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DNA sequencing technologies are widely used to study tumor evolution within
a cancer patient. However, analyses require various computational methods,
including those to infer clone sequences (genotypes of cancer cell populations),
clone frequencies within each tumor sample, clone phylogeny, mutational
tree, dynamics of mutational signatures, and metastatic cell migration events.
Therefore, we developed GenoPath, a streamlined pipeline of existing tools
to perform tumor evolution analysis. We also developed and added tools to
visualize results to assist interpretation and derive biological insights. We have
illustrated GenoPath’s utility through a case study of tumor evolution using
metastatic prostate cancer data. By reducing computational barriers, GenoPath
broadens access to tumor evolution analysis. The software is available at https://
github.com/SayakaMiura/GP.
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Introduction

Cancer progression is driven by an accumulation of somatic mutations (Pleasance et al.,
2010; Alexandrov and Stratton, 2014; Martincorena and Campbell, 2015; Martincorena,
2019). These mutations make tumors a genetically diverse population of cancer
cells (Marusyk et al., 2012; 2020; Cajal et al., 2020; Vitale et al., 2021). Bulk DNA
sequencing and data analysis are widely used to elucidate patterns of tumor evolution,
including the timing of driver mutations, shifts in mutational processes, and
inferences of metastatic migration paths (Jamal-Hanjani et al., 2017; Turajlic et al., 2018;
Al Bakir et al., 2023; Frankell et al., 2023).

To investigate the characteristics of tumor evolution, reconstruction of the
phylogeny of tumor cell populations (clone phylogeny) and analysis of the inferred
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phylogeny are essential (Schwartz and Schäffer, 2017; Stadler et al.,
2021). Each branch of a clone phylogeny represents the
accumulation of mutations, and branching events reflect the
genetic diversification of cancer cell populations (tumor clones).
By mapping mutations onto a clone phylogeny, researchers can
reconstruct mutational history and elucidate the timing of driver
mutation occurrences. Temporal dynamics of mutational processes
can be investigated by identifying branch-specific mutational
signatures. Additionally, the metastatic cell migration history can
be reconstructed when both primary and metastatic tumor samples
are sequenced.

However, practical tumor evolution analyses can be challenging.
Since bulk sequencing captures the aggregate genetic composition
of heterogeneous cell populations rather than individual cells,
such mutation profiles must first be deconvoluted into distinct
clone sequences. This requires specialized bioinformatics tools
(Miura et al., 2020; Laganà, 2022). Also, downstream analyses (e.g.,
clone phylogeny and mutational tree reconstruction, mutational
signature analysis, and metastatic migration inference) need
additional computational methods and tools (El-Kebir et al., 2018;
Christensen et al., 2020; Kumar et al., 2020; Miura et al., 2022).
Furthermore, interpreting output files is often difficult due to
the lack of a universal data format in tumor evolution analysis.
These factors create a barrier for researchers without computational
expertise.

We developed GenoPath, a Python-based command-line
tool that streamlines tumor evolution analysis to address these
challenges. GenoPath processes variant read counts (bulk DNA
sequencing data) from each tumor sample from the same patient
and executes various tumor evolution analyses. It infers clone
sequences, clone phylogenies, and mutational trees; identifies shifts
of mutational signatures and timing of driver mutation occurrences
during tumor evolution; and reconstructs metastatic cell migration
events. We also developed tools to visualize these results. GenoPath
makes tumor evolution analysis accessible to researchers with
varying expertise levels.

Methods

Overview of GenoPath

In the GenoPath pipeline, we integrated existing software
that had been previously benchmarked in the original studies,
i.e., CloneFinder (Miura et al., 2018), PhyloSignare (Miura et al.,
2022), PathFinder (Kumar et al., 2020), MEGA (Kumar et al., 2012),
and picante (Kembel et al., 2010). Since each tool requires a specific
input format, we developed preprocessing modules to parse and
format input files within the pipeline. Additionally, many of these
computational methods lack intuitive visual outputs, so we also
developed visualization tools to enhance the clarity of evolutionary
inferences. GenoPath is written in Python.

For GenoPath analysis, users are required to provide reference
(non-mutant) and mutant read counts for each variant position
across tumor samples (mutation profile), along with a list of driver
mutations and expected mutational signatures (Figure 1). In a given
mutation profile, the information on non-mutant base, mutant
base, and trinucleotide are additionally required for each variant.

GenoPath first infers clone sequences, clone frequencies, and clone
phylogeny from themutation profile. GenoPath utilizes CloneFinder
for this step. Due to the requirement in CloneFinder, at least four
tumor samples from the same patient are necessary. CloneFinder
infers clone sequences (M) and their frequencies ( f ) from observed
variant frequencies (V) by solving f ×M = V, under the assumption
that variant are not affected by copy number alterations (CNAs). It
further models tumor samples as being evolutionarily related and
searches for M and f. Using inferred clone sequences, CloneFinder
produces a maximum parsimony phylogeny, which represents the
evolutionary relationships among distinct tumor clones in a patient.
Each tip corresponds to a clone. The branching patterns denote
their ancestral relationships, which reflect how clones have diverged
from one another over time. We developed a visualization tool
so GenoPath can produce an intuitive graphic of inferred clone
phylogeny and clone frequencies, which was not included in
CloneFinder.

GenoPath next builds a mutational tree (temporal order of
somatic mutations) using the inferred clone sequences and clone
phylogeny. In a mutation tree, nodes correspond to groups of
mutations that occurred concurrently, and edges capture their
inferred order of accumulation during tumor evolution. To infer a
mutational tree, ancestral sequences are reconstructed at internal
nodes using the Maximum Parsimony approach implemented
in MEGA-CC (Kumar et al., 2012), which is appropriate because
the sequence divergence is relatively low. A mutation is assigned
to a branch when its base assignment differs from that of its
direct ancestral clone. GenoPath accordingly maps driver mutations
to branches of the clone phylogeny using a user-provided list
of driver mutations. Lastly, GenoPath produces a graphic of
the mutational tree with all driver mutations mapped to assist
mutational history analysis.

Amutational tree is also used for the PhyloSignare analysis in the
GenoPath pipeline. PhyloSignare identifies mutational signatures at
each edge of a given mutational tree, i.e., branches of an inferred
clone phylogeny. It uses an existing signature refitting method
(default: quadratic programming) to estimate relative activities of
signatures, which is followed by filtering out the spurious ones.
The approach assumes that neighboring branches in the phylogeny
share similar mutational signatures and that gains and losses of
signatures are rare during tumor evolution. GenoPath enhances
visualization for analyzing PhyloSignare results by generating a
layered representation of the tumor’s mutational landscape, a feature
not available in PhyloSignare. This visualization includes displays of
the fraction of detected mutational signatures at each edge of the
mutational tree (branch of clone phylogeny) and mutational profiles
for each edge.

In addition, GenoPath reconstructs metastatic tumor cell
migration history using inferred clone phylogeny and clone
frequencies using PathFinder. PathFinder estimates Bayesian
posterior probabilities of anatomical locations of ancestral clones
based on a given evolutionary relationship of clones (clone
phylogeny) and their location (clone frequency within tumor
samples). Clone migration events are inferred when connected
nodes in the phylogeny have different anatomical locations. Inferred
clone migration events are summarized into a tumor cell migration
graph. In a tumor cell migration graph, nodes represent physical
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FIGURE 1
Overview of GenoPath pipeline. GenoPath infers clone sequences, clone frequencies, and clone phylogeny using the observed read counts. The
inferred clone phylogeny and sequences are used to map driver mutations to branches and analyze the evolutionary dynamics of mutational
signatures. Also, clone phylogeny and clone frequencies are utilized to reconstruct metastatic tumor cell migration history and build a tumor sample
tree. GenoPath produces intuitive visualizations for each analysis, aiding in the interpretation and analysis of tumor evolution.

tumor locations and directed edges indicate the inferred direction
of clone movement.

GenoPath also builds a sample tree, which represents the
similarity in clone composition between tumor samples. Using
UniFrac and nearest-distance metrics in the Picante software,
GenoPath calculates pairwise distances between tumor samples
based on the similarity of their clone compositions. From
the pairwise distance matrix, GenoPath builds a neighbor-
joining tree (Saitou and Nei, 1987), which is the phylogeny of
samples. A sample tree provides a sample-level view of tumor
evolution, in contrast to the clone-level resolution of the clone
phylogeny. Tumor samples that cluster closely in this phylogeny
likely exchange clones, suggesting tumor cell migration events.

GenoPath applies default or recommended settings for each
integrated software, which were determined in the original studies.
It also outputs all parameter settings and options used, enabling
reproducibility and transparency.

Empirical data analysis

We obtained tumor DNA sequencing data (Patient GP12) from
the Supplementary material of a previous study (Nurminen et al.,
2023). The data input consists of the read counts of mutant and non-
mutant alleles at each genomic position of single-nucleotide variants
(SNVs) for each tumor sample. SNVs identified in at least one tumor
sample from this patient were included. In total, 17,805 SNVs were
included in this data. We also obtained trinucleotide information
for each SNV from the supplementary material for the mutational
signature analysis in GenoPath. Expected signatures (SBS1, SBS5,
SBS8, SBS18, SBS3, SBS2, SBS13, SBS92, and SBS17) for prostate

cancer were obtained from the Signal database (5 April 2025)
(https://signal.mutationalsignatures.com/explore). Rare mutational
signatures were not included. The list of driver mutations in the
coding regions was also obtained from the supplementary material
of the previous paper. We considered them driver mutations when
they were found in the COSMIC database.

Results

To illustrate the usage of GenoPath, we analyzed the prostate
cancer dataset. This data was generated by performing whole-
genome sequencing on eleven tumor samples from a single patient
in a previous study (Nurminen et al., 2023). The primary tumor
(CA) was divided into distinct subsections. These subsections
included the base of the seminal vesicle (SVBase) and prostate.
The prostate sample was further divided into apex (Apex) and
middle (Mid) sites, where the Mid was then subdivided into basal
(MidBasal) and apical (MidApical) sections. Each sample’s right (R)
and left (L) sides were sequenced, resulting in eight primary tumor
samples. In addition, three metastatic tumor samples were extracted
from the right (R) and left (L) sides of the pelvic lymph nodes
(PelvicLNMet).

Evolutionary history of clones

The inferred clone phylogeny and clone frequencies produced by
GenoPath are shown in Figure 2. Using this display, we can visually
investigate the evolutionary history of clones and the distribution
of clones among different tumor samples. The clone phylogeny is
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FIGURE 2
The display of clone phylogeny and clone frequencies generated by GenoPath. A tip of the phylogeny is an inferred clone. Clone frequencies are
shown for each tumor sample. Zero clone frequencies are not shown. L/R, left/right; Mid, middle of the tumor; SV, seminal vesicle; LN, lymph node;
CA, primary tumor; Met, metastasis.

presented on the left side, where each tip of the phylogeny represents
the observed (inferred) clone sequence. The branch lengths in
the clone phylogeny correlate with the number of mutations that
occurred along a branch. Longer branches indicate larger numbers
of mutations. A branching event corresponds to the diversification
of clones. GenoPath presents the estimated clone frequency within
each tumor sample next to each tip of the phylogeny. Thus, the clone
frequency table is alignedwith the clone phylogeny.Often, clones are
locally spread, and many tumor samples do not have a given clone.
As a result, the clone frequency table may contain many zero values,
which suggests an absence of those clones within a tumor sample. To
easily view the pattern of the presence and absence of clones within
tumor samples, GenoPath shows only non-zero values in the clone
frequency table.

The CloneFinder analysis implemented in GenoPath produced
18 tumor clones for the example empirical dataset. GenoPath’s
display of the inferred clone phylogeny and clone frequencies on this
dataset is shown in Figure 2.We found that this displaywas helpful to
visually investigate the distribution of clones among tumor samples
and their evolutionary history. For example, Clone11was found only
within the right side of SVbase (RSVbaseCA). Since the left side
of the SVbase, as well as the other sections of the primary tumor
and metastatic tumor, did not have Clone11, this pattern of clone
distribution suggested local expansion of the cancer cell population
(Clone11). This RSVbaseCA tumor sample also contained another
clone, Clone8, with a lower frequency than Clone11 (20% and 52%,
respectively). By examining the display of the clone phylogeny,
we found that Clone8 was an ancestral clone of Clone11. Our
investigation of the clone frequency table revealed that Clone8
was widely present at the left side of the primary tumor, except
at the apex (LApexCA) and middle-apical site (LMidApicalCA).
Also, Clone8 was detected at the right side of the seminal vesicle
(RSVbaseCA) and the right side of the metastatic lymph node
(RPelvicLNMet1). This pattern suggested that the ancestral clone,
Clone8, waswidely spread, and additionalmutations onClone8 gave
rise to Clone11. Then, Clone11 expanded only to a limited location
within a tumor.

Available clone prediction methods do not produce such an
intuitive display. Thus, we expect that using GenoPath would make
it more accessible to analyze clone evolution and characterize
intratumor heterogeneity for a given patient.

Mutational tree and timing of driver
mutations

Distinguishing early (truncal) from late (branched) driver
mutations provides key insights into tumor evolution. Early
drivers, shared across all tumor cells, are often essential for
initiation. Late drivers contribute to progression, heterogeneity,
and therapy resistance. Mapping these events onto the clone
phylogeny (reconstruction of mutational tree) allows us to
trace the tumor’s mutational history and understand lineage-
specific dynamics. To assist in analyzing mutational history, we
developed and implemented a tool to convert an inferred clone
phylogeny to a mutational tree (see Methods). We also created
a tool to visualize a mutational tree with user-provided driver
mutations mapped.

Figure 3 presents GenoPath’s visual of the mutational tree
with driver mutations. In GenoPath’s display, the timing of driver
mutation is highlighted with a blue point, and the names of given
driver mutations are listed next to the blue point. In this way, users
can easily investigate the timing of driver mutations during clone
evolution. For example, in the analysis of our example dataset, driver
mutations were mapped along different edges in addition to the
trunk of the mutational tree (Figure 3). This result indicated that
driver mutations occurred continuously during the evolution of
clones. Also, driver mutations were mapped along different clonal
lineages, suggesting that clones fromdifferent lineages have different
sets of driver mutations. This result was consistent with a previous
study, which reported that driver mutations may occur at both early
and late times during tumor evolution (Gomez et al., 2018). Overall,
with GenoPath, users can visually investigate the pattern of driver
mutation occurrences during tumor evolution.
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FIGURE 3
The display of the mutational tree and the timing of driver mutations generated by GenoPath. The number of mutations occurring along each edge of
the mutational tree is indicated within a circle connected to an edge. Within each circle, the ID of the group of mutations that occurred at the same
edge of the mutational tree is given. The timing of each driver mutation occurrence is indicated with a blue dot along the edge of the mutational tree. A
driver mutation ID is listed next to each blue dot, and gene names are found on the top left side.

Dynamics of mutational processes

When mutational processes alter during tumor evolution,
observed mutational patterns change. As a result, different
clonal lineages may have distinct mutational signatures. Next,
we demonstrate how GenoPath can assist in analyzing the
dynamics of mutational processes. Figure 4 presents displays
that GenoPath produced. The estimated fractions of mutational
signatures by PhyloSignare are shown on the edges of the

mutational tree so that users can visually investigate the
pattern of signature changes during the clone evolution
(Figure 4A).

Our case study shows that all edges of the mutational tree had
a high activity of mutational signature SBS8, with a few exceptions.
SBS8 is characterized by elevated rates of specificC toA trinucleotide
mutation types (Figure 4C). GenoPath assists users in visually
comparing the characteristics of detected mutational signatures
and observed mutational pattern by generating a plot of observed
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FIGURE 4
The display of the branch-specific mutational signatures and mutational patterns generated by GenoPath. (A) Mutation tree with mutational signatures.
Inferred relative fractions of mutational signatures are shown along each edge of the mutation tree. (B) Observed mutation patterns at the edges of the
mutation tree. Due to the space limitation, the mutational patterns of only two edges are shown. The left and right panels are the observed mutational
patterns at the edges of the mutational tree that are pointed by dashed and solid arrows, respectively, in (A) (C) Mutational signatures SBS3 and SBS8.
The plots were obtained from the COSMIC database.
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mutational pattern for each edge of the mutational tree (Figure 4B).
In this case, the observedmutational patterns also had higher counts
of the specific C to A trinucleotide mutation types. Consequently,
observed mutational patterns agreed well with the characteristics of
the detected signature (SBS8), validating the inference.

We also found that a few edges of the mutational tree had
mutational signature SBS3 with a high fraction instead of SBS8
(Figure 4A). These results indicated a decrease and an increase
of signature SBS8 and a gain and a loss of SBS3 activity.
Interestingly, SBS3 also had the same characteristic as SBS8, where
the same C to A trinucleotide mutation types had elevated rates
(Figure 4C). Using the branch-specific mutational pattern produced
by GenoPath, we confirmed that the observed mutational pattern
also had higher counts of these same trinucleotide types (Figure 4B).
Therefore, we cannot reliably distinguish SBS3 from SBS8, and the
inferred decrease and increase of signature SBS8 and gain and
loss of SBS3 activity were spurious. Overall, GenoPath’s visuals of
observed mutational patterns, together with the inferred mutational
signatures, are useful to validate the inferences, enablingmore robust
visual analysis.

We also designedGenoPath to assist in investigating the impacts
of elevated mutation rates of mutation types on the occurrence of
drivermutations, i.e., GenoPath highlights themutation type of each
drivermutation in the observedmutational pattern plot (Figure 4B).
In this case study, GenoPath’s display showed that some driver
mutations indeed occurred at mutational types with elevated
mutation rates, e.g., mutations “R” and “S.” However, many other
driver mutations did not follow this pattern, indicating that the
impacts of elevated mutation rates of mutation types were variable
among the driver mutations for this patient. Therefore, GenoPath
can enable more comprehensive mutational analysis.

Metastatic cell migration events and the
relationship of tumor samples

During cancer progression, tumor cells may migrate to another
tumor site, i.e., metastasis. With tumor sequencing data, metastatic
cell migration history can be reconstructed. Figure 5A is the
metastatic cell migration history inferred by PathFinder, which was
implemented in GenoPath. In the inferred metastatic cell migration
graph, each node is a tumor site, and tumor sites directly connected
from the node of “Primary” are the sites of the tumor origin. Since
the right side of the middle-apical and apex sites (RMidBaseCA and
RapexCA) were directly connected from the “Primary” node, this
area was predicted as the tumor initiation site. Overall, each tumor
site was connected to and from various tumor sites, indicating a
complex metastatic cell migration history.

In this inference, we found that the number of mutations
associated with migration events was often zero (Figure 5A).
Inference of migration events without associated mutations is
known to be difficult to derive because the information to
determine the direction of the migration event is limited. Therefore,
careful inspection is essential to avoid implying spurious biological
insight. One way to inspect uncertainty is by examining the
intermediate inferences produced by PathFinder, where ambiguous
migration paths may not appear consistently across all inferences.
Although these intermediate results are not part of GenoPath’s

main output, they are accessible for advanced users who wish
to explore them. Also, GenoPath assists this validation process
through the display of clone phylogeny together with clone
frequencies, which is useful to identify potential clones that migrate
to another tumor site without additional mutations, i.e., shared
clones between tumor samples (Figure 2). The visual inspection
found that clone sharing between tumor samples was extensive for
this patient. For example, the earliest clone (Clone3) was found
within five different tumor samples, making it difficult to infer the
tumor initiation site confidently. Therefore, accurately determining
metastatic cell migration events in this patient is challenging, and
additional information is necessary to validate the inferred cell
migration history.

GenoPath also provides an approach to analyzing the
relationship of tumor samples. We implemented a tool to infer a
tree of tumor samples based on the similarity of the composition
of clones (see Methods). Tumor samples clustered together on the
tree imply that these samples are closely related due to the spread
or migration of cancer cells. Figure 5B shows the tumor sample tree
of this case study. For example, two samples from the right side
of the primary tumor (RMidBasalCA and RSVbaseCA) and two
metastatic tumor samples from the right side of the lymph node
(RPelvicLNMet1 and RPelvidLNMet2) were clustered in the tumor
tree. This result suggested that cancer cells with similar genomic
compositions were widely spread on the primary tumor’s right side
and the lymph node’s right side. Similarly, the sample tree implied
that the spread of other evolutionarily closely related cancer cells at
the left side of the primary tumor (LmidBasalCA, LSVbaseCA) and
the left side of the metastatic tumor (LPelvidLNMet), because these
samples clustered together on the sample tree. Lastly, the sample
tree had a cluster of samples from the left and right sides of the
primary tumor (LmidApicalCA, LapexCA, RmidApicalCA, and
RapexCA), implying the widespread presence of some cancer cell
populations. However, it is important to note that the tumor sample
treemay bemisleading in cases ofmulti-source seeding, and caution
is warranted when interpreting its structure. Nevertheless, we found
inferences from our example analysis were biologically plausible
because tumor samples that were physically close to one another
tended to cluster together, suggesting local tumor cell spread.
Overall, GenoPath produces intuitive figures that assist users in
analyzing metastatic tumor migration history and the relationship
of tumor samples.

Discussion

GenoPath integrates computational methods to analyze tumor
evolution within a patient. By automating the execution of various
evolutionary analyses and generating intuitive visual outputs,
GenoPath reduces computational barriers, making advanced
genomic research accessible to users with varying expertise levels.
GenoPath is well-suited for analyzing data from various tumorDNA
sequencing technologies, including whole-genome, whole-exome,
and targeted sequencing.

We note that benchmarking of methods implemented in
GenoPath has already been conducted in previous studies, where
a wide range of tools were systematically evaluated (Miura et al.,
2018; Miura et al., 2020; Miura et al., 2022; Kumar et al., 2020).
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FIGURE 5
The display of metastatic cell migration history and tumor sample trees produced by GenoPath. (A) Metastatic cell migration history. The number in a
parenthesis along an edge of the graph is the number of mutations associated with the cell migration event. Zero mutation is not shown. ID in a circle
is a tumor sample. (B) Sample tree based on the similarity of clone composition. Tips of a sample tree are tumor samples. A sample tree indicates the
relationship of tumor samples. L/R left/right; Mid, middle of the tumor; SV, seminal vesicle; LN, lymph node; CA, primary tumor; Met, metastasis.

GenoPath’s focus was to integrate these robust tools into a
unified, user-friendly pipeline rather than re-evaluating their
performance that is beyond the scope of this pipeline building.
Importantly, insights from these previous studies also highlight
key factors that influence the quality of tumor evolution inference.
For example, larger numbers of somatic mutations and tumor
samples enhance performance and improve the resolution of
tumor evolution inference because of the limitations in clone
prediction methods (Miura et al., 2020). Also, a larger number
of mutations is essential for reliably identifying branch-specific
mutational signatures, as observed mutational patterns for a branch
of a clone phylogeny are often unclear from a smaller number
of mutations, disabling identification of branch-specific mutational
signatures (Miura et al., 2022).

While GenoPath currently implements selected computational
methods, various alternative approaches exist (Roth et al., 2014;
El-Kebir et al., 2015; Popic et al., 2015; Huzar et al., 2023). Future
updates will incorporate additional well-performing methods,
expanding its analytical capabilities. Additionally, GenoPath does
not yet support the analysis of copy number alterations (CNAs)
that also play a significant role in tumor evolution. Existing tools
can infer clone phylogeny from CNAs or jointly analyze them with
single-nucleotide variants (SNVs) (Jiang et al., 2016; Ricketts et al.,
2020). Another current limitation is the lack of confidence estimates
for the inferred phylogenies and migration paths. This is largely
due to the fact that many of the existing methods do not natively
provide statistical support metrics. Nonetheless, bootstrap-based
approaches have been proposed in the literature (Huzar et al., 2023),
and we plan to incorporate such methods into future releases to
enhance the robustness of the evolutionary inferences provided
by GenoPath. Lastly, GenoPath lacks partial run options, such as

skipping migration inference. We also plan to add this flexibility in
future updates.

Currently, GenoPath supports only bulk DNA sequencing
data. However, with the increasing availability of tumor single-
cell DNA sequencing data across various cancer types, there
is growing interest in leveraging these datasets for evolutionary
analysis (Navin et al., 2011; Borgsmüller et al., 2023). In fact,
various computational methods for inferring cell phylogenies
from single-cell sequencing are already available (Jahn et al., 2016;
Kozlov et al., 2022; Miura et al., 2023). Importantly, once a cell
phylogeny is constructed, the same downstream evolutionary
analyses used for clone phylogenies can be applied. We plan to
integrate computational methods for single-cell DNA sequencing
data in future updates, expanding GenoPath’s functionality to
accommodate bulk and single-cell analyses.

In conclusion, GenoPath offers practical advancements by
integrating parsing and visualization modules that streamline the
sequential execution of diverse software. These enhancements
reduce the need for advanced computational expertise and make
the interpretation of results more intuitive. By improving usability
and accessibility, GenoPath serves as a versatile platform for
tumor evolution analysis, facilitating discoveries across oncology,
evolutionary biology, and precision medicine. We envision
GenoPath as a broadly applicable resource that empowers biologists
to gain deeper insights into cancer progression and heterogeneity.
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