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Introduction: Intrinsically disordered regions (IDRs) of proteins have traditionally
been overlooked as drug targets. However, with growing recognition of their
crucial role in biological activity and their involvement in various diseases,
IDRs have emerged as promising targets for drug discovery. Despite this
potential, rational methodologies for IDR-targeted drug discovery remain
underdeveloped, primarily due to a lack of reference experimental data.

Methods: This study explores a machine learning approach to predict IDR
functions, drug interaction sites, and interacting molecular substructures within
IDR sequences. To address the data gap, stepwise transfer learning was
employed. IDRdecoder sequentially generate predictions for IDR classification,
interaction sites, and interacting ligand substructures. In the first step, the
neural net was trained as autoencoder by using 26,480,862 predicted IDR
sequences. Then it was trained against 57,692 ligand-binding PDB sequences
with higher IDR tendency via transfer learning for predict ligand interacting sites
and ligand types.

Results: IDRdecoder was evaluated against 9 IDR sequences, which were
experimentally detailed as drug targets. In the encoding space, specific GO
terms related to the hypothesized functions of the evaluation IDR sequences
were highly enriched. The model’s prediction performance for drug interacting
sites and ligand types demonstrated the area under the curve (AUC) of 0.616
and 0.702, respectively. The performance was compared with existing methods
including ProteinBERT, and IDRdecoder demonstrated moderately improved
performance.

Discussion: IDRdecoder is the first application for predicting drug interaction
sites and ligands in IDR sequences. Analysis of the prediction results revealed
characteristics beneficial for IDR-drug design; for instance, Tyr and Ala are
preferred target sites, while flexible substructures, such as alkyl groups, are
favored in ligand molecules.
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1 Introduction

The continuous decline in productivity in the research and
development of novel pharmaceutical drugs has been noted
(Pammolli et al., 2011; Williams, 2011). One complex cause of this
decline is believed to be the depletion of easily accessible drug
targets, often referred to as low-hanging fruits. These circumstances
have driven the demand for new drug targets or modalities
(Kiriiri et al., 2020). “Drugging the undruggable proteins” is a
central challenge in efforts to identify new protein targets that
were previously avoided or overlooked. A prominent group among
these neglected targets is intrinsically disordered proteins (IDPs) or
regions (IDRs) (Biesaga et al., 2021; Hassin and Oren, 2023).

IDRs are protein regions that lack a defined structure under
native conditions. Although the biological significance of these
unstructured proteins took time to be recognized, IDRs are now
understood to play crucial roles in several biological processes,
primarily in molecular recognition, signal transduction, and
liquid–liquid phase separation in cells (Tompa, 2011; Oldfield
and Dunker, 2014). Notably, many mutations in IDRs are
pathogenic (Uversky et al., 2008; Darling and Uversky, 2017;
Shigemitsu and Hiroaki, 2018). Approximately 35% of the
human proteome comprises IDRs, and 22%–29% of disease-
associated missense mutations occur within these regions
(Vacic et al., 2012; Hijikata et al., 2017).

These developments have driven research in IDR-targeted drug
discovery (Ruan et al., 2019; Santofimia-Castano et al., 2020;
Saurabh et al., 2023). To date, pioneering studies in this field have
focused on targets such as amyloid beta (Aβ) (Scherzer-Attali et al.,
2010; Convertino et al., 2011), androgen receptor (AR) (Sadar,
2020), PTP1B (Krishnan et al., 2014), TipA (Habazettl et al., 2014),
alpha-synuclein (αSyn) (Toth et al., 2014; Tatenhorst et al., 2016),
cMyc (Follis et al., 2008; Yu et al., 2016), p27 (Iconaru et al.,
2015), NUPR1 (Neira et al., 2017), and p53 (Ruan et al., 2020).
In most of these studies, drug candidates were identified through
experimental screenings aimed at inhibiting functions and/or
protein interactions. A few studies—specifically those targeting Aβ
(Convertino et al., 2011), p53 (Ruan et al., 2020), αSyn (Toth et al.,
2014), cMyc (Yu et al., 2016), and NUPR1 (Neira et al., 2017) also
incorporated rational approaches. Typically, these rational methods
combine conformational searches of IDR sequences usingmolecular
dynamics simulations with ligand searches through fragment-based
docking simulations.However, none of the potential drugs identified
in these studies have received approval for their intended use.

Various computational techniques have been developed
to predict, classify, and identify interaction sites within IDRs.
These functional regions are often termed molecular recognition
fragments (MoRFs) or short linear sequencemotifs (SLiMs).MoRFs
and SLiMs play essential roles in binding to proteins, nucleic acids,
and lipids (membranes). While these elements are primarily studied
for their specific interactions with intrinsic native macromolecules,
their potential roles in binding extrinsic small molecules, such as
pharmaceutical drugs, are frequently overlooked.This oversightmay
stem from the limited experimental data currently available on IDR-
drug interactions. Moreover, existing computational methods for
drug discovery and design predominantly follow the “lock-and-key”
model, which is better suited for structured proteins.

In recent years, neural network-based machine learning,
including transformers, has become the mainstream, and is
achieving significant results, for IDR classification and interacting
site prediction (Chen et al., 2022; Basu et al., 2023). However,
the lack of training data still remains a major bottleneck in IDR-
targeted drug design. Therefore, rational methods for IDR-drug
discovery and design are critically lacking, and advancing such
approaches would significantly benefit the field of drug development
against novel target proteins. In this report, a preliminary method,
named IDRdecoder, was developed to predict drug interaction
sites and potential interacting ligands on IDR sequences using a
neural network-basedmachine learning approach.Thismethod was
designed to address and compensate for the existing data gap in IDR-
drug interactions by transfer learning and stepwise predictions of
IDR classification, drug interacting sites, and ligand types.

2 Methods

2.1 Data sets

The IDR amino acid sequences were obtained from the
RefSeq (GCF) genome assembly database (O'Leary et al.,
2016). The translated ORF sequences were analyzed using
IUPred2A, and a sequence region was classified as an IDR
if at least 30 consecutive residues had a score exceeding 0.9
(Meszaros et al., 2018). In total, 26,480,862 sequences with an
average length of 109 residues were extracted from the proteomes
of 23,041 species, forming a dataset referred to as DS-IDR
(Supplementary Figure S1a; Supplementary Table S1).

The data for drug-interacting sites of IDRs and their
corresponding potential drug formulas were collected from
literature documenting drug discovery efforts targeting amyloid
beta (Aβ) (Scherzer-Attali et al., 2010), androgen receptor
(AR) (Sadar, 2020), PTP1B (Krishnan et al., 2014), TipA
(Habazettl et al., 2014), alpha-synuclein (αSyn) (Tatenhorst et al.,
2016), cMyc (Follis et al., 2008), p27 (Iconaru et al., 2015),
NUPR1 (Neira et al., 2017), and p53 (Ruan et al., 2020). In
total, nine sequences (averaging 72 residues) with 130 interacting
sites and 11 chemical formulas of potential drugs were obtained
(Supplementary Table S1; Supplementary Figure S2). These data
were used to create the primary validation dataset, referred to
as DS-IDR-V. MarvinSketch 20.19 (2020) by ChemAxon (http://
www.chemaxon.com) was used to construct the coordinates of the
chemical structures.

The sequences of protein segments interacting with ligands were
extracted from the PDB as of 21 January 2021 (wwPDB Consortium,
2019). Complete subunit sequences were randomly divided into
segments to ensure that their length distribution matched that of
disordered sequences in DS-IDR (Supplementary Figure S1b). The
IDR tendencies of these segments were evaluated using IUPred2A
(Meszaros et al., 2018). For each segment, the ligand-interacting
sites, ligand identity, and chemical formulas were recorded. These
chemical formulas were further divided into protogroups, defined
as small chemical compounds in the PDB that could act as
standalone protein ligands (e.g., benzene, butanol) and appear
frequently as substructures within larger ligands. Chemical formulas
for 32,414 protein-ligandmolecules were curated from the PDB.The
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frequency with which each ligand matched parts of other ligands
was determined using a graph match algorithm (Saito et al., 2012).
Ligand molecules (potential protogroups) were ranked according
to their match frequency (Supplementary Figures S1e, S3). Initially,
ligands composed of five or more atoms were preferentially
selected, resulting in 61 protogroups that covered 71.2% of all PDB
ligand atoms, with a 34.6% overlap (fraction of atoms assigned
to more than two protogroups). After lowering the threshold to
four or more atoms, an additional 26 protogroups were selected,
increasing coverage to 78.1% with a 50.5% overlap. In total,
87 protogroups (comprising four or more atoms) were used as
prediction targets (Supplementary Table S5).

Amino acid residues with at least one atom within 4.0
Å of a protogroup atom were defined as interacting sites.
A total of 961,840 sequences (averaging 112 residues) with
3,002,920 interacting sites for 87 protogroups were extracted
(Supplementary Table S1). This dataset, referred to as DS-PDB, was
further divided into sub-datasets. The training dataset (DS-PDB-
T) consisted of 57,448 sequences showing a relatively higher IDR
tendency. These sequences either had an IUPred2A score above
0.5 or were randomly selected with decreasing probability for
lower scores (as shown in Supplementary Figure S1c), resulting in
171,007 interacting sites (Meszaros et al., 2018). For additional
validation, sequences not included in DS-IDR-V or DS-PDB-
T were selected if their corresponding segments had structural
evidence of disorder. This criterion required that the region
was unmodeled in at least one experimental structure in the
PDB, producing a dataset of 70 sequences with 259 interacting
sites (DS-PDB-V, Supplementary Table S1). These segments were
identified by comparing DS-PDB with disorder-annotated PDB
sequence clustering data (Lobanov et al., 2020). Additionally,
sequences not included in DS-PDB-T, DS-IDR-V, or DS-PDB-V
and displaying a lower IDR tendency (IUPred2A scores ranging
from 0.0 to 0.3) were randomly selected to create a negative
dataset, referred to as DS-PDB-N. This dataset comprised 5,000
sequences (average 129 residues) with 18,060 interacting sites
(Supplementary Table S1) (Meszaros et al., 2018).

2.2 Design and construction of machine
learning model

The machine learning model developed in this study was
designed to process IDR sequences as input and predict drug (small
molecule) interacting sites on these sequences, along with the likely
interacting protogroups, as output (Figure 1a). A straightforward
neural network architecture was implemented in Python (ver. 3.10)
using TensorFlow (ver. 2.12) library and was named IDRdecoder
(Van Rossum and Drake, 2009; Abadi et al., 2016).

In the input layer, protein sequences of varying lengths were
transformed into a three-dimensional (20 × 20 × 20) matrix

f(ai,aj,k) = n(ai,aj,k)/∑
i,j,k

n(ai,aj,k)

wheren(ai,aj,k) the number of residue pairs between specific amino
acids ai and aj separated by k = j− i residues in the IDR sequence.
Since the layer n(ai,aj,0)was formed as a diagonal matrix reflecting

amino acid frequency, f(ai,aj,0) the matrix was divided by 20 to
attenuate the values. Additionally, f(ai,aj,k) was smoothed as

f(ai,aj,k) = ∑
k−3≤l≤k+3

f(ai,aj, l)/4|
k−l|

The input matrix was processed through a single convolutional
layer containing 800 filters with dimensions of 20 × 20 × 3 and a
stride of 20 × 20 × 1. This convolutional layer was connected to two
fully connected (dense) layers with dimensions of 400 × 1 and 20
× 1, respectively. The second dense layer produced the encoding
vector ve(l) of the input sequence, forming the encoding part of
the network, which spans from the input layer to the encoding
layer. The encoding layer was further connected to two dense layers
with dimensions of 75 × 1 and 1,200 × 1, leading to the decoding
matrix fd(ai,aj,k) with dimensions of 20 × 20 × 20. This matrix
provided predicted values for the interacting sites. This segment of
the network, from the encoding layer to the decoding matrix, was
defined as the decoding part.

The decoding matrix was subsequently passed through a
single convolutional layer (mirroring the structure of the input
convolutional layer), followed by a dense layer (400 × 1), and
finally connected to the output layer (87 × 1). This output
layer produced a prediction vp(m) vector corresponding to 87
protogroups, completing the prediction part of the network, which
spans from the decoding layer to the output layer. For activation
functions, the ReLU (rectified linear unit) function was applied
throughout the network, except before the encoding layer, where
the tanh (hyperbolic tangent) function was used to reduce extreme
values, and before the output layer, where the softmaxwas employed.

In the first step, IDRdecoder was trained as an autoencoder
(Hinton and Salakhutdinov, 2006; Yang et al., 2018; Tian et al.,
2021) using the DS-IDR dataset. In this configuration, the input
data at the input layer and the target data at the decoding layer
were identical. The predicted IDR sequences were processed into
input data as described above, and the encoding and decoding
components (containing 17,852,080 weights) were trained using
the Adam (adaptive moment estimation) optimizer. The Pearson
correlation coefficient and 1 – |Pearson correlation coefficient| were
used as the metrics and the loss function, respectively. Half of DS-
IDR was randomly assigned to the test set. The learning rate was
fixed to 1 × 10−3 during all epochs.

In the second step, IDRdecoder was trained for interacting site
prediction using transfer learning. During this phase, 7,689,220
weights in the encoding layer were fixed with the values obtained
from the first step, while 10,162,860 weights in the decoding layer
were retrained. The dataset was switched to DS-PDB-T, with input
data prepared from amino acid sequences as previously described.
However, the target data in this step were designed to represent only
the ligand-interacting sites. The learning rate was reduced to 7 ×
10−5, while all other conditions remained the same as in the first step.

In the third step, IDRdecoder was trained to predict interacting
protogroups. Here, all 17,852,080 weights in the encoding and
decoding layers were fixed as obtained from the second step, and
7,750,573weights in the prediction layer were trained.TheDS-PDB-
T dataset was again used, and the input data remained consistent
with the second step. The target data were formatted as one-
hot vectors, where the element corresponding to the interacting
protogroup was set to 1. Categorical accuracy and categorical cross-
entropy were employed as the evaluation metric and loss function,
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FIGURE 1
Architecture and training process of IDRdecoder. (a) Schematic representation of IDRdecoder. The input sequence is transformed into a matrix f(ai,aj,k)
and processed through convolutional layers (CNN) to generate an encoding vector ve(l), classifying the input sequence (encoding phase, training step
1). This encoding vector connects to the decoding matrix fd(ai,aj,k) via dense layers (FC) for interaction site prediction (decoding phase, training step
2). The decoding matrix is further processed through CNN layers to produce the prediction vector vp(m) for interacting protogroup prediction
(prediction phase, training step 3). The training is conducted in three distinct steps, with solid arrows indicating trained components and dotted arrows
indicating fixed components during each step. (b) Learning curve of training step 1. The loss value (left axis, red) and accuracy (right axis, blue) are
plotted against epochs up to 350. The dotted line marks the epoch where training stops (350). (c) Learning curve of step 2. (d) Learning curve of step 3.

respectively. The adamax optimizer was used, with the learning rate
further reduced to 1 × 10−7. The other conditions were the same
as the second step. Additionally, the last step was also repeated by
training all 25,602,653 weights for a comparison purpose.

2.3 Validation of machine learning model

IDRdecoder was evaluated across three aspects. First, the
encoding vector ve(l) was expected to represent the classification
of IDR sequences, with vector proximity indicating functional
similarity among IDRs. To assess this, GOenrichmentwas examined
for several IDRs with proposed functional roles. Seven IDR
sequences were selected as queries: those of AR

∗
(Chen et al., 2023),

αSyn (Hawk et al., 2019;Makasewicz et al., 2024), Rho (transcription
termination factor) (Krypotou et al., 2023), SPT16 (FACT
component) (Mayanagi et al., 2019), MDP1 (DNA-binding protein
HupB) (Nishiyama et al., 2024), Tau (Connolly et al., 1977; Elie et al.,
2015; Trushina et al., 2019), andAβ

∗
(Ramaker et al., 2013; Tsoi et al.,

2023). Although the proteins AR and Aβ were included in the
validation set (DS-IDR-V), the IDR segments used for this analysis
differed from those in DS-IDR-V (Supplementary Tables S1, S3).

The top 2,000 IDR sequences closest to each query in the
encoding space were extracted fromDS-IDR based on the Euclidean
distance between encoding vectors ve(l). IDR sequences of close

homologs, identifiable via BLAST (Altschul et al., 1990) with an
E-value below 1, were excluded. In the BLAST search, the query
sequences were IDRs, and the database consisted of sequences from
DS-IDR. Redundant sequences were removed by cross-referencing
gene IDs. GO terms (Sayers et al., 2022; Gene Ontology et al., 2023)
were assigned to the sequences using Gene2Refseq and Genes2Go
(O'Leary et al., 2016). GO enrichment was evaluated using the
P-value from a one-sided (greater) binomial test, comparing the
occurrence rate of a GO term around a specific IDR to its rate
across all examined queries. No threshold or compensation was
applied for P-values. Each 20 GO terms having the lowest P-values
were shown in Supplementary Table S2.

Second, the prediction performance of the decoding matrix
fd(ai,aj,k) for interaction sites was evaluated. The matrix
fd(ai,aj,k) was converted into a score for each residue i in the
input sequence as

s(i) = ∑
l≤i,i−l≤20

fd(al,ai, i− l) + ∑
l>i,l−i≤20

fd(ai,al, l− i)

where ai represents the amino acid at the input sequence. This score
was further normalized to

sn(i) = s(i)/max {s(l)}

Ligand-interacting sites were predicted for the IDR sequences
in DS-IDR-V. The predictions were also performed using
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IUPred2A (Meszaros et al., 2018), MoRFCHiBi (Malhis and
Gsponer, 2015), DeepDISOBind (Zhang et al., 2022), and
ProteinBERT (Brandes et al., 2022), with their performances
compared to that of IDRdecoder. For ProteinBERT predictions,
the pre-trained model (downloaded from GitHub (https://github.
com/nadavbra/protein_bert) was fine-tuned for the site prediction
task using DS-PDB-T. Additionally, IDRdecoder was applied to
predict interacting sites in DS-PDB-V and DS-PDB-N, and the
performance across these datasets was compared.

Third, the predictive ability of the prediction vector vp(m)
for interacting protogroups was assessed using DS-IDR-V. The
prediction vector vp(m)was normalized for each sequence to yield a
score tn(i) for protogroup i as

tn(i) = vp(i)/max {vp(m)}

This performance was compared with that ProteinBERT, fine-
tuned for the category prediction task using DS-PDB-T. Similar
to the interaction site prediction, IDRdecoder was also used to
predict interacting protogroups in DS-PDB-V and DS-PDB-N, and
the capabilities were compared.

Additionally, the true-positive rates (TPR) of IDRdecoder
for each amino acid and protogroup were compared with IDR
propensities. TPRs were calculated as the sum of true positives
and false negatives across examined thresholds. IDR propensity
represented the relative likelihood of participating in IDR
interactions. For amino acids, propensity was defined as the fraction
of true cases among the total occurrences of each amino acid in DS-
IDR-V and DS-PDB-V, divided by the general ligand interaction
propensity evaluated for ordered proteins (Soga et al., 2007). For
protogroups, it was calculated as the fraction of true cases among
the total occurrences of each protogroup inDS-IDR-VandDS-PDB-
V, divided by the protogroup’s frequency in DS-PDB-T. These IDR
propensities were scaled between 0.0 and 1.0, as shown in Figure 4.

All statistical analyses were performed using R (ver.
3.6.3) or Python with the SciPy library (ver. 1.10.1).
(Team, 2007; Virtanen et al., 2020).

3 Results

3.1 IDR classification via encoding layer

A simple neural network, IDRdecoder, was developed to
predict ligand interaction sites and ligand types directly from
the amino acid sequences of IDR. IDRdecoder consists of
three main components: encoding, decoding, and predicting
modules. It is designed to sequentially generate predictions
for IDR classification, interaction sites, and interacting ligand
substructures (Figure 1a). To accommodate IDR sequences of
varying lengths, the model converts sequences into a 3D matrix
that captures the relative frequencies of amino acid pairs and
their separation within the sequence. Initially, the encoding and
decoding components were trained as an autoencoder using
26,480,862 predicted IDR sequences derived from 23,041 genomes
(Figure 1b; Supplementary Figure S1a). Training continued until
saturation by measuring the correlation coefficient between the
input and decoded metrics.

The encoding module transformed IDR sequences into 20-
dimensional real-valued encoding vectors. Upon completion of
training, the correlation coefficients between the input and decoded
matrices averaged 0.66 (with a standard error of 1.30 × 10−3) and
had a standard deviation of 0.12, indicating that the encoding
vectors effectively captured and reconstructed the input data
(Supplementary Figure S1d). Principal component analysis (PCA)
was applied to the encoding vectors, and the IDRs were visualized
on the PC1–PC2 plane (Figure 2).

To assess whether the encoding vectors could classify IDRs
based on function, several experimentally characterized IDR
sequences specifically from AR∗, αSyn, Rho, SPT16, MDP1 (DNA-
binding protein HupB), Tau, and Aβ∗were analyzed. These IDRs
were generally distributed in alignment with the overall frequency
distribution of all IDRs on the PC1–PC2 plane (Figure 2). To
further explore functional similarities, non-homologous IDRs
located near these reference IDRs (based on inter-vector distances)
were extracted, and gene ontology (GO) enrichment analysis was
performed (Supplementary Table S2).

Overall, the highly enriched GO terms varied among the
IDRs, with specific terms related to the hypothesized functions of
each IDR appearing among the significantly enriched categories.
For example, “MLL3/4 complex (CC)” was enriched for AR,
supporting its proposed role in enhancer complex assembly
(Panigrahi and O'Malley, 2021; Chen et al., 2023). Similarly, “high
voltage-gated calcium channel activity” was enriched for αSyn,
aligning with the hypothesis that αSyn aggregation is modulated by
calcium channels (Leandrou et al., 2019). For MDP1, “chromosome
condensation (MF)” was significantly enriched, consistent with its
role in condensing genomic DNA during the persistence phase
of Mycobacterium tuberculosis (Matsumoto et al., 1999). In the
case of Rho, “mRNA binding (MF)” was enriched, supporting
the idea that Rho may drive phase separation by sensing cellular
nutrient conditions through mRNA interactions (Krypotou et al.,
2023). For SPT16, “regulation of transcription by RNA polymerase
II (MF)” was enriched, reflecting its role as part of the FACT
chromatin remodeler complex (Mayanagi et al., 2019; Formosa
and Winston, 2020). The term “heparin binding (MF)” was
enriched for Aβ,∗aligning with findings that heparin can either
promote or inhibit Aβ peptide fibrillation (Zhou et al., 2022).
Similarly, “mitotic spindle organization (BP)” was enriched for
Tau, consistent with its known function in stabilizing microtubules
(Connolly et al., 1977). Lastly, “membrane organization (BP)” was
significantly enriched for VIPP1, supporting its essential role in
forming thylakoid membranes in chloroplasts and cyanobacteria
(Zhang et al., 2016) (Figure 2a).

Alignments of representative IDR sequences closely related to
AR∗, αSyn, or VIPP1 are shown in Figure 2b. These sequences did
not exhibit global similarity to the query sequences. The highest
observed sequence identity was 44% between AR∗and PAXIP1,
mainly due to a shared polyglutamine (polyQ) array. However,
such mono-amino acid repeats were absent in the case of αSyn,
where only short motifs like E-x (5)-P-x (2)-E or E-x-E were
shared. In contrast, no clear consensus motifs were observed in the
VIPP1 example.

These results demonstrate that IDRs with similar functional
roles were clustered by the encoding vectors generated by
IDRdecoder, albeit not in a clearly discrete manner. Importantly,
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FIGURE 2
Principal component analysis (PCA) of encoding vectors. (a) Distribution of 26,480,862 IDR sequence encoding vectors plotted on the PC1 (horizontal
axis) and PC2 (vertical axis) plane. The axis scales represent principal component loadings, with sequence density visualized by a blue color gradient.
Red dots and labels indicate IDRs from the validation dataset (DS-IDR-V), while black dots and labels represent IDRs used in GO enrichment analysis.
For these sequences, the most relevant enriched term is presented as rank: term (category) along with the -log10P-value. (b) Sequence alignments of
representative IDRs: Top: Alignment of IDRs near AR∗(Refseq ID: NP_000035.2, residues 343–448), associated with the “MLL3/4 complex (CC).”
Aligned sequences include KMT2C (XP_043790783.1, residues 2,288–2,477, encoding vector distance: 0.464) and PAXIP1 (XP_040158493.1, residues
1,397–1,561, distance: 0.489). Consensus residues are highlighted in red. Middle: Alignment of IDRs near αSyn (NP_000336.1, residues 100–140), linked
to “high voltage-gated calcium channel activity.” Aligned sequences are CACNA1C (XP_044917098.1, residues 850–892, distance: 0.125) and CACNA1
(XP_047501356.1, residues 694–747, distance: 0.127). Bottom: Alignment of IDRs near VIPP1 (NP_001322349.1, residues 221–259), associated with
“membrane organization.” Aligned sequences include OTOFX1 (XP_042838266.1, residues 649–685, distance: 0.094) and MTSS1 (XP_024596750.1,
residues 429–471, distance: 0.100).

proximity between encoding vectors did not necessarily indicate
explicit sequence similarity or the presence of well-defined
sequence motifs.

3.2 Prediction of interaction sites via
transfer learning

In the second phase, IDRdecoder was trained to predict
ligand interaction sites within IDRs. For the training dataset,
relevant studies on IDR-targeted drug discovery were systematically
reviewed under the following criteria: (1) The amino acid sequence
of the target IDRwas clearly defined. (2) Ligand-interacting residues
were experimentally identified, for example, through chemical shift
perturbation analysis. (3) The chemical identities of the potential

drug molecules were explicitly characterized. This search yielded
studies on Aβ (Scherzer-Attali et al., 2010), AR (Sadar, 2020),
PTP1B (Krishnan et al., 2014), TipA (Habazettl et al., 2014), αSyn
(Tatenhorst et al., 2016), cMyc (Follis et al., 2008), p27 (Iconaru et al.,
2015), NUPR1 (Neira et al., 2017), and p53 (Ruan et al.,
2020), providing a dataset of 9 IDR sequences encompassing 130
interacting sites and 11 potential drug compounds.

Initially, this dataset was intended to serve as training and
validation data. However, due to its limited size, it was used solely
as a validation dataset (referred to as DS-IDR-V). Consequently,
the training dataset was constructed by mining the Protein Data
Bank (PDB) for ligand-interacting peptide segments with a higher
propensity for intrinsic disorder (Supplementary Figures S1b,c)
(wwPDB Consortium, 2019). Existing methods leveraging PDB
data primarily focused on interaction sites within Molecular
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Recognition Features (MoRFs) structured regions formed through
interactions with native binding partners (Chen et al., 2022). In
contrast, this study broadened the data scope beyond known
MoRFs. The IDR tendencies of peptide segments from PDB
proteins were assessed using IUPred2A (Meszaros et al., 2018),
and sequences displaying higher disorder tendencies were
selected. This process resulted in a training dataset, referred
to as DS-PDB-T, comprising 57,692 sequences with 171,007
ligand-interacting sites (Supplementary Table S1).

In this training phase, only the 10,162,860 weights of the
decoding component of IDRdecoder were retrained. The input
matrices were generated using the same method as in the
initial phase; however, the decoding (target) matrices were
specifically constructed to represent only the ligand-interacting
sites. Training was intentionally halted at epoch 260 to prevent
overfitting, as the output matrices became excessively sparse and
often empty beyond this point, with clear signs of overfitting
emerging (Figure 1c).

The decoding matrices produced predictions for ligand
interaction sites, which were evaluated using the validation dataset
DS-IDR-V (Figure 3a; Supplementary Table S3). The model’s
performance was assessed through the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve across varying
thresholds, revealing a moderate prediction capability with an AUC
of 0.616. This performance was compared to several established
methods, namely, IUPred2A, MoRFCHiBi (Malhis and Gsponer,
2015), DeepDISOBind (Zhang et al., 2022), and ProteinBERT
(retrained with DS-PDB-T) (Brandes et al., 2022), using the same
validation set. However, this comparison was considered tentative
since these existing methods are primarily designed to predict
MoRFs involved in macromolecular interactions, rather than
ligand-binding sites for small molecules.

Based on the AUC values, MoRFCHiBi demonstrated the
highest predictive capability with an AUC of 0.637, followed by
IDRdecoder with an AUC of 0.616 and ProteinBERT with an
AUC of 0.538 (Table 1). The underlying models for these predictors
differ significantly. MoRFCHiBi integrates predictions based on
sequence similarity, disorder propensity, and sequence conservation
using Bayesian inference by referencing experimentally validated
MoRFs. In contrast, ProteinBERT is a BERT (bidirectional encoder
representations from transformers)-based model pretrained on
over 108 million protein sequences and fine-tuned for site
prediction purpose using the DS-PDB-T dataset. The performance
of MoRFCHiBi would suggest the information of evolutionary
sequence conservation was beneficial for prediction of ligand-
binding sites, although structures of drug molecules were in
general different from the native binding partners. The ROC
profiles highlighted a notable distinction between IDRdecoder and
the other models—IDRdecoder exhibited superior performance
in regions of higher specificity. The specificities at the optimal
thresholds, determined by the positive likelihood ratio (PLR),
were 0.954 for IDRdecoder, 0.804 for MoRFCHiBi, and 0.882 for
ProteinBERT. These results demonstrated that IDRdecoder detect
lower number of the interaction sites more accurately compared to
the other methods. This feature of IDRdecoder might be preferable
as site predictor in experimental drug design, which typically
starts with few target sites and lead molecule, then refine the

structures of drug by adding binding sites and modifying molecular
structure of drugs.

Examples illustrating the best, intermediate, and worst
prediction outcomes for individual IDRs are shown in Figure 3c.
For the IDR of αSyn, which interacts with the potential
drug Fasudil (Supplementary Figure S2) via two Tyr residues
(highlighted in red in Figure 3c), IDRdecoder successfully assigned
higher scores to these Tyr residues compared to other amino acids.
MoRFCHiBi also correctly predicted these residues but tended to
overpredict, identifying more positives than necessary, whereas
ProteinBERT performed poorly in this case. In the intermediate
case of p53, IDRdecoder highlighted Leu residues, correctly
identifying two interacting sites, while MoRFCHiBi accurately
detected the entire array of interacting sites. In the worst case
involving cMyc, IDRdecoder suggested some Arg and Asn residues,
but none of the methods, including IDRdecoder, successfully
identified the true interacting residues. These examples suggest that
IDRdecoder tends to prioritize certain amino acids over others,
depending on the input sequence, leading to varied prediction
performance.

The performance of IDRdecoder was further validated using
the evidenced IDR dataset (DS-PDB-V), which included peptide
segments from the PDB with structural evidence of order-disorder
transitions upon ligand interaction. This dataset consisted of 70
sequences with 259 interacting sites (Supplementary Table S1).
IDRdecoder performance for DS-PDB-Vwas limited by showing an
AUC of 0.563. Nevertheless, it still demonstrated a higher specificity
of 0.908 at the best threshold (Table 1).

Since the training datawere obtained from structured proteins in
the PDB, therewas concern that IDRdecodermight be biased toward
structured regions rather than IDRs. To address this, the dataset DS-
PDB-N was created similarly to DS-PDB-T but included peptide
segments with lower IDR tendencies ranging from 0.0 to 0.3. The
AUC for this negative dataset was relatively low (0.507), supporting
the idea that IDRdecoder is somewhat specialized in predicting IDR
interaction sites.

3.3 Prediction of interacting ligands

In the third step, IDRdecoder was trained to predict
interacting small molecules. A major challenge in this phase
was the vast number of potential small molecules compared
to the limited training data. To overcome this, IDRdecoder
was designed to predict a manageable subset of commonly
observed atom groups called protogroups. Protogroups are small
chemical compounds identified in the PDB that act as protein
ligands and often appear as substructures in larger ligands (see
Supplementary Figure S1e; Supplementary Table S5). A total of 87
of the most frequent protogroups were selected, and prediction
vectors were prepared as one-hot vectors, where only the protogroup
interacting with each input sequence in DS-PDB-T was set to 1.
During this step, the encoding and decoding parts were fixed, and
7,750,573 weights in the predicting part were trained. Training was
completed at epoch 700.

The prediction capability of IDRdecoder was evaluated
using the datasets DS-IDR-V and DS-PDB-V (Figure 3b;
Supplementary Table S4). To date, no established methods exist
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FIGURE 3
Receiver operating characteristic (ROC) curve of interacting site and interacting protogroup predictions. (a) Prediction results for interacting sites
(DS-IDR-V) across varying thresholds are plotted with specificity on the horizontal axis and sensitivity on the vertical axis for IDRdecoder (red),
IUPred2A (green), MoRFCHiBi (sky blue), DeepDISOBind (DNA: yellow, RNA: yellow-green, and Protein: light green), and PrtoeinBERT (blue). IDRdecoder
results for DS-PDB-V (magenta) and DS-PDB-N (gray) are also included. (b) Prediction results for interacting protogroups (DS-IDR-V) across varying
thresholds are plotted with specificity on the horizontal axis and sensitivity on the vertical axis for IDRdecoder (red) and ProteinBERT (blue).
Additionally, IDRdecoder results for DS-PDB-V (magenta), DS-PDB-N (gray), and the fully trained version (purple) are shown. (c) Examples of interacting
site predictions at the optimal threshold are provided for αSyn (best case with a -log10P value of 3.77 for the chi-square test, top), p53 (intermediate
case, 0.34, middle), and cMyc (worst case, 0.00, bottom; 30 amino acids of cMyc with no true or positive sites are omitted). (d) Examples of protogroup
predictions (from 1 to 87) at the optimal threshold are shown for p27 - SJ572710 (best case, 7.05, top), cMyc-10058-F4 (intermediate case, 0.14,
middle), and p53 – PKUMDL-RH-1047 (worst case, 0.04, bottom). True sites and protogroups (marked with a plus) are displayed in red on the top lines.
Positive cases are indicated by an asterisk for IDRdecoder (ID), MoRFCHiBi (MC), and ProteinBERT (PB), while true-positive cases are shown in blue.

for predicting small molecules interacting with IDRs. Therefore,
IDRdecoder’s performance was compared to ProteinBERT, which
had been fine-tuned on DS-PDB-T for classification tasks. The
AUCs for IDRdecoder and ProteinBERT on DS-IDR-V were 0.702
and 0.694, respectively, while IDRdecoder achieved an AUC of
0.822 on DS-PDB-V (Table 1). Overall, IDRdecoder’s performance
was comparable to ProteinBERT’s (Figure 2b).

Examples of predictions with the best, intermediate, and
worst outcomes for individual IDRs are shown in Figure 3d. In
the best-case scenario with p27, IDRdecoder correctly identified
10 out of 13 true protogroups of the potential drug SJ572710
(Supplementary Figure S2), with only three false positives. In
contrast, for the intermediate (cMyc with 10058-F4) and worst (p53
with PKUMDL-RH-1047) cases, both IDRdecoder and ProeinBERT
failed to detect more than half of the true protogroups. Notably,
IDRdecoder consistently underestimated protogroup 2 (benzene),
a commonly used and crucial atom group in many potential drugs
targeting IDRs (Supplementary Figure S1).

IDRdecoder’s AUC for the negative dataset DS-PDB-N was
0.680, comparable to its performance on DS-IDR-V. This result
suggests that, unlike in interaction site prediction, IDRdecoder
may be more tuned to general protein ligands rather than being
specifically optimized for IDR-targeted ligands.

Finally, the entire 25,602,653 weights in IDRdecoder were
retrained simultaneously using the DS-PDB-T dataset for
comparative analysis (Supplementary Figure S1f). This approach
was taken because the stepwise transfer learning process may have
limited the performance of IDRdecoder’s downstream components,
particularly the protogroup prediction module. In this retraining,
the initial model and training conditions were consistent with
those used in the third step, except that all weight constraints were
removed. As a result, the learning process displayed rapid signs
of overfitting, leading to early termination at epoch 50. The fully
trained model achieved an AUC of 0.688, showing no significant
improvement over the stepwise trained model, which had an
AUC of 0.683 (Table 1).
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4 Discussion

IDRdecoder was designed to predict ligand interaction sites
and ligand types for IDRs through a stepwise process. In
the first step, sequence features were extracted as encoding
vectors using an autoencoder. The PC map of these encoding
vectors revealed that IDRdecoder had a limited ability to cluster
IDRs. This limitation likely stems from the inherently low-
complexity sequences of IDRs and their high variability, even among
homologous proteins (Figure 2a). Despite this, results from GO
enrichment analyses indicated that the feature extraction process
was effective. GO terms uniquely associated with well-characterized
IDRs, such as AR and αSyn, were significantly enriched near their
respective IDRs.

This analysis did not rely on detecting homology, as homologous
proteins identified through similarity searches were excluded.
Instead, IDRdecoder appeared to recognize simple motifs,
typically composed of two amino acids (Figure 2b). This is
reasonable given that the input matrix is a three-dimensional
representation of the sequence, capturing the relative frequency
and positional separation of amino acid pairs. Consequently,
two-residue motifs characteristic of IDRs were likely encoded in
the encoding vectors, and the observed GO enrichment patterns
suggest that some of these motifs contribute to specific biological
functions (Supplementary Figure S4).

It is important to note that not all enriched GO terms directly
reflected the functional roles of IDRs, and some were potentially
misleading for functional predictions. For instance, the term “ATP-
dependent chromatin remodeler activity (MF)” was significantly
enriched for SPT16, despite SPT16 being a component of an
ATP-independent chromatin remodeler (Supplementary Table S2)
(Valieva et al., 2016). Similarly, “positive regulation of transcription
by RNA polymerase II” and “positive regulation of transcription
by RNA polymerase I″ were suggested for AR, though the latter is
not functionally accurate for this protein (Panigrahi and O'Malley,
2021). Additionally, the IDRs selected for GO enrichment analysis
were mainly clustered near the densely populated center of the
distribution space (Figure 2a), leaving uncertainty about whether
the observed functional clustering holds consistently across the
entire distribution.

In the second step, IDRdecoder focused on predicting small
molecule interaction sites within IDRs—a critical aspect of this
study. Existing prediction methods are primarily designed for
interactions with macromolecules such as proteins or DNA,
and, more notably, no validated dataset previously existed for
training small molecule interaction predictions in IDRs. To
address this, the training dataset (DS-PDB-T) was constructed by
integrating molecular interaction data from known non-disordered
peptide segments that displayed a relatively higher propensity for
intrinsic disorder. As a result, IDRdecoder achieved moderately
better predictive performance compared to other methods when
evaluated against the validation dataset (DS-IDR-V). Conversely,
its performance was lower on the negative dataset (DS-PDB-
N), which may further support the validity and specificity of
this approach (Figure 3a).

However, closer examination of the prediction results
revealed a potential bias in IDRdecoder’s predictions. Specifically,
the individual prediction scores for certain IDRs, such as

αSyn and TipA, were noticeably higher than for others. This
aligns with experimental findings where Tyr residues were
frequently identified as interaction sites for these proteins
(Figure 3c; Supplementary Table S3). IDRdecoder appeared to favor
specific amino acids depending on the input sequence, consistently
assigning higher scores to Tyr for αSyn and TipA, Ala for AR
and Aβ, Pro for PTPB1, and Leu for p53. This pattern suggests
that IDRdecoder may not be adequately trained to interpret the
broader context of amino acid sequences and to evaluate residue
sites in a context-dependent manner. This limitation could stem
from insufficient training data or inherent constraints in the model’s
architecture.

Given that the input (20 × 20 × 20) matrix of IDRdecoder
is a 3D representation of amino acid sequences—reflecting the
relative frequency of amino acid pairs—this data representation
may contribute to the observed bias toward specific amino
acids. IDRdecoder employed the three-dimensional matrix
input to accept sequences in different lengths, which was
prominent difference from transformers (ProteinBERT), which use
positional encoding for same purpose. The apparent disadvantage
of the matrix presentation is that contexts of sequence, for
which positional encoding can maintain, are largely lost in
processing. It might explain the limitation of current model.
On the other hand, the matrix can explicitly keep two-residue
motif information (Supplementary Figure S4). It suggests that
IDRdecoder can be further developed as an IDR-motif identifier
or classifier by combining the two-residue motifs embedded in
the encoding vectors. Since the performance of IDRdecoder and
ProteinBETRT were comparable, superiority between the models
would not be concluded in this case.

When the prediction performance for each amino acid,
measured by the true-positive rate (TPR), was compared to
the IDR propensity (the relative likelihood of each amino acid
participating in IDR interactions in DS-IDR-V vs. in ordered
proteins), a moderate correlation coefficient of 0.57 was observed
(Figure 4a). This result suggests that amino acids like Ala and
Tyr are favored for small molecule interaction sites within
IDRs and that IDRdecoder effectively captured this trend by
frequently prioritizing these residues. Interestingly, according to
the previous studies, Tyr is ranked 3rd lowest in IDR-promoting
propensity, next to other aromatic amino acids Trp and Phe
(Campen et al., 2008), but is relatively preferred for interacting
sites in ordered proteins (Soga et al., 2007). Probably, Tyr is
relatively irregular in IDR sequence and thus appropriate for a
target site.

In the third step, IDRdecoder predicts interacting molecular
substructures. Due to limited training data, the prediction target
was restricted to the 87 most frequent molecular substructures
(protogroups) instead of entire molecules. To the best of our
knowledge, no existing prediction methods have been designed for
this specific purpose, and an extensive performance comparisonwas
not feasible in this study, except with ProteinBERT. Consequently,
IDRdecoder demonstrated significant prediction capability
(Figure 3b). However, a concern arose from the results: the
performance of protogroup prediction appeared independent of
that for the interacting site. The protogroup prediction capability
generally surpassed that of the interacting site, notably in DS-
PDB-V, which showed AUCs of 0.822 for the former and 0.563

Frontiers in Bioinformatics 10 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1627836
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Shionyu-Mitusyama et al. 10.3389/fbinf.2025.1627836

FIGURE 4
Analysis of prediction results for each amino acid and protogroup. (a) The true-positive rate (TPR; vertical axis) for each amino acid in the DS-IDR-V and
DS-PDB-V datasets is plotted against the IDR propensity of each amino acid for interacting sites (horizontal axis). The correlation coefficient between
amino acid propensity and TPR is 0.57, indicating a moderate positive correlation. (b) The true-positive rate (vertical axis) for each protogroup in the
DS-IDR-V and DS-PDB-V datasets is plotted against the protogroup’s propensity for binding to IDR (horizontal axis). Protogroup numbers are labeled,
and the chemical formulas along with the corresponding PDB ligand codes are provided for six protogroups with the highest propensities. The
correlation coefficient between protogroup propensity and TPR is −0.25, suggesting a weak negative correlation.

for the latter (Table 1). This could indicate a bias toward non-IDR
interactions, likely due to the training data being sourced from the
PDB, which was not ideal for the study’s objective.

The performance (TPR) for each protogroup was compared
with the IDR propensity—the relative tendency of each protogroup
to appear in IDR-interacting molecules compared to ligands of
general ordered proteins (Figure 4b). Higher IDR interaction
propensity was observed for protogroups 2 (benzene), 78 (propane-
1-thiol), 5 (pentane), 66 (N-butane), 67 (3-aminopropane), and
16 (butylamine). As is common with general drug candidate
molecules, most compounds in DS-IDR-V contain aromatic groups,
particularly benzene (Supplementary Figure S2). Interestingly,
however, the TPR for benzene (protogroup 2, the second most
frequent substructure in general PDB ligands) did not rank higher
in this analysis.This trend of downgrading benzene was also evident
in individual prediction cases (Figure 3d).

The high IDR propensity of benzene might come from the fact
that most of the molecules in the DS-IDR-V were repositioned
drugs, in which cyclic structures were preferred to deal with
entropy loss in binding in the original design process. The result
might suggest that drug-likeness was relatively lower importance
for ligands for IDRs. Aromatic rings are typically favored as
substructures in protein ligands because they offer a larger
interaction surface area without greatly reducing conformational
entropy. Although this should also apply to IDR interactions,
the prediction results suggest that molecular flexibility may be a
crucial factor in IDR-drug design. The IDR propensities revealed a
preference for alkyl groups, such as propane (protogroup 67), butane
(16 and 66), and pentane (5), with higher prediction capability
observed for these protogroups (Figure 4b). It was speculated that
since IDRs lack a preformed structure, their interactions with ligand
molecules likely occur through induced fitting. This process could

be facilitated if the ligand molecules’ conformations also adjust
inductively, provided the interactions compensate for entropy loss.
This interpretationwould require to be confirmed against larger data
set in future.

As mentioned, the three steps of transfer learning
were employed in this study to predict IDR classification,
interaction sites, and interacting groups. Since this strategy
could potentially reduce downstream performance, IDRdecoder
was retrained without constraints for validation purposes
(Figure 3b; Supplementary Figure S1f). However, this retraining
quickly led to overfitting and did not show significant improvement,
which may justify the use of the stepwise transfer-learning strategy
for effectively suppressing overfitting.

In summary, IDRdecoder was proposed as a predictive tool
for IDR-drug discovery by addressing the lack of training data.
It demonstrated moderately improved performance compared to
some existingmethods. It is unlikely that the issue of limited training
data will be resolved quickly. The analysis of prediction results
revealed potential characteristics relevant to IDR-drug design. For
instance, Tyr and Ala appear to be preferred target sites on IDRs,
and alkyl groups are favored substructures in ligands.However, these
conclusions should be considered tentative due to the limited size
of the available dataset. Due to the data limitation, IDRdecoder
was trained against the data from the known 3D structures,
which remained a probability that the model was not fully trained
against IDRs and biased toward structured regions of protein.
Although IDRdecoder predict binding protogroups, it does not
suggest how these protogroups should be arranged in a whole
molecular structure of drug. The training for predicting protogroup
combinations would require a significantly larger dataset. These
are major limitations of the current IDRdecoder, which should be
addressed in the future work.
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