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Aggressive cancers, such as pancreatic ductal adenocarcinoma (PDAC), are
often characterized by a complex and desmoplastic tumor microenvironment,
a stroma rich supportive connective tissue composed primarily of extracellular
matrix (ECM) and non-cancerous cells. Desmoplasia, a dense deposition
of stroma, is a major reason for therapy resistance, acting both as a
physical barrier that interferes with drug penetration and as a supportive
niche that protects cancer cells through diverse mechanisms. Precise
understanding of spatial cell interactions in stroma-rich tumors is essential for
optimizing therapeutic responses. It enables detailedmapping of stromal-tumor
interfaces, comprehensive cell phenotyping, and insights into changes in tissue
architecture, improving assessment of drug responses. Recent advances in
multiplexed immunofluorescence imaging have enabled the acquisition of large
batches of whole-slide tumor images, but scalable and reproducible methods
to analyze the spatial distribution of cell states relative to stromal regions remain
limited. To address this gap, we developed an open-source computational
pipeline that integrates QuPath, StarDist, and custom Python scripts to quantify
biomarker expression at a single- and sub-cellular resolution across entire
tumor sections. Our workflow includes: (i) automated nuclei segmentation using
StarDist, (ii) machine learning-based cell classification using multiplexed marker
expression, (iii) modeling of stromal regions based on fibronectin staining, (iv)
sensitivity analyses on classification thresholds to ensure robustness across
heterogeneous datasets, and (v) distance-based quantification of the proximity
of each cell to the stromal border. To improve consistency across slides with
variable staining intensities, we introduce a statistical strategy that translates
classification thresholds by propagating a chosen reference percentile across
the distribution of marker-related cell measurement in each image. We apply
this approach to quantify spatial patterns of distribution of the phosphorylated
form of the N-Myc downregulated gene 1 (NDRG1), a novel DNA repair protein
that conveys signals from the ECM to the nucleus to maintain replication
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fork homeostasis, and a known cell proliferation marker Ki67 in fibronectin-
defined stromal regions in PDAC xenografts. The pipeline is applicable for the
analysis of markers of interest in stroma-rich tissues and is publicly available.

KEYWORDS

QuPath, stroma, spatial analysis, fluorescence microscopy image, pancreatic ductal
adenocarcinoma cancer (PDAC), pNDRG1, Ki67

1 Introduction

Tumor microenvironment (TME) is a complex neighborhood
that plays an active role in tumor progression, metastasis,
immune evasion, and influences the efficacy of anti-cancer agents
(Valkenburg, de Groot, and Pienta, 2018; Xu et al., 2022). TME
consists of cancer cells, cancer-associated fibroblasts (CAFs),
immune cells, endothelial cells, pericytes, neuronal cells, and
adipocytes. Central to the TME is the stroma, a supportive
framework composed primarily of connective tissue, extracellular
matrix (ECM) proteins, blood vessels, fibroblasts, and immune
cells. CAFs are known to secrete excessive amounts of ECM
proteins in desmoplastic cancers, thus regulating the stromal density
within a tumor. Desmoplasia is a hallmark of pancreatic ductal
adenocarcinoma (PDAC), a malignancy marked by aggressive
behavior, poor prognosis, and a dense, fibrotic stroma that limits
drug penetration, fosters an immunosuppressive environment,
and orchestrates signaling events leading to therapy resistance
(Kozlova et al., 2020; Ho et al., 2020; Halbrook et al., 2023). Precise
understanding of the spatial organization of the TME is essential
for decoding the complexity of cell-stroma interactions, and for
predicting treatment efficacies.

Each cell population within the TME can be defined by
immunostaining with specific markers (Hu et al., 2023). While
epithelial cells can be distinguished by positive staining of
various cytokeratins (Karantza, 2011), the visualization of stromal
compartment within a tumor can be done via Masson’s Trichrome
stain that stains for collagen and fibrin for brightfield imaging (Foot,
1933), or by immunofluorescent staining of matrix proteins such as
collagens, fibronectin and laminins (Kozlova et al., 2020). Recent
advances in multiplexed immunofluorescence imaging allow for
high-resolution visualization of multiple biomarkers across entire
tumor sections. In parallel, tools to analyze bioimages have emerged
(Cimini et al., 2024). Several software platforms support general
microscopy image analysis—including open-source tools such as
QuPath (Bankhead et al., 2017), CellProfiler (Stirling et al., 2021b;
Stirling et al., 2021a), Fiji (Schindelin et al., 2012; Schneider et al.,
2012; Schindelin et al., 2015; Rueden et al., 2017), and Napari
(Napari contributors, 2019), as well as commercial packages like
HALO (Indica Labs, Albuquerque, NM, United States) and
Visiopharm (Hørsholm, Denmark). While each offers strengths,
most fall short in modeling spatial relationships between cell
phenotypes and stromal structures across heterogeneous, multi-
channel datasets. Commercial solutions provide turnkey pipelines
but lack flexibility for custom analysis; open-source tools often
require manual threshold tuning or lack built-in support for stromal
modeling and spatial distance quantification. Moreover, ensuring
reproducibility in the life sciences is crucial, and the price barrier
of commercial solutions hampers accessibility and reproducibility.

Open-source workflows offer greater transparency but require
careful attention to understand the sensitivity of methods used
under image variability (Miura and Nørrelykke, 2021).

To address these challenges, we developed a robust, open-
source pipeline for quantifying the spatial distribution of cell
markers relative to stromal borders in tumor tissues. Built on
QuPath (Bankhead et al., 2017), our workflow integrates nuclei
segmentationwith StarDist (Schmidt et al., 2018),machine learning-
based cell classification at cellular and sub-cellular resolution,
stromal region modeling, sensitivity analysis, and spatial distance
measurements. We also introduce a statistical mapping method that
translates intensity-based thresholds across heterogeneous images
using percentile propagation in continuous distributions of cell
measurements. The pipeline leverages Python-based tools for data
aggregation and spatial visualization, facilitating seamless analysis
of large, multi-image datasets.

Our previous study identified N-Myc downregulated gene 1
(NDRG1) as a novel DNA repair protein able to convey signals from
the ECM to the nucleus to maintain replication fork homeostasis
and mediate resistance to chemotherapies (Kozlova et al., 2025).
In the present work, we apply our image analysis pipeline
to multiplexed immunofluorescence images of chemotherapy-
treated PDAC xenografts, focusing on the spatial distribution of
phosphorylated NDRG1 (pNDRG1) and the proliferation marker
Ki67 in cancer cells within stroma-rich tumor regions.

2 Methods

2.1 Xenograft studies, tissue processing
and image acquisition

Pancreatic adenocarcinoma cell line AsPC was a kind gift from
Dr. Nada Kalaany (Boston Children’s Hospital, Boston, MA). All
animal studies were performed according to protocols approved by
the Institutional Animal Care and Use Committee at Beth Israel
Deaconess Medical Center (BIDMC). Athymic male nude mice
(NU/J) were purchased from Jackson labs (#002019). AsPC tumor
cells (1 × 106) were injected subcutaneously in one flank per mouse
in 1:1 mix of Matrigel and PBS when the mice were 8–12 weeks
old. Tumor growth was monitored thrice weekly. Once the tumors
reached 200 mm3 in volume, animals were treated with gemcitabine
25 mg/kg twice per week. The entire cohort of animals was
sacrificed when the tumor size of at least one animal reached close
to 1,000 mm3. Xenograft tumor tissues were processed, paraffin
embedded and cut, deparaffinized in xylene and rehydrated in a
descending ethanol series. Deparaffinized sections were subjected
to antigen unmasking in SignalStain®Citrate Unmasking Solution

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1619790
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ruzette et al. 10.3389/fbinf.2025.1619790

(CST #14746) followed by permeabilization in 1% Triton X-100,
and blocking of nonspecific binding in TBST/5% normal goat
serum solution. Sections were later stained with Pan-cytokeratin
(AE1/AE3) Alexa Fluor™ 488 conjugated (53-9003-82, eBioscience),
mouse anti-Fibronectin (ab6328-250, Abcam), and rabbit phospho-
NDRG1Thr346 (#5482S, CST) or Ki67 (D3B5) Rabbit mAb (Alexa
Fluor®647 Conjugate) (#12075, CST). Appropriate secondary
antibodies were used (Goat anti-Mouse IgG (H + L) Cross-
Adsorbed Secondary Antibody, Alexa Fluor™ 568 A-11004 for
Fibronectin, and Goat anti-Rabbit IgG (H + L) Highly Cross-
Adsorbed Secondary Antibody, Alexa Fluor™ 647 #A-21245 for
pNDRG1) and whole section images were acquired using Olympus
BX-UCB whole slide scanner equipped with Olympus UPLSAPO
20x and VS-ASW v2.7 software, tile registration was performed
using the scanner’s proprietary software. Each image consisted of
four fluorescence channels: DAPI (nuclei), FITC (pan-cytokeratin),
TRITC (fibronectin), and CY5, labeling either phosphorylated
NDRG1 (Datasets 1) or Ki67 (Datasets 2). Each field covered
approximately 10,000 μm × 10,000 µm (30,000 × 30,000 pixels at
0.3215 µm per pixel) and contained roughly 100,000 cells per image.
Datasets 1 (pNDRG1) contained a total of 496,936 cells across all
images; Datasets 2 (Ki67) contained 454,556 cells. The methods
described below are channel-agnostic and serve as a generalizable
pipeline for multi-marker spatial analysis in tissue sections.

2.2 Modeling the stromal region and its
border

The stroma in PDAC is composed of a complex mixture of
cells and extracellular matrix (ECM) components, which makes
delineation of precise stromal borders nontrivial. Fibronectin, a
key ECM protein enriched in the stromal compartment, was used
as a surrogate marker to define stromal regions. To reduce noise
and imaging artifacts, fibronectin channel intensities were first
smoothed using a Gaussian filter; the sigma parameter was tuned
empirically based on expert input to balance edge preservation with
noise reduction and then confirmed with a sensitivity analysis. A
threshold-based pixel classifier was then applied to segment stromal
versus non-stromal tissue. Pixels exceeding the fibronectin intensity
threshold were classified as stromal. This threshold was selected
by an experienced cancer biologist and later translated across the
dataset using a percentile-based statistical propagation method.The
border of the resulting binarymaskwas used as the stromal edge and
served as the spatial reference for downstream analyses (Figure 1A).

2.3 Image analysis components

2.3.1 Nuclei detection and cell boundary
approximation

Nuclei were segmented using the pre-trained StarDist model
(“dsb2018_heavy_augment.pb”, available at QuPath models
repository: https://github.com/qupath/models/tree/main/stardist)
via the StarDist extension in QuPath (v0.5). StarDist models nuclei
as star-convex polygons and has demonstrated high accuracy across
diverse nuclear morphologies (Schmidt et al., 2018).The output was
a set of nuclear regions of interest (ROIs), each representing a single

cell nucleus. To approximate whole-cell boundaries, QuPath’s built-
in cytoplasmic expansion algorithmwas applied, radially expanding
each nucleus by 5 µm. Cells were filtered based on nuclear area
to exclude likely artifacts: nuclei smaller than the 5th percentile
or larger than the 99th percentile were discarded, as they likely
represented immune cells, debris, or fused nuclei caused by tissue
processing artifacts (Figure 1B).

2.3.2 Distributions of cell intensity measurements
For each cell, fluorescence intensity features were extracted from

the relevant subcellular compartments (nucleus, cytoplasm, whole
cell) in QuPath. Signal intensity distributions were visualized and
compared across images in the same batch using fixed bin widths.
To reduce the influence of outliers, intensities were clipped at the 1st
and 99th percentiles. No normalization was applied, preserving the
raw distribution.

2.3.3 Cell classification
Cells were classified as marker-positive or -negative using

either a supervised classifier or a percentile-based intensity
thresholding approach (Figure 1B).

1. Supervised classification: A Random Forest classifier was
trained within QuPath using a manually annotated subset
of cells. The training set focused on intensity-based features
relevant to themarker being evaluated (e.g., maximumnuclear
intensity for Ki67 foci). Only intensity-related features were
used to simplify model interpretation and reproducibility.

2. Percentile-based thresholding: A fixed intensity percentile was
selected from the cell population within a reference image and
applied across all images.This thresholding approach classified
the top N% of cells by marker intensity as “positive”, enabling
harmonized comparisons across heterogeneous images.

Confusion matrices and derived standard metrics (agreement
percentage) were computed to evaluate agreement between these
two classification strategies. High agreement between the methods
indicated classifier stability, while deviations flagged potential
staining inconsistencies or classifier bias.

2.3.4 Percentile mapping of expert-chosen
classification thresholds

To propagate expert-defined intensity thresholds across images
with varying intensity distributions, we implemented a statistical
mapping method based on percentile preservation. For each
image, the distribution of intensity values for a given marker was
modeled using the best-fit probability distribution (minimizing
least-squares error). The expert-selected intensity threshold in a
reference image was then mapped to the corresponding percentile,
and this percentile was used to determine equivalent thresholds
in other images. The algorithm is statistically described in Box 1.
The resulting mapped thresholds were compared to machine
learning-based classifications. Using one method’s labels as “ground
truth”, confusion matrices were computed to evaluate accuracy and
agreement. This percentile mapping approach enabled reproducible
thresholding across large heterogeneous datasets while preserving
expert intent.
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FIGURE 1
An image analysis pipeline for quantifying the spatial distribution of cellular markers in stroma-rich tumors [adapted from (Kozlova et al., 2025)]. (A)
Graphical abstract of the spatial model for stroma-dense tissues. (B) Workflow for analyzing cellular and subcellular fluorescent markers relative to a
modeled stromal border, including nuclei segmentation with StarDist, cell boundary estimation using QuPath, Random Forest models for cell
classification, pixel threshold-based stroma annotation, 2D signed distance calculations for spatial analysis, and data visualization in Python.

2.3.5 2D signed distance between cells and the
stromal border

We used the signed Euclidean distance between each
cell’s nuclear centroid and the nearest point on the stromal
border to quantify spatial relationships between tumor cells
and the stroma (Figure 1B). Positive distances indicate cells
located outside, while negative distances represent cells within the
fibronectin-defined stromal region. Cells located at the interface
thus have distances close to 0 µm. Cells were binned by distance
using 10 µm intervals, approximately corresponding to one cell
diameter. These distance bins formed the basis for downstream

spatial analyses and visualization of intensity over distance from
the stroma.

2.3.6 Sensitivity analysis on intensity thresholds
To assess the robustness of the stromal mask and

downstream spatial results, we conducted sensitivity analyses
on two key parameters: the Gaussian smoothing sigma
and the fibronectin intensity threshold. For each parameter
combination, the stromal mask was recomputed, followed by
recalculation of the signed distances and intensity-distance
correlations.
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BOX 1 Algorithm for statistically propagating classification thresholds across images based on the underlying distribution of cell measurements extracted
fromQuPath. It adjusts classification thresholds for each image by leveraging the statistical properties of cell marker intensity distributions. Given a
reference threshold in a chosen image, themethod translates this threshold to other images by aligning percentiles within the fitted distribution of cellular
measurements. This approach accounts for variations in staining intensity and imaging conditions, ensuring consistency in classification across images.

Batch-wise statistical propagation of classification thresholds

Given a set of images I1, I2, . . ., IN and for a specific channel c, we retrieve the histogram of each image’s pixel intensity distributions using a fixed
number of bins, Nb.

1. Histogram binning:

Hi(x) =Histogram(Ii,c,Nb)

Where Hi(x) is the histogram of image Ii for channel c, and x the intensity levels.
2. Least-square fit of a pool of non-negative distributions: We fit a pool of non-negative distributions, D, on the intensity distributions:

D = { f1(x), f2(x),…, fM(x)}

Here, f i(x) represents the ith distribution function in the pool. The minimal pool of distributions contains common non-negative distributions:
Log-normal, Wald, Burr, Beta and Gamma distributions. The best fit f∗(x) is retrieved using the least-squares method:

f∗(x) = arg min
f∈D

N

∑
i=1
‖Hi(x) − f(x)‖2

3. Percentile mapping: Given a pixel intensity threshold ti in distribution i, its percentile is mapped to another distribution j using their cumulative
distribution functions (CDFs):

Fi(ti) = Fj(tj)

where Fi(t) and Fj(t) are the CDFs of distributions i and j, respectively.
4. Inverse probability calculation: The value of tj is then calculated using the inverse cumulative distribution function of distribution j:

tj = (F−1j ∘ Fi)(ti)

As a summary metric, we calculated the Pearson correlation
coefficient between marker intensity I and distance to the stromal
border d, separately for cells inside and outside the stroma. The
correlation coefficient r was computed (Equation 1).

r =
∑n

i=1
(Ii − I)(di − d)

√∑n
i=1
(Ii − I)

2 · √∑n
i=1
(di − d)

2
(1)

where:

• Ii is the signal intensity for the ith cell
• di is the signed distance to the stromal border for the ith cell
• I is the mean signal intensity
• d is the mean signed distance

For each image and parameter setting, correlation coefficients
were computed separately for regions before and after the zero-
distance boundary. Because both correlation values were derived
from the same image under identical conditions, the data were
treated as paired measurements. Differences in correlation values
across the two distance partitions (inside and outside the stroma)
were assessed using a two-sided Wilcoxon signed-rank test, a
non-parametric test for paired data. Mean correlation values
and standard errors were estimated via 500 bootstrap iterations
across images.

2.3.7 Visualization
Final cell-level data, including marker intensities, class labels,

and signed distances, were exported from QuPath and analyzed
in Python 3.11. Cells were grouped into 10 µm distance bins, and
average marker intensity with bootstrapped standard error was
computed for each bin. Profiles were generated for marker-positive
and marker-negative populations separately. To assess differences
in spatial patterns, bin-wise subtractions were performed between
groups (e.g., Ki67-positive vs Ki67-negative cancer cells). The
standard error of the difference in bin means was computed using
error propagation (Equation 2).

SEM = √
N

∑
i=1

σ2i
ni

(2)

where:

• SEM is the propagated standard error
• σi is the standard deviation of signal intensities in a cell
population, and ni the number of cells in the population

Spatial distributions were visualized as line plots with error
bands, highlighting marker-specific spatial gradients in relation to
the stromal border.
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2.3.8 Software implementation
All steps were performed on a workstation running Python

3.7 (Python Software Foundation, available at https://www.python.
org) with standard scientific libraries (NumPy (Harris et al., 2020),
SciPy (Virtanen et al., 2020), Pandas (McKinney 2010; The Pandas
Development Team, 2024), Fitter, Matplotlib (Hunter, 2007); a uv
lock file is provided for dependencies). QuPath (v0.5+) was used for
interactive segmentation, annotation, and feature export. Trained
machine learning classifiers are available as .json files and can
be loaded in QuPath to predict cell classes on new images or
retrained on new annotations. The complete pipeline code is made
open-source and is hosted on GitHub: https://github.com/HMS-
IAC/stroma-spatial-analysis-web.

3 Results

In this work we present the pipeline ‘in action’ on multiplexed
immunofluorescence images of PDAC xenografts treated with
chemotherapy, based on a previous study of ours (Kozlova et al.,
2025). This pipeline defines spatial distribution of cells expressing
pan-cytokeratin (PDAC cells), phosphorylated NDRG1 (a stromal
sensor), and Ki67 (a marker of cell proliferation) in relation
to stromal border modeled by fibronectin staining (Figure 2).
Following best practices for image publication (Schmied et al.,
2024), Figure 2 is also provided in grayscale for visual comparison
between channels (Supplementary Figures S1, and S2). Our analysis
reveals the enrichment of the phospho-NDRG1- and Ki67-positive
cells at the stromal border and their detailed spatial distribution based
onsignal intensity.Thepipelineisscalable,robusttostainingvariability,
and adaptable to other biomarker panels, offering a reproducible
framework for spatial analysis of components of the tumor
microenvironment in relation to stromal regions and their border.

3.1 Batch variability and statistical
propagation of thresholds

To ensure the reliability of downstream analyses and aggregation
across images,wefirst assessed the consistencyof per-cell fluorescence
intensity distributions within each image batch. While some
variation is expected due to acquisition conditions and biological
heterogeneity, we observed overall alignment in the profiles of the
histograms and kernel density estimations (KDE) across both datasets
(Supplementary Figure S3). KDEs revealed some variability between
images intheKi67datasets,particularly inthepan-cytokeratinchannel
(Supplementary Figure S3B). In contrast, median nuclear intensity in
the DAPI channel remained highly consistent across all five images,
indicating uniform nuclear staining and robust segmentation quality
in both datasets (Supplementary Figure S3). Next, we examined the
best-fit probability distributions for cell measurements, used to map
thresholds to a reference percentile across images (Figure 3). The
pan-cytokeratin channel in the pNDRG1 dataset—used as a marker
to distinguish cancer cells from non-cancer cells—was consistent
across images (Figure 3A). In contrast, the pan-cytokeratin channel
in the Ki67 dataset exhibited more substantial variability in median
cytoplasmic signal intensity, especially in Image #2 and #5. This
variability was reflected in the differing shapes of the probability

functions (PDF and CDF, Figure 3B). Although Images #2 and #5
deviated the most from the others, their values remained within
acceptable bounds and did not compromise downstream analysis.
Rather than excluding these images, we retained them to test the
robustness of our threshold calibration strategy under conditions
of variable staining. This variability offered an opportunity to
assess how well our pipeline handles intensity heterogeneity without
compromising classification consistency. Finally, the probability
distribution of the maximum cellular pNDRG1 intensity and the
maximumnuclearKi67intensitywerebothconsistentacrossall images
in their datasets (Figure 3).

Wemodeled the cell-level fluorescence histograms in each image
using continuous, positive-valued probability distributions (Box 1).
We evaluated multiple candidate distributions and found that
the log-normal distribution consistently provided the best fit, as
assessed by least-squares error.This distribution was especially well-
suited to the skewed, elbow-shaped profiles commonly observed
in fluorescence intensity histograms across both cytoplasmic and
nuclear compartments. While fluorescence signals originate from
discrete photons and are digitized into grey levels, the continuous
log-normal distribution remains a good approximation at high
photon counts—conditions under which the discreteness of the
signal becomes negligible due to the Central Limit Theorem.
Accordingly, we used log-normal fits for all channels in subsequent
statistical threshold propagation.

Expert-defined thresholds were established in a single reference
image for each marker (pan-cytokeratin, fibronectin, pNDRG1 or
Ki67; excluding DAPI as a deep learning model was used for
nuclei detection), and these values were mapped to the remaining
images by preserving their percentile rank within the fitted log-
normal distribution. This ensured that a consistent fraction of
cells—corresponding to the top X% by intensity—was classified as
marker-positive in each image, adapting the absolute threshold to the
local intensity distribution.We applied this method to both phospho-
NDRG1 and Ki67 image datasets. This percentile-based propagation
approach offered advantages over using a fixed global threshold or a
threshold specifically picked for each image. In practice, it improved
the selection of marker-positive cells by statistically accounting for
image-specific differences in staining intensity. It also provided a way
to only have to manually select one threshold.We expect this method
to be evenmore critical in studieswith larger batch effects ormulti-site
imaging datasets, where inter-image variability is more pronounced.

3.2 Application case 1: revealing the spatial
distribution between the phosphorylated
form of NDRG1, a novel DNA repair protein
required for stroma-induced
chemoresistance, and stromal border

To demonstrate the utility of our pipeline in uncovering
biologically meaningful spatial patterns, we analyzed the
distribution of cells expressing high levels of phosphorylated
NDRG1 (pNDRG1), a novel DNA repair protein implicated
in chemoresistance and replication fork stability, in PDAC
AsPC xenografts treated with gemcitabine, a standard-of-care
chemotherapy used in the treatment of pancreatic cancer. Our
previous work showed that phosphorylation of NDRG1 is regulated
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FIGURE 2
Representative whole-slide images from pancreatic ductal adenocarcinoma xenografts used for spatial analysis. (A) Ki67 dataset showing proliferating
cancer cells. (B) pNDRG1 dataset highlighting phosphorylated NDRG1 signal intensity. Scalebars are displayed. DAPI: DAPI, Pan-cytokeratin: FITC,
Fibronectin: TRITC, Ki67 or pNDRG1: CY5.

by ECM and adhesion receptors leading to the enrichment of
pNDRG1-positive cells near tumor-stroma interfaces in PDAC
SW1990 xenografts (Kozlova et al., 2025). Given that NDRG1 is
localized both in the cytoplasm and the nucleus, we used maximum
whole-cell intensity as the primary feature for classification.
Additional features included median cytoplasmic pan-cytokeratin
intensity (to select for cancer cells) and amedian cellular fibronectin
intensity (for stromal modeling). Fibronectin is a secreted matrix
deposited outside of the cells; the median cellular intensity was only
used as a proxy to visualize its distribution in a similar fashion (at
the cell level) to the other markers (Figure 4A).

We trained a Random Forest classifier (QuPath, built-in) on a
balanced set of 318manually labeled cells spanning four classes: pan-
cytokeratin-positive, pan-cytokeratin-negative, pNDRG1-positive,
and pNDRG1-negative (Figure 4B). In parallel, we designed a
threshold-based classifier using percentile-propagated cutoffs from
a reference image (Image #1), as described inBox 1.Thismethodwas
used to propagate classification thresholds from all channels except
DAPI, that is pan-cytokeratin, fibronectin and pNDRG1.Agreement

between the machine learning and threshold-based methods was
high (87.7%, Figure 4C, Supplementary Figure S4A), confirming
the consistency of classification across heterogeneous images. Full
classification parameters and translated thresholds are provided
in the Supplementary Material (Supplementary Tables S1–S3).
When comparing the percentile-propagation method to a fixed
global threshold, we observed an average increase in classification
agreement of 1.36% (±6.88% SD, Supplementary Table S4). These
findings highlight that the necessity of accounting for intensity
distribution variations is highly context dependent. In some cases,
a single-threshold approach can approximate the discriminative
power of a trained classifier, whereas in others, statistical
propagation may be more appropriate. As a matter of illustration,
when applying the set of thresholds of image #4 to the rest of the
batch, the agreement drops to 78.7% (Supplementary Table S4).
In other words, using statistical propagation averages out the
variations observed when using a single set of thresholds for all
images–providing a more robust way of picking a single set of
thresholds for a whole batch.
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FIGURE 3
Fitting probability distributions to histograms to propagate classification thresholds using percentile mapping across images. (A) pNDRG1 dataset. Bin
size (in µm): pNDRG1, 5; KER, 50; FN, 20. (B) Ki67 dataset. Bin size (in µm): Ki67, 5; KER, 75; FN, 40. All x-axis are clipped to highlight the left elbow of
distributions. CDF: Cumulative Distribution Function. PDF: Probability Density Function.

Spatial analysis applied to AsPC xenograft images
revealed that pNDRG1-positive cells were enriched near
stromal borders. Visual inspection of whole-slide images
showed areas of high pNDRG1 intensity in tumor regions
adjacent to stroma. Both classification methods consistently
quantified this pattern. Two key trends emerged (Figure 4D,
Supplementary Figure S4B).

1. pNDRG1 intensity peaked at the stromal borders of
gemcitabine-treated tumors.

2. The number of pNDRG1-positive cells within the stomal
regions is much lower compared to the one outside the stromal
compartment, as can be assessed by the number of cells
in each bin.

These findings are consistent with a general observation, that
pancreatic stroma presents as a desmoplastic matrix limiting cell

infiltration. The cells adjacent to the stromal border respond
to mechanical sensing of the ECM which is reflected in the
phosphorylation of the NDRG1. These findings also emphasize the
value of incorporating intensity calibration into cross-image analyses.

3.3 Application case 2: the case of Ki67
revealing the spatial distribution between
cell proliferation and stromal border

Wenext applied the pipeline to Ki67, a canonical nuclearmarker
of cellular proliferation, to investigate whether spatial gradients of
proliferative activity exist in relation to the stromal border. Since
Ki67 localization is strictly nuclear, we used maximum nuclear
intensity as the key classification feature (Figure 5A).
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FIGURE 4
Spatial distributions of pNDRG1-positive cancer cells relative to the stromal border. (A) Representative images of the PDAC AsPC xenograft sections
stained for Fibronectin (red) and phospho-NDRG1 (yellow) used for spatial analysis. (B) Breakdown of the training set curated for cells in pNDRG1
images. Numbers inserted in charts indicate the number of training examples per class. (C) Confusion matrix comparing threshold-based and machine
learning-based classification of cells based on cellular marker signal intensity. Percentages indicate the agreement between classification results from
the two methods. KER: Pan-cytokeratin. (D) Spatial analysis of pNDRG1 signal intensity in cancer cells as a function of their signed distance to the
closest stromal border (x-axis, in µm). Cells positive for pNDRG1 were grouped into bins based on their distance from the stromal border. The left
y-axis shows the average maximum cellular signal intensity for pNDRG1-positive cells (black dots) per bin, with standard error of the mean (SEM)
indicated as grey overlays. The right y-axis represents the number of cells per bin. Negative distances correspond to cells within stromal regions, while
positive distances indicate cells outside these regions. Bin size: 10 µm. The x-axis is clipped between −100 and 300 µm around the stromal border.
Results from the cell classification using adaptive thresholds were used.
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FIGURE 5
Spatial distributions of Ki67-positive cancer cells relative to the stromal border. (A) Representative images of the PDAC AsPC xenograft sections stained
for Fibronectin (red) and Ki67 (cyan) used for spatial analysis. (B) Breakdown of the training set curated for cells in Ki67 images. Numbers inserted in
charts indicate the number of training examples per class. (C) Confusion matrix comparing threshold-based and machine learning-based classification
of cells based on cellular marker signal intensity. Percentages indicate the agreement between classification results from the two methods. KER:
Pan-cytokeratin. (D) Spatial analysis of Ki67 signal intensity in cancer cells as a function of their signed distance to the closest stromal border (x-axis, in
µm). Cells positive for Ki67 were grouped into bins based on their distance from the stromal border. The left y-axis shows the average maximum
cellular signal intensity for Ki67-positive cells (black dots) per bin, with standard error of the mean (SEM) indicated as grey overlays. The right y-axis
represents the number of cells per bin. Negative distances correspond to cells within stromal regions, while positive distances indicate cells outside
these regions. Bin size: 10 µm. The x-axis is clipped between −100 and 300 µm around the stromal border. Results from the cell classification using
adaptive thresholds were used.
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A Random Forest classifier was trained on 298 manually
annotated cells across four classes (pan-cytokeratin-positive,
pan-cytokeratin-negative, Ki67-positive, and Ki67-negative;
Figure 5B). We also defined percentile-based thresholds from
Image #1 and propagated them across all images using our
statistical method (Box 1) for pan-cytokeratin, fibronectin
and Ki67 channels. Both classification approaches produced
similar results, with an average agreement of 86.3% (Figure 5C,
Supplementary Figure S5A). Full classification parameters and
translated thresholds are provided in the Supplementary Material
(Supplementary Tables S5–S7). However, unlike pNDRG1, Ki67
classification proved more sensitive to intensity heterogeneity:
using a single global threshold led to an average agreement drop
of 2.9% (±10.1% SD, Supplementary Table S8), highlighting the
necessity of threshold calibration when analyzing markers with
higher inter-image variability.

Spatial mapping of cells both positive for Ki67 and
Pan-cytokeratin revealed a clear trend: the number of
actively proliferating cancer cells was lowest within stromal
regions and progressively increased with distance from the
stroma-tumor interface, plateauing at approximately 300 µm
(Figure 5D, Supplementary Figure S5B). In the following sections,
cells referred to as Ki67+ are both Ki67- and Pan-cytokeratin-
positive (selected for cancer cells). Two observations support this.

1. Ki67 signal intensity in increased monotonically from 0
to ∼300 µm away from the stromal border, after which it
stabilized.

2. Similarly, the number of both Ki67-positive cells within the
stomal regions was much lower compared to the one outside
the stromal compartment, assessed by the number of cells
in each bin.

These findings support the notion that dense stroma creates a
mechanical and a biochemical barrier that manifests in diminished
exposure of cancer cells to chemotherapy, thus having a major
impact on cancer cell proliferation. They also demonstrate the
importance of adapting classification strategies to accommodate
image-specific intensity profiles.

3.4 Sensitivity analysis of thresholds on the
spatial distribution

We conducted a sensitivity analysis to assess the robustness
of spatial trends with respect to two key parameters involved in
stromal mask generation: (1) the standard deviation (σ) of the
Gaussian kernel applied to the fibronectin channel and (2) the pixel
intensity threshold used to distinguish stromal from non-stromal
regions. We performed a grid search over both parameters and,
for each combination, recalculated the stromal mask, cell-to-stroma
distances, and the Pearson correlation between marker intensity
and stromal proximity. Across this parameter space, spatial trends
remained consistent for both markers (Figure 6). For pNDRG1, the
correlation between intensity and distance ranged from −0.01 to
0.03 for cells inside the stroma and from −0.16 to −0.15 for cells
outside the stroma. For Ki67, the correlation ranged from 0.04 to
0.07 inside the stroma and from 0.01 to 0.03 outside the stroma.
These small fluctuations indicate that the observed spatial patterns

are robust to reasonable variations in smoothing and thresholding.
Taken together, the results confirm that the observed spatial patterns
are not artifacts of specific parameter choices. This step also led
us to empirically select σ = 15 for pNDRG1 and σ = 10 for Ki67,
based on the parameter set that maximized smoothness of the
stromal border while preserving local spatial structure.These values
produced segmentation masks that were both biologically plausible
and numerically stable across images.

4 Discussion

In this study we present an open-source image analysis pipeline
for the robust and reproducible quantification of spatial biomarker
distributions in stroma-rich tumors. By integrating QuPath
(Bankhead et al., 2017), StarDist (Schmidt et al., 2018), and Python-
based statistical analyses, our framework enables the extraction
of biologically relevant spatial patterns from heterogeneous
immunofluorescence imaging datasets. Notably, we found that the
fibronectin-defined stromal border consistently aligned with spatial
changes in biomarker expression. Specifically, in cancer cells positive
for the phospho-NDRG1, the signal intensity peaked at the tumor-
stroma interface and started to rapidly decline in the cells located
farther from the stromal border (Figure 4). As for the cells positive
for Ki67, the intensity was low inside the stroma and increased
progressively with greater distance from the border until plateauing
at approximately 300 µm mark (Figure 5).

These patterns reveal a spatially constrained organization of
ECM sensing and proliferative response programs shaped by the
surrounding stroma. While dense stromal regions influence the
activation of key intracellular signaling pathways and restrict drug
availability, other components of the TME orchestrate a wide range
of immune, metabolic, and transcriptional changes that contribute
to the complexity of stroma-rich cancers. Further biological and
biochemical studies are needed to uncover the underlying cues
driving the distinct spatial distribution of these programs.

4.1 Scalability and generalizability

Our pipeline is designed to process gigapixel-scale whole-slide
images with batch-level reproducibility. While classification via
QuPath’s machine learning tools still requires manual annotation,
we show that statistical propagation of thresholds from a reference
image can approximate the accuracy of trained classifiers. This
approach significantly improves scalability for large datasets by
reducing the need for manual curation, while also compensating for
staining variability across slides. One key take home message is that
the framework is not limited to pancreatic cancer mouse xenografts,
but can be applied for the analysis of various tissues with high
stromal content (e.g., breast, ovarian cancer tissues, fibrotic tissues,
bone marrow, or adipose tissue) (Friščić and Hoffmann, 2022).
Stromal regions can be delineated using any appropriate marker
(e.g., collagens, laminins), making the pipeline adaptable to a wide
range of tumor types and other dense tissues. Similarly, classification
can be tailored to different biomarkers and experimental goals
using either supervised or threshold-based methods, depending
on the availability of labeled training data. This flexibility makes
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FIGURE 6
Sensitivity analysis on parameters used in the stroma annotation. (A) pNDRG1 dataset.∗∗ p = 1.95 × 10−3;∗∗∗ p = 9.77 × 10−4 (B) Ki67 dataset.∗∗∗ p = 9.77
× 10−4;∗∗∗ p = 9.77 × 10−4 x-axis: the median Pearson correlation value from all images in the dataset. Blue circular dots represent cells outside of
stromal regions i.e., marked by positive distance to their closest border. Pink triangle dots represent cells inside stromal regions i.e., marked by negative
distance to their closest border. Significance levels:∗ p < 0.05,∗∗p < 0.01,∗∗∗ p < 0.001.

the pipeline applicable across diverse contexts even beyond cancer
biology, where spatial phenotyping is relevant.

4.2 Limitations and future work

Despite its strengths, the pipeline has several limitations.
First, stromal region delineation is currently based on intensity
thresholding, which, although validated via sensitivity analysis,
remains susceptible to staining variability and human bias.
Incorporating texture features or adopting deep learning-based
segmentation methods may further improve robustness by being
even more agnostic for human-chosen parameters. Second, while
the statistical propagation method mitigates batch effects, it still

depends on the initial selection of a reference threshold. We show
that this dependency is dataset-specific, and recommend examining
cell-level intensity distributions before choosing between machine
learning or percentile-based classification strategies. Then, we
acknowledge that a fully manual expert annotation comparison
(e.g., from a pathologist or cancer biologist) would be an interesting
future benchmark. While outside the scope of the present study,
it would be useful to further assess the pipeline’s biological and
clinical validity. Additionally, this work focuses exclusively on
2D spatial measurements. Although informative, 2D projections
may obscure spatial interactions that unfold in three dimensions.
Future extensions of the pipeline could integrate volumetric imaging
techniques and 3D segmentation to enable more comprehensive
modeling of tumor-stroma interactions in space.
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4.3 Conclusion

This study demonstrates a reproducible and scalable pipeline
for analyzing the spatial organization of biomarkers in stroma-
rich tissues using images acquired from the chemotherapy-treated
pancreatic cancer xenografts as an example. By leveraging user-
friendly open-source software and emphasizing interpretable
statistical modeling, the approach lowers the barrier to quantitative
spatial analysis in experimental pathology. As large-scale
multiplexed imaging becomes increasingly common, tools like this
will be essential for integrating spatial context into the study of
tumor biology and therapy response.

Summary paragraph

Our study introduces a scalable and reproducible image
analysis pipeline that quantifies spatial biomarker distributions
relative to the stroma in tumor tissues using open-source tools.
By modeling cell-level intensity distributions and calibrating
classification thresholds across heterogeneous images, we uncover
spatially organized patterns of stroma sensing, DNA damage, and
proliferative response in pancreatic tumors. This approach enables
robust, quantitative analysis of tumor-stroma interactions and is
readily adaptable to other tumor types and biomarker panels,
providing a valuable resource for spatial pathology and tumor
microenvironment research.
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