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Key genes associated with brain
metastasis in non-small cell lung
cancer: novel insights from
bioinformatics analysis

Shuang Zhao' and He Zhang*!

General Hospital of Northern Theater Command of the Chinese People's Liberation Army, Shenyang,
China

Background: This study aims to investigate potential biomarkers associated with
NSCLC-BM and elucidate their regulatory roles in critical pathways involved in
cerebral metastatic dissemination.

Methods: The identified DEGs were subjected to functional enrichment analysis.
PPl networks were predicted using the STRING database and visualized with
Cytoscape. Hub genes were subsequently screened from the PPl network to
construct a transcription TF-miRNA regulatory network. Subsequent analyses
included: survival analysis, immune infiltration assessment and comprehensive
mutational profiling.

Results: Among the 56 identified DEGs, 19 were upregulated while 37 were
downregulated. GOntology enrichment analysis revealed significant enrichment
in immune response, signaling receptor binding, and extracellular region. KEGG
pathway analysis demonstrated predominant involvement in cytokine-cytokine
receptor interaction and chemokine signaling pathway. Through Cytoscape-
based screening, we identified 10 hub genes: CD19, CD27, IL7R, SELL, CCLS5,
CCRS5, PRF1, GZMK, GZMA, and TIGIT. The TF-miRNA regulatory network analysis
uncovered 6 transcription factors (STAT5A/B, NFKB1, EGR1, RELA, and CTCF)
and 4 miRNAs(hsa-miR-204, hsa-miR-148b, hsa-miR-618, and hsa-miR-103)
as critical transcriptional and post-transcriptional regulators of DEGs.Integrated
analyses including Kaplan-Meier survival curves, immune infiltration profiling,
and comprehensive mutational analysis demonstrated significant associations
with brain metastatic progression in the studied cohort.

Conclusion: This study provides novel biomarkers from a unique perspective for
the diagnosis, prognosis, and development of molecular-targeted therapies or
immunotherapies for brain metastasis in NSCLC.

brain metastasis, non-small-cell lung cancer, biomarker, signaling pathway, gene

Introduction

Lung cancer ranks as the second most commonly diagnosed malignancy worldwide,
exceeded only by breast cancer in incidence. It represents the most frequent primary
tumor type that metastasizes to the brain, followed by breast cancer and melanoma
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(Cagney et al, 2017). Non-small cell lung cancer (NSCLC)
comprises approximately 85% of all lung cancer cases (Sung et al.,
2021; Jonna and Subramaniam, 2019), with brain metastasis (BM)
being particularly common in this subgroup. Between 10% and
20% of NSCLC patients present with BM at initial diagnosis
(Waqar et al., 2018), and an additional 25%-40% will develop BM
throughout the disease course (Page et al., 2020). The prognosis
for NSCLC patients with BM remains poor, and symptomatic
cases are often associated with rapid deterioration in quality of
life (Matsui et al., 2022). Historical reports indicate a median
survival of only 4-6 months (Cheng and Perez-Soler, 2018). More
recent epidemiological studies show that 15%-20% of NSCLC
patients are diagnosed with BM at initial presentation, a figure that
increases to 25%-40% over time (Waqar et al., 2018; Nayak et al.,
2012; Hubbs et al., 2010). This incidence is even higher among
patients with stage IV adenocarcinoma, among whom 40%-50%
have BM at diagnosis (Yang et al., 2019). NSCLC patients harboring
EGFR or ALK mutations are especially prone to developing BM
and exhibit a higher incidence of such events (Gillespie et al.,
2023). While historical median survival was reported between
several months to one year—and below 6 months without treatment
(Ali et al., 2013)-contemporary series report improved outcomes,
with a median survival of approximately 15 months in lung
adenocarcinoma patients with BM (Sperduto et al., 2020). The
Lung-molGPA index further stratifies prognosis, identifying a
small subgroup (4%) of patients with scores of 3.5-4.0 who may
achieve a median survival of nearly 4 years (Sperduto et al., 2017).
This prognostic tool incorporates clinical variables such as age,
performance status, number of metastases, and extracranial disease
burden, alongside molecular markers including EGFR and ALK
mutations (Sperduto et al., 2017). The pathogenesis of BM in
NSCLC entails complex crosstalk among tumor cells, immune
components, and the specialized brain tumor microenvironment
(TME). Metastasis is not solely an intrinsic trait of certain
tumors, but a multistep, multidimensional process shaped by
mutational landscapes, epigenetic alterations, and growth factor
signaling (Srinivasan et al, 2021). As illustrated in Figure I,
the metastatic cascade initiates with local invasion through the
basement membrane of the primary lung tumor—a step involving
epithelial-mesenchymal transition (EMT) and intravasation into
blood or lymphatic vessels. This allows circulating tumor cells
(CTCs) to circumvent host immune surveillance and survive in
circulation. Nevertheless, the precise mechanisms driving BM
remain inadequately characterized, impeding the development of
more effective treatment approaches.

Results

Identification of differentially expressed
genes (DEGs)

Based on the GSE161116 microarray dataset (GPL19965
platform), this study employed a systematic bioinformatics pipeline
for differentially expressed gene (DEG) identification. Data
normalization: Raw expression profiles underwent background
correction and quantile normalization via the RMA algorithm to
eliminate batch effects. Differential analysis: The limma package
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was applied to identify DEGs between primary NSCLC (n = 14) and
NSCLC-BM (n = 14), with thresholds set at |log2FC| >1 and FDR
< 0.05, yielding 779 significant DEGs.Visualization:A volcano plot
highlighted 56 robust DEGs (19 upregulated, 37 downregulated)
(Figure 2A). Venn diagram analysis revealed 50 core overlapping
genes between GSE161116 DEGs and the GeneCards BM-
related gene set (Figure 2C; Supplementary Table S1). Hierarchical
clustering heatmap analysis (pheatmap package) of these 50
intersecting genes demonstrated heterogeneous expression patterns
across groups (Figure 2B).

Enrichment analysis of DEGs

Our systematic analysis integrating GSEA and multidimensional
functional annotation revealed distinct molecular regulatory
characteristics of NSCLC brain metastasis (NSCLC-BM). Using
the MSigDB database (C2: curated gene sets), we observed
marked upregulation of the “interleukin-17 signaling pathway”
(NES = 2.024, FDR = 0.024), suggesting that an IL-17-mediated
proinflammatory microenvironment may facilitate central nervous
system colonization through the TLR/NF-kB axis (Figure 3). To
further interpret the functional implications of the differentially
expressed genes (DEGs), we performed comprehensive functional
enrichment analyses. Detailed results of the GO enrichment analysis
are presented in Tablel. The most significantly enriched biological
process (BP) terms included immune response, signal transduction,
inflammatory response, and cell surface receptor signaling pathway
(Figure 4A). For molecular function (MF), the top enriched terms
were signaling receptor binding, chemokine activity, cytokine
activity, and transmembrane signaling receptor activity (Figure 4B).
Notably, the key cellular component (CC) terms included plasma
membrane, membrane, extracellular region, and extracellular
space (Figure C). The KEGG pathway enrichment analysis further
highlighted eighteen significantly enriched pathways (Table2),
which are visualized in Figure 4D. Major pathways included
Cytokine-cytokine receptor interaction, Chemokine signaling
pathway, Viral protein interaction with cytokine and cytokine
receptor, PI3K-Akt signaling pathway, and Human cytomegalovirus
infection.

PPl network construction and hub gene
selection

We constructed a protein-protein interaction (PPI) network
using the STRING database based on the 50 overlapping DEGs
and visualized it with Cytoscape to identify highly interconnected
hub proteins (hub-DEGs). The PPI network contained 64 nodes
and 174 edges (Figure 5A). Among these genes, the top 10
proteins with the highest degree of interaction were identified as
key hub genes: CD19, CD27, IL7R, SELL, CCL5, CCR5, PRFI,
GZMK, GZMA, and TIGIT (Figure 5B). Literature mining revealed
that these candidate genes are predominantly involved in: (1)
immune synapse formation (CD27-IL7R axis), (2) T-cell exhaustion
(TIGIT-PRF1 pathway), and (3) chemokine-mediated blood-
brain barrier penetration (CCL5-CCR5 signaling). These findings
suggest their potential role in driving brain metastasis progression
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FIGURE 1
Schematic illustration of brain metastasis in NSCLC and the workflow of bioinformatic analysis.
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FIGURE 2

Identification of differentially expressed genes (DEGs) associated with brain metastasis in lung cancer patients. Note: (A) Volcano plot of DEGs in
GSE161116. X-axis: log2FC; Y-axis: log10 (p-value). Blue: downregulated genes; red: upregulated genes; gray: non-significant genes. (B) Heatmap of
DEGs in GSE161116. X-axis: samples; Y-axis: genes. Red: high expression; blue: low expression. NSCLC-BM and primary NSCLC samples were clearly
separated into two distinct clusters. (C) Venn diagram showing overlapping DEGs between GSE161116 and GeneCards databases.
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GSEA enrichment analysis results of DEGs between NSCLC and
NSCLC-BM groups.

through modulation of tumor-immune microenvironment

interactions.

Validation data analysis

The ten identified hub genes were validated using additional
GEO datasets. The GSE248830 dataset, which includes 11 NSCLC
and 11 NSCLC-BM samples, was employed to examine differential
expression between primary and metastatic tumors. Preliminary
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analysis revealed that the expression levels of these ten hub genes
were significantly downregulated following metastasis, a trend

NES = 2.024 consistent with previous findings from the GSE161116 dataset.
o Padj =0.041 These results further support the reliability of our conclusions. The
§ 0.4 - FDR=0034 validation results are presented in Figure 6.
»n
€
£
5 0.2 TF regulatory network analysis of ten genes
c
w

We established an integrated TF-mRNA-miRNA regulatory
network comprising 10 hub genes, 43 transcription factors (TFs),
and 63 miRNAs (Figure 7). Comprehensive analysis of the TE-
DEG and miRNA-DEG interaction networks revealed significant
regulatory molecules. Notably, 8 of the 10 hub genes were embedded

(]
£ 2-
g within this regulatory architecture. Subsequent subnetwork analysis
z 01 identified key transcriptional regulators (STAT5A, STAT5B, NFKBI,
E 2 EGRI, RELA, and CTCF) and post-transcriptional modulators (hsa-
5 miR-204, hsa-miR-148b, hsa-miR-618, and hsa-miR-103) as pivotal
o« -4 0 200 400 600 biomolecules governing DEG expression. Mechanistically, 6 TFs
Rank in Ordered Dataset (STAT5A/B, NFKB1, EGR1, RELA, and CTCF) emerged as central
transcriptional regulators, while the miRNAs exhibited specific
FIGURE 3

target interactions: hsa-miR-204: IL7R and PRF1/SELL; hsa-miR-
148b: GZMK and SELL; hsa-miR-618: IL7R and GZMK; hsa-miR-
103: CD19 and GZMK; These computational predictions require
experimental validation to confirm their biological relevance in
NSCLC-BM pathogenesis.

Survival impact of hub genes in brain
metastasis

To investigate the prognostic significance of the ten hub genes
in patients with brain metastasis (BM), we performed Kaplan-
Meier survival analysis stratified by median gene expression
levels (high vs. low expression groups). The results (Figure 8)
demonstrated that decreased expression of these genes was
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TABLE 1 GO functional enrichment analysis for the DEGs.

10.3389/fbinf.2025.1625664

Term -log (P-value) ’ Uniprot ID
BP
immune response 2.60E-16 CCL5/CD48/CCL19/CCR5/IL7R/CD22
signal transduction 3.14E-06 IL2RB/CD48/LTB/IL7R/CCL18
inflammatory response 6.54E-09 CCL5/CCL19/CCR5/CXCL13/CCL18
cell surface receptor signaling pathway 2.02E-07 CCR5/CXCLI13/IL7R/IL17RA
positive regulation of cell migration 6.91E-06 CCL5/CCL19/CCL18/THBS1/HRAS
cell-cell signaling 1.78E-06 CCL5/CCR5/CXCL13/CCL18
chemokine-mediated signaling pathway 4.43E-10 CCL5/CCL19/CCR5/CXCL13/CCL18
positive regulation of cell population proliferation 0.001728536 IL7R/THBS1/HRAS/IL6R
protein kinase B signal transduction 9.55E-06 CCL5/CD19/TREM2/CCL19/THBS1
MF
signaling receptor binding 3.66E-04 TIGIT/CD22/TNFSF13B/IL17RA
chemokine activity 2.91E-09 CCL5/CCL19/CXCL13/CCL18
cytokine activity 1.14E-04 1L32/TGFB2/CXCL9/EBI3/LTB
transmembrane signaling receptor activity 0.001309825 CD79A/KLRB1/CD27/TREM2
CcC
plasma membrane 3.43E-09 CD19/CCR5/TIGIT/SELL/CD27/IL7R
membrane 6.20E-04 PRF1/CCR5/TIGIT/IL17RA/CD22
extracellular region 1.01E-08 PRF1/IL17RA/GZMK/CCL5/CD27/IL7R
extracellular space 7.49E-09 GZMA/GZMK/SELL/CCL5

Category refers to the GO functional categories.

significantly associated with shortened overall survival (OS)
in patients with brain metastasis. Notably, prior studies have
demonstrated that STAT5A promotes tumor invasion and
metastasis by upregulatingCD44 (Szczepanik et al, 2019)—a
cancer stem cell (CSC) marker linked to unfavorable prognosis
in gastric cancer (GC). Our findings align with this mechanism,
suggesting that the identified transcription factors (TFs) and
hub genes may collectively accelerate brain metastasis through:
Enhanced tumor cell invasiveness (via STAT5A-CD44 axis),
Metastatic niche modulation, Post-metastatic transcriptional
reprogramming (evidenced by expression downregulation post-
metastasis) These results implicate the ten hub genes as critical
mediators of lung cancer brain metastasis, potentially governing
tumor cell dissemination and survival outcomes. Detailed results
are shown in the Supplementary Figure S1.
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Immune cell infiltration analysis

To elucidate the relationship between the 10 hub genes
and immune cell activity, we performed tumor-infiltrating
immune cell (TIIC) profiling. Compositional analysis revealed
significant positive correlations between the expression of hub
genes (IL7R,PRF1, etc.) and activated immune subsets, including:
Memory B cells, Activated CD4+T cells (correlation with IL7R:r
= 0.409), CD8+T cells, NotablyIL7R exhibited the strongest
associations: B cell activity (r = 0.374, Figure9), CD4+T cell
recruitment (r = 0.409). Additional hub gene-immune interactions
are detailed in Supplementary Figure S2. These findings underscore
the pivotal role of these genes in modulating B and T cell crosstalk
within the tumor microenvironment (TME) of LUAD patients,
suggesting their potential as immunomodulatory targets.
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TABLE 2 Pathway enrichment analysis for the DEGs.

Term g (P-value) Uniprot ID

Cytokine-cytokine receptor interaction 6.06E-17 IL17RA/CCL5/IL2RB/CD27/CCR5/IL7R
Chemokine signaling pathway 3.12E-08 CCL5/CXCR4/CCL19/CCR5
Viral protein interaction with cytokine and cytokine receptor 4.85E-11 CCL5/CCL19/CCR5/CCLI18/IL6R
PI3K-Akt signaling pathway 0.035395822 CD19/IL2RB/IL7R/THBS1/HRAS/IL6R
Human cytomegalovirus infection 0.005486748 CCL5/CXCR4/CCR5/HRAS/IL6R
Cell adhesion molecules 0.001160078 SELL/NCAM1/TIGIT/CD22

Category refers to the pathway functional categories.

Mutation analysis of 10 crucial genes

We examined the mutation frequency and mutation types of
these 10 hub genes in the GSCA database. The results revealed
that IL7R exhibited the highest mutation frequency, followed by
PRF1, with missense mutations accounting for 39% and 13%
of the alterations in these genes, respectively. Additionally, copy
number variation (CNV) analysis demonstrated that IL7R had the
highest Figure 10. Notably, prior studies have reported that missense
mutations in the perforin (PRF1) gene contribute to hereditary
cancer predisposition (Chaudhry et al., 2016). Our findings suggest
that mutations in these genes may play a role in cancer brain

Frontiers in Bioinformatics

metastasis, potentially influencing tumor progression and metastatic
potential.

Discussion

The identification of biomarkers associated with lung cancer
brain metastasis may provide deeper insights into the molecular
mechanisms underlying metastatic progression. This study aimed
to analyze NSCLC gene expression data to identify differentially
expressed genes (DEGs), elucidate key molecular pathways,
determine critical hub proteins, and characterize relevant regulatory
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FIGURE 5
Protein-protein interaction (PPI) network visualized using Cytoscape software. Figure Note: (A) Node color intensity corresponds to degree value. (B)

The network contains 40 nodes and 368 edges, with progressively redder hues indicating higher degree scores as measured by CytoHubba. Hub-DEGs
in the PPI network are distinguished by unique coloring, while green nodes represent associated proteins.

(Zhou et al., 2023). GO and KEGG enrichment analyses identified
B3 NSCLC B3 NSCLC-BM several critical biological processes and pathways, including
immune response, signal transduction, inflammatory response,
cell surface receptor signaling pathway, positive regulation of
cell migration, cell-cell signaling, signaling receptor binding,
chemokine activity, cytokine activity, transmembrane signaling
3.5 4 receptor activity, plasma membrane, membrane, extracellular
region, extracellular space, cytokine-cytokine receptor interaction,
chemokine signaling pathway, viral protein interaction with
cytokine and cytokine receptor, and PI3K-Akt signaling pathway.
Existing evidence suggests that inflammatory chemokines and

3.0 -~

! their receptors regulate tumor cell migration and participate in
tumor growth, metastasis, angiogenesis, and invasion through
interactions between mesenchymal and tumor cells (Cheng et al.,
2016; Zhao et al, 2019). All these functions and pathways are
significantly associated with cancer development and play crucial

2.5 4 roles in the NSCLC microenvironment. Protein-protein interaction

T (PPI) network analysis has emerged as a promising approach for
§ investigating the fundamental mechanisms of brain metastasis in
N lung cancer (Sevimoglu and Arga, 2014). Our PPI network analysis
revealed hub proteins encoded by hub DEGs. The CCR5/CCL5
signaling axis has been shown to increase infiltration of regulatory

| —
o 4\
N 0‘1,

FIGURE 6
Grouped box plot analysis confirming differential expression.

T cells (Tregs) and myeloid-derived suppressor cells (MDSCs)

into the tumor microenvironment (TME), creating an immune

effector cell desert that promotes cancer survival and progression
biomolecules through a multi-omics data integration framework,  (Sevimoglu and Arga, 2014), while potentially contributing to
with the ultimate goal of discovering potential therapeutic targets ~ immunotherapy resistance. This pathway has also demonstrated
for NSCLC. Our gene expression profiling identified 56 DEGs,  prognostic and predictive value in metastatic colorectal cancer
including 19 upregulated and 37 downregulated genes. Functional =~ (CRC) (Suarez-Carmona etal., 2019; Schlechter and Stebbing, 2024).
enrichment analysis revealed that these DEGs were significantly =~ CD27, a member of the TNF receptor superfamily, is essential for
associated with several oncogenic molecular functions and T cell immunity generation and long-term maintenance; Pages
pathways. GSEA results demonstrated marked upregulation of  etal. (Pages et al,, 2005) found that CD27 expression correlates
the “interleukin-17 signaling pathway” Notably, the interleukin-  with early metastasis in colorectal cancer. IL-7R has emerged as a
17 (IL-17) signaling pathway has been previously established  potential prognostic marker in breast cancer patients, particularly
to contribute to the progression of lung cancer bone metastasis  in maintaining immunologically active states in the TME and
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FIGURE 7

to degree values.

The TF-mRNA -miRNA regulatory network. Figure Note: (A) Regulatory network of hub genes. Red circles represent hub genes, green circles denote
transcription factors (TFs), and blue circles indicate miRNAs. (B,C) Subnetworks of key TF-regulated genes, with node color intensity scaled according
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promoting immune reconstitution (Yu et al., 2024). PRFI, a crucial
cytotoxic molecule, plays a vital role in the killing functions of
natural killer (NK) cells and cytotoxic T lymphocytes (CTLs)
(Guan et al., 2024). GZMA, GZMK, and PRF1 (Tibbs and Cao,
2022; Paczek et al,, 2022; Park et al,, 2021; Lavergne et al.,, 2021)
not only induce apoptosis and modulate immune responses within
the TME but also exhibit other distinct functions. Inhibition of
tumor growth has been associated with reduced expression of
the immune checkpoint molecule TIGIT (Shaw et al., 2022). The
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subnetwork modules containing these hub genes provide strong
evidence supporting their reliability as therapeutic targets. The
TF-mRNA-miRNA regulatory network analysis identified six
transcription factors (STAT5A, STAT5B, NFKBI1, EGR1, RELA,
and CTCF) and four miRNAs (hsa-miR-204, hsa-miR-148Db,
hsa-miR-618, and hsa-miR-103) as key transcriptional and post-
transcriptional regulators of hub DEGs. Previous studies have
reported that various tumor-associated genes are regulated by
STAT5A/STATS5B, which maintain multiple cancer-related pathways
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(Erdogan et al., 2022). NFKBI plays critical roles in tumor cell
invasion and metastasis, with its expression linked to invasion
and metastasis across various cancer types (Zhang et al., 2023).
EGRI acts as a pro-metastatic factor in pancreatic cancer cells,
promoting cell migration and invasion through the SNAI2-EMT
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pathway (Wang et al., 2023). Currently, there are limited reports
on the tumor-related effects of RELA and CTCE hsa-miR-204
has been reported to be downregulated and function as a tumor
suppressor in various cancers including colorectal cancer, papillary
thyroid carcinoma, malignant melanoma, and hepatocellular
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carcinoma (Chu et al., 2018). Studies have demonstrated significant
enrichment of hsa-miR-148b in cancer-related pathways including
Wnt, MAPK, and Jak-STAT signaling pathways (Luo et al., 2015).
Dysregulation of hsa-miR-618 has been associated with numerous
cancers (Radanova et al., 2021). hsa-miR-103a can function as either
a tumor promoter or suppressor, modulating tumor progression
in various cancers (Li et al., 2021). Survival curve analysis clearly
demonstrated significant differences in hub gene expression between
high-risk and low-risk groups, indicating their important roles in
patient survival. Furthermore, immune infiltration analysis revealed
interactions between these key genes and B/T cells in LUAD patients,
suggesting their influence on the TME. On the other hand, in cancer
cells, gene mutations, amplifications, and deletions can lead to
altered target proteins that fail to bind drugs, resulting in drug
resistance. In particular, missense mutations may significantly affect
protein function (Chen et al., 2004). Our mutation analysis of 10
genes in NSCLC revealed that IL7R and PRF1 had the highest
missense mutation rates at 39% and 13%, respectively. It has been
demonstrated that IL7R mutations activate downstream IL7R
signaling independent of IL7 and promote cell transformation and
tumor formation, indicating that IL7R exon 6 mutations are gain-
of-function mutations (Kim et al.,, 2013). PRF1 plays important
roles in various aspects of tumor cell development, immune escape
mechanisms, cancer immunotherapy, and prognosis (Guan et al.,
2024). However, the functional characteristics of most missense
mutations in IL7R and PRF1 in tumors remain poorly characterized.
Importantly, we found strong associations between IL7R/PRF1
mutation co-occurrence and immune-related pathways, particularly
B cell and T cell signaling. The presence of infiltrating immune
cells in these tumors, some of which inhibit or promote disease
progression, further supports the involvement of immune pathways.
In conclusion, although this study has certain limitations including
a small sample size and lack of clinical sample validation, our
current analysis has identified several key genes and pathways
closely associated with NSCLC-BM that may enhance current
understanding of its complex mechanisms. Notably, these findings
warrant further investigation and experimental validation.

Conclusion

This study employed bioinformatics approaches to compare
non-small cell lung cancer (NSCLC) and brain metastasis (NSCLC-
BM) samples, leading to the preliminary identification of 56
differentially expressed genes (DEGs) potentially associated with
metastatic progression. These genes were significantly enriched in
key pathways including cytokine-cytokine receptor interaction,
chemokine signaling pathway, viral protein-cytokine receptor
interaction, and the PI3K-Akt signaling pathway. Among them,
ten genes—CD19, CD27, IL7R, SELL, CCL5, CCR5, PRFI,
GZMK, GZMA, and TIGIT—were selected as potential hub genes.
Furthermore, predictions suggested that miRNAs such as hsa-
miR-204 and hsa-miR-148b, along with certain transcription
factors, may contribute to metastasis by modulating the tumor
immune microenvironment. It is important to emphasize that
the findings of this study are computational predictions, and
all identified genes and regulatory molecules remain candidate
biomarkers that have not been experimentally validated. None
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of the conclusions presented should be interpreted as established
biomarkers or clinically applicable outcomes. These predictions
require further experimental validation—including qRT-PCR,
immunohistochemistry, independent patient cohort analyses, and
in vitro/in vivo functional assays—to confirm their biological
significance and translational potential. Future research will focus on
experimental verification to evaluate the diagnostic or therapeutic
value of these candidate molecules.

Methods
Microarray data

The GSE161116 dataset was obtained from the NCBI GEO
database (https://www.ncbi.nlm.nih.gov/geo/; GPL19965 platform).
This study included 28NSCLC patients with brain metastasis
(BM) who underwent surgery at Seoul National University
Hospital (SNUH) between January 2013 and March 2018.
Clinicopathological data—including age, sex, smoking history,
tumor genetic status, treatment, and follow-up records—were
retrieved from electronic medical records. Pathological staging was
based on the 8th edition of the AJCC staging system (Song et al.,
2021). Additionally, GeneCards (Stelzer et al., 2016) was searched
using the keyword “lung cancer brain metastasis” to extract relevant
target genes.

Data processing

Differentially expressed genes (DEGs) between primary
NSCLC and NSCLC-BM were identified using the limma package
(Suzuki et al., 2019) in R (version 4.2.1),with thresholds set at
[logFC| > 1 and P < 0.05 (NSCLC without BM vs. NSCLC with BM).
The GSE161116 dataset contained 14 NSCLC and 14 NSCLC-BM
samples. Overlapping DEGs between GSE161116 and GeneCards
(March 2025) were visualized using ggplot2 (Zeng et al., 2022) and
VennDiagram packages in R.

DEG enrichment analysis

Functional enrichment analysis was performed using:Gene Set
Enrichment Analysis (GSEA) with the MSigDB Collections (https://
www.gsea-msigdb.org/gsea/msigdb/index.jsp) as the reference gene
set (500 permutations, significance threshold: p. adj<0.25). Results
were visualized via ggplot2 (Zeng et al., 2022). DAVID (v6.8; http://
david.ncifcrf.gov) for Gene Ontology (GO) and KEGG pathway
analysis. GO terms included biological processes (BP), cellular
components (CC), and molecular functions (MF). P < 0.05 was
considered statistically significant.

PPl network construction and hub gene
identification

Protein-protein interaction (PPI) networks were built using
STRING (v10.0; http://string-db.org; interaction score cutoff: 0.4)
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and visualized in Cytoscape (v3.9.1). Hub genes were identified via
CytoHubba and MCODE plugins, applying 12 ranking algorithms
to select the top 10 nodes per method.

Hub gene-TF-miRNA regulatory network

A mRNA-TF-miRNA co-regulatory network was constructed
using NetworkAnalyst (Xia et al., 2015), integrating data from TF-
miRNA interaction databases, and visualized in Cytoscape.

Survival analysis

The Plotter
assessed the impact of hub genes on overall survival (OS). Patients
were stratified into high- and low-expression groups based on

Kaplan-Meier (http://kmplot.com/analysis/)

median expression levels (Tang et al., 2019). Differences were
evaluated via log-rank test (P < 0.05).

Immune infiltration analysis

The TIMER 2.0 platform (https://cistrome.shinyapps.io/
timer/) analyzed correlations between hub gene expression and
immune cell abundance using purity-adjusted Spearman’s rank
correlation.

Mutation analysis

Genomic alterations (mutations and copy number variations,
CNVs) (http://
gsca.bio-data.cn) mutation frequencies

in hub genes were analyzed via GSCA

to determine and

functional impacts.

Statistical analysis

To account for multiple hypothesis testing in the identification
of differentially expressed genes, the false discovery rate (FDR)
was controlled using the Benjamini-Hochberg procedure. The
statistical thresholds were set at |log,FC|>1 and adjusted p-value
(FDR) < 0.05.
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