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Phage therapy has reemerged as a compelling alternative to antibiotics in 
treating bacterial infections, especially for superbugs that have developed 
antibiotic resistance. The challenge in the broader application of phage 
therapy is identifying host targets for the vast array of uncharacterized phages 
obtained through next-generation sequencing. We introduce a Composite 
Model for Phage Host Interaction (CoMPHI) that integrates alignment-based 
approaches with machine learning. The model generates multiple feature 
encodings from nucleotide and protein sequences of both phages and hosts. 
It incorporates alignment scores between phage-phage, phage-host, and host-
host pairs, creating a composite prediction framework. During 5-fold cross-
validation, CoMPHI achieved Area Under the ROC Curve (AUC-ROC) values of 
94–96.7% and accuracies of 92.3–95.1% across taxonomic levels from species to 
phylum. Comparative analysis showed a 6–8% performance improvement when 
alignment scores were included. Ablation studies demonstrated that combining 
nucleotide and protein encodings, along with phage-host, host-host, and 
phage-phage alignment scores, significantly enhanced prediction accuracy. 
CoMPHI provides a robust and comprehensive framework for predicting phage-
host interactions. By combining sequence features and alignment information, 
the model advances computational tools that can accelerate the application of 
phage therapy in modern medicine.

KEYWORDS

sequence alignment, machine learning, bacteriophages, antibiotic resistance, 
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 1 Introduction

Antimicrobial resistance (AMR) was declared one of the top 10 global health threats by 
the World Health Organization (WHO). Antibiotics, considered a cornerstone of modern 
healthcare, are under threat from antibiotic resistance, which has emerged as a significant 
global public health and socioeconomic issue. An estimated 4.95 million deaths were 
attributed to bacterial antibiotic resistance, with 1.27 million deaths being specifically 
linked to bacterial AMR in 2019 (Murray et al., 2022). The World Bank projected that 
up to 3.8% of the global gross domestic product could be lost due to AMR by 2050 
(Jonas et al., 2017). Among drug-resistant microbes, a significant threat is posed by the
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group known as ESKAPEE, an acronym for Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, Enterobacter spp., and 
Escherichia coli. These pathogens comprise high to critically 
drug-resistant strains and fall into the WHO’s Critical Priority I 
and II categories. The pharmaceutical industry currently regards 
antibiotic development as financially imprudent (Safir et al., 
2020) due to economic and regulatory barriers, resulting in 
diminished interest in this critical area (Bartlett et al., 2013). 
This circumstance heightens the imminent threat of entering a 
post-antibiotic era (Bartlett et al., 2013).

Phage therapy emerges as a compelling alternative to antibiotics 
in treating bacterial infections, particularly in combating superbugs 
that have developed resistance to traditional antibiotics. (Saw 
and Song, 2019). Phages are highly specific to the type of host 
they can infect (Saw and Song, 2019). This specificity implies 
that a particular phage would only target a particular strain or 
species of the host. Currently, culture-based or in vitro methods 
are employed to characterize and isolate phages that lyse their 
specific hosts. However, this method is resource-, labor-, and time-
intensive, heavily dependent on the lytic cycle, limited to hosts 
that can be cultivated, not suited to be applied in large-scale or 
complex environments, and has low efficiency (Hyman, 2019). 
Leveraging state-of-the-art metagenomic sequencing and advanced 
bioinformatics, in silico prediction of putative hosts for metagenomic 
sequenced phages can accelerate and broaden the application of 
phage therapy in modern medicine. Such predictions are based 
on genomic signals arising from the coevolution and/or arms race 
between phages and hosts. These can be broadly categorized as 
alignment-based and alignment-free/machine learning methods.

Alignment-based methods leverage genomic and proteomic 
sequence homology/similarity to predict the host range of a 
phage (Versoza and Pfeifer, 2022). While this method can achieve 
high accuracy by controlling the alignment threshold, its recall 
is limited due to the constraints of sequences in the search 
database (Ahlgren et al., 2017). Additionally, it struggles to adapt to 
evolutionary shifts in phage and host genomes (Hall et al., 2013).

Alignment-free methods operate by extracting patterns and 
compositions from labeled empirical training data, employing 
statistical and/or probabilistic techniques, and do not rely on 
the alignment of sequences. The efficacy of a machine learning 
model hinges on capturing diverse genomic signals arising 
from intricate interactions between phages and hosts within 
a feature set (Li and Zhang, 2022). While numerous studies 
have explored various aspects of phage-host genomic signals as 
feature sets for machine learning models, the focus has primarily 
been on either phage nucleotide sequences or specific proteins, 
such as WIsH (Galiez et al., 2017). Remarkably, only a limited 
number of studies have integrated both. Additionally, very few 
studies have delved into feature sets derived from both phages and 
hosts, overlooking the evident close co-evolution of these entities. 
Furthermore, encoding genetic sequences using a specific method 
may highlight specific composition properties or patterns associated 
with their function, potentially overlooking functionalities due to 
data sparsity. Consequently, machine learning algorithms might 
miss features related to other functionalities within the sequences. 
This gap underscores the potential for enhanced model accuracy 
through a more comprehensive exploration of combined phage and 

host genomic features. Within these broader categories, alignment-
based methods demonstrate high accuracy but low recall whereas 
alignment-free methods exhibit higher recall, but lower precision 
compared to alignment-based methods. This paper introduces 
a novel composite model for predicting phage-host interactions, 
hypothesizing that capitalizing on the accuracy of alignment-based 
methods and the recall and flexibility of machine-learning techniques 
will improve its performance further than the current literature.
The model first utilizes multiple feature encodings from both 
nucleotide and protein sequences of phages and hosts. Then it 
leverages similarity scores from alignment-based methods for 
phage-phage, phage-host, and host-host interactions, along with a 
machine learning algorithm to predict the interaction probabilities 
between phages and hosts. 

2 Materials and methods

2.1 Dataset collection and pre-processing

The dataset contained genomes of phages and hosts and 
phage-host interaction downloaded from the National Center of 
Biotechnology Information (NCBI) RefSeq bacteriophage database 
available as of August 2023 (US National Library of Medicine). 
This included 3,629 unique phage-host interactions between 3,629 
phages and 815 hosts. Only phages that infect bacteria along with 
their hosts were selected and incomplete genomes of nucleotides and 
protein sequences were removed. To reduce bias due to the over-
representation of a particular phage, data redundancy was removed 
by clustering phage genomes using CD-HIT (Fu et al., 2012) at a 
95% identity match resulting in a dataset containing 3,018 unique 
phage-host interactions between 3,018 phages and 353 hosts. The 
95% identity match was chosen to reduce redundancy and lower 
computational load without eliminating diversity of the dataset. 
The NCBI datasets tool was utilized to collect host taxonomy data 
from the phylum to genus level by inputting each host name into 
the tool at https://api.ncbi.nlm.nih.gov/datasets/v2alpha/taxonomy, 
which returned an Excel file with the host taxonomy data at each 
level. Then phage-host interactions with incomplete host taxonomy 
were removed from the data resulting in a final data set with 2,948 
unique phage-host interactions between 2,948 phages and 256 hosts. 
As there is no laboratory-tested negative phage-host interaction 
data, a balanced set of negative interaction data was generated 
using phage-host interactions that are not included in this final 
cleansed dataset. 

2.2 Composite model outline

The composite model comprises primarily three key 
components:

1. Generation of Alignment Bit Scores: This involves creating 
alignment bit scores for phage-phage, host-host, and phage-
host interactions.

2. Generation of Multiple Feature Encodings: This step focuses on 
generating multiple feature encodings for the nucleotides and 
proteins of both phages and hosts.
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3. Construction of a Composite Machine Learning Model: In this 
stage, a composite machine learning model is developed by 
combining alignment-free prediction using machine learning 
with the alignment-based bit scores.

2.3 Generation of alignment bit scores

Due to the process of co-evolution, phages and their hosts 
share common genetic elements. Consequently, there is a strong 
probability that a closely related host will be susceptible to the 
same phage, or that similar phages will target the same host. To 
leverage this close association, alignment bit scores were acquired 
for phage-host, host-host, and phage-phage interactions using 
NCBI BLAST (Altschul et al., 1990). Phage–phage alignment bit 
scores are acquired by establishing a reference phage database 
that includes all phages in the dataset. Each phage nucleotide 
in the dataset undergoes a search against this reference phage 
database using BLASTn with an e-value of 0.0001. The bit score 
of the maximum hit in this search (after excluding matches to 
itself) is documented as the phage–phage alignment score for the 
respective phage forming an array BIT_PP of dimension N, where 
N is the total number of unique phages in the dataset. Similarly, 
phage–host alignment bit scores are obtained by establishing a 
reference host database encompassing all hosts in the dataset. Each 
phage nucleotide in the dataset is then queried against this host 
reference database using BLASTn with an e-value of 0.0001. The 
bit score of the maximum hit in this search is recorded as the 
phage–host alignment score for the corresponding phage, resulting 
in an array BIT_PH of dimension NxM, where N is the total number 
of unique phages, and M is the total number of unique hosts in the 
dataset. Lastly, a search involving all hosts in the dataset against the 
reference host database, with an e-value of 0.0001, is conducted to 
register the host–host alignment scores. This process forms an array 
BIT_HH of dimension M, where M is the total number of unique 
hosts in the dataset. 

2.4 Generation of multiple feature 
encodings

Utilizing multiple representations and a wider array of features 
extracted from nucleotides and proteins of both the phage and 
hosts enables harnessing complementary genetic signals from 
various levels of molecular interaction, contributing to an enhanced 
accuracy in phage-host prediction. To encode nucleotide sequences, 
feature encodings that are agnostic to the length of nucleotides were 
used to mitigate the influence of sequence length on bias. Following 
a similar approach as Li et al. (2021), feature encodings for protein 
sequences were generated using the iLearn tool (Chen et al., 2020). 
The list of these encodings can be found in Table 1.

As each phage or host consists of multiple protein sequences, six 
operators (mean, median, standard deviation, variance, maximum, 
and minimum) were employed to aggregate features derived from 
these multiple protein sequences. All feature encodings were 
normalized employing the min-max data normalization method, 
ensuring that the feature values fall within the range of 0–1. The 
feature encodings were consolidated into two feature vectors for 

each of the phage/host: one for nucleotide sequences and another 
for proteins.

To test deep learning models, the features were transformed into 
images. The individual sequential feature vectors originating from 
both phages and hosts underwent initial normalization employing 
the min-max data normalization method, ensuring that the feature 
values fall within the range of 0–1. These normalized vectors were 
then reshaped into an nxn array placing values into the array where 
n satisfies the condition: (n−1) × (n−1) <N and N ≤ n × n. In cases 
where N ≤ n × n, padding is applied by introducing zeros to the 
remaining n × n−N entries (Xu et al., 2020). A bilayer architectural 
framework, incorporating nucleotide and protein layers, was devised 
by stacking feature vectors derived from phages and hosts. 

2.5 Construction of a composite machine 
learning model

Considering the exponential growth in genomic data and 
the objective of utilizing a single model for all viral genomes, 
a comparative study between several algorithms was conducted. 
Identifying key candidate algorithms was based on a review of the 
literature. Each algorithm differs based on underlying principles, 
assumptions, and approaches. These algorithms are also easy to 
implement and readily available via machine learning packages 
across multiple platforms/programming environments. Machine 
learning models that were evaluated are Logistic Regression 
(LR), Support Vector Machine (SVM), Multilayer Perceptron 
(MLP), Decisions Tree (DT), K-Nearest Neighbor (KNN), Random 
Forest (RF), and Convolution Neural Network (CNN). After 
evaluating the model performance, considering the principles of 
parsimony and computational complexity, RF was identified as 
the superior algorithm for predicting the putative host of a phage 
as shown in Figure 2. This analysis utilized feature vectors extracted 
from the nucleotide and protein sequences of both phages and 
hosts. Probabilistic classifier RFs were constructed with 100 trees, 
considering 1,004 features for possible splitting at each node. Next, 
variable importance was estimated using the impurity method to 
access the contribution percentages of each of the features.

To further enhance each of the evaluated machine learning 
model’s performance, alignment-based bit scores between phage-
phage, phage-host, and host-host were integrated with the machine 
learning prediction probabilities using a weighted sum as shown in 
the equation below. The host with the highest probability score after 
integrating the alignment bit scores was selected as the putative host 
of the phage.

Prfinal = Prm (1− r) + Pra (BlastPhage

−Host (pt,H) (1− a)

+BlastHost−Host (hs,H)a) r

Prfinal is the prediction probability from the RF model 
computed for all hosts, with Prm denoting the prediction probability 
from the RF model and Pra denoting the prediction probability from 
the sequence alignments. r is the weighting between alignment-
free and alignment-based methods, and a is the weighting between 
phage-host and host-host alignments.

⁃ H is all hosts in the dataset.
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TABLE 1  Details of nucleotide and protein features.

Type Encoding Formula Details

DNA Kmer f(s)=(N(s))/N,
s ∈ {AAA, AAC, AAG, …, TTT}; where s = 3

The occurrence frequencies of k neighboring nucleic acids where 
N(s) is the number of kmer type s, while N is the length of a 
nucleotide sequence

DNA RCKmer f(s)=(N(s))/N,
s ∈ {AAA, AAC, AAG, …, TTT}; where s = 3

The occurrence frequencies of k neighboring nucleic acids where 
N(s) is the number of kmer type s, while N is the length of a 
nucleotide sequence, and reverse-complement kmers are removed

DNA CKSNAP (N_AA/N_total, N_AC/N_total…, N_TT/N_total)|k = 0 The frequency of nucleic acid pairs separated by any k nucleic acid, 
where k = 5

DNA PseEIIP V = [EIIP_AAA·f_AAA,
EIIP_AAC·f_AAC, …,EIIP_TTT·f_TTT ]

Mean EIIP values of trinucleotides in each sequence, f being the 
normalized frequency

DNA NAC f(t)=(N(t))/N,
t ∈ {A, C, G, T(U)}

The frequency of each nucleic acid type in a nucleotide sequence, N 
being the length of the sequence

DNA DNC D(r,s) = N_rs/(N-1), r,s ∈ {A,C,G,T(U)} Di-nucleotide composition, where N_rs is the number of 
di-nucleotides with nucleic acids r and s

DNA TNC D(r,s,t) = N_rst/(N-2), r,s,t ∈ {A,C,G,T(U)} Tri-nucleotide composition, where N_rst is the number of 
tri-nucleotides with nucleic acids r, s, and t

Protein MW MW = sum(w_t)-(m-1)∗18.01 The molecular weight of a protein sequence where w_t represents the 
molecular weight of the amino acid t

Protein AC AC = N_c, c∈{C,H,O,N,S} The abundance of selected chemical elements composing a protein, 
where N_c is the number of occurrences of Carbon, Hydrogen, 
Oxygen, Nitrogen, and Sulfur in the sequence

Protein AAC N_t/N, t∈{A,C,D,E,F,G,H,I,K,L,M,N,
P,Q,R,S,T,V,W,Y,∗}

The frequency of each amino acid type in a protein or peptide 
sequence where t is the amino acid, N is the total number of amino 
acids

⁃ pt represents the input/testing phage.
⁃ hs represents the host of the most similar phage in the dataset 

based on BIT_PP
⁃ BlastPhage-Host is using the BIT_PH scores between the 

phage and host (Figure 1E)
⁃ BlastHost-Host is BIT_HH scores where the comparing 

host is the host of the top match from BIT_PP
(Figures 1B–D)

2.6 Model optimization

Grid search was employed to fine-tune hyperparameters for 
the RF model. The optimal hyperparameter configuration identified 
through the grid search consisted of using 100 trees with a maximum 
depth of 20, a minimum number of samples required to split a node-
set to 10, a minimum number of samples required at a leaf node set 
to 4, the maximum features set as sqrt, and a random state of 42. The 
parameters of the CNN can be found in the GitHub (linked at the 
end of the section).

Another iteration of the grid search was executed at 0.1 
increments to determine the optimal weights for the contributions 
of machine learning predictions and alignment bit scores in the 
model. From this grid search, alpha and gamma values of 0.9 and 

0.4, respectively, were identified. The code can be found at https://
github.com/Bshrey/CoMPHI/tree/main. 

3 Results

3.1 Model validation and performance

3.1.1 Performance of machine learning models
To measure performance, the following measures were used: 

accuracy (Acc), sensitivity (Sen), specificity (Spe), and area under 
the receiver-operating characteristic curve (AUC-ROC). 5-fold 
cross-validation was used on the entire dataset to ensure the 
generalization of the model and to assess model performance. 
Furthermore, to test the model on unseen data, testing was 
performed with the entire dataset using a randomized 70-30 split. 
This testing was repeated 10 times, and the averages were calculated 
to take care of data bias. Among all the algorithms included in 
the comparative analysis, RF and CNN demonstrated the best 
performance, at an accuracy and AUC-ROC of 86.5% and 88.5% 
respectively for RF, and 83.6%, and 88% respectively for CNN 
as illustrated in Figure 2. However, RF is a better algorithm due 
to its interpretability, computational simplicity, automatic feature 
importance, and simpler pre-processing of features. These metrics 
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FIGURE 1
Composite model design. (A) Nucleotide and protein features from phage and host. (B–E) Alignment score matrices BIT_PP, BIT_HH, and BIT_PH. (F)
Composite Model.

FIGURE 2
Performance comparisons of RF with other algorithms.

were within 2%–3% of the 5-fold cross-validation further proving 
the robustness of the RF model on unseen data.

3.1.2 Performance of composite models
The machine learning model’s performance is improved by 

incorporating alignment scores. A random 70-30 split of the entire 

dataset was employed to assess the composite model. This testing 
process was iterated 10 times, and the averages were computed to 
address potential data bias. This resulted in AUC-ROC of 94.0%, 
96.4%, 96.5%, 96.6%, 96.6%, and 96.7% and accuracy of 92.3%, 
93.3%, 93.6%, 94%, 94.9%, and 95.1% at the Species, Genus, Family, 
Order, Class, and Phylum levels, respectively. These taxonomy 
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FIGURE 3
Composite model performance with inclusion of alignment score components compared to RF alone.

level metrics were determined by using the previously obtained 
host taxonomy and having the model predict the corresponding 
taxonomic level in addition to the species of the host. When 
compared to the model utilizing only the machine learning 
algorithm, the composite model demonstrates approximately a 6-
point higher AUC-ROC, as well as improved sensitivity, specificity, 
and accuracy, as illustrated in Figure 3. 5- fold cross validation using 
the entire dataset on the composite model also led to accuracies in 
2%–3% of 70–30 testing. The sensitivity and specificity were also 
improved by adding alignment-based scores, as seen in Figure 3, 
showing that alignment-based scores aid in improving True Positive 
Rate and True Negative Rate.

3.2 Ablation study

To understand the contributions of each of the components in 
the composite model with multiple features, an ablation analysis 
was conducted to compare the impact of including or excluding 
features. The models were evaluated based on the following feature 
combinations: only nucleotide features from phages, only protein 
features from phages, only nucleotide features from hosts, only 
nucleotide features from both phages and hosts, only protein features 
from both phages and hosts, and a combination of nucleotide and 
protein features from both phages and hosts. This analysis led to the 
conclusion that utilizing both nucleotide and protein features from 
both phages and hosts resulted in the highest prediction accuracies, 
as depicted in Figure 4.

Furthermore, nucleotide features had a greater influence 
on the prediction than proteins. Host nucleotides and/or 
proteins contributed more to the model performance than the 
phage nucleotides and/or proteins. Another ablation analysis 
was conducted to assess the impact of individual alignment 
scores—phage-phage, phage-host, and host-host—on the composite 
model. In this analysis, the following combinations were tested 
using 70-30 randomized data split on the entire dataset. The test 
was repeated 10 times, and scores were averaged across these 
tests: BlastPhage-Host with the RF model, BlastHost-Host with the 
RF model, and BlastHost-Host with BlastPhage-Host and the RF 
model. As shown in Figure 3, the composite model using BlastHost-
Host with BlastPhage-Host and the RF model scored the highest, 
indicating that utilizing all alignment scores helps increase accuracy. 

4 Discussion

4.1 Variable importance

As proposed in this paper and proven by the ablation studies, 
composite features from both alignment-based and alignment-
free methods as well as including multiple feature encodings 
from both nucleotides and proteins of phage and host have 
significantly improved the model’s performance in predicting phage-
host interactions. To further gain a deeper understanding of the 
contribution of each alignment-free feature encoding, variable 
importance was assessed using the impurity method in the RF 
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FIGURE 4
Composite Model Performance with Inclusion and Exclusion of Nucleotide and Protein Features. The parenthetical values are the percentages of the 
original AUC-ROC that each ablation retains.

FIGURE 5
Variable importance estimation using impurity method.

model. This estimation further proved the results of the ablation 
study that the nucleotide features made a greater contribution 
to the prediction accuracy compared to the protein features 
as shown in Figure 5.

4.2 ESKAPEE testing

To assess the prediction sensitivity of the model concerning 
different groups of hosts within a taxonomic group, further testing 
was conducted. This involved the following procedures:

1. Exclusion of prevalent ESKAPEE host families from the 
training set and subsequent testing of prediction accuracies.

2. Inclusion of only prevalent ESKAPEE host families from the 
training set and subsequent testing of prediction accuracies.

Results from both tests revealed no drastic changes in the 
prediction accuracies of the composite RF model. This suggests that 
the model retains its predictive capability and can be effectively 
employed to predict phages for currently prevalent pathogens. It also 
suggests that the model retains its performance for hosts that are not 
common in the current dataset proving that the model will reliably 
predict phages for any novel hosts that are discovered. 

4.3 Improvement

One significant benefit of the composite RF model lies in 
its versatility, allowing for straightforward expansion to include 
additional meaningful features that can enhance our understanding 
of phage–host interactions in future studies. All features following 
the phage infection cycle such as CRISPR spacers and auxiliary 
metabolic genes or tRNAs can be included in the feature vectors. 
This paper only includes feature encodings that are not dependent 
on the sequence length. Further studies could expand this model to 
not be restricted by the sequence length. 

5 Conclusion

Phage therapy is already being used in the personalized 
treatment of patients for whom traditional antibiotics have 
failed to work (Yang et al., 2023). Culture-based methods of 
identifying the host range of a phage are time and labor-
intensive and hence can be a bottleneck in the widespread 
use of phage therapy in modern medicine, especially with the 
exponential increase in phage classifications by next-gen sequencing 
methodologies (Klumpp et al., 2012). Recent advancements in 
computational and bioinformatics tools have made it possible 
to predict a putative host for a phage with high accuracy, thus
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reducing the time and effort required to experimentally test a 
phage’s host range. This paper introduces a novel composite 
machine learning model that leverages alignment-free methods, 
by incorporating multiple feature encodings from both nucleotide 
and protein sequences of phages and hosts and combines it 
with alignment-based features of alignment scores between phage-
phage, phage-host, and host-host. The composite model is not 
only robust as proven by the 5-fold validation and 70-30 testing 
but is also interpretable as proven by the ablation studies and 
variable importance analysis (Li and Zhang, 2022). By incorporating 
alignment-based scores alongside multiple features from phage 
and host, the model achieves a notable 5%–6% increase in 
accuracy and AUC-ROC. Ablation analysis and variable importance 
analysis illustrate that nucleotide features contribute more to the 
performance than proteins, host nucleotides, and proteins have a 
greater influence than that of phages, and all alignment scores have 
an equal influence on the performance gain. These results indicate 
that the composite machine learning model is a promising solution 
in predicting phage-host interaction. This model can also be used 
for other classification problems involving nucleotide and protein 
sequences.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

SB: Writing – original draft, Investigation, Writing – review 
and editing, Methodology, Formal Analysis, Conceptualization, 
Validation, Visualization, Data curation. NK: Writing – original 
draft, Supervision, Writing – review and editing. 

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the 
peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References

Ahlgren, N. A., Ren, J., Lu, Y. Y., Fuhrman, J. A., and Sun, F. (2017). Alignment-
free $d_2^∗$ oligonucleotide frequency dissimilarity measure improves prediction of 
hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 45 (1), 39–53. 
doi:10.1093/nar/gkw1002

Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local 
alignment search tool. J. Mol. Biol. 215, 403–410. doi:10.1016/S0022-2836(05)80360-2

Bartlett, J. G., Gilbert, D. N., and Spellberg, B. (2013). Seven ways to preserve the 
miracle of antibiotics. Clin. Infect. Dis. 56 (10), 1445–1450. doi:10.1093/cid/cit070

Chen, Z., Zhao, P., Li, F., Marquez-Lago, T. T., Leier, A., Revote, J., et al. (2020). iLearn: 
an integrated platform and meta-learner for feature engineering, machine-learning 
analysis and modeling of DNA, RNA and protein sequence data. Briefings Bioinforma.
21 (3), 1047–1057. doi:10.1093/bib/bbz041

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for 
clustering the next generation sequencing data. Bioinformatics 28 (23), 3150–3152. 
doi:10.1093/bioinformatics/bts565

Galiez, C., Siebert, M., Enault, F., Vincent, J., and Söding, J. (2017). WIsH: who is the 
host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33 
(19), 3113–3114. doi:10.1093/bioinformatics/btx383

Hall, J. P., Harrison, E., and Brockhurst, M. A. (2013). Viral host-adaptation: 
insights from evolution experiments with phages. Curr. Opin. Virology 3 (5), 572–577. 
doi:10.1016/j.coviro.2013.07.001

Hyman, P. (2019). Phages for phage therapy: isolation, characterization, and host 
range breadth. Pharmaceuticals 12 (1), 35. doi:10.3390/ph12010035

Jonas, O. B., Irwin, A., Berthe, F. C. J., Le Gall, F. G., and Marquez, P. V. (2017). 
Drug-resistant infections: a threat to our economic future (vol. 2): final report. 
HNP/agriculture global antimicrobial resistance initiative.

Klumpp, J., Fouts, D. E., and Sozhamannan, S. (2012). Next generation sequencing 
technologies and the changing landscape of phage genomics. Bacteriophage 2 (3), 
190–199. doi:10.4161/bact.22111

Li, M., Wang, Y., Li, F., Zhao, Y., Liu, M., Zhang, S., et al. (2021). A 
deep learning-based method for identification of bacteriophage-host interaction. 
IEEE/ACM Trans. Comput. Biol. Bioinforma. 18 (5), 1801–1810. doi:10.1109/tcbb.2020.
3017386

Li, M., and Zhang, W. (2022). PHIAF: prediction of phage-host interactions 
with GAN-based data augmentation and sequence-based feature fusion. Briefings in 
Bioinformatics 23 (1), bbab348. doi:10.1093/bib/bbab348

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., 
et al. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic 
analysis. Lancet 399 (10325), 629–655. doi:10.1016/s0140-6736(21)02724-0

Safir, M. C., Bhavnani, S. M., Slover, C. M., Ambrose, P. G., and Rubino, C. M. (2020). 
Antibacterial drug development: a new approach is needed for the field to survive and 
thrive. Antibiotics 9 (7), 412. doi:10.3390/antibiotics9070412

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1622931
https://doi.org/10.1093/nar/gkw1002
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/cid/cit070
https://doi.org/10.1093/bib/bbz041
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1093/bioinformatics/btx383
https://doi.org/10.1016/j.coviro.2013.07.001
https://doi.org/10.3390/ph12010035
https://doi.org/10.4161/bact.22111
https://doi.org/10.1109/tcbb.2020.3017386
https://doi.org/10.1109/tcbb.2020.3017386
https://doi.org/10.1093/bib/bbab348
https://doi.org/10.1016/s0140-6736(21)02724-0
https://doi.org/10.3390/antibiotics9070412
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Bodaka and Kolliputi 10.3389/fbinf.2025.1622931

Saw, P. E., and Song, E. W. (2019). Phage display screening of therapeutic peptide for 
cancer targeting and therapy. Protein and Cell 10 (11), 787–807. doi:10.1007/s13238-
019-0639-7

Versoza, C. J., and Pfeifer, S. P. (2022). Computational prediction of bacteriophage 
host ranges. Microorganisms 10 (1), 149. doi:10.3390/microorganisms10010149

Xu, Y., Zhang, Z., You, L., Liu, J., Fan, Z., and Zhou, X. (2020). scIGANs: single-cell 
RNA-Seq imputation using generative adversarial networks. Nucleic acids Res. 48 (15), 
e85. doi:10.1093/nar/gkaa506

Yang, Q., Le, S., Zhu, T., and Wu, N. (2023). Regulations of phage therapy across the 
world. Front. Microbiol. 14, 1250848. doi:10.3389/fmicb.2023.1250848

Frontiers in Bioinformatics 09 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1622931
https://doi.org/10.1007/s13238-019-0639-7
https://doi.org/10.1007/s13238-019-0639-7
https://doi.org/10.3390/microorganisms10010149
https://doi.org/10.1093/nar/gkaa506
https://doi.org/10.3389/fmicb.2023.1250848
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Dataset collection and pre-processing
	2.2 Composite model outline
	2.3 Generation of alignment bit scores
	2.4 Generation of multiple feature encodings
	2.5 Construction of a composite machine learning model
	2.6 Model optimization

	3 Results
	3.1 Model validation and performance
	3.1.1 Performance of machine learning models
	3.1.2 Performance of composite models

	3.2 Ablation study

	4 Discussion
	4.1 Variable importance
	4.2 ESKAPEE testing
	4.3 Improvement

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

