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Key genes associated with brain 
metastasis in non-small cell lung 
cancer: novel insights from 
bioinformatics analysis

Shuang Zhao†  and  He Zhang*†

General Hospital of Northern Theater Command of the Chinese People's Liberation Army, Shenyang, 
China

Background: This study aims to investigate potential biomarkers associated with 
NSCLC-BM and elucidate their regulatory roles in critical pathways involved in 
cerebral metastatic dissemination.
Methods: The identified DEGs were subjected to functional enrichment analysis. 
PPI networks were predicted using the STRING database and visualized with 
Cytoscape. Hub genes were subsequently screened from the PPI network to 
construct a transcription TF-miRNA regulatory network. Subsequent analyses 
included: survival analysis, immune infiltration assessment and comprehensive 
mutational profiling.
Results: Among the 56 identified DEGs, 19 were upregulated while 37 were 
downregulated. GOntology enrichment analysis revealed significant enrichment 
in immune response, signaling receptor binding, and extracellular region. KEGG 
pathway analysis demonstrated predominant involvement in cytokine-cytokine 
receptor interaction and chemokine signaling pathway. Through Cytoscape-
based screening, we identified 10 hub genes: CD19, CD27, IL7R, SELL, CCL5, 
CCR5, PRF1, GZMK, GZMA, and TIGIT. The TF-miRNA regulatory network analysis 
uncovered 6 transcription factors (STAT5A/B, NFKB1, EGR1, RELA, and CTCF) 
and 4 miRNAs(hsa-miR-204, hsa-miR-148b, hsa-miR-618, and hsa-miR-103) 
as critical transcriptional and post-transcriptional regulators of DEGs.Integrated 
analyses including Kaplan-Meier survival curves, immune infiltration profiling, 
and comprehensive mutational analysis demonstrated significant associations 
with brain metastatic progression in the studied cohort.
Conclusion: This study provides novel biomarkers from a unique perspective for 
the diagnosis, prognosis, and development of molecular-targeted therapies or 
immunotherapies for brain metastasis in NSCLC.
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Introduction

Lung cancer ranks as the second most commonly diagnosed malignancy worldwide, 
exceeded only by breast cancer in incidence. It represents the most frequent primary 
tumor type that metastasizes to the brain, followed by breast cancer and melanoma
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(Cagney et al., 2017). Non-small cell lung cancer (NSCLC) 
comprises approximately 85% of all lung cancer cases (Sung et al., 
2021; Jonna and Subramaniam, 2019), with brain metastasis (BM) 
being particularly common in this subgroup. Between 10% and 
20% of NSCLC patients present with BM at initial diagnosis 
(Waqar et al., 2018), and an additional 25%–40% will develop BM 
throughout the disease course (Page et al., 2020). The prognosis 
for NSCLC patients with BM remains poor, and symptomatic 
cases are often associated with rapid deterioration in quality of 
life (Matsui et al., 2022). Historical reports indicate a median 
survival of only 4–6 months (Cheng and Perez-Soler, 2018). More 
recent epidemiological studies show that 15%–20% of NSCLC 
patients are diagnosed with BM at initial presentation, a figure that 
increases to 25%–40% over time (Waqar et al., 2018; Nayak et al., 
2012; Hubbs et al., 2010). This incidence is even higher among 
patients with stage IV adenocarcinoma, among whom 40%–50% 
have BM at diagnosis (Yang et al., 2019). NSCLC patients harboring 
EGFR or ALK mutations are especially prone to developing BM 
and exhibit a higher incidence of such events (Gillespie et al., 
2023). While historical median survival was reported between 
several months to one year—and below 6 months without treatment 
(Ali et al., 2013)-contemporary series report improved outcomes, 
with a median survival of approximately 15 months in lung 
adenocarcinoma patients with BM (Sperduto et al., 2020). The 
Lung-molGPA index further stratifies prognosis, identifying a 
small subgroup (4%) of patients with scores of 3.5–4.0 who may 
achieve a median survival of nearly 4 years (Sperduto et al., 2017). 
This prognostic tool incorporates clinical variables such as age, 
performance status, number of metastases, and extracranial disease 
burden, alongside molecular markers including EGFR and ALK 
mutations (Sperduto et al., 2017). The pathogenesis of BM in 
NSCLC entails complex crosstalk among tumor cells, immune 
components, and the specialized brain tumor microenvironment 
(TME). Metastasis is not solely an intrinsic trait of certain 
tumors, but a multistep, multidimensional process shaped by 
mutational landscapes, epigenetic alterations, and growth factor 
signaling (Srinivasan et al., 2021). As illustrated in Figure 1, 
the metastatic cascade initiates with local invasion through the 
basement membrane of the primary lung tumor—a step involving 
epithelial-mesenchymal transition (EMT) and intravasation into 
blood or lymphatic vessels. This allows circulating tumor cells 
(CTCs) to circumvent host immune surveillance and survive in 
circulation. Nevertheless, the precise mechanisms driving BM 
remain inadequately characterized, impeding the development of 
more effective treatment approaches.

Results

Identification of differentially expressed 
genes (DEGs)

Based on the GSE161116 microarray dataset (GPL19965 
platform), this study employed a systematic bioinformatics pipeline 
for differentially expressed gene (DEG) identification. Data 
normalization: Raw expression profiles underwent background 
correction and quantile normalization via the RMA algorithm to 
eliminate batch effects. Differential analysis: The limma package 

was applied to identify DEGs between primary NSCLC (n = 14) and 
NSCLC-BM (n = 14), with thresholds set at |log2FC| >1 and FDR 
< 0.05, yielding 779 significant DEGs.Visualization:A volcano plot 
highlighted 56 robust DEGs (19 upregulated, 37 downregulated) 
(Figure 2A). Venn diagram analysis revealed 50 core overlapping 
genes between GSE161116 DEGs and the GeneCards BM-
related gene set (Figure 2C; Supplementary Table S1). Hierarchical 
clustering heatmap analysis (pheatmap package) of these 50 
intersecting genes demonstrated heterogeneous expression patterns 
across groups (Figure 2B).

Enrichment analysis of DEGs

Our systematic analysis integrating GSEA and multidimensional 
functional annotation revealed distinct molecular regulatory 
characteristics of NSCLC brain metastasis (NSCLC-BM). Using 
the MSigDB database (C2: curated gene sets), we observed 
marked upregulation of the “interleukin-17 signaling pathway” 
(NES = 2.024, FDR = 0.024), suggesting that an IL-17-mediated 
proinflammatory microenvironment may facilitate central nervous 
system colonization through the TLR/NF-κB axis (Figure 3). To 
further interpret the functional implications of the differentially 
expressed genes (DEGs), we performed comprehensive functional 
enrichment analyses. Detailed results of the GO enrichment analysis 
are presented in Table1. The most significantly enriched biological 
process (BP) terms included immune response, signal transduction, 
inflammatory response, and cell surface receptor signaling pathway 
(Figure 4A). For molecular function (MF), the top enriched terms 
were signaling receptor binding, chemokine activity, cytokine 
activity, and transmembrane signaling receptor activity (Figure 4B). 
Notably, the key cellular component (CC) terms included plasma 
membrane, membrane, extracellular region, and extracellular 
space (Figure C). The KEGG pathway enrichment analysis further 
highlighted eighteen significantly enriched pathways (Table2), 
which are visualized in Figure 4D. Major pathways included 
Cytokine-cytokine receptor interaction, Chemokine signaling 
pathway, Viral protein interaction with cytokine and cytokine 
receptor, PI3K-Akt signaling pathway, and Human cytomegalovirus 
infection.

PPI network construction and hub gene 
selection

We constructed a protein-protein interaction (PPI) network 
using the STRING database based on the 50 overlapping DEGs 
and visualized it with Cytoscape to identify highly interconnected 
hub proteins (hub-DEGs). The PPI network contained 64 nodes 
and 174 edges (Figure 5A). Among these genes, the top 10 
proteins with the highest degree of interaction were identified as 
key hub genes: CD19, CD27, IL7R, SELL, CCL5, CCR5, PRF1, 
GZMK, GZMA, and TIGIT (Figure 5B). Literature mining revealed 
that these candidate genes are predominantly involved in: (1) 
immune synapse formation (CD27-IL7R axis), (2) T-cell exhaustion 
(TIGIT-PRF1 pathway), and (3) chemokine-mediated blood-
brain barrier penetration (CCL5-CCR5 signaling). These findings 
suggest their potential role in driving brain metastasis progression 

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1625664
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Zhao and Zhang 10.3389/fbinf.2025.1625664

FIGURE 1
Schematic illustration of brain metastasis in NSCLC and the workflow of bioinformatic analysis.
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FIGURE 2
Identification of differentially expressed genes (DEGs) associated with brain metastasis in lung cancer patients. Note: (A) Volcano plot of DEGs in 
GSE161116. X-axis: log2FC; Y-axis: log10 (p-value). Blue: downregulated genes; red: upregulated genes; gray: non-significant genes. (B) Heatmap of 
DEGs in GSE161116. X-axis: samples; Y-axis: genes. Red: high expression; blue: low expression. NSCLC-BM and primary NSCLC samples were clearly 
separated into two distinct clusters. (C) Venn diagram showing overlapping DEGs between GSE161116 and GeneCards databases.

FIGURE 3
GSEA enrichment analysis results of DEGs between NSCLC and 
NSCLC-BM groups.

through modulation of tumor-immune microenvironment
interactions.

Validation data analysis

The ten identified hub genes were validated using additional 
GEO datasets. The GSE248830 dataset, which includes 11 NSCLC 
and 11 NSCLC-BM samples, was employed to examine differential 
expression between primary and metastatic tumors. Preliminary 

analysis revealed that the expression levels of these ten hub genes 
were significantly downregulated following metastasis, a trend 
consistent with previous findings from the GSE161116 dataset. 
These results further support the reliability of our conclusions. The 
validation results are presented in Figure 6.

TF regulatory network analysis of ten genes

We established an integrated TF-mRNA-miRNA regulatory 
network comprising 10 hub genes, 43 transcription factors (TFs), 
and 63 miRNAs (Figure 7). Comprehensive analysis of the TF-
DEG and miRNA-DEG interaction networks revealed significant 
regulatory molecules. Notably, 8 of the 10 hub genes were embedded 
within this regulatory architecture. Subsequent subnetwork analysis 
identified key transcriptional regulators (STAT5A, STAT5B, NFKB1, 
EGR1, RELA, and CTCF) and post-transcriptional modulators (hsa-
miR-204, hsa-miR-148b, hsa-miR-618, and hsa-miR-103) as pivotal 
biomolecules governing DEG expression. Mechanistically, 6 TFs 
(STAT5A/B, NFKB1, EGR1, RELA, and CTCF) emerged as central 
transcriptional regulators, while the miRNAs exhibited specific 
target interactions: hsa-miR-204: IL7R and PRF1/SELL; hsa-miR-
148b: GZMK and SELL; hsa-miR-618: IL7R and GZMK; hsa-miR-
103: CD19 and GZMK; These computational predictions require 
experimental validation to confirm their biological relevance in 
NSCLC-BM pathogenesis.

Survival impact of hub genes in brain 
metastasis

To investigate the prognostic significance of the ten hub genes 
in patients with brain metastasis (BM), we performed Kaplan-
Meier survival analysis stratified by median gene expression 
levels (high vs. low expression groups). The results (Figure 8) 
demonstrated that decreased expression of these genes was 
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TABLE 1  GO functional enrichment analysis for the DEGs.

Term -log (P-value) Uniprot ID

BP

immune response 2.60E-16 CCL5/CD48/CCL19/CCR5/IL7R/CD22

signal transduction 3.14E-06 IL2RB/CD48/LTB/IL7R/CCL18

inflammatory response 6.54E-09 CCL5/CCL19/CCR5/CXCL13/CCL18

cell surface receptor signaling pathway 2.02E-07 CCR5/CXCL13/IL7R/IL17RA

positive regulation of cell migration 6.91E-06 CCL5/CCL19/CCL18/THBS1/HRAS

cell-cell signaling 1.78E-06 CCL5/CCR5/CXCL13/CCL18

chemokine-mediated signaling pathway 4.43E-10 CCL5/CCL19/CCR5/CXCL13/CCL18

positive regulation of cell population proliferation 0.001728536 IL7R/THBS1/HRAS/IL6R

protein kinase B signal transduction 9.55E-06 CCL5/CD19/TREM2/CCL19/THBS1

MF

signaling receptor binding 3.66E-04 TIGIT/CD22/TNFSF13B/IL17RA

chemokine activity 2.91E-09 CCL5/CCL19/CXCL13/CCL18

cytokine activity 1.14E-04 IL32/TGFB2/CXCL9/EBI3/LTB

transmembrane signaling receptor activity 0.001309825 CD79A/KLRB1/CD27/TREM2

CC

plasma membrane 3.43E-09 CD19/CCR5/TIGIT/SELL/CD27/IL7R

membrane 6.20E-04 PRF1/CCR5/TIGIT/IL17RA/CD22

extracellular region 1.01E-08 PRF1/IL17RA/GZMK/CCL5/CD27/IL7R

extracellular space 7.49E-09 GZMA/GZMK/SELL/CCL5

Category refers to the GO functional categories.

significantly associated with shortened overall survival (OS) 
in patients with brain metastasis. Notably, prior studies have 
demonstrated that STAT5A promotes tumor invasion and 
metastasis by upregulatingCD44 (Szczepanik et al., 2019)—a 
cancer stem cell (CSC) marker linked to unfavorable prognosis 
in gastric cancer (GC). Our findings align with this mechanism, 
suggesting that the identified transcription factors (TFs) and 
hub genes may collectively accelerate brain metastasis through: 
Enhanced tumor cell invasiveness (via STAT5A-CD44 axis), 
Metastatic niche modulation, Post-metastatic transcriptional 
reprogramming (evidenced by expression downregulation post-
metastasis) These results implicate the ten hub genes as critical 
mediators of lung cancer brain metastasis, potentially governing 
tumor cell dissemination and survival outcomes. Detailed results 
are shown in the Supplementary Figure S1.

Immune cell infiltration analysis

To elucidate the relationship between the 10 hub genes 
and immune cell activity, we performed tumor-infiltrating 
immune cell (TIIC) profiling. Compositional analysis revealed 
significant positive correlations between the expression of hub 
genes (IL7R,PRF1, etc.) and activated immune subsets, including: 
Memory B cells, Activated CD4+T cells (correlation with IL7R:r 
= 0.409), CD8+T cells, Notably,IL7R exhibited the strongest 
associations: B cell activity (r = 0.374, Figure 9), CD4+T cell 
recruitment (r = 0.409). Additional hub gene–immune interactions 
are detailed in Supplementary Figure S2. These findings underscore 
the pivotal role of these genes in modulating B and T cell crosstalk 
within the tumor microenvironment (TME) of LUAD patients, 
suggesting their potential as immunomodulatory targets.
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FIGURE 4
GO enrichment and KEGG pathway analysis of DEGs in NSCLC 和 NSCLC-BM group. (A) GO categories of BP. (B) GO categories of MF. (C) GO 
categories of CC. (D) KEGG pathway analysis of the DEGs.

TABLE 2  Pathway enrichment analysis for the DEGs.

Term -log (P-value) Uniprot ID

Cytokine-cytokine receptor interaction 6.06E-17 IL17RA/CCL5/IL2RB/CD27/CCR5/IL7R

Chemokine signaling pathway 3.12E-08 CCL5/CXCR4/CCL19/CCR5

Viral protein interaction with cytokine and cytokine receptor 4.85E-11 CCL5/CCL19/CCR5/CCL18/IL6R

PI3K-Akt signaling pathway 0.035395822 CD19/IL2RB/IL7R/THBS1/HRAS/IL6R

Human cytomegalovirus infection 0.005486748 CCL5/CXCR4/CCR5/HRAS/IL6R

Cell adhesion molecules 0.001160078 SELL/NCAM1/TIGIT/CD22

Category refers to the pathway functional categories.

Mutation analysis of 10 crucial genes

We examined the mutation frequency and mutation types of 
these 10 hub genes in the GSCA database. The results revealed 
that IL7R exhibited the highest mutation frequency, followed by 
PRF1, with missense mutations accounting for 39% and 13% 
of the alterations in these genes, respectively. Additionally, copy 
number variation (CNV) analysis demonstrated that IL7R had the 
highest Figure 10. Notably, prior studies have reported that missense 
mutations in the perforin (PRF1) gene contribute to hereditary 
cancer predisposition (Chaudhry et al., 2016). Our findings suggest 
that mutations in these genes may play a role in cancer brain 

metastasis, potentially influencing tumor progression and metastatic 
potential.

Discussion

The identification of biomarkers associated with lung cancer 
brain metastasis may provide deeper insights into the molecular 
mechanisms underlying metastatic progression. This study aimed 
to analyze NSCLC gene expression data to identify differentially 
expressed genes (DEGs), elucidate key molecular pathways, 
determine critical hub proteins, and characterize relevant regulatory 
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FIGURE 5
Protein-protein interaction (PPI) network visualized using Cytoscape software. Figure Note: (A) Node color intensity corresponds to degree value. (B)
The network contains 40 nodes and 368 edges, with progressively redder hues indicating higher degree scores as measured by CytoHubba. Hub-DEGs 
in the PPI network are distinguished by unique coloring, while green nodes represent associated proteins.

FIGURE 6
Grouped box plot analysis confirming differential expression.

biomolecules through a multi-omics data integration framework, 
with the ultimate goal of discovering potential therapeutic targets 
for NSCLC. Our gene expression profiling identified 56 DEGs, 
including 19 upregulated and 37 downregulated genes. Functional 
enrichment analysis revealed that these DEGs were significantly 
associated with several oncogenic molecular functions and 
pathways. GSEA results demonstrated marked upregulation of 
the “interleukin-17 signaling pathway.” Notably, the interleukin-
17 (IL-17) signaling pathway has been previously established 
to contribute to the progression of lung cancer bone metastasis 

(Zhou et al., 2023). GO and KEGG enrichment analyses identified 
several critical biological processes and pathways, including 
immune response, signal transduction, inflammatory response, 
cell surface receptor signaling pathway, positive regulation of 
cell migration, cell-cell signaling, signaling receptor binding, 
chemokine activity, cytokine activity, transmembrane signaling 
receptor activity, plasma membrane, membrane, extracellular 
region, extracellular space, cytokine-cytokine receptor interaction, 
chemokine signaling pathway, viral protein interaction with 
cytokine and cytokine receptor, and PI3K-Akt signaling pathway. 
Existing evidence suggests that inflammatory chemokines and 
their receptors regulate tumor cell migration and participate in 
tumor growth, metastasis, angiogenesis, and invasion through 
interactions between mesenchymal and tumor cells (Cheng et al., 
2016; Zhao et al., 2019). All these functions and pathways are 
significantly associated with cancer development and play crucial 
roles in the NSCLC microenvironment. Protein-protein interaction 
(PPI) network analysis has emerged as a promising approach for 
investigating the fundamental mechanisms of brain metastasis in 
lung cancer (Sevimoglu and Arga, 2014). Our PPI network analysis 
revealed hub proteins encoded by hub DEGs. The CCR5/CCL5 
signaling axis has been shown to increase infiltration of regulatory 
T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) 
into the tumor microenvironment (TME), creating an immune 
effector cell desert that promotes cancer survival and progression 
(Sevimoglu and Arga, 2014), while potentially contributing to 
immunotherapy resistance. This pathway has also demonstrated 
prognostic and predictive value in metastatic colorectal cancer 
(CRC) (Suarez-Carmona et al., 2019; Schlechter and Stebbing, 2024). 
CD27, a member of the TNF receptor superfamily, is essential for 
T cell immunity generation and long-term maintenance; Pagès 
et al. (Pages et al., 2005) found that CD27 expression correlates 
with early metastasis in colorectal cancer. IL-7R has emerged as a 
potential prognostic marker in breast cancer patients, particularly 
in maintaining immunologically active states in the TME and 
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FIGURE 7
The TF-mRNA -miRNA regulatory network. Figure Note: (A) Regulatory network of hub genes. Red circles represent hub genes, green circles denote 
transcription factors (TFs), and blue circles indicate miRNAs. (B,C) Subnetworks of key TF-regulated genes, with node color intensity scaled according 
to degree values.

FIGURE 8
Overall survival analysis of 10 hub DEGs in kmplot website.

promoting immune reconstitution (Yu et al., 2024). PRF1, a crucial 
cytotoxic molecule, plays a vital role in the killing functions of 
natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) 
(Guan et al., 2024). GZMA, GZMK, and PRF1 (Tibbs and Cao, 
2022; Paczek et al., 2022; Park et al., 2021; Lavergne et al., 2021) 
not only induce apoptosis and modulate immune responses within 
the TME but also exhibit other distinct functions. Inhibition of 
tumor growth has been associated with reduced expression of 
the immune checkpoint molecule TIGIT (Shaw et al., 2022). The 

subnetwork modules containing these hub genes provide strong 
evidence supporting their reliability as therapeutic targets. The 
TF–mRNA–miRNA regulatory network analysis identified six 
transcription factors (STAT5A, STAT5B, NFKB1, EGR1, RELA, 
and CTCF) and four miRNAs (hsa-miR-204, hsa-miR-148b, 
hsa-miR-618, and hsa-miR-103) as key transcriptional and post-
transcriptional regulators of hub DEGs. Previous studies have 
reported that various tumor-associated genes are regulated by 
STAT5A/STAT5B, which maintain multiple cancer-related pathways 
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FIGURE 9
The correlation of IL7R with tumor purity and immune cells in the immune system shows the purity-corrected partial Spearman’s rho value and 
statistical significance. Log2 (TPM) is the log2 of the Transcript Count Per Million.

FIGURE 10
Variant frequency and mutation type of 10 genes in LUAD and LUSC. (A) The mutation rate of genes. (B) The CNV types of genes. (C) The mutation 
type of genes.

(Erdogan et al., 2022). NFKB1 plays critical roles in tumor cell 
invasion and metastasis, with its expression linked to invasion 
and metastasis across various cancer types (Zhang et al., 2023). 
EGR1 acts as a pro-metastatic factor in pancreatic cancer cells, 
promoting cell migration and invasion through the SNAI2–EMT 

pathway (Wang et al., 2023). Currently, there are limited reports 
on the tumor-related effects of RELA and CTCF. hsa-miR-204 
has been reported to be downregulated and function as a tumor 
suppressor in various cancers including colorectal cancer, papillary 
thyroid carcinoma, malignant melanoma, and hepatocellular 
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carcinoma (Chu et al., 2018). Studies have demonstrated significant 
enrichment of hsa-miR-148b in cancer-related pathways including 
Wnt, MAPK, and Jak-STAT signaling pathways (Luo et al., 2015). 
Dysregulation of hsa-miR-618 has been associated with numerous 
cancers (Radanova et al., 2021). hsa-miR-103a can function as either 
a tumor promoter or suppressor, modulating tumor progression 
in various cancers (Li et al., 2021). Survival curve analysis clearly 
demonstrated significant differences in hub gene expression between 
high-risk and low-risk groups, indicating their important roles in 
patient survival. Furthermore, immune infiltration analysis revealed 
interactions between these key genes and B/T cells in LUAD patients, 
suggesting their influence on the TME. On the other hand, in cancer 
cells, gene mutations, amplifications, and deletions can lead to 
altered target proteins that fail to bind drugs, resulting in drug 
resistance. In particular, missense mutations may significantly affect 
protein function (Chen et al., 2004). Our mutation analysis of 10 
genes in NSCLC revealed that IL7R and PRF1 had the highest 
missense mutation rates at 39% and 13%, respectively. It has been 
demonstrated that IL7R mutations activate downstream IL7R 
signaling independent of IL7 and promote cell transformation and 
tumor formation, indicating that IL7R exon 6 mutations are gain-
of-function mutations (Kim et al., 2013). PRF1 plays important 
roles in various aspects of tumor cell development, immune escape 
mechanisms, cancer immunotherapy, and prognosis (Guan et al., 
2024). However, the functional characteristics of most missense 
mutations in IL7R and PRF1 in tumors remain poorly characterized. 
Importantly, we found strong associations between IL7R/PRF1 
mutation co-occurrence and immune-related pathways, particularly 
B cell and T cell signaling. The presence of infiltrating immune 
cells in these tumors, some of which inhibit or promote disease 
progression, further supports the involvement of immune pathways. 
In conclusion, although this study has certain limitations including 
a small sample size and lack of clinical sample validation, our 
current analysis has identified several key genes and pathways 
closely associated with NSCLC-BM that may enhance current 
understanding of its complex mechanisms. Notably, these findings 
warrant further investigation and experimental validation.

Conclusion

This study employed bioinformatics approaches to compare 
non-small cell lung cancer (NSCLC) and brain metastasis (NSCLC-
BM) samples, leading to the preliminary identification of 56 
differentially expressed genes (DEGs) potentially associated with 
metastatic progression. These genes were significantly enriched in 
key pathways including cytokine-cytokine receptor interaction, 
chemokine signaling pathway, viral protein-cytokine receptor 
interaction, and the PI3K-Akt signaling pathway. Among them, 
ten genes—CD19, CD27, IL7R, SELL, CCL5, CCR5, PRF1, 
GZMK, GZMA, and TIGIT—were selected as potential hub genes. 
Furthermore, predictions suggested that miRNAs such as hsa-
miR-204 and hsa-miR-148b, along with certain transcription 
factors, may contribute to metastasis by modulating the tumor 
immune microenvironment. It is important to emphasize that 
the findings of this study are computational predictions, and 
all identified genes and regulatory molecules remain candidate 
biomarkers that have not been experimentally validated. None 

of the conclusions presented should be interpreted as established 
biomarkers or clinically applicable outcomes. These predictions 
require further experimental validation—including qRT-PCR, 
immunohistochemistry, independent patient cohort analyses, and 
in vitro/in vivo functional assays—to confirm their biological 
significance and translational potential. Future research will focus on 
experimental verification to evaluate the diagnostic or therapeutic 
value of these candidate molecules.

Methods

Microarray data

The GSE161116 dataset was obtained from the NCBI GEO 
database (https://www.ncbi.nlm.nih.gov/geo/; GPL19965 platform). 
This study included 28NSCLC patients with brain metastasis 
(BM) who underwent surgery at Seoul National University 
Hospital (SNUH) between January 2013 and March 2018. 
Clinicopathological data—including age, sex, smoking history, 
tumor genetic status, treatment, and follow-up records—were 
retrieved from electronic medical records. Pathological staging was 
based on the 8th edition of the AJCC staging system (Song et al., 
2021). Additionally, GeneCards (Stelzer et al., 2016) was searched 
using the keyword “lung cancer brain metastasis” to extract relevant 
target genes. 

Data processing

Differentially expressed genes (DEGs) between primary 
NSCLC and NSCLC-BM were identified using the limma package 
(Suzuki et al., 2019) in R (version 4.2.1),with thresholds set at 
|logFC| > 1 and P < 0.05 (NSCLC without BM vs. NSCLC with BM). 
The GSE161116 dataset contained 14 NSCLC and 14 NSCLC-BM 
samples. Overlapping DEGs between GSE161116 and GeneCards 
(March 2025) were visualized using ggplot2 (Zeng et al., 2022) and 
VennDiagram packages in R. 

DEG enrichment analysis

Functional enrichment analysis was performed using:Gene Set 
Enrichment Analysis (GSEA) with the MSigDB Collections (https://
www.gsea-msigdb.org/gsea/msigdb/index.jsp) as the reference gene 
set (500 permutations, significance threshold: p. adj<0.25). Results 
were visualized via ggplot2 (Zeng et al., 2022). DAVID (v6.8; http://
david.ncifcrf.gov) for Gene Ontology (GO) and KEGG pathway 
analysis. GO terms included biological processes (BP), cellular 
components (CC), and molecular functions (MF). P < 0.05 was 
considered statistically significant. 

PPI network construction and hub gene 
identification

Protein-protein interaction (PPI) networks were built using 
STRING (v10.0; http://string-db.org; interaction score cutoff: 0.4) 

Frontiers in Bioinformatics 10 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1625664
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://david.ncifcrf.gov
http://david.ncifcrf.gov
http://string-db.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Zhao and Zhang 10.3389/fbinf.2025.1625664

and visualized in Cytoscape (v3.9.1). Hub genes were identified via 
CytoHubba and MCODE plugins, applying 12 ranking algorithms 
to select the top 10 nodes per method. 

Hub gene-TF-miRNA regulatory network

A mRNA-TF-miRNA co-regulatory network was constructed 
using NetworkAnalyst (Xia et al., 2015), integrating data from TF-
miRNA interaction databases, and visualized in Cytoscape. 

Survival analysis

The Kaplan-Meier Plotter (http://kmplot.com/analysis/) 
assessed the impact of hub genes on overall survival (OS). Patients 
were stratified into high- and low-expression groups based on 
median expression levels (Tang et al., 2019). Differences were 
evaluated via log-rank test (P < 0.05). 

Immune infiltration analysis

The TIMER 2.0 platform (https://cistrome.shinyapps.io/
timer/) analyzed correlations between hub gene expression and 
immune cell abundance using purity-adjusted Spearman’s rank 
correlation. 

Mutation analysis

Genomic alterations (mutations and copy number variations, 
CNVs) in hub genes were analyzed via GSCA (http://
gsca.bio-data.cn) to determine mutation frequencies and 
functional impacts. 

Statistical analysis

To account for multiple hypothesis testing in the identification 
of differentially expressed genes, the false discovery rate (FDR) 
was controlled using the Benjamini–Hochberg procedure. The 
statistical thresholds were set at |log2FC|>1 and adjusted p-value 
(FDR) < 0.05.
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