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Phage therapy has reemerged as a compelling alternative to antibiotics in
treating bacterial infections, especially for superbugs that have developed
antibiotic resistance. The challenge in the broader application of phage
therapy is identifying host targets for the vast array of uncharacterized phages
obtained through next-generation sequencing. We introduce a Composite
Model for Phage Host Interaction (CoMPHI) that integrates alignment-based
approaches with machine learning. The model generates multiple feature
encodings from nucleotide and protein sequences of both phages and hosts.
Itincorporates alignment scores between phage-phage, phage-host, and host-
host pairs, creating a composite prediction framework. During 5-fold cross-
validation, CoMPHI achieved Area Under the ROC Curve (AUC-ROC) values of
94-96.7% and accuracies of 92.3—-95.1% across taxonomic levels from species to
phylum. Comparative analysis showed a 6-8% performance improvement when
alignment scores were included. Ablation studies demonstrated that combining
nucleotide and protein encodings, along with phage-host, host-host, and
phage-phage alignment scores, significantly enhanced prediction accuracy.
CoMPHI provides a robust and comprehensive framework for predicting phage-
host interactions. By combining sequence features and alignment information,
the model advances computational tools that can accelerate the application of
phage therapy in modern medicine.

sequence alignment, machine learning, bacteriophages, antibiotic resistance,
phagehost prediction

1 Introduction

Antimicrobial resistance (AMR) was declared one of the top 10 global health threats by
the World Health Organization (WHO). Antibiotics, considered a cornerstone of modern
healthcare, are under threat from antibiotic resistance, which has emerged as a significant
global public health and socioeconomic issue. An estimated 4.95 million deaths were
attributed to bacterial antibiotic resistance, with 1.27 million deaths being specifically
linked to bacterial AMR in 2019 (Murray et al.,, 2022). The World Bank projected that
up to 3.8% of the global gross domestic product could be lost due to AMR by 2050
(Jonas et al,, 2017). Among drug-resistant microbes, a significant threat is posed by the
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group known as ESKAPEE, an acronym for Enterococcus faecium,
Staphylococcus Klebsiella  pneumoniae, Acinetobacter

baumannii, Pseudomonas aeruginosa, Enterobacter spp., and

aureus,

Escherichia coli. These pathogens comprise high to critically
drug-resistant strains and fall into the WHO’s Critical Priority I
and II categories. The pharmaceutical industry currently regards
antibiotic development as financially imprudent (Safir et al,
2020) due to economic and regulatory barriers, resulting in
diminished interest in this critical area (Bartlett et al., 2013).
This circumstance heightens the imminent threat of entering a
post-antibiotic era (Bartlett et al., 2013).

Phage therapy emerges as a compelling alternative to antibiotics
in treating bacterial infections, particularly in combating superbugs
that have developed resistance to traditional antibiotics. (Saw
and Song, 2019). Phages are highly specific to the type of host
they can infect (Saw and Song, 2019). This specificity implies
that a particular phage would only target a particular strain or
species of the host. Currently, culture-based or in vitro methods
are employed to characterize and isolate phages that lyse their
specific hosts. However, this method is resource-, labor-, and time-
intensive, heavily dependent on the lytic cycle, limited to hosts
that can be cultivated, not suited to be applied in large-scale or
complex environments, and has low efficiency (Hyman, 2019).
Leveraging state-of-the-art metagenomic sequencing and advanced
bioinformatics, in silico prediction of putative hosts for metagenomic
sequenced phages can accelerate and broaden the application of
phage therapy in modern medicine. Such predictions are based
on genomic signals arising from the coevolution and/or arms race
between phages and hosts. These can be broadly categorized as
alignment-based and alignment-free/machine learning methods.

Alignment-based methods leverage genomic and proteomic
sequence homology/similarity to predict the host range of a
phage (Versoza and Pfeifer, 2022). While this method can achieve
high accuracy by controlling the alignment threshold, its recall
is limited due to the constraints of sequences in the search
database (Ahlgren et al., 2017). Additionally, it struggles to adapt to
evolutionary shifts in phage and host genomes (Hall et al., 2013).

Alignment-free methods operate by extracting patterns and
compositions from labeled empirical training data, employing
statistical and/or probabilistic techniques, and do not rely on
the alignment of sequences. The efficacy of a machine learning
model hinges on capturing diverse genomic signals arising
from intricate interactions between phages and hosts within
a feature set (Li and Zhang, 2022). While numerous studies
have explored various aspects of phage-host genomic signals as
feature sets for machine learning models, the focus has primarily
been on either phage nucleotide sequences or specific proteins,
such as WIsH (Galiez et al,, 2017). Remarkably, only a limited
number of studies have integrated both. Additionally, very few
studies have delved into feature sets derived from both phages and
hosts, overlooking the evident close co-evolution of these entities.
Furthermore, encoding genetic sequences using a specific method
may highlight specific composition properties or patterns associated
with their function, potentially overlooking functionalities due to
data sparsity. Consequently, machine learning algorithms might
miss features related to other functionalities within the sequences.
This gap underscores the potential for enhanced model accuracy
through a more comprehensive exploration of combined phage and
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host genomic features. Within these broader categories, alignment-
based methods demonstrate high accuracy but low recall whereas
alignment-free methods exhibit higher recall, but lower precision
compared to alignment-based methods. This paper introduces
a novel composite model for predicting phage-host interactions,
hypothesizing that capitalizing on the accuracy of alignment-based
methods and the recall and flexibility of machine-learning techniques
will improve its performance further than the current literature.
The model first utilizes multiple feature encodings from both
nucleotide and protein sequences of phages and hosts. Then it
leverages similarity scores from alignment-based methods for
phage-phage, phage-host, and host-host interactions, along with a
machine learning algorithm to predict the interaction probabilities
between phages and hosts.

2 Materials and methods
2.1 Dataset collection and pre-processing

The dataset contained genomes of phages and hosts and
phage-host interaction downloaded from the National Center of
Biotechnology Information (NCBI) RefSeq bacteriophage database
available as of August 2023 (US National Library of Medicine).
This included 3,629 unique phage-host interactions between 3,629
phages and 815 hosts. Only phages that infect bacteria along with
their hosts were selected and incomplete genomes of nucleotides and
protein sequences were removed. To reduce bias due to the over-
representation of a particular phage, data redundancy was removed
by clustering phage genomes using CD-HIT (Fu et al., 2012) at a
95% identity match resulting in a dataset containing 3,018 unique
phage-host interactions between 3,018 phages and 353 hosts. The
95% identity match was chosen to reduce redundancy and lower
computational load without eliminating diversity of the dataset.
The NCBI datasets tool was utilized to collect host taxonomy data
from the phylum to genus level by inputting each host name into
the tool at https://api.ncbi.nlm.nih.gov/datasets/v2alpha/taxonomy,
which returned an Excel file with the host taxonomy data at each
level. Then phage-host interactions with incomplete host taxonomy
were removed from the data resulting in a final data set with 2,948
unique phage-host interactions between 2,948 phages and 256 hosts.
As there is no laboratory-tested negative phage-host interaction
data, a balanced set of negative interaction data was generated
using phage-host interactions that are not included in this final
cleansed dataset.

2.2 Composite model outline

The composite model comprises primarily three key

components:

1. Generation of Alignment Bit Scores: This involves creating
alignment bit scores for phage-phage, host-host, and phage-
host interactions.

2. Generation of Multiple Feature Encodings: This step focuses on
generating multiple feature encodings for the nucleotides and
proteins of both phages and hosts.
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3. Construction of a Composite Machine Learning Model: In this
stage, a composite machine learning model is developed by
combining alignment-free prediction using machine learning
with the alignment-based bit scores.

2.3 Generation of alignment bit scores

Due to the process of co-evolution, phages and their hosts
share common genetic elements. Consequently, there is a strong
probability that a closely related host will be susceptible to the
same phage, or that similar phages will target the same host. To
leverage this close association, alignment bit scores were acquired
for phage-host, host-host, and phage-phage interactions using
NCBI BLAST (Altschul et al., 1990). Phage-phage alignment bit
scores are acquired by establishing a reference phage database
that includes all phages in the dataset. Each phage nucleotide
in the dataset undergoes a search against this reference phage
database using BLASTn with an e-value of 0.0001. The bit score
of the maximum hit in this search (after excluding matches to
itself) is documented as the phage-phage alignment score for the
respective phage forming an array BIT_PP of dimension N, where
N is the total number of unique phages in the dataset. Similarly,
phage-host alignment bit scores are obtained by establishing a
reference host database encompassing all hosts in the dataset. Each
phage nucleotide in the dataset is then queried against this host
reference database using BLASTn with an e-value of 0.0001. The
bit score of the maximum hit in this search is recorded as the
phage-host alignment score for the corresponding phage, resulting
inan array BIT_PH of dimension NxM, where N is the total number
of unique phages, and M is the total number of unique hosts in the
dataset. Lastly, a search involving all hosts in the dataset against the
reference host database, with an e-value of 0.0001, is conducted to
register the host-host alignment scores. This process forms an array
BIT_HH of dimension M, where M is the total number of unique
hosts in the dataset.

2.4 Generation of multiple feature
encodings

Utilizing multiple representations and a wider array of features
extracted from nucleotides and proteins of both the phage and
hosts enables harnessing complementary genetic signals from
various levels of molecular interaction, contributing to an enhanced
accuracy in phage-host prediction. To encode nucleotide sequences,
feature encodings that are agnostic to the length of nucleotides were
used to mitigate the influence of sequence length on bias. Following
a similar approach as Li et al. (2021), feature encodings for protein
sequences were generated using the iLearn tool (Chen et al., 2020).
The list of these encodings can be found in Table 1.

As each phage or host consists of multiple protein sequences, six
operators (mean, median, standard deviation, variance, maximum,
and minimum) were employed to aggregate features derived from
these multiple protein sequences. All feature encodings were
normalized employing the min-max data normalization method,
ensuring that the feature values fall within the range of 0-1. The
feature encodings were consolidated into two feature vectors for

Frontiers in Bioinformatics

03

10.3389/fbinf.2025.1622931

each of the phage/host: one for nucleotide sequences and another
for proteins.

To test deep learning models, the features were transformed into
images. The individual sequential feature vectors originating from
both phages and hosts underwent initial normalization employing
the min-max data normalization method, ensuring that the feature
values fall within the range of 0-1. These normalized vectors were
then reshaped into an nxn array placing values into the array where
n satisfies the condition: (n—1) x (n—1) <N and N < n x n. In cases
where N < n x n, padding is applied by introducing zeros to the
remaining n x n—N entries (Xu et al., 2020). A bilayer architectural
framework, incorporating nucleotide and protein layers, was devised
by stacking feature vectors derived from phages and hosts.

2.5 Construction of a composite machine
learning model

Considering the exponential growth in genomic data and
the objective of utilizing a single model for all viral genomes,
a comparative study between several algorithms was conducted.
Identifying key candidate algorithms was based on a review of the
literature. Each algorithm differs based on underlying principles,
assumptions, and approaches. These algorithms are also easy to
implement and readily available via machine learning packages
across multiple platforms/programming environments. Machine
learning models that were evaluated are Logistic Regression
(LR), Support Vector Machine (SVM), Multilayer Perceptron
(MLP), Decisions Tree (DT), K-Nearest Neighbor (KNN), Random
Forest (RF), and Convolution Neural Network (CNN). After
evaluating the model performance, considering the principles of
parsimony and computational complexity, RF was identified as
the superior algorithm for predicting the putative host of a phage
as shown in Figure 2. This analysis utilized feature vectors extracted
from the nucleotide and protein sequences of both phages and
hosts. Probabilistic classifier RFs were constructed with 100 trees,
considering 1,004 features for possible splitting at each node. Next,
variable importance was estimated using the impurity method to
access the contribution percentages of each of the features.

To further enhance each of the evaluated machine learning
model’s performance, alignment-based bit scores between phage-
phage, phage-host, and host-host were integrated with the machine
learning prediction probabilities using a weighted sum as shown in
the equation below. The host with the highest probability score after
integrating the alignment bit scores was selected as the putative host
of the phage.

Prfinal = Prm (1 —r) + Pra (BlastPhage
— Host (pt,H) (1 —a)
+BlastHost — Host (hs,H)a)r

Prfinal is the prediction probability from the RF model
computed for all hosts, with Prm denoting the prediction probability
from the RF model and Pra denoting the prediction probability from
the sequence alignments. r is the weighting between alignment-
free and alignment-based methods, and a is the weighting between
phage-host and host-host alignments.

= H is all hosts in the dataset.
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TABLE 1 Details of nucleotide and protein features.

10.3389/fbinf.2025.1622931

e | Encoding Formula Details
DNA Kmer f(s)=(N(s))/N, The occurrence frequencies of k neighboring nucleic acids where
s € {AAA, AAC, AAG, ..., TTT}; wheres =3 N(s) is the number of kmer type s, while N is the length of a
nucleotide sequence
DNA RCKmer f(s)=(N(s))/N, The occurrence frequencies of k neighboring nucleic acids where
s € {AAA, AAC, AAG, ..., TTT}; wheres =3 N(s) is the number of kmer type s, while N is the length of a
nucleotide sequence, and reverse-complement kmers are removed
DNA CKSNAP (N_AA/N_total, N_AC/N_total..., N_TT/N_total)|k = 0 The frequency of nucleic acid pairs separated by any k nucleic acid,
wherek =5
DNA PseEIIP V = [EIIP_AAA-f_AAA, Mean EIIP values of trinucleotides in each sequence, f being the
EIIP_AACf_AAC, .. .EIIP_TTT-f TTT ] normalized frequency
DNA NAC f(t)=(N(t))/N, The frequency of each nucleic acid type in a nucleotide sequence, N
te{A, C G, T(U)} being the length of the sequence
DNA DNC D(r,s) = N_rs/(N-1), 1,s € {A,C,G,T(U)} Di-nucleotide composition, where N_rs is the number of
di-nucleotides with nucleic acids r and s
DNA TNC D(rs,t) = N_rst/(N-2), r,s,t € {A,C,G,T(U)} Tri-nucleotide composition, where N_rst is the number of
tri-nucleotides with nucleic acids r, s, and t
Protein MW MW = sum(w_t)-(m-1)*18.01 The molecular weight of a protein sequence where w_t represents the
molecular weight of the amino acid t
Protein AC AC =N_g, ce{C,H,O,N,S} The abundance of selected chemical elements composing a protein,
where N_c is the number of occurrences of Carbon, Hydrogen,
Oxygen, Nitrogen, and Sulfur in the sequence
Protein AAC N_t/N, te{A,C,D,E,EG,H,LK,L,M,N, The frequency of each amino acid type in a protein or peptide
PQR,S,T,V\WY,"} sequence where t is the amino acid, N is the total number of amino
acids

- pt represents the input/testing phage.

- hs represents the host of the most similar phage in the dataset
based on BIT PP

- BlastPhage-Host is using the BIT_PH scores between the
phage and host (Figure 1E)

- BlastHost-Host is BIT_HH scores where the comparing
host is the host of the top match from BIT_PP
(Figures 1B-D)

2.6 Model optimization

Grid search was employed to fine-tune hyperparameters for
the RF model. The optimal hyperparameter configuration identified
through the grid search consisted of using 100 trees with a maximum
depth of 20, a minimum number of samples required to split a node-
set to 10, a minimum number of samples required at a leaf node set
to 4, the maximum features set as sqrt, and a random state of 42. The
parameters of the CNN can be found in the GitHub (linked at the
end of the section).

Another iteration of the grid search was executed at 0.1
increments to determine the optimal weights for the contributions
of machine learning predictions and alignment bit scores in the
model. From this grid search, alpha and gamma values of 0.9 and
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0.4, respectively, were identified. The code can be found at https://
github.com/Bshrey/CoMPHI/tree/main.

3 Results
3.1 Model validation and performance

3.1.1 Performance of machine learning models

To measure performance, the following measures were used:
accuracy (Acc), sensitivity (Sen), specificity (Spe), and area under
the receiver-operating characteristic curve (AUC-ROC). 5-fold
cross-validation was used on the entire dataset to ensure the
generalization of the model and to assess model performance.
Furthermore, to test the model on unseen data, testing was
performed with the entire dataset using a randomized 70-30 split.
This testing was repeated 10 times, and the averages were calculated
to take care of data bias. Among all the algorithms included in
the comparative analysis, RF and CNN demonstrated the best
performance, at an accuracy and AUC-ROC of 86.5% and 88.5%
respectively for RE, and 83.6%, and 88% respectively for CNN
as illustrated in Figure 2. However, RF is a better algorithm due
to its interpretability, computational simplicity, automatic feature
importance, and simpler pre-processing of features. These metrics

frontiersin.org
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B. Blast Phage-Phage

Bacteriophage

10.3389/fbinf.2025.1622931

D. Blast Host-Host E. Blast Phage-Host

C. Obtain Host of Top Match

Bacteria

=

Reference Phage

Reference Host
Database Reference Host

/&\ JATCTAGCATGACTAC ! ) AGCTATCAGCTAC Dalabese
I Postus Prageost | corresponding host to P1 [
Phage with / [ T
Blastn highest bit score (P1) / / Blastn Blostn
L]
Standardized Phage Host Standardzed
Phage | Reference P!
Quary Phage hage | = oe Score Host of P1 Reference Host | > gl C Query P s lm«
NC_0073521 | NC_027538.1
NC_001964 1 NC_004285.1 004 NC_002823.1 NC_008664.1 002 NC_001964.1 NC_008664.1 03
NC_0137612 | NC_0057311
NC_001725.1 NC_001995.2 05 NC_007235.1 NC_001995.2 01 NC_001725.1 NC_001995.2 001
= Gecurmence of suings of kngh Kk 1 a
nucieotde sequence. whero k=6 .
A-Foaturo RCKmer | Aversion of Kmer that removes reverse F. Composite Model m""::‘"‘b{':‘s'c":u
complement Kmer frequencies q
Frequency of each huckic acd i &
NAC MuCeotde sequence
oNe Frequency of two CONSECUIVG NUCIIC acids.
Sl hoc . i & nucieotide sequence
== Frequency of Ivee consecutve nuce =
acids n a nucleotide sequence Feature Random Forest
= Frequency of two nuckeic acids separated punn—
Features Average EIIP vakes of Umuckeotdes in & - .
PseElP sequence M Predicted Host
\|_/ robability
ANCIR] Froquency of eech amino acid in & protein | S—————  Alignment-based methods -
sequence
. Protein The molecuar woght of & proten Vieightng of abgrment-based and -free methods
Features MW, sequence
73 The occurrence of certan chemical
elements in a sequence

FIGURE 1

Composite model design.

Composite Model.

(A) Nucleotide and protein features from phage and host. (B—E) Alignment score matrices BIT_PP, BIT_HH, and BIT_PH. (F)

Random

Logistic Reg

De

® Accuracy

For

CNN

SVM

ression

ision Tree

KNN

Accuracy and AUC-ROC by Algorithm

04 0.6

Accuracy and AUC-ROC

FIGURE 2

Performance comparisons of RF with other algorithms.

were within 2%-3% of the 5-fold cross-validation further proving
the robustness of the RF model on unseen data.

3.1.2 Performance of composite models
The machine learning model’s performance is improved by
incorporating alignment scores. A random 70-30 split of the entire
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dataset was employed to assess the composite model. This testing
process was iterated 10 times, and the averages were computed to
address potential data bias. This resulted in AUC-ROC of 94.0%,
96.4%, 96.5%, 96.6%, 96.6%, and 96.7% and accuracy of 92.3%,
93.3%, 93.6%, 94%, 94.9%, and 95.1% at the Species, Genus, Family,
Order, Class, and Phylum levels, respectively. These taxonomy

05 frontiersin.org


https://doi.org/10.3389/fbinf.2025.1622931
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Bodaka and Kolliputi

10.3389/fbinf.2025.1622931

/7 ~N /7 e s N
TPR and FPR by Model Accuracy, Sensitivity, and Specificity by Model
1.0
¥ 077 i
Alignment + RF 0936
0.923
g o5
=
. Alignment + RF AUC-ROC: 0.940 Random Forest
o RFAUC-ROC: 0.885
0.0
0.0 0.2 04 0.6 0.8 1.0
FPR 0.0 0.5 1.0
@ Alignment + RF ~ RF / @ Sensitivity, @ Specificity @ Accuracy,

l

1.0
E]
0 0.940 | 0923 0.908
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All Features
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AUC-ROC and Accuracy by Model

BlastHost-Host + RF

0.907 0.902

0.904

BlastPhage-Host + RF

FIGURE 3

Composite model performance with inclusion of alignment score components compared to RF alone.

level metrics were determined by using the previously obtained
host taxonomy and having the model predict the corresponding
taxonomic level in addition to the species of the host. When
compared to the model utilizing only the machine learning
algorithm, the composite model demonstrates approximately a 6-
point higher AUC-ROC, as well as improved sensitivity, specificity,
and accuracy, as illustrated in Figure 3. 5- fold cross validation using
the entire dataset on the composite model also led to accuracies in
2%-3% of 70-30 testing. The sensitivity and specificity were also
improved by adding alignment-based scores, as seen in Figure 3,
showing that alignment-based scores aid in improving True Positive
Rate and True Negative Rate.

3.2 Ablation study

To understand the contributions of each of the components in
the composite model with multiple features, an ablation analysis
was conducted to compare the impact of including or excluding
features. The models were evaluated based on the following feature
combinations: only nucleotide features from phages, only protein
features from phages, only nucleotide features from hosts, only
nucleotide features from both phages and hosts, only protein features
from both phages and hosts, and a combination of nucleotide and
protein features from both phages and hosts. This analysis led to the
conclusion that utilizing both nucleotide and protein features from
both phages and hosts resulted in the highest prediction accuracies,
as depicted in Figure 4.
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Furthermore, nucleotide features had a greater influence
on the prediction than proteins. Host nucleotides and/or
proteins contributed more to the model performance than the
phage nucleotides and/or proteins. Another ablation analysis
was conducted to assess the impact of individual alignment
scores—phage-phage, phage-host, and host-host—on the composite
model. In this analysis, the following combinations were tested
using 70-30 randomized data split on the entire dataset. The test
was repeated 10 times, and scores were averaged across these
tests: BlastPhage-Host with the RF model, BlastHost-Host with the
RF model, and BlastHost-Host with BlastPhage-Host and the RF
model. As shown in Figure 3, the composite model using BlastHost-
Host with BlastPhage-Host and the RF model scored the highest,
indicating that utilizing all alignment scores helps increase accuracy.

4 Discussion
4.1 Variable importance

As proposed in this paper and proven by the ablation studies,
composite features from both alignment-based and alignment-
free methods as well as including multiple feature encodings
from both nucleotides and proteins of phage and host have
significantly improved the model’s performance in predicting phage-
host interactions. To further gain a deeper understanding of the
contribution of each alignment-free feature encoding, variable
importance was assessed using the impurity method in the RF

frontiersin.org
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Feature Inclusion Contribution to AUC-ROC

Phage and Host DNA 0.746 (79.44%)

Phage and Host Protein

0.621 (66.11%)

0.500 (53.24%)

Host DNA

Phage DNA

Host Protein

Phage Protein

FIGURE 4

original AUC-ROC that each ablation retains.

Composite Model Performance with Inclusion and Exclusion of Nucleotide and Protein Features. The parenthetical values are the percentages of the

Feature Exclusion Contribution to AUC-ROC

Exclude Phage Protein 0.759 (80.79%)
Exclude Host Protein 0.691 (73.55%)

Exclude Phage DNA
0.611 (65.02%)

Exclude Host DNA

Feature Importance by Impurity

Phage AAC 2.53%
Host AC 0.53%

Host AAC 3.35%
Host RCKmer 3.6%

Phage PseEIIP 5.17%
Host MW 12.54%

Phage Kmer 5.32%

Host Cksnap 6.09%

Host PseEIIP 11.34%

Phage TNC 6.68%

Host TNC 8.09% Phage MW 9.52%

Host Kmer 9.28% DNA Features : 0.70

Phage Cksnap 9%
Protein Features: 0.30

FIGURE 5
Variable importance estimation using impurity method.

model. This estimation further proved the results of the ablation
study that the nucleotide features made a greater contribution
to the prediction accuracy compared to the protein features
as shown in Figure 5.

4.2 ESKAPEE testing

To assess the prediction sensitivity of the model concerning
different groups of hosts within a taxonomic group, further testing
was conducted. This involved the following procedures:

1. Exclusion of prevalent ESKAPEE host families from the
training set and subsequent testing of prediction accuracies.

2. Inclusion of only prevalent ESKAPEE host families from the
training set and subsequent testing of prediction accuracies.
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Results from both tests revealed no drastic changes in the
prediction accuracies of the composite RF model. This suggests that
the model retains its predictive capability and can be effectively
employed to predict phages for currently prevalent pathogens. It also
suggests that the model retains its performance for hosts that are not
common in the current dataset proving that the model will reliably
predict phages for any novel hosts that are discovered.

4.3 Improvement

One significant benefit of the composite RF model lies in
its versatility, allowing for straightforward expansion to include
additional meaningful features that can enhance our understanding
of phage-host interactions in future studies. All features following
the phage infection cycle such as CRISPR spacers and auxiliary
metabolic genes or tRNAs can be included in the feature vectors.
This paper only includes feature encodings that are not dependent
on the sequence length. Further studies could expand this model to
not be restricted by the sequence length.

5 Conclusion

Phage therapy is already being used in the personalized
treatment of patients for whom traditional antibiotics have
failed to work (Yang etal, 2023). Culture-based methods of
identifying the host range of a phage are time and labor-
intensive and hence can be a bottleneck in the widespread
use of phage therapy in modern medicine, especially with the
exponential increase in phage classifications by next-gen sequencing
methodologies (Klumpp et al., 2012). Recent advancements in
computational and bioinformatics tools have made it possible
to predict a putative host for a phage with high accuracy, thus
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reducing the time and effort required to experimentally test a
phage’s host range. This paper introduces a novel composite
machine learning model that leverages alignment-free methods,
by incorporating multiple feature encodings from both nucleotide
and protein sequences of phages and hosts and combines it
with alignment-based features of alignment scores between phage-
phage, phage-host, and host-host. The composite model is not
only robust as proven by the 5-fold validation and 70-30 testing
but is also interpretable as proven by the ablation studies and
variable importance analysis (Li and Zhang, 2022). By incorporating
alignment-based scores alongside multiple features from phage
and host, the model achieves a notable 5%-6% increase in
accuracy and AUC-ROC. Ablation analysis and variable importance
analysis illustrate that nucleotide features contribute more to the
performance than proteins, host nucleotides, and proteins have a
greater influence than that of phages, and all alignment scores have
an equal influence on the performance gain. These results indicate
that the composite machine learning model is a promising solution
in predicting phage-host interaction. This model can also be used
for other classification problems involving nucleotide and protein
sequences.
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