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Stain-free artificial
Intelligence-assisted light
microscopy for the identification
of blood cells in microfluidic flow
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Edinburgh, Edinburgh, United Kingdom, ?Tissues, Cells and Advanced Therapeutics, Scottish National
Blood Transfusion Service, NHS National Services Scotland, Jack Copland Centre, Currie, United
Kingdom, *School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom

The identification and classification of blood cells are essential for diagnosing
and managing various haematological conditions. Haematology analysers
typically perform full blood counts but often require follow-up tests such as
blood smears. Traditional methods like stained blood smears are laborious
and subjective. This study explores the application of artificial neural networks
for rapid, automated, and objective classification of major blood cell types
from unstained brightfield images. The YOLO v4 object detection architecture
was trained on datasets comprising erythrocytes, echinocytes, lymphocytes,
monocytes, neutrophils, and platelets imaged using a microfluidic flow system.
Binary classification between erythrocytes and echinocytes achieved a network
F1 score of 86%. Expanding to four classes (erythrocytes, echinocytes,
leukocytes, platelets) yielded a network F1 score of 85%, with some misclassified
leukocytes. Further separating leukocytes into lymphocytes, monocytes, and
neutrophils, while also increasing the dataset and tweaking model parameters
resulted in a network F1 score of 84.1%. Most importantly, the neural network'’s
performance was comparable to that of flow cytometry and haematology
analysers when tested on donor samples. These findings demonstrate the
potential of artificial intelligence for high-throughput morphological analysis
of unstained blood cells, enabling rapid screening and diagnosis. Integrating
this approach with microfluidics could streamline conventional techniques and
provide a fast automated full blood count with morphological assessment
without the requirement for sample handling. Further refinements by training on
abnormal cells could facilitate early disease detection and treatment monitoring.

KEYWORDS

artificial neural network, morphological analysis, YOLO v4, blood analysis, haematology

Introduction

The first step to identifying the presence of most pathologies is typically identifying
and quantifying blood cells. Full blood counts (FBC) are the most common way
to do this. Automated haematology analysers provide population-level data, including
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total counts, size distributions, and cell type-specific  (Liu et al, 2023). These methodologies offer promising alternatives
information, revealing valuable clues about underlying to traditional microscopy in resource-constrained environments.
conditions (The association of Clinical Biochemistry and  Others have tried to apply this technique to the detection of

Laboratory Medicine, 2023). Utilising technologies like impedance,
flow cytometry, and laser diffraction, they are extensively used
in clinical practice for swift and precise measurement of blood
cell parameters, providing essential results for diagnosis and
management of haematological conditions, such as anaemia,
leucocytosis, and thrombocytopenia (Chhabra, 2018). However,
these techniques are susceptible to interference by factors such as
cell agglutination, blood protein concentration and glucose levels.
This may cause false measurements of multiple factors of the full
blood count, potentially leading to misdiagnosis and or requiring
follow-up tests such as a blood smear (Gula et al., 2022).

Over the past few years, extensive research has been devoted to
training various neural networks to recognise features in biological
samples (Khandekar et al., 2021; Liu et al., 2023; Yang et al., 2020) to
infer the presence or absence of specific disease types within specific
tissues (Prinzi et al., 2023). Several research teams have investigated
training object detectors to identify blood cell types within human
blood smears. For example, applying artificial neural networks to
the task of detecting the presence of the malaria parasite within
fixed and stained erythrocytes in blood smears. The Cascading
You Only Look Once (YOLO) approach combines YOLOvV2 with
a classifier to improve mean average precision by approximately
8% for Plasmodium vivax detection (from 71.34% to 79.22%;
Yang et al., 2020). Transformer-based approaches with multiheaded
attention mechanisms attained a testing accuracy of 96.41% on
original datasets and 99.25% on modified datasets (Islam et al,
2022). AIDMAN, implementing YOLOv5 with an attentional
aligner model, demonstrated 98.44% accuracy in clinical validation
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circulating blood cancers such as leukaemia from blood smear
slides, where a YOLOv4 model was implemented for blast cell
detection in acute lymphoblastic leukaemia, achieving a mean
average precision of 96.06% for the acute lymphoblastic leukaemia
image database for image processing (ALL-IDB1) dataset and 98.7%
for the C_NMC_2019 dataset (Khandekar et al.,, 2021). Blood
smears serve as a valuable method for evaluating the morphology
of various blood cells. Nevertheless, this process depends on skilled
technicians and involves complex, time-consuming laboratory
techniques to prepare material (Khandekar et al., 2021; Liu et al.,
2023; Yang et al., 2020; Liu et al., 2017).

The published convolutional neural networks designed for
hematopathology primarily rely on blood smear images extracted
from patient biopsies or online databases (Hu et al, 2022).
The accuracy of an artificial neural network model relies on
precise training annotations. Challenges arise with peripheral blood
film whole slide images due to significant variability in staining
techniques, intensity, and colour across laboratories (Fan et al.,
2023). To mitigate the potential drawbacks of such variations, the
network detailed in this investigation underwent training using
stain-free brightfield images. To current knowledge, only one
other research team using a microfluidic flow imaging system
has focused on immune cell detection, and this relied on using
beads binding to CD4 receptors for the identification of target cells
(Dixit et al., 2024).

Traditional blood cell classification methods like flow cytometry
and immunofluorescence staining require expensive reagents,
complex equipment, and skilled operators, limiting their use in
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resource-constrained settings. These approaches also involve time-
consuming sample preparation and staining protocols unsuitable
for urgent diagnostics. Our goal was to develop a low-cost, open-
source alternative using unstained brightfield images for rapid
cell classification. This eliminates costly antibodies and dyes while
enabling near-real-time analysis. Unlike previous methods that rely
on high-resolution images of fixed, stained cells, our approach uses
dynamic flow-based imaging of live cells, requiring a novel workflow
that prevents direct comparison to existing datasets.

networks
morphological classification of white blood cells (WBCs) without

Using artificial neural for  high-throughput
smearing or staining offers the potential to yield more objective,
rapid, cost-effective, and accurate results, eliminating extensive
training. The network selected for the task is Yolo-Darknet, coded
by AlexeyAB (Bochkovskiy et al, 2020), and all models have
been trained using YOLO v4 (Bochkovskiy, 2023). The proposed
YOLOV4 architecture has a relatively low inference time of about
1.25 image frames (4167416 pixels) per second. Capitalising on this
characteristic, three classification problems were investigated: binary
discrimination between erythrocytes and echinocytes, a 4-class blood
cell type discrimination (echinocytes, erythrocytes, leukocytes and
platelets), and a six-class discrimination (erythrocytes, echinocytes,
lymphocytes, monocytes, neutrophils and platelets). Employing a
methodology where the camera lens was directed over microfluidic
chambers, this system could facilitate real-time identification of WBCs
within a concise timeframe, potentially minutes rather than hours,
obviating the necessity for extensive blood sampling. This could
pave the way to producing results akin to the full blood count and
integrating a smear-like morphological analysis in one step without
staining or sample handling.

The YOLO family of architectures was particularly suitable for
cell classification tasks due to its ability to detect and classify multiple
objects within a single pass, making it ideal for analysing densely
populated microscopy fields. YOLOv4 was selected as the optimal
architecture due to several significant advantages over alternative
object detection approaches. YOLOV4 represented the most advanced
iteration of the YOLO architecture available, offering substantial
improvements in both speed and accuracy (Bochkovskiy et al,
2020). In contrast to earlier implementations, like the Cascading
YOLO approach, which needed an additional classifier to detect
malaria parasites with an increased precision of 79.22%. The improved
feature extraction capabilities of YOLOV4 offered better performance
without the need for additional components (Yang et al., 2020).
Strong detection of minute morphological variations among blood
cell types is made possible by the architecture’s CSPDarknet53
backbone, which is necessary for multi-class discrimination tasks.
Instead of requiring the computationally demanding region-by-region
analysis that characterises R-CNN approaches, YOLOv4 offers a
balance between computational efficiency and detection accuracy
when compared to alternative architectures (Alzubaidi et al., 2021).
For high-throughput blood cell analysis, where many cells need to
be rapidly classified, this efficiency is useful. YOLOv4s ability to
operate effectively on conventional hardware makes it suitable for
implementation across various clinical settings, including resource-
constrained environments. This combination of speed, accuracy, and
implementation feasibility made YOLOv4 the ideal foundation for
addressing the key challenges of unstained blood cell classification
in microfluidic systems.
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Hyperparameter optimisation is necessary for neural network
training as it directly impacts model performance (Liao et al., 2022).
In deep learning architectures such as YOLOV4, several parameters
are critical for effective training (learning rate, momentum and
decay). The learning rate sets the speed at which the network adjusts
its internal model weights between nodes. Momentum enhances
the optimisation process by integrating information from prior
weight updates, aiding the model to avoid becoming worse at
classifying objects. Finally, weight decay inflicts penalties on large
weight values to avoid overfitting, a scenario in which the model
performs excellently on training data but fails to classify novel data.
These parameters interact in complex ways, requiring systematic
fine-tuning. In biological image analysis applications, where subtle
morphological differences distinguish between cell types, proper
hyperparameter selection becomes particularly important for
achieving the discrimination capacity needed for accurate multi-
class detection in microscopic blood cell samples.

The present article describes an Al image analysis method
for rapidly classifying six major blood cell types: erythrocytes,
echinocytes, lymphocytes, monocytes, neutrophils, and platelets.
The proposed approach utilises cutting-edge AI techniques to
analyse images of blood cells at the microscopic level, enabling
the rapid identification of various cell types. Importantly, the
accuracy of this AI-driven methodology indicates its promise as a
powerful and economical alternative for blood cell classification.
This AT methodology is positioned as a promising tool for numerous
applications in haematology and clinical diagnostics because of its
excellent accuracy and multi-class identification capabilities.

Materials and methods

A total of 28 healthy volunteer donors from the Centre for
Inflammation Research (CIR) Blood Bank were recruited to provide
blood for this project. A questionnaire ensured the donor did not
use medication or had no early signs of infection (CIR-21-EMREC-
041). Each donation was logged, and anonymised records were kept
at the CIR Blood Bank. Blood samples were collected by venous
phlebotomy and were analysed on the same day with minimal
storage (room temperature, 20°C). Each donation consisted of two
5 mL samples of blood collected in EDTA to prevent clotting.

Blood samples were spun at 400 g for 30 min without brake at
room temperature. Plasma was collected as a source of platelets
and the red cell pellet was resuspended and diluted in PBS pH
7.4 (1:200). Echinocytes were formed by incubating erythrocytes in
HEPES buffer pH 8 overnight (37°C).

Density gradient centrifugation

To achieve a reliable dataset to train the artificial neural network
to recognise and distinguish between white cell subpopulations, it
was necessary to isolate each subpopulation from whole blood. The
white cell subtypes focused on were lymphocytes, monocytes, and
neutrophils.

Initially, 5mL of whole blood was diluted 1:1 with PBS,
layered on Ficoll Plaque Plus (GE17-1440-02, Sigma Aldrich,
Missouri, United States) and then spun at 450 g for 35 min with
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both acceleration and brake set to medium. The supernatant
was discarded by aspiration, and the interface containing few
neutrophils and most monocytes and lymphocytes were washed
twice by centrifugation at 350 ¢ for 5minin PBS. Washed
cells were resuspended in RPMI medium without glutamine
(ThermoFisher, Waltham, United States) supplemented with 10%
FBS (ThermoFisher, Waltham, United States) and transferred to a
75 cm? tissue culture flask. After 2 h of incubation at 37°C, the non-
adherent lymphocyte supernatant was collected, and the flask was
rinsed with PBS. The pooled cell suspension was centrifuged at 350 g
for 7 min and resuspended in protein-rich PBS solution (PBS pH
stabilised at 7.4 with 1% FBS, yielding a suspension enriched for
lymphocytes).

TrypLE Express Enzyme solution (ThermoFisher, Waltham,
United States) was added to the flask to detach adherent monocytes
from the tissue culture plastic. After incubation at 37°C for 10 min,
detached cells and PBS flask washes were pooled, cells were
centrifuged at 350 g for 7 min, and the pellet was resuspended in
PBS (buffered at pH 7.4), giving enriched monocytes.

The cell pellet from Ficoll separation, comprising erythrocytes
and neutrophils, was washed by centrifugation in PBS before adding
red cell lysis solution (Biolegend, San Diego, CA, United States) for
7 min at room temperature. The sample was centrifuged at 350 g
for 7 min to recover enriched neutrophils. The pellet was washed
with PBS and resuspended in RPMI + 10% FBS. Where erythrocyte
contamination was still high, by visually checking the colour of the
tube, lysis was repeated for 3 min.

Microscopy observation and image capture

A standard brightfield microscopy procedure was followed to
limit variation between observations to obtain the data to train the
artificial intelligence-based cell classifier. Initially, data was acquired
using a microfluidic chip of 200 pm width, 2 cm length, and 50 um
depth (Chip 156, Microfluidic ChipShop. GmbH, Jena, Germany)
observed using an upright light microscope (UltraBio-6 microscope,
GT Vision, Wickhambrook, United Kingdom) equipped with
a Basler asA3088-57uc camera (Basler AG, Ahrensburgh, DE,
Figure 1). Finally, a chip holder was designed to interface with the
microscope and keep the microfluidic connections available once
placed under the microscope. This enabled channel switching during
the experiment and observation of the entire channel length from
entry to exit, with the additional benefit of keeping the focus distance
constant. Once the chip was connected to the light microscope, the
microscope was set to the 40x zoom lens and adjusted so the chip
channel was in focus. The pylon software (version 7.2.1, Basler AG,
Ahrensburgh, DE) was set up to acquire a series of still image files
by saving 100 frames per second, allowing the circulation of the cells
in the field of view, capturing a new set of cells randomly scattered
throughout the observable area (Figure 2).

To collect erythrocyte/echinocyte data, whole human blood
samples were diluted 1:200 in PBS (pH 7.4) before loading 20 uL
of the diluted blood sample into one channel of the chip. Without
dilution, the field of view was too crowded to distinguish the features
of individual cells (Supplementary Figure S2).

For training purposes, digital images were acquired for each
isolated blood cell sub-population and loaded into the chip
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separately. Cell numbers/concentrations varied between fractions
depending on the sample, sometimes requiring the collection of
more data points. For this, three independent, 5 mL donations were
collected from 14 donors. For each donation, a set of 150 full-frame
images were extracted from recordings to populate the training and
validation dataset. An additional 15 full-frame images per donation
were extracted and isolated separately for testing. Each frame is split
into 414 x 416 pixel tiles with, on average, 4 cells (+3 cells) per tile
(with about 60 tiles generated from a full-frame image).

Randomizing sample composition

To demonstrate that the device could identify atypical sample
composition, the different isolated components, red cell concentrate,
fresh plasma, and leukocyte concentrates, were reassembled at
different concentrations of erythrocytes than typical samples (from
1:1,000 to 1:1 in increments of 50). Twenty samples were split into
pairs; one of each pair was analysed by the device, and the other
was labelled and analysed by flow cytometry. Ratios of cell types
were calculated from the total sample cell count and plotted against
each other. Multiple t-test analysis was performed on the ratios to
determine if they were statistically similar to one another.

Flow cytometry

Sample validation

Cell suspensions were analysed by multiparametric flow
cytometry on a BD Fortessa instrument (BD Biosciences). White
cell suspensions were stained separately from red cells and platelet
suspensions to quantify cell counts, size and population diversity.

Anti-human CD45 (BV421), CD14 (PE) and CD16 (APC)
antibodies were used to stain the white cell suspensions. Anti-human
CD71 (FITC) and CD235a (PE) were used to stain platelets and red
cell suspensions (BioLegend, San Diego, CA, United States).

To prepare a sample for analysis from full blood, 100 pL of blood
was set aside from the main experiment. From the sample, 10 uL
were diluted into 290 pL of FACS PBS (pH 7.2, with 5% FBS and
0.1% sodium azide), and 1 pL of CD71 and 1uL of CD235a were
added to stain the cells. After 20 min of incubation at 4C, cells were
washed with PBS and centrifuged at 350 g x 7 min before the pellet
was resuspended in 200 pL PBS+0.5% FCS. The sample was stored
at 2°C-6°C, fixed in formalin, overnight prior to data acquisition.

To analyse leukocyte populations, 1 uL each of CD14, CD16,
and CD45 was added to the remaining 90 pL of the sample after
incubation for 20 min at 2°C-6°C 210 uL PBS (pH 7.2) was added
before centrifugation at 350 ¢ for 7 min 500 uL of fix and lyse
solution (BD) was added to the pellet. After incubation for 5 min at
room temperature, samples were spun at 350 g for 7 min to remove
the supernatant and lysed cells. The pellet was resuspended in
300 uL of FACS PBS and stored at 2°C-6°C overnight prior to data
acquisition.

Data acquisition

Unstained and single-colour compensation controls were used
to calculate compensation matrices for data acquisition. Spectral
overlap was automatically calculated and compensated using BD
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FIGURE 1
Final assembly of the device prototype. Assembly comprises the syringe pump, a syringe with sample connected to a 3D printed Luer to 1/16 tubing

connector, and a microscope with a chip and chip inverter.

FIGURE 2

Image of the microfluidic chip channel under the microscope at standard observation settings (x40 zoom, the channel width is 200 pm and 50 um in
depth, whole blood diluted 1:200). Visible here are erythrocytes, a circular biconcave shape (pink arrow). Echinocytes, like erythrocytes, have a
biconcave shape but with a more deformed morphology (the cell appears bubbling, blue arrow). And platelets as smaller circular dots (black arrow).
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CompBead particles. At least 100,000 events were recorded for each
sample using the BD FACSDiva software. The final analysis was
performed using FlowJo v10 software (BD), and a gating strategy
was applied for analysis (supplementary data).

Benchmark tests: flow cytometry and
haematology analysers

Flow cytometry which can quickly process a whole sample
and is the gold standard technology for cell counting and
phenotypic analysis (Power et al., 2021) was used to verify test results
from neural network classifier testing. Once the sample had run
through the artificial neural network training system, a sample of the
initial donation and of each isolated leukocyte sub-population was
stained and processed the same day as fixing, using a BD Fortessa-
SORP flow cytometer. Both BD FACSDIVA 8.0.1 and BD Flow]Jo
software were used for data acquisition and analysis.

Whole blood counts for undiluted blood were acquired using
a Beckman coulter DxH520 analyser, quality controlled using
standards provided by the manufacturer. For flow cytometry analysis
of samples, data was acquired using the same parameter settings for
each sample. To accurately assess red cell and platelet frequency,
diluted whole blood was used, whereas leukocyte-sub-populations
were assessed on erythrocyte-depleted samples. Data was analysed
in Flowjo; electronic gates were applied to identify the percentage
of sub-populations of interest. The data from the haematology
analyser, flow cytometry and prototype were compared in a three-
way ANOVA using GraphPad Prism 10.2.1 for statistical analysis.

Data pre-processing and augmentation

The Basler Pylon software suite captures video files that are
converted to still images in JPEG format to ensure compatibility
with the Python neural network software. Isolated subsets of cells
were annotated as a collection before moving to the next subset
to minimise mislabelling. Images were labelled using LabelIMG
by Tzutalin, and annotations were exported in YOLO format (in
a text file; Tzutalin, 2020). As mentioned previously, image sets
from isolated cells were annotated per the isolated type to reduce
error. Each subtype would begin with 50 full-frame annotated
images prior to cropping. Annotated images were then cropped into
subdivisions of 416 x 416 pixels, and annotations were automatically
mapped onto the new images using the new cropped image
coordinates using custom Python 3 scripting and OpenCV libraries
(‘opencv/opency, 2024, Supplementary Figure S1). Annotations are
automatically removed if the cell is within 5 pixels of the side of the
images to ensure the neural networks train on fully visible cells.

The training subset of the dataset of cropped images and
annotations is augmented by applying transformations to the
original images, including rotating the images (90, 180 and 270°),
flipping the images (along both the horizontal and vertical mid
axes), changing contrast (+5%), brightness (+5%), saturation, hue,
sharpness, and focus (+5%) to create a varied dataset. Optional
steps can be applied, such as removing or remapping one or more
classes from the original dataset to generate a dataset for specific
purposes (such as detecting and discriminating between two cell
lines, troubleshooting, and increasing the number of examples of
a particular class of objects). This is done to increase the size of
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the training set and increase variability within the sample that the
classifier can train on.

Artificial neural network training and testing

The dataset described above was used to train multiple neural
network models for cell detection and classification, including the
primary YOLOV4 architecture, various configurations of YOLOv4
with different hyperparameters, and for comparison purposes,
YOLO versions 5 through 7. The selected backbone for training
and inferring is the Yolo-Darknet coded by AlexeyAB, and all
models have been trained on the YOLO v4 (Bochkovskiy, Wang
and Liao, 2020; Bochkovskiy, Alexey, no date). Each model was
trained for ten thousand epochs (the number of times each image
is passed to the CNN). The system supports batch processing
with adjustable subdivision parameters and implements advanced
training techniques, including learning rate scheduling, burn-in
periods, and mosaic data augmentation. Each model was trained
with a progressively larger dataset: the binary classification network
(echinocytes and erythrocytes) used over 9,000 image tiles, the
four-class network (echinocytes, erythrocytes, leukocytes, and
platelets) used around tile 12,000 images, and the six-class network
(echinocytes, erythrocytes, lymphocytes, monocytes, neutrophils,
and platelets) used the largest dataset of over 197,000 images.

For testing, a subset of the training dataset is set aside (roughly
10% of the total number of images). Those images are then used
to independently evaluate performance by comparing the inference
of the trained model to the human-defined labels. The comparison
between predicted and ground truth bounding boxes was performed
using IoU. An IoU threshold of 75% was used to determine if a
detection was considered correct. Using functions from Matplotlib
(a plotting library for creating visualisations and graphs), Seaborn (a
statistical data visualisation library built on Matplotlib that enhances
the aesthetics of plots), and Pandas (a data manipulation library
for structured data analysis) libraries in Python3 allows for quick
analysis of the similarities and discrepancies of the produced output.
This generates comparable metrics for each developed model,
including visualisations of bounding box areas, neural network test
scores (precision, recall, f1 score), and class distributions. This was
necessary to compare the predicted and labelled bounding boxes
and calculate the accuracy (the proportion of samples that were
correctly identified to the entire set), precision (the portion of
correctly identified instances over the total number of instances),
recall (synonymous to a diagnostics test’ sensitivity) and F1 score
(combines both precision and recall into one value, providing
a balanced measure of a model's performance in classifying
entities; Hicks et al., 2022).

To evaluate the network’s capacity to detect rare cell types
within a predominantly different cell population, a series of
dilution experiments using mixed image datasets were performed.
Erythrocyte cells were systematically diluted in echinocyte
populations at ratios of 1:10, 1:100, and 1:1,000 (erythrocyte). For
each dilution, a composite dataset by combining images of both cell
types at their respective proportions was created. The datasets were
prepared by randomly sampling from the dataset of erythrocytes and
echinocyte annotated images. The detections were obtained from
pre-trained YOLOV4 algorithms and followed the testing pipeline
outlined above.
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The classifiers were trained and tested using five-fold cross-
validation, an evaluation technique where the dataset is divided into
five equal parts. Combining all the original image data within one
folder and creating five subsets of the data. Those five subsets were
then randomly redistributed five times into three sets: one each for
training, validation, and testing. This allowed statistical analysis with
a standard deviation of the acquired data, providing a more reliable
assessment of the model’s performance than a single train-test split.
The original image data is split into independent cropped images for
each training regimen, each with an independently detected single
cell. All models were trained with stratified 5-fold cross-validation
where all data was pooled and then split into training (70%),
validation (20%) and testing (10%). The stratified approach ensures
that each fold maintains the same proportion of samples from
each class as the complete dataset, which is crucial for imbalanced
datasets like this one with varying numbers of each cell type. Then,
each model was trained and tested five times (once per shuffling
combination).

True positive, false positive, and false negative were calculated
per class and overall to assess the detection power of the trained
models. In the context of object detection with bounding boxes.
True positives are detections where the model correctly identifies
both the class of the object and its location. This is determined
when the IoU between the predicted bounding box and the ground
truth bounding box exceeds the threshold (75% in this case) and the
predicted class matches the ground truth class. False positives occur
in two scenarios: when the model predicts a bounding box where no
object exists or when it correctly identifies the presence of an object
but assigns the wrong class label to it, or when the IoU between the
predicted bounding box and the ground truth is below the threshold.
False negatives occur when the model fails to detect an object that
is present in the ground truth annotations. This happens when no
predicted bounding box has sufficient overlap (IoU > threshold)
with a ground truth bounding box.

The system also includes functions to generate comprehensive
reports with detailed metrics, export error images for qualitative
assessment, and conduct inference on new samples with
confidence scoring. This end-to-end pipeline provides a robust
framework for blood cell detection and classification based on
morphological features detectable in microscopy images. The full
code repository is available at the following repository: https://
github.com/alex1075/machine-code.git.

Results

Two class discrimination: echinocytes and
erythrocytes

Testing the suitability of YOLO v4 for discriminating between
two unstained cell populations began with discrimination between
echinocytes and erythrocytes. Table 1A summarises the results of
the YOLOv4 model’s predictions for echinocytes and erythrocytes
from one-fold of a 5-fold cross-validation experiment. For
echinocytes, the model achieved a precision of 93.8% + 0.9%. The
recall for echinocytes was 78.1% + 1.2%, indicating that the model
correctly identified approximately 78% of all actual echinocytes,
with the remaining either misclassified or undetected. The F1 score,
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which balances precision and recall, was 85.3% + 0.8% (Table 1B
A few examples of this are visible in Supplementary Figure S3;
most of the cells were correctly identified. However, one instance
of echinocytes was identified as erythrocyte. For erythrocytes, the
model demonstrated a precision of 84.8% + 1.0%, recall of 88.9% +
2.5%, and an F1 score of 86.7% + 1.0%. Notably, the model achieved
higher recall for erythrocytes than for echinocytes, suggesting it was
more effective at identifying erythrocytes when they were present.
However, the precision for echinocytes was higher, indicating fewer
false positives when classifying echinocytes. Overall, the network
achieved a macro-average precision of 89.3% + 0.8%, recall of 83.5%
+ 0.8%, and F1 score of 86.0% + 0.6% (Table 1B.)

The confusion matrix reveals specific error patterns: of
the echinocytes, 77.0% were correctly classified, 12.5% were
misclassified as erythrocytes, and 10.5% went undetected. For
erythrocytes, 90.2% were correctly classified, 7.5% were incorrectly
classified as echinocytes, and only 2.3% were not detected. These
results suggest that while the model is effective at discriminating
between these cell types, it faces greater challenges in detecting and
correctly classifying echinocytes compared to erythrocytes.

Looking at the macro average of precision and recall for
the model, it is possible to see that the network achieves solid
performance with 89.3% + 0.8% precision and 83.5% + 0.8% recall
across both cell types. The overall F1 score of 86.0% + 0.6% indicates
a good balance between precision and recall. These results suggest
the model is reliable when classifying echinocytes and erythrocytes
without staining, though it shows slightly better performance with
erythrocytes. The network’s demonstrated ability to discriminate
effectively between these two morphologically distinct red blood cell
types provided a strong foundation for subsequent experiments with
additional cell types.

After initial training, network optimisation was performed by
modulating training hyperparameters to tune the neural network
to the task of blood cell classification. For this, momentum was
modulated between 0.93 and 0.97 in increments of 0.01. Learning
rate was modulated between 0.00001 and 0.1 in increments of 10.
And Decay was modulated between 0.005 and 0.00005 in increments
of 10 (detail of the modulation in Supplementary Table S1).
Once each network has been trained and tested, the results can
extract the best-performing parameters for the application of
blood cell detection which are from network beta-A-3 with a
learning rate of 0.93, momentum of 0.0001 and decay of 0.00005
(Supplementary Figure S4). By comparing the resulting metrics
from each trained network from Supplementary Table S2, the best
performing parameters were selected and found to be from the beta-
A-3, Supplementary Figure S4. This set of parameters resulted in a
precision of 91.6%, a recall of 90.4%, and an F1 score of 91%. These
parameters were subsequently applied to all network training.

Table 2A summarises the results of the classification model’s
predictions for echinocytes and erythrocytes, which are two
phenotypes of the same cell type. For echinocytes, the model
achieved a precision of 90%. The recall for echinocytes was 82.6%,
signifying that the model correctly identified approximately 83% of
all actual echinocytes. The F1 score, which balances precision and
recall, was calculated at 86.2% (Table 2B). Similarly, for erythrocytes,
the model demonstrated a precision of 93.9%, recall of 95.9%, and
an F1 score of 95.0%. The confusion matrix reveals that out of
98 echinocytes, 81 were correctly classified, 15 were misclassified
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TABLE 1 A. Confusion matrix of the YOLOv4 model trained to discriminate between Echinocytes and Erythrocytes B. Detailed breakdown of the
Precision, Recall and F1 score per blood cell subtype of the 5-fold cross validation of the binary network. Values are in percentage.

Echinocyte 408 66 56
Ground truth
Erythrocyte 29 349 9
Echinocyte Erythrocyte Non detected
Prediction
B
Cell type Precision F1 score
Echinocytes 93.8+0.9 78.1+1.2 853+0.8
Erythrocytes 84.8 £ 1.0 88.9+2.5 86.7 £ 1.0
Network 89.3+0.8 83.5+0.8 86.0 + 0.6

TABLE 2 Binary YOLOv4 model results. A. Confusion matrix of a one-fold of the 5-fold cross validation of the optimised YOLOv4 model (version
beta-A-3) trained to discriminate between Echinocytes and Erythrocytes B. A detailed breakdown of the Precision, Recall and F1 score per blood cell

subtype. Values are average percentage.

Echinocyte 81 15 2
Ground truth
Erythrocyte 9 232 1
Echinocyte Erythrocyte Non detected
Prediction

Cell type Precision Recall F1 score

Echinocytes 90 82.6 86.2

Erythrocytes 93.9 95.9 95.0
Network 91.6 89.2 90.5

as erythrocytes, and 2 remained undetected. For erythrocytes,
232 out of 242 were correctly classified, with 9 misclassified as
echinocytes and 1 undetected. These metrics collectively indicate
the model’s effectiveness in discriminating between echinocytes
and erythrocytes, with an overall network performance of 91.6%
precision, 89.2% recall, and 90.5% F1 score (Table 1B).

Four class discrimination: echinocytes,
erythrocytes, leukocytes and platelets

Leukocyte and platelet image data were added to the 2-
component dataset. This was done using the acquisition of
images from platelets and leukocytes isolated into individual
populations (lymphocytes, monocytes, and neutrophils) from one
another and labelled as such. The class IDs were then remapped
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to combine the data for all 3 cell types into a single class
leukocyte class before the network training. The 4-component
model demonstrated effective discrimination between different
blood cell types as shown in Table 3A. For echinocytes, the model
achieved a precision of 93.3% + 3.1% and recall of 78.9% * 6.8%,
with an F1 score of 85.4% + 5.1%. The confusion matrix reveals
that out of 542 echinocytes, 429 were correctly classified, while 43
were misclassified as erythrocytes, 6 as leukocytes, 6 as platelets, and
58 remained undetected. Erythrocyte detection showed a precision
of 83.7% + 6.7% and recall of 79.6% + 10.6%, with 261 correctly
identified out of 311 total erythrocytes.

Platelet detection demonstrated good performance with a
precision of 88.8% + 3.2% and recall of 78.6% + 7.4%, correctly
identifying 148 of 174 platelets. Leukocytes were detected with a
precision of 89.9% * 5.2% and recall of 85.2% * 5.2%. Overall,
the network achieved macro-average metrics of 89.1% + 3.5%
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TABLE 3 Four class YOLOvV4 testing results. A. Confusion matrix of one-fold of a five-fold validation trained YOLO-V4 model trained to discriminate
between Echinocytes, Erythrocytes, Platelets and White Blood cells (leukocytes). B. Confusion matrix of the same model trained with Echinocyte
detections, remapped as Red Cells C. Detailed breakdown of the Precision, Recall and F1 score per blood cell subtype. D. Detailed breakdown of the
Precision, Recall and F1 score per blood cell subtype after remapping echinocytes and erythrocytes as red cells. For both breakdowns, values are

average percentage with standard deviation.

Echinocyte 429 43 6 6 58
Erythrocyte 24 261 1 7 18
Ground truth
Leukocyte 1 2 116 0 26
Platelet 8 5 2 148 11
Echinocyte Erythrocyte Leukocyte Platelet Non detected
Prediction

Red cells 757 7 13 76
Ground truth Leukocyte 3 116 0 26
Platelet 13 2 148 11
Red cells Leukocyte Platelet Non detected
Prediction

Cell type Precision Recall F1 score
Echinocytes 933 +3.1 789 £ 6.8 85.4+5.1
Erythrocytes 83.7+6.7 79.6 +10.6 81.0 54
Platelets 88.8 +3.2 78.6 + 7.4 83.3+5.1
Leukocytes 89.9+5.2 852+52 875+ 4.7
Network 89.1+3.5 80.3+1.2 842+ 1.9

Cell type Precision Recall F1 score
Red cells 98.1 0.6 88.4+1.3 93.0 £ 0.6
Platelets 88.8+3.2 78.6 7.4 833+5.1

Leukocytes 90.0 4.5 85.6 3.8 87.6 +4.1
Network 92.6 £2.9 842+1.6 88.1+1.8

precision, 80.3% + 1.2% recall, and an F1 score of 84.2% =+
1.9%.When echinocytes and erythrocytes were combined into a
single red cell class, Tables 3B,D, the model’s performance improved
significantly. The red cell class demonstrated enhanced precision
(98.1% * 0.6%) and recall (88.4% + 1.3%), yielding a strong F1
score of 93.0% * 0.6%. The confusion matrix shows that 757
red cells were correctly identified out of 853 total, with only 7
misclassified as leukocytes, 13 as platelets, and 76 undetected.
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Leukocyte and platelet detection remained consistent with the 4-class
model, with platelets showing 88.8% + 3.2% precision and 78.6% +
7.4% recall, and leukocytes demonstrating 90.0% + 4.5% precision and
85.6% =+ 3.8% recall.

The combined 3-class model (red cells, leukocytes, platelets)
achieved improved overall network performance with a macro-
average precision of 92.6% * 2.9%, recall of 84.2% * 1.6%, and F1
score of 88.1% + 1.8%. This improvement suggests that the model

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1628724
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Hunt et al.

struggles more with distinguishing between the two similar cell
phenotypes (echinocytes and erythrocytes) than with differentiating
between the more morphologically distinct cell types (red cells,
leukocytes, and platelets).

Six class discrimination: addition of isolated
lymphocytes, monocytes, and neutrophils
expanding leukocyte class

As opposed to previously where the leukocytes were combined
into one single network class, here the leukocytes were labelled
per their subtype, lymphocyte, monocyte and neutrophil. There
were over 197,000 images comprising: 53,100 echinocytes,
33,200 erythrocytes, 7,100 lymphocytes, 3,300 monocytes, 4,100
neutrophils and 9,600 platelets. The remaining images were a
combination of images of the channel background, debris and other
non-labelled anomalies.

As can be seen in Table 4B, the six-class model demonstrated
varying performance across cell types. The highest F1 scores were
achieved by Platelets (89.0% + 1.1%) and Neutrophils (79.3%
0.7%), while Lymphocytes showed the lowest F1 score (62.1%
1.0%). Echinocytes and Erythrocytes achieved moderate F1 scores
of 76.3% + 0.4% and 71.1% + 0.5%, respectively, despite having
the largest representation in the dataset. The confusion matrix in

*
+

Table 4A illustrates specific misclassification patterns, particularly
between Echinocytes and Erythrocytes, with 5,235 Echinocytes
misclassified as Erythrocytes and 1,457 Erythrocytes misclassified as
Echinocytes. Among leukocytes, Monocytes achieved a moderate F1
score of 67.8% * 1.5%, with notable confusion occurring between
leukocyte subtypes (one of the few errors of the network are outlined
in Supplementary Figure S6; Figure 3). These performance metrics
provide context for the subsequent improvements observed in the
five-class model, where combining Echinocytes and Erythrocytes
into a single Red Cells category significantly enhanced the model’s
discriminative capability.

As shown in Table4A, the analysis revealed important
performance differences between the six-class and five-class
YOLOv4 models. In the six-class model (Tables 4A,B), where
Echinocytes and Erythrocytes were classified separately, the network
achieved an overall F1 score of 74.3% * 0.6%, with precision and
recall values of 72.2% + 0.7% and 78.9% * 0.5%, respectively. When
these two cell types were reclassified as a single Red Cells category
in the five-class model (Tables 4C,D), the network performance
improved substantially. The overall F1 score increased to 78.9% +
0.3%, with precision rising to 75.9% + 0.4% and recall to 84.0%
+ 0.3%. This improvement was particularly pronounced in the
Red Cells category, which achieved an F1 score of 94.6% =+ 0.1%,
significantly higher than the separate scores for Echinocytes (76.3%
+ 0.4%) and Erythrocytes (71.1% * 0.5%) in the six-class model.
The performance for other leukocyte classes remained relatively
stable between the two models, with slight improvements in
Lymphocyte and monocyte detection. These results suggest that
combining morphologically similar cell types enhances the model’s
discriminative capability and overall performance.

Table 5 presents the performance metrics of the three-class
YOLOv4 model retrained from the 6-class network from Table 4,
where leukocyte subtypes (lymphocytes, monocytes, and neutrophils)
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were consolidated into a single Leukocyte class, and erythrocytes
subtypes (erythrocytes and echinocytes) were also consolidated to a
single Red Cell class. This simplified model demonstrated positive
overall performance with a network precision of 84.1% + 0.9%,
recall of 92.4% + 0.2%, and F1 score of 87.6% * 0.5%. Red cells
were detected with high accuracy, achieving a precision of 97.9%
+ 0.1%, recall of 91.2% + 0.6%, and F1 score of 94.5% =+ 0.3%.
The consolidated Leukocyte class showed substantial improvement
compared to individual leukocyte subtypes in previous models, with
a precision of 70.3% + 1.0%, recall of 91.9% + 0.5%, and F1 score of
80.0% +0.7%. Platelets maintained consistent performance with 84.0%
+ 2.8% precision, 94.1% * 1.0% recall, and 88.8% + 1.1% F1 score.
The confusion matrix reveals that most misclassifications occurred
between red cells and leukocytes, with 2,074 red cells incorrectly
identified asleukocytes and 448 leukocytes incorrectly identified as red
cells. These results demonstrate that consolidating morphologically
similar cell types significantly enhances the model’s discriminative
capability and overall performance.

Visualization of neural network output

The neural network’s detection output for whole blood samples
can be visualised by plotting the approximate height and width of each
detected cell (with a 2 pm margin of error), as illustrated in Figure 4
Interestingly, this representation reveals that the detected cell
populations correspond well with their expected size ranges in vivo.
The scatterplot displays platelets at the lower end, red blood cells in the
mid-range (with some variation due to their potential rotation relative
to the camera), and a heterogeneous population of white blood cells
at the upper end, mostly ranging from 12 to 25 pm in both width and
height. While this correlation between the neural network’s output and
actual cell sizes is significant, it is essential to emphasise that the neural
network’s internal decision-making process remains opaque. The
features or characteristics prioritised by the model during classification
cannot be definitively determined, and it would be premature to
conclude that cell size played a significant role in the detection process.
This graph serves to validate the accuracy of the detection rather than
to illustrate the method employed by the neural network.

Randomized blood samples

As apparent in Figure 5, the comparison of major blood
subpopulations between the Table 5 trained three-class network
and flow cytometry shows a partial correlation between the two
techniques when analysing randomised blood cell concentrations.
The statistical correlation test reveals significant relationships
between the two techniques, with p-values ranging from
0.0000865 to 0.0297 (Supplementary Table S2). The coefficient
of determination values further quantify these relationships,
with erythrocytes showing a moderate correlation (R* = 0.5649),
leukocytes showing a weaker correlation (R% =0.3969), and platelets
showing the weakest correlation (R* = 0.2252). The observed trend
lines for platelets and leukocytes deviate from perfect correlation.

Comparison to different technologies

To compare the proposed AI method to already established
standard methods in haematology, three blood donations were
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TABLE 4 Six class YOLOvV4 testing results. A. Confusion matrix of one-fold of a five-fold YOLO-V4 model trained to discriminate between Echinocytes,
Erythrocytes, Lymphocytes, Monocytes, Neutrophils and Platelets. The model was tested separately from the training and validation dataset. Count
represents individual number of cells within the training set of the model. B. Breakdown of A’'s model’'s performance after training and testing using
five-fold validation. Represented is the average with the standard deviation. Values are average percentage with standard deviation. C. Confusion matrix
of one-fold of a five-fold retrained model from A. YOLO-V4 model now trained to discriminate between red cells, Lymphocytes, Monocytes,
Neutrophils and Platelets. The model was tested separately from the training and validation dataset. Count represents individual number of cells within
the training set of the model. D. Breakdown of the C's model performance after training and testing using five-fold validation. Represented is the
average with the standard deviation. Values are average percentage with standard deviation.

Echinocyte 14,174 5235 929 119 45 488 0

Erythrocyte 1457 10,278 837 146 60 142 0

Lymphocyte 46 202 1955 77 62 7 0

Ground truth

Monocyte 31 71 94 954 69 9 0

Neutrophil 6 23 133 246 1314 0 0

Platelet 154 129 6 0 0 4609 57

Echinocyte Erythrocyte Lymphocyte Monocyte Neutrophil Platelet Non detected
Prediction

Cell type Precision Recall F1 score
Echinocytes 89.1+0.2 66.7 £ 0.5 76.3+0.4
Erythrocytes 64.5+0.5 79.2+0.5 71.1£0.5
Lymphocytes 50.0 + 1.1 82.4+09 62.1+ 1.0
Monocytes 61.1+1.1 763 +2.1 67.8+ 1.5
Neutrophils 845+1.3 747 £ 1.0 79.3+0.7
Platelets 84.3+25 943+0.9 89.0+1.1
Network 72.2+0.7 78.9+0.5 743+ 0.6
Red Cells 30,784 1665 222 86 984 0
Lymphocyte 271 2021 73 49 6 0
Ground truth Monocyte 121 79 947 75 6 0
Neutrophil 28 160 280 1319 0 0
Platelet 210 1 0 0 4696 51
Red Cells Lymphocyte Monocyte Neutrophil Platelet Non detected
Prediction

D
Cell type Precision Recall F1 score
Red Cells 97.9 0.1 91.3+0.2 94.6 £ 0.1
Lymphocytes 504+ 1.0 82.9+1.0 62.7 0.9
Monocytes 61.7 £0.6 77.2+0.6 68.7 0.5
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TABLE 4 (Continued) Six class YOLOv4 testing results. A. Confusion matrix of one-fold of a five-fold YOLO-V4 model trained to discriminate between
Echinocytes, Erythrocytes, Lymphocytes, Monocytes, Neutrophils and Platelets. The model was tested separately from the training and validation
dataset. Count represents individual number of cells within the training set of the model. B. Breakdown of A's model's performance after training and
testing using five-fold validation. Represented is the average with the standard deviation. Values are average percentage with standard deviation. C.
Confusion matrix of one-fold of a five-fold retrained model from A. YOLO-V4 model now trained to discriminate between red cells, Lymphocytes,
Monocytes, Neutrophils and Platelets. The model was tested separately from the training and validation dataset. Count represents individual number of
cells within the training set of the model. D. Breakdown of the C's model performance after training and testing using five-fold validation. Represented
is the average with the standard deviation. Values are average percentage with standard deviation.

Cell type Precision Recall F1 score

Neutrophils 850+ 1.4 750+ 1.1 79.4+0.6
Platelets 84.5+22 94.2£0.9 79.4+0.6
Network 759+ 0.4 84.0+0.3 789+0.3

collected from three donors not used for the training of the
neural network (used network from Table 5). This ensured that
the detection of the network was possible on any blood sample
without needing to train on blood from every single individual.
Full blood was imaged and analysed by the network using the
prototype device, paired samples were also analysed by means of
fluorescence-stained flow cytometry and a United Kingdom NHS
lab autoanalyzer (Figure 6). As observable, the figure represents the
total cell population ratios over total cell counts; throughout the cell
types, the ratios remain within the range of one another. Statistical
analysis of each donor set reveals no statistical difference between
the different techniques where most of the variation between results
is caused by the cell types and interaction of cell type and technique
(two-way ANOVA, donor 1: p = 0.6063, donor 2: p > 0.9999, donor
3:p>0.9999). Thus, revealing no difference between the device, flow
cytometry analysis and the gold standard autoanalyzer.

Comparing YOLO version 4 to newer
versions of YOLO networks

Figure f compares the different YOLO versions, YOLOv4 and
YOLOV7 inclusive, all trained on the modified 3-class network (red
cells, leukocytes, and platelets). Since the beginning of the project,
newer versions of YOLO have been released. Comparing the newer
versions of YOLO to the optimised YOLOv4 running the networks
detecting unstained blood cells, it is evident that YOLOV4 is the
better performing so far.

Discussion

Optimizing YOLO v4 for accurate
unstained blood cell binary detection and
classification

Currently, no other publication has reported discrimination
between entirely unstained live blood cell subpopulations. We,
therefore, initiated the development of an artificial neural network
for simple binary classification, distinguishing between erythrocytes
and echinocytes. The YOLO v4 network was trained to discriminate

Frontiers in Bioinformatics

12

between the two red cell sub-populations, achieving good overall
accuracy (89.3% * 0.8% precision, 83.5% * 0.8% recall, and
86.0% + 0.6% F1 score, Table 2). However, some erythrocytes were
misclassified as echinocytes, with the confusion matrix revealing
that out of 387 erythrocytes, 29 (7.5%) were incorrectly classified as
echinocytes, while 66 (12.5%) of 530 echinocytes were misclassified
as erythrocytes. This may be due to potential issues in treatment
during the imaging, such as cells reacting differently to treatment
in HEPES buffer or cell age at the start of the treatment affecting
their morphology (cell lysis) (Melzak et al., 2021). Alternatively,
some healthy, untreated red cells may have undergone echinocyte
formation during sample collection.

Performing this test was significant as it demonstrated the
ability to distinguish between two types of erythrocytes. Indeed,
binary artificial neural networks have potential applications,
such as detecting cells infected by the plasmodium parasite,
which has been demonstrated in stained blood smears using
modified YOLOvV2 and modified YOLOv3 and YOLOv4 binary
classifiers. Previous research teams achieved an average precision
of 79.22% with stained blood smear data when comparing
circulating erythrocytes and erythrocytes with the plasmodium
parasite (Yang et al, 2020; Abdurahman et al, 2021), with
subsequent improvements reaching precision of 93%, recall of 93%
and F1 score of 93%. The initial YOLOv4 network obtained 89.3%
+ 0.8% for precision, 83.5% + 0.8% for recall and 86.0% + 0.6% for
F1 score. After hyperparameter optimisation (using momentum of
0.93, learning rate of 0.0001, and decay of 0.00005 from the beta-A-
3 network), the performance improved to 91.6% precision, 89.2%
recall, and 90.5% F1 score, bringing the results closer to state-of-
the-art performance while observing the cells stain-free and in flow.
This optimisation process, while decreasing dataset size, has had
a positive effect on the network, potentially removing erroneous
examples of each class and optimising feature detection.

Expanding the dataset to include platelets and leukocytes led
to a slight decrease in F1 score from 90.5% to 84.2% + 1.9% when
training the YOLOv4 network. Notably, some echinocytes were
initially misclassified as erythrocytes and contrariwise, with the
confusion matrix showing 43 echinocytes (7.9%) misclassified as
erythrocytes and 24 erythrocytes (7.7%) misclassified as echinocytes
out of 542 and 311 total cells respectively (Table 3A). This
misclassification may be due to their similar sizes and morphology.

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1628724
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Hunt et al. 10.3389/fbinf.2025.1628724
o Ground Truth o Prediction o Ground Truth Prediction
100 100 100 100
200 200 200 200
300 300 300 300
400 400 400 400
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Ground Truth Prediction Ground Truth Prediction
0 0 0 0
100 100 100 100
200 200 200 200
300 300 300 300
400 400 400 400
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
Ground Truth Prediction Ground Truth Prediction
0 0 0

100 100
200 200
300 300
400 400
0 100 200 300 400 0 100 200 300 400
Ground Truth Prediction
0 0
100 100
200 200
300 300
400 400
0 100 200 300 400 0 100 200 300 400
FIGURE 3
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images comparing the ground truth (human label) to the predictions (computer label) for six populations of cells from whole blood. The predictions
were generated by a trained model based on the YOLO v4 artificial neural network architecture. The dimensions of the images are 416 X 416 pixels or
57.37 x 57.37 um. The cells were imaged at 40x zoom. Cells labelled in cyan are platelets, and cells labelled in dark blue are echinocytes,
green—erythrocytes, red—lymphocytes, yellow—neutrophils, and pink—monocytes.
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In the expanded dataset, leukocyte recall was at 85.2% + 5.2%
and precision at 89.9% * 5.2%, indicating the network was able to
retrieve around 85.2% of all leukocytes within the image dataset. Of
those, 89.9% were correctly identified as leukocytes (Szegedy et al.,
2016). YOLO networks function in two steps: firstly, finding the
object, followed by identifying it. Therefore, if an object represents
a small portion of the training population, the network would be
more likely to be rewarded by identifying the object as another,
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more represented class of objects. This is why some cells can be
misidentified.

While increasing the dataset size is generally beneficial for
network performance, the results revealed a more nuanced
relationship between dataset complexity and model accuracy.
When expanding to the six-class model with over 197,000 images
(53,100 echinocytes, 33,200 erythrocytes, 7,100 lymphocytes, 3,300
monocytes, 4,100 neutrophils and 9,600 platelets), the overall
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TABLE 5 A. Confusion matrix of one-fold of a five-fold retrained model from Table 4A YOLO-V4 model re-trained to discriminate between red cells,
Leukocytes and Platelets. The model was tested separately from the training and validation dataset. The count represents the individual number of cells
within the training set of the model. B. Breakdown of Table 4B’s model performance after re-training and testing using five-fold validation. Represented
is the average with the standard deviation. Values are average percentages with standard deviations.

Red cells 30,864 2074 839 2
Ground truth Leukocyte 448 4906 19 0
Platelet 250 1 4737 73
Red cells Leukocyte Platelet Non detected
Prediction
B
Cell type Precision Recall F1 score
Red cells 97.9£0.1 91.2+0.6 945+0.3
Leukocytes 70.3 £ 1.0 91.9+0.5 80.0 £0.7
Platelets 84.0+28 94.1+1.0 888+ 1.1
Network 84.1+£0.9 92.4+0.2 87.6 £0.5
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FIGURE 4
scatterplot of the distribution of cell width and height in um from the detections generated by the six-class trained YOLO v4 model. The model was
trained on six cell subtypes of blood: echinocytes, erythrocytes, platelets, monocytes, neutrophils, and lymphocytes. The scatterplot was generated
from a full blood sample.

network performance decreased to 74.3% + 0.6% F1 score  between morphologically similar cell types, as evidenced by the

(Table 4B), compared to the four-class models 84.2% + 1.9%
(and even 88.1% + 1.8% for the retrained 3 class network;
Tables 3C,D). The most significant challenge was distinguishing
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substantial misclassification between echinocytes and erythrocytes,
with 5,235 echinocytes misclassified as erythrocytes and 1,457
erythrocytes misclassified as echinocytes. Reclassification of these
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Correlation plots for red, white and platelet cell populations across different cytometry techniques for three different blood donors (prototype

device—Al, haematology analyser—HA, flow cytometry—FC). Three donations from three donors (each donation split three ways, one graph per donor),
not used for artificial neural network training from Table 5, were run through the microscopy setup, flow cytometry and an NHS lab haemato-analyser.
The figure represents the total cell population ratios over total cell counts; throughout the cell types, the ratios remain within the range of one another.
The standard deviation is represented in error bars. Statistical analysis of each donor set reveals no statistical difference between techniques (two-way
ANOVA, donor 1: p = 0.6063, donor 2: p > 0.9999, donor 3: p > 0.9999). The artificial neural network stands for an artificial neural network device; FC is

for flow cytometry, and HA is for haemato-analyser.

similar cell types into a single Red Cells category resulted in a
performance improvement, with the five-class model achieving
an F1 score of 78.9% * 0.3%, and the simplified three-class
model demonstrating comparable results (Red Cells, Leukocytes,
Platelets) reaching 87.6% + 0.5% F1 score (Table 5B). This suggests
that optimal network performance depends not only on dataset
size and the appropriate grouping of morphologically similar cell
types based on specific classification requirements, but also on
the balance of the dataset itself, given that red cells outnumber
other types by approximately 3 to 4 fold, potentially biasing the
network to favour red cell classification at the expense of other
cell types (Dawson et al., 2023).

Table 5 presents the results of the optimised three-class model,
where all leukocyte subtypes were consolidated into a single
Leukocyte class and combined echinocytes and erythrocytes into
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a unified red cell class. This strategic grouping yielded noteworthy
improvements, with the network achieving 84.1% + 0.9% precision,
92.4% + 0.2% recall, and 87.6% + 0.5% F1 score overall. Red cells
were detected with the best accuracy (97.9% + 0.1% precision,
91.2% + 0.6% recall), while the consolidated Leukocyte class
showed substantial improvement over individual leukocyte subtypes
(70.3% + 1.0% precision, 91.9% + 0.5% recall). The confusion
matrix reveals that classification errors occurred primarily at the
boundary between cell types, with 2,074 red cells misclassified as
leukocytes and 448 leukocytes incorrectly identified as red cells.
This pattern likely stems from morphological overlap between
larger red cells and smaller leukocytes, particularly challenging
without staining agents to provide biochemical differentiation.
The size distribution overlap shown in Figure 4 confirms this
boundary ambiguity, while class imbalance and imaging limitations
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further complexify the difficulty in distinguishing cells with
borderline characteristics.

This improvement in performance (87.6% F1 score) compared
to more granular models suggests that neural networks struggle
with subtle morphological distinctions between closely related
cell types but excel at broader categorical differentiation. The
substantial precision gap between red cells (97.9%) and leukocytes
(70.3%), despite high recall across all classes (>90%), highlights
a fundamental challenge in unstained blood cell analysis:
disambiguating cells with similar morphological profiles. Here, these
findings demonstrate that practical AT implementation for routine
blood analysis benefits from tailoring classification granularity to
specific diagnostic needs rather than maximising taxonomic detail.
This principle could inform the development of more effective
clinical haematology tools.

Data leakage in object detection refers to the unintentional
sharing of information between the training and evaluation datasets,
which can result in misleading high-performance metrics. This
may occur, for example, if images containing a particular class or
even the same objects in slightly different frames appear in both
sets. Similarly, artefacts such as consistent illumination patterns or
background features may also contribute to leakage. In such cases,
the model may learn to recognise specific patterns rather than
generalisable features, thereby undermining its ability to perform
accurately on truly unseen data (Apicella et al., 2024).

Here, the imaging setup was standardised across all samples,
which reduces the likelihood of illumination-related leakage, as
identical settings were applied to all images. Placing the prototype
within a controlled environment further limited the impact of
environmental lighting during data capture. Moreover, the training
and test datasets were drawn from different time points within video
sequences, making it unlikely that the same cells were present in both
sets. While cells from the same donor may appear across datasets,
they would not be identical.

However, it is more difficult to completely rule out the influence
of background artefacts introduced during individual experiments.
Although microfluidic channels were washed and reused up to three
times, some single-cell cultures exhibited visible debris. To mitigate
this, new channels were introduced after debris was observed,
and the data would be used either exclusively for training or
testing, thereby reducing the potential for data leakage arising from
background artefacts.

The performance metrics (Fl-score, precision, and recall)
reported in this study are indeed influenced by class imbalance
within the dataset, particularly in the six-class model, where
leukocyte subtypes such as monocytes and lymphocytes were
underrepresented relative to erythrocytes and echinocytes. To
mitigate this, we employed stratified 5-fold cross-validation,
ensuring that each fold maintained class proportions reflective
of the full dataset. Moreover, the performance tended to decline
for underrepresented classes (e.g., lymphocytes), particularly in
terms of precision, suggesting that the model was more likely to
misclassify these cells as morphologically similar types. To address
this, class consolidation was explored (e.g., grouping all leukocytes
or combining erythrocytes and echinocytes into “Red Cells”),
which yielded improved and more balanced performance metrics
across classes (Table 5). While class imbalance does impact precision
and recall, dataset structuring and cross-validation can reduce its
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influence. Future research could explore the benefits of training with
better balancing between the classes, by subsampling from the full
cell pool, for example.

A comparative analysis with traditional
methods

Our approach compares with other networks trained on stained
blood smears (Shams et al., 2024). Their blood smear-based artificial
neural network, Bio-Net, developed using YOLOV3, achieved an
F1 score of 98% for erythrocytes. In comparison, the optimised
three-class model (Table 5B) reached 94.5% + 0.3% for red cells, a
close performance considering the approach uses unstained cells
in a microfluidic flow chip. Similarly, platelets reached 98% F1
score in the blood smear network, compared to 88.8% + 1.1% in
the three-class system. Potentially losing some platelets passing in
the chip outside of the focus plane. For leukocytes, the Bio-Net
demonstrates precision and recall of 100% and 98% for lymphocytes,
99% and 98% for neutrophils, and 99% and 98% for monocytes when
analysed separately. When examining the specific leukocyte subtype
detection (Table 4B), the unstained approach achieved significantly
lower performance with F1 scores of 62.1% + 1.0% for lymphocytes,
67.8% + 1.5% for monocytes, and 79.3% + 0.7% for neutrophils;
highlighting the particular challenge of distinguishing leukocyte
subtypes without staining agents to reveal their distinctive nuclear
and cytoplasmic features. The consolidated leukocyte approach
achieved 70.3% + 1.0% precision and 91.9% + 0.5% recall, with an
F1 score of 80.0% =+ 0.7%. Overall, the three-class network achieved
a macro-average of 84.1% + 0.9% precision and 92.4% + 0.2% recall,
with an F1 score of 87.6% + 0.5%.

While these performance differences might translate to
substantial variations in clinical applications involving billions of
cells, the unstained approach offers distinct advantages in sample
preparation simplicity and real-time analysis capability that may
outweigh the modest accuracy trade-offs for many point-of-care
applications.

Our that unmodified YOLOv4
architectures with larger training datasets can achieve comparable

findings demonstrate
performance to more complex custom networks for blood cell
classification. The previously stated 3 class network metrics, while
robust, do not universally exceed those reported by Wu et al.'s SDE-
YOLO, which incorporated the Swin Transformer into YOLOV5s to
achieve precision rates of 99.5% for white blood cells and 95.3% for
red blood cells (Wu et al., 2023). However, their approach struggled
with densely populated and blurred blood cell images, and the
complex architecture introduced implementation challenges that
could limit its practical utility in resource-constrained settings.
Similarly, Benaissa et al. (2024) and Shams et al. (2024)
tackled the persistent challenge of overlapping cells through
semantic segmentation approaches with impressive training metrics
(F1 score of 0.968 and accuracies of 98%-99%, respectively).
Both approaches, however, exhibited limitations in real-world
application. Benaissa’s work relied on BCCD 2023, which was
limited to healthy individuals and contained only 1,328 images,
significantly smaller than the dataset. This restriction likely impairs
the model’s ability to handle pathological cases or abnormal cell
morphologies (Sarker Depto et al., 2023). Meanwhile, Shams’s

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1628724
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Hunt et al.

approach, utilising the BCCD dataset with merely 1,100 test
images, showed a performance drop of approximately 10% during
validation compared to training (F1 score of 0.909), particularly
when analysing densely crowded areas (Supplementary Figure S2).

Interestingly, these results revealed that YOLOvV4 outperformed
newer YOLO versions in the specific application, contradicting
the general assumption that iterative versions would improve
performance. Notably, YOLOv4 employs the CSPDarknet53
backbone, a deep and expressive architecture built to extract subtle
morphological features in low-contrast or texture-sparse images,
such as those of unstained cells. In contrast, YOLOvV5 and later
versions utilise lighter CSPNet-inspired or Rep-style backbones
that prioritise efficiency over depth, potentially limiting their
discriminative capacity in fine-grained biomedical tasks. This
suggests that architectural advancements in newer YOLO versions
may not universally benefit all detection tasks, particularly for
unstained blood cell classification, where subtle morphological
differences are critical.

Whilst others have limited their investigation to specific cell
populations such as CD4" immune cells, this work advances the
field by demonstrating comparable performance to established
clinical techniques across multiple cell types simultaneously, without
requiring staining or complex sample preparation (Dixit et al., 2024).
This has promising implications for point-of-care diagnostics in
resource-limited settings, where this approach could enable rapid,
accurate, and cost-effective blood analysis using relatively modest
computational resources.

Looking at the typical output from the artificial neural network,
cell size remains consistent with the literature. For platelets, larger
platelet size can reach up to 7 um, which matches up with what
is expected in the literature, with most being smaller or equal to
5um (Robier, 2020). Likewise, red cells, being mostly between 6
and 8 um, match up within their expected morphology (Hoffbrand
and Lewis, 1989). Lymphocytes remain within 10-15 pm in height
and width, which is slightly higher than their typical range of
8-10 um (Cano and Lopera, 2013). This could be due to the
measurements being obtained from the bounding box surrounding
the cell instead of the cell itself. If the cell does not have a spherical
shape, using the bounding box will slightly overestimate cell size.
Here, neutrophils can be found between 12 and 17 um in width
and height, with monocytes being found from 12 to over 22 um
in width and height (Baker et al., 1976). Again, here, the size
distribution range appears to agree with typical cell size mostly.
However, there are some outliers, these cells could be miss identified
by the detector and classified as another cell type. Indeed, a very
small portion of monocytes were identified as lymphocytes and large
erythrocytes by the detector (Table 4). However well a network is
trained, more data will always be required to reduce the occurrence
of misclassifications.

The comparison of artificial neural network detection
accuracy with flow cytometry and haematology analysers involved
conducting tests on unseparated blood samples from donors. Results
from all three donors matched up between techniques, and statistical
analysis revealed no statistical difference. However, the error bars
for the artificial neural network are visibly larger than others. The
discrepancy between Al and flow cytometry measurements may be
attributed to the underrepresentation of platelets in flow cytometry
results, potentially due to platelets being misidentified as cell debris.
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The deviation in white cell detection likely stems from the enhanced
sensitivity of labelled flow cytometry for identifying leukocytes,
whilst the AI system may miss some leukocytes due to incomplete
sample observation or detection limitations. The apparent variation
in leukocytes seen in artificial neural network analysis could be
due to sedimentation within the syringe while the sample is pushed
through the system. Measurements typically took up to 45 min to
be imaged; however, after optimisations, measurements could take
up to 25 min; the analysis included comparable ratio results to the
longer analysis time. This could be reduced further by using a faster
feed rate through the imaging field along with a camera with a
higher capture rate, which could reduce this time or analyse more
cells within the same period. However, this has not yet been tested.

Additionally, slight variations between diagnostic devices are not
uncommon. A review comparing different haematology analysers
found variations between analysers from different manufacturers
even though they rely on the same core technology (Brue et al.,
2015). For example, the largest variation observed was around 20%
seen for reticulocyte counts between Cell-Dyn Sapphire and Advia
2120i compared to the median, as well as for monocyte counts,
with Advia 2120i being 20% lower than the median. Compared to
the artificial neural network, which here has a variation of 6.5%
(calculated on comparative tests, Figure 4). Ergo, the variations seen
here are not unexpected.

A future consideration could be the integration of programming
logic to output the interpretation of the results automatically.
While YOLOV4 is the best-performing network so far, it would be
worth testing newer YOLO versions past version 7 as well. Having
both the population and individual cell data will drastically help
determine the prognosis. Additionally, training on cells that have
abnormal morphologies will allow the early detection of the initial
few cells of a disease or monitoring therapy by assessing cellular
response. Another consideration could be to separate a portion of
the whole blood and lyse red cells to better analyse the sample,
like haematology analysers. Additionally, the analysis happens after
the recording rather than concurrently. Further work into using
dedicated hardware that can accelerate Al inference, such as the
Nvidia Jetson nano, to enable concurrent analysis to recording,
giving near instantaneous results.

Conclusion

This study has successfully employed YOLO v4 to detect and
discriminate blood cell sub-populations, beginning with a binary
classification of erythrocytes and echinocytes. While encountering a
slight decrease in accuracy during the expansion to include platelets
and leukocytes, with occasional misclassifications, subsequent
iterations and model modifications showcased remarkable accuracy
in distinguishing various cell types, particularly achieving a
promising 99% accuracy in the final evaluation for echinocytes.
The combination of artificial neural networks and microscopy
demonstrated its effectiveness in blood cell discrimination and
classification and illuminated a promising path for breakthroughs in
medical diagnostics. This success lays the groundwork for continued
advancements through ongoing model refinement and exploring
innovative approaches.
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