two core genes and five components
identified in this study align with the therapeutic principles for
this disease. Notably, source tracing analysis and molecular docking
visualization indicate that Polygonum cuspidatum exhibits the
highest correlationwith this disease. Polygonum cuspidatum topped
the herb–gene network and its signature stilbenes (resveratrol,
polydatin) showed the strongest docking to NAFLD hub genes
CDKN1AandCXCL2, while its classical function of “clearing damp-
heat and invigorating blood” mirrors the disease’s inflammatory-
metabolic block. Resveratrol suppresses SREBP-1c mRNA and
upregulates PPAR-α, thereby diminishing lipid accumulation and
hepatocellular pathology in fatty liver disease (Mo et al., 2018).
Furthermore, Resveratrol effectively protects against high-fat-
induced liver injury by inhibiting endoplasmic reticulum stress
and promoting autophagy (Chen et al., 2020), thus offering new
avenues for the treatment of non-alcoholic fatty liver disease. The
component–gene associations obtained from the HERB database
in this study are merely statistical inferences based on similarities
between transcriptomic signatures; such inference cannot establish
a definitive regulatory relationship between the five active TCM
compounds and the hub genes. Future confirmation will require
ligand-binding assays, CRISPR-based perturbations, and validation
at the transcriptomic or proteomic level.

5 Conclusion

In summary, this study employed bioinformatics to investigate
the differentially expressed genes and associated pathways in
NAFLD. The findings suggest that Cyclosporine may serve as
a novel compound for the treatment of NAFLD. Furthermore,
TCMs such as Alpinia officinarum, Curcuma longa, Polygonum
cuspidatum, Smilax glabra, Coptis chinensis, Stephania tetrandra,
and Cornus officinalis may represent potential therapeutic agents.
Nevertheless, experimental validation is still required, and we
anticipate that ongoing advances in multi-omics technologies will
accelerate translational progress in this field.
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