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Structure-based drug design (SBDD) is enhanced by machine learning (ML)
to improve both virtual screening and de novo design. Despite advances
in ML tools for both strategies, screening remains bounded by time and
computational cost, while generative models frequently produce invalid and
synthetically inaccessible molecules. Screening time can be improved with
pharmacophore search, which quickly identifies ligands in a database that
match a pharmacophore query. In this work, we introduce PharmacoForge,
a diffusion model for generating 3D pharmacophores conditioned on a
protein pocket. Generated pharmacophore queries identify ligands that are
guaranteed to be valid, commercially available molecules. We evaluate
PharmacoForge against automated pharmacophore generation methods using
the LIT-PCBA benchmark and ligand generative models through a docking-
based evaluation framework. We further assess pharmacophore quality through
a retrospective screening of the DUD-E dataset. PharmacoForge surpasses other
pharmacophore generation methods in the LIT-PCBA benchmark, and resulting
ligands from pharmacophore queries performed similarly to de novo generated
ligands when docking to DUD-E targets and had lower strain energies compared
to de novo generated ligands.

KEYWORDS

structure-based drug discovery, pharmacophore, diffusion models, virtual screening,
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1 Introduction

Following identification of a disease-causing protein, rational drug discovery aims to
design a ligand that binds to the protein target with high specificity and affinity to mitigate
disease effects. Structure-based drug design (SBDD) seeks to identify or create a ligand
using the molecular structure of a target protein pocket (Anderson, 2003). Computational
methods are critical tools in modern SBDD campaigns.

SBDD campaigns are primarily composed of screening-based strategies. Screening-
based strategies often involve testing numerous compounds to evaluate their binding to a
target protein (Hughes et al., 2011; Blay et al., 2020). Screening is an inherently expensive
process regardless of the particular screening method. Direct experimental measurement
is exceptionally costly and therefore limited in the size of the chemical space that can be
screened. As a result, the use of computational methods to estimate affinity, generally called
virtual screening, has become a routine method in drug discovery campaigns over the last
several decades Sadybekov and Katritch (2023). Virtual screening methods can evaluate
significantly larger chemical spaces than methods based on physical experimentation.
Molecular docking, one of the most broadly used virtual screening methods, enables
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screening of millions or billions of compounds given substantial
computing resources, but the screening process remains expensive
and time-consuming (Gentile et al., 2020; 2022).

Pharmacophore-based virtual screening is a resource-efficient
alternative to molecular docking. Pharmacophore search can be
done in sub-linear time, allowing the search of millions of
compounds at speeds orders of magnitude faster than traditional
virtual screening (Koes and Camacho, 2011; Sunseri and Koes,
2016). A pharmacophore query defines the essential interactions
between the ligand and protein where they occur in the binding
pocket (Kaserer et al., 2015; Koes, 2015). A molecule matches a
pharmacophore query if a valid conformation of the molecule can
be positioned such that the essential interactions occur in the correct
position. Pharmacophores filter outmolecules that do notmatch the
pharmacophore query, which significantly decreases the number of
molecules that need to be scored and ranked (Giordano et al., 2022).

The utility of pharmacophore screening results is heavily
dependent on the quality of the pharmacophore. Manual
pharmacophore design requires identification of potential
interaction points in the binding pocket of the receptor either based
on the receptor structure or a known reference ligand binding pose;
software and automated frameworks have reduced the time and
domain-knowledge barriers to improve pharmacophore elucidation
processes (Heider et al., 2022). Current pharmacophore design
techniques include software implementations, such as Pharmit
and Pharmer, that identify interaction points between the protein
pocket and a reference ligand and allow user customization of
identified centers (Sunseri and Koes, 2016; Koes and Camacho,
2011). Apo2ph4, a framework for pharmacophore elucidation
from receptor structure, is proven to perform well in retrospective
virtual screening but requires intensive manual checks from a
domain expert at each step (Heider et al., 2022). PharmRL, a
reinforcement learning method for automated pharmacophore
generation, speeds up pharmacophore generation relative to
non-automated methods but struggles with generalization and
requires training with positive and negative training examples
for each protein system (Aggarwal and Koes, 2024). For drug
discovery pipelines to fully realize the advantages of pharmacophore
screening, user-friendly, automated, and generalizable methods for
pharmacophore elucidation are needed.

De novo molecule design creates new potential ligands from
scratch; de novo methods often design ligands based on key
structural features of the binding pocket. Techniques include
fragment-based drug discovery, which docks smaller building
blocks such as a ring structure or amine group into the protein
binding pocket then connects them to form a reasonable ligand
structure, and traditional methods, which typically involve a
combinatorial search (Batool et al., 2019; Durrant et al., 2009).

Applications of generative models to molecule generation
have given rise to models capable of predicting de novo ligand
structures based on the protein pocket (Hoogeboom et al., 2022;
Schneuing et al., 2022; Peng et al., 2022; Pinheiro et al., 2024;
Ragoza et al., 2022; Dunn and Koes, 2024). Hoogeboom et al.
(2022) initially proposed applying equivariant diffusion models
to small organic molecules, and various other models, namely,
auto-regression-based Pocket2Mol and diffusion-based DiffSBDD,
followed to enable conditional generation for a given receptor
pocket (Schneuing et al., 2022; Peng et al., 2022). However,

several limitations preclude the practical use of these models.
De novo models that directly condition on 3D structure and
assemble individual atoms in a pocket often produce unrealistic or
synthetically inaccessible molecules.

We propose circumventing the shortcomings of both virtual
screening and de novo design methods by leveraging generative
modeling to design pharmacophores for a given protein pocket.
We introduce PharmacoForge, a diffusion model capable of
rapidly generating pharmacophore candidates of any desired size
conditioned on a protein pocket of interest. Screening with
generated pharmacophores results in matching ligands that are
guaranteed to be valid and commercially available. We evaluate
generated pharmacophores by both enrichment factor, measuring
the ability to identify an enriched subset of active compounds in a
database, and docking score of top hits following virtual screening.

2 Background

2.1 Pharmacophores

A pharmacophore is a set of points {V f} that represents areas
of interactions between a protein and a ligand. Figure 1 shows a
reference ligand and its pharmacophore.The areas of interaction are
commonly referred to as pharmacophore centers; a pharmacophore’s
size is its number of centers. Each pharmacophore center has
an associated position X f ∈ ℝ3 and feature type Z f ∈ {Hydrogen
Acceptor, Hydrogen Donor, Hydrophobic, Aromatic, Negative Ion,
and Positive Ion}. Collectively, the centers define the spatial and
feature constraints that a molecule needs in order to interact with
its protein target.

2.2 Denoising diffusion probabilistic
models

Denoising diffusion probabilistic models (DDPMs) use a
Markov process to apply Gaussian random noise to a sample in a
noising process and then train a neural network to iteratively denoise
the sample (Sohl-Dickstein et al., 2015;Ho et al., 2020). New samples
may be drawn from the target distribution by initializing a process
from random noise and then iteratively denoising back to a clean
sample with the trainedmodel.The noising process can be described
by the equation:

q(xt|x0) =N (xt|αtx0,σ2t I)

Where x0 is the data sample, xt is the fully noised sample, αt
controls the fraction of original signal maintained, and σt defines
the amount of noise added to the data sample at each time step.

2.3 Equivariant diffusion models for
molecules

Hoogeboomet al. (2022) adapted the Sohl-Dickstein et al. (2015)
framework for generative tasks with molecules. Unlike previous
applications of diffusion models for image generation, generating

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1628800
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Flynn et al. 10.3389/fbinf.2025.1628800

FIGURE 1
Reference pharmacophore as identified by Pharmit for a ligand binding to AmpC-β-lactamase (PDB 1L2S). Sphere colors correspond to feature type;
Blue: Positive Ion, Green: Hydrophobic, Orange: Hydrogen Acceptor, Red: Negative Ion, Purple: Aromatic, White: Hydrogen Donor.

molecules introduces the added requirement of E (3)-equivariance.
A function is considered equivariant for a group if when the function
is applied to both the group, G, and a transformed group, TG,
where T represents a transformation, f(TG) is equal to T( f(G)).
For molecules, Euclidean group E (3) transformations (reflection,
rotation, and translation) are relevant as molecules retain their
identity regardless of any of these transformations; thus models
generating molecules must be E (3)-equivariant. Jing et al. (2020)
introduced the geometric vector perceptron architecture (GVP),
another E (3)-equivariant neural network, as an alternative to
standard graph neural networks (GNNs). The standard multi-layer
perceptron feed-forward layer inGNNs is replaced by aGVP layer in
GVP-GNNs. Unlike GNNs, GVP-GNNs split nodes into scalar and
vector channels, adding a directional component which allowsmore
expressive modeling of molecular geometries.

3 Related work

3.1 Automated pharmacophore generation

Previously proposed automated workflows to generate
pharmacophores for a protein pocket, namely Apo2ph4 and
PharmRL, apply different computational techniques to create
new pharmacophores for virtual screening (Heider et al., 2022;
Aggarwal and Koes, 2024). Apo2ph4 primarily relies on fragment
docking. The Apo2ph4 workflow identifies a protein pocket
based on a provided ligand center of mass or user-specified
coordinates then docks 1456 lead-like molecular fragments into
the pocket. The docked fragments are filtered to include only
those with a docking energy below 2 kcal/mol; a maximum of
two poses is kept per successfully docked fragment. Following
fragment docking, each selected fragment pose is converted
into a pharmacophore; a single pharmacophore is created from
the fragment pharmacophores by scoring each center based on
proximity to other pharmacophore centers of the same type.
Clustering and filtering of proximal centers results in the final
pharmacophore for the pocket (Heider et al., 2022).

PharmRL is a reinforcement learning-based pharmacophore
generation method which first identifies potential pharmacophore
features in a protein pocket by passing a voxelized pocket

representation through a CNN. The CNN outputs all possible
pharmacophore feature types that an area of the binding pocket
may support. The CNN-identified pharmacophore features form
the starting point for a deep-Q learning algorithm which iteratively
optimizes the features to maximize a reward function and
generate a single pharmacophore for the pocket (Aggarwal and
Koes, 2024).

3.2 Conditional molecular generation

Equivariant diffusion models are capable of generating
full ligands unconditionally with no specified properties or
conditionally to fit a specific protein pocket. Schneuing et al.
(2022) extended the framework of Hoogeboom et al. (2022) to
conditional molecule generation with DiffSBDD, an EGNN-based
model for molecule generation conditioned on a given protein
pocket. Adding protein pocket atoms to the sample graph allows
for ligand generation in the context of the protein pocket. Prior to
diffusion models’ use in molecular generation, Peng et al. (2022)
applied auto-regressive models to the molecule generation task
with Pocket2Mol. Pocket2Mol uses an encoder and predictors for
molecule coordinates and features.

4 Methods

4.1 Model implementation details

We trained PharmacoForge using theCrossDocked2020 dataset,
which consists of over 18,000 complexes with 22.5 million docked
ligand poses (Francoeur et al., 2020). Pharmit is used to identify
the interaction pharmacophore centers of a reference protein
and ligand complex and build the training dataset of reference
pharmacophores and proteins (Sunseri and Koes, 2016). We
augment the training dataset by randomly subsampling the ground
truth pharmacophore centers provided by Pharmit; a minimum
of three and a maximum of eight centers are selected from the
pharmacophore. The model is trained with the Adam optimizer
at a learning rate of 1e− 4 for a total of 80 epochs with a batch
size of 24.
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FIGURE 2
An outline of the protein-pharmacophore graph construction and training process used in PharmacoForge. Proteins and ligands from the
CrossDocked dataset are passed through Pharmit to identify the interaction pharmacophore (1). The pharmacophore centers (2) and nearest protein
atoms form the protein-pharmacophore graph (3), which then is iteratively noised to train the learned denoising process (4). Created with BioRender.

4.2 Building the pocket-pharmacophore
graph

We represent the protein pocket and pharmacophore as a
heterogeneous graph consisting of protein and pharmacophore
nodes. A subsampling of the reference pharmacophore centers
are added to the graph. We identify the k-nearest neighboring
protein atoms to the pharmacophore centers and add those to the
final pharmacophore-protein graph. The pharmacophore nodes are
fully connected while the protein nodes are connected only to
neighboring pharmacophore or protein nodes. Figure 2 illustrates
the receptor pocket-pharmacophore graph construction.

Each protein or pharmacophore node has a 3D position
represented as X = {xi}

N
i=1 ∈ ℝ

N×3; pharmacophore nodes have
a feature type F = { fi}

N
i=1 ∈ ℝ

N×6 while protein nodes have an
atom type A = {ai}

N
i=1 ∈ ℝ

N×na , where na is the number of atom
types. Feature types and atom types are both encoded as
one-hot vectors.

4.3 Diffusion and denoising

We perform an equivariant diffusion process over the
heterogeneous graph, noising only the pharmacophore nodes.
The protein-pharmacophore graph is embedded into continuous
space and then passed through multiple GVP-GNN convolution
layers which are used to parameterize the noising process. More
details on the GVP-GNN convolutions can be found in the Model
Architecture section of Supplementary Material. The variance-
preserving noising process follows that of Hoogeboom et al. (2022)
(Song et al., 2020; Schneuing et al., 2022):

q(zs|zdata,zt) =N (zt|αtzdata,σ2t I)

Where α is set by a predefined polynomial noise schedule.
Both the feature and coordinate vector for each pharmacophore are
noised by the same process.

The result of theGVP-GNNconvolution layers is passed through
a GVP network which predicts the noise added to the sample and
obtains the clean coordinates and feature type prediction for each
pharmacophore node (Jing et al., 2020). The denoising process
also follows that of Hoogeboom et al. (2022) and is learned by
optimizing a mean squared error (MSE) loss, where the added

noise is predicted and a clean sample is generated by removing the
predicted noise.

L = 1
N

N

∑( ̂ϵ− ϵ)2

where ̂ϵ represents the predicted noise and ϵ represents the true noise.
The trained GVP network learns the denoising process and becomes
capable of generating clean pharmacophore samples from noise.

4.4 Generating pharmacophores

To generate a new pharmacophore conditioned on a protein
pocket, we construct the protein portion of the graph from
the pocket atoms; the pocket is identified either through a
reference ligand or a list of residues that make up the pocket.
We initialize a user-specified number of pharmacophore nodes
with random feature vectors and random coordinates near the
center of the binding pocket. Using the trained GVP model, we
then denoise to get predicted pharmacophore center coordinates
and feature types. Figure 3 depicts the pharmacophore generation
process from randomly initialized centers to a pharmacophore.
The clean pharmacophore is provided to the user as feature types
with associated 3D coordinates that can be converted into a
pharmacophore query for the protein pocket.

4.5 Evaluation metrics

Pharmacophores are difficult to evaluate on inherent value
as their utility comes from how accurately and effectively they
filter active compounds from a large database. A pharmacophore
may correctly identify an area or areas for potential interaction
in a protein pocket while still failing to filter enough non-
binding ligands to be faster than traditional virtual screening. To
assess the accuracy of interactions identified in PharmacoForge
during training, we compute pharmacophore validity, which we
define as the fraction of centers within a threshold distance of
a complementary feature in the binding pocket. The thresholds
are based on the interaction type and can be found in the
Pharmacophore Validity section of Supplementary Material.

To determine pharmacophore efficacy, we evaluate
PharmacoForge-generated pharmacophores based on their ability

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1628800
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Flynn et al. 10.3389/fbinf.2025.1628800

FIGURE 3
Generating a pharmacophore with four centers for a binding pocket of AmpC-β-lactamase (PDB 1L2S); the pharmacophore is generated over 1000
diffusion time steps (t). Sphere colors correspond to feature type; Blue: Positive Ion, Orange: Hydrogen Acceptor, Red: Negative Ion, Purple: Aromatic,
White: Hydrogen Donor.

to find active binders of target proteins and to identify compounds
in a pharmacophore search with docking scores competitive
with state-of-the-art de novo generative models. We assess the
generated pharmacophores with both the LIT-PCBA and the
Directory of Useful Decoys, Enhanced (DUD-E) benchmarks
(Mysinger et al., 2012; Tran-Nguyen et al., 2020). LIT-PCBA
contains 15 protein targets with active and decoy compounds
for each target. An active compound is a known binder to the
target protein; in the LIT-PCBA dataset, all decoys are confirmed
inactive compounds for the target (Tran-Nguyen et al., 2020). The
DUD-E dataset consists of 102 protein targets and corresponding
active and decoy compounds for each target. Decoys included
in the DUD-E databases are presumed non-binding compounds
(Mysinger et al., 2012).

We query each protein target database with pharmacophores
generated for the target and evaluate the results on enrichment factor
(EF) and F1 score. EF measures the fraction of active compounds in
the total pool of ligands identified relative to the fraction of active
compounds present in the queried database.

EF =
Fractionofactives inqueryresults
Fractionofactives indatabase

An EF score of one indicates the pharmacophore query result is
equal to selecting ligands from the database at random; above
a one indicates the query result contains an enriched subset
of actives.

An F1 score is the geometric mean of precision and recall
and considers true positives (actives identified by the query), false
positives (decoys in the query result), and false negatives (actives
present in the database not included in the query result) (Aggarwal
and Koes, 2024). Precision and recall are used to calculate the F1
score as shown below:

Precision = TP
TP+ FP

Recall = TP
TP+ FN

F1 = 2∗Precision∗Recall
Precision+Recall

where TP (true positive) is an active in the database that appears in
the query result, FP (false positive) is a decoy that appears in the
query result, and FN (false negative) is an active in the database that
does not appear in the query result.

We also assess pharmacophores by their performance in a
pharmacophore search. We seek to identify ligands with a high
binding affinity for the DUD-E target proteins by querying a large
chemical database of potential ligands. To evaluate the ligands, we
perform minimization and docking using GNINA (McNutt et al.,
2021), a fork of the AutoDock Vina (Trott and Olson, 2010) docking
software that uses a convolutional neural network to score protein-
ligand interactions. Minimization finds the local optimal pose for
a ligand bound to a protein, while docking searches for the global
optimal bound pose.

A ligand’s binding affinity for the protein is gauged by multiple
scores provided by GNINA: Vina score, CNN affinity, and CNN
VS score. The Vina score is the predicted affinity of the ligand for
the protein in kJ/mol. CNN affinity is the affinity score predicted
by GNINA using a CNN. The CNN VS score is the CNN affinity
multiplied by the CNN score, which predicts the pose probability,
and represents the affinity of the ligand in the pose as well as the
likelihood that pose would occur (Sunseri and Koes, 2021). We
compare our pharmacophore query results to de novo generated
ligands across all GNINA scores after selecting the top ligands based
on Vina affinity score.

5 Results

5.1 Comparison to other pharmacophore
generation methods

We compare PharmacoForge to two automated pharmacophore
generation methods, PharmRL and Apo2ph4, using the LIT-PCBA
baseline. Apo2ph4 reported screening results for pharmacophores
generated for the 15 LIT-PCBA targets, selecting 20 PDBs
of the full dataset. PharmRL created pharmacophores and
performed screening for the same target PDBs. Because screening
with Apo2ph4 pharmacophores was originally conducted with
proprietary software, Aggarwal and Koes (2024) used the
pharmacophores provided by Apo2ph4 and screened instead
with Pharmit.

To compare with Apo2ph4 and PharmRL, we generated five
pharmacophores of each size 3–8 centers for a total of 30
pharmacophores. We then screened with Pharmit using receptor
exclusion to be consistent with the other two methods; receptor
exclusion ensures that identified ligands in the pharmacophore
search do not overlap with the protein receptor. We compared the
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FIGURE 4
Log EF results for the LIT-PCBA benchmark for PharmacoForge, PharmRL, and Apo2ph4. Each bar represents the highest Log EF achieved by a query
based on each method for each target in the benchmark.

FIGURE 5
F1 results for the LIT-PCBA benchmark for PharmacoForge, PharmRL, and Apo2ph4. Each bar represents the highest F1 achieved by a query based on
each method for each target in the benchmark.

results for each method as reported in PharmRL, selecting the best
performing pharmacophore based on highest F1 score and breaking
any ties with the greatest EF score; similarly for PharmacoForge,
the pharmacophore for comparison was selected based on top F1
score with EF score deciding any ties. We report the EF and F1
scores of all methods in Figures 4, 5. PharmacoForge-generated
pharmacophores perform best in screening based on F1 scores for
12 out of 18 targets while PharmRL has the top score for five targets
and Apo2ph4 for one; when comparing by EF, PharmacoForge
achieves the best result for 13 out of 18, PharmRL for four, and
Apo2ph4 for one.

PharmacoForge creates at least one pharmacophore with an
EF above one for all targets in LIT-PCBA, which is not true of

either PharmRL or Apo2ph4; furthermore, PharmacoForge queries
achieve an F1 score above zero at least once for all targets. The
performance on both metrics demonstrates that PharmacoForge
generates informative pharmacophores that perform comparatively
well in a pharmacophore search.

5.2 Identifying active compounds with
generated pharmacophores

For this benchmark we sought to identify an enriched subset
of active compounds from the DUD-E target databases using a
generated pharmacophore query.We first generate pharmacophores
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with 3–8 centers for each target conditioned on the reference
receptor PDB provided by DUD-E; we sample five pharmacophores
of each size for a total of 30 pharmacophores per target. We then
query a database of DUD-E ligands for each target containing
both actives and decoys and calculate the EF and F1 score of each
query result. We perform the database queries using Pharmit, which
identifies ligands in the database that match the pharmacophore
centers. Pharmit generates 25 conformers per ligand in the database
to compare the pharmacophore against, but we limit the number
of conformers returned in the query results to one per molecule.
For a molecule to match a pharmacophore query, the conformer
pose must contain interaction features that align to within 1Å
RMSD of all pharmacophore centers. We compare the generated
pharmacophores’ performance to a reference set of pharmacophores
constructed by randomly subsampling the reference pharmacophore
for each target. The reference pharmacophore centers capture
ground truth interaction features between the ligand and protein
and offer an approximation of how well a pharmacophore may
perform as a query; however, not all reference ligands provided
by DUD-E are included as actives in the target database. The
reference ligand is only included as an active for 19 out of 102
targets, so a reference pharmacophore may not necessarily match
an active compound despite containing ground truth interactions
that would allow a ligand to bind. The reference pharmacophore
set represents an informative basis for comparison as it contains
accurate interaction points for the protein that have the potential
to match multiple active scaffolds but is still limited in the diversity
of ligand scaffolds that match. A reference pharmacophore is found
by Pharmit based on the reference protein and ligand PDB and
SDF files provided by DUD-E. To obtain a reference set of 30
pharmacophores, we created five pharmacophores of each size
3–8 centers by randomly selecting the desired number of centers.
We again queried the DUD-E target databases with the reference
pharmacophores using Pharmit and computed the EF and F1 scores
of each query result.

The full resulting EF and F1 scores of both generated
and reference pharmacophores are shown in Additional DUD-E
Screening Benchmark Results section of Supplementary Material.
Pharmacophore queries that returned no results (undefined EF) are
excluded from the EF analysis. 1584 reference and 1229 generated
pharmacophore queries returned no results, representing 52%
and 40% of total queries, respectively. Reference pharmacophores
failed to find actives in 63% of queries; generated pharmacophore
queries returned no actives in 58% of queries. We compare the
average and maximum EF and F1 scores of reference and generated
pharmacophores across all pharmacophore queries that returned
this result is shown in Figures 6, 7.

Table 1 reports the number of targets for which the generated
or reference pharmacophores achieved a higher mean or maximum
EF or F1 score. The generated pharmacophores achieved an average
EF greater than that of the reference pharmacophores on 18 out of
102 targets and had a maximum EF greater than or equal to the
reference maximum EF on 37 out of 102 targets. Outperforming the
reference pharmacophores for some targets demonstrates that the
generated pharmacophores are informative and capable of finding
enriched subsets of active compounds for a target. The generated
pharmacophores often outperform the reference pharmacophores
on average F1 score and perform similarly on maximum F1 score.

The improvement in F1 scores for generated pharmacophores
over reference results from a higher average recall on 95 out
of 102 targets.

5.3 Pharmacophore-matching ligand
comparison with de novo ligand methods

Calculating the EF and F1 scores of pharmacophore query
results provides useful metrics of how well the pharmacophore
matches known active ligands, but a pharmacophore may still
identify useful interactions while not matching previously identified
congeneric series of actives. To further evaluate the quality of the
compounds selected through our generated pharmacophores, we
use docking scores as a proxy for binding affinity. We evaluated
the results of a pharmacophore query by minimizing and docking
the result ligands to the target protein and comparing the predicted
affinity scores. A more negative affinity value suggests that the
ligand is an active binder of the target. We minimized and
docked the filtered query results to their respective target proteins
using GNINA (McNutt et al., 2021).

For this analysis, we sought to identify hit molecules for the
DUD-E targets and screened the CHEMBL database, which we
downsampled from twomillion compounds to 200,000 compounds.
Using our previously generated 30 pharmacophores for each
target, we queried CHEMBL and selected pharmacophores with
query results of 2000 or fewer molecules; this cutoff represents
1% of the queried database size and was used to eliminate
pharmacophores lacking specificity of results. This amounted to
1175 pharmacophore queries remaining. Each returned hit is
minimized with GNINA to find the local optimal solution most
aligned with the pharmacophore. We also docked the query results
with GNINA for an approximation of global optimal pose of the
identified compound and direct comparison with our random
baseline. We then identified the top 100 ligands based on Vina
affinity score for each target to compare against other methods.

5.3.1 Baselines
We compared PharmacoForge-identified CHEMBL compounds

with ligands generated by two de novo ligand generative
models, Pocket2Mol and DiffSBDD. These models were chosen
based on their high performance relative to other de novo
ligand generative models and availability of a trained model
(Schneuing et al., 2022; Peng et al., 2022). As a further baseline,
we also randomly selected 10,000 molecules from CHEMBL and
docked those to each DUD-E target for comparison.

For each generative model, we used the default settings of each
model to sample 1000 ligands for each target; for some targets,
DiffSBDD and Pocket2Mol were unable to generate 1000 unique
ligands, but at least 850 ligands were generated for all targets.
We then minimized and docked each ligand to its corresponding
receptor. We again selected the best 100 ligands based on Vina
affinity score for each target and compared to the affinity scores for
our pharmacophore query result ligands.

5.3.2 Ligand strain energies
Further analysis and visualization of all ligand results revealed

that de novo generated ligands were sometimes wedged in the
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FIGURE 6
Comparison of the maximum EF scores for each target of 30 pharmacophores generated by PharmacoForge and 30 pharmacophores subsampled
from the reference ligand provided by DUD-E.

FIGURE 7
Comparison of the maximum F1 scores for each target of 30 pharmacophores generated by PharmacoForge and 30 pharmacophores subsampled
from the reference ligand provided by DUD-E.

target protein pocket in highly strained poses. To evaluate the
strain of both pharmacophore queried ligands and de novo
generated ligands, we calculated the total energy of each molecule
before and after geometry optimization using the Universal Force
Field (UFF) as implemented in RDKit (Landrum et al., 2024).
The strain is quantified as the energy difference between the

unoptimized and optimized structures. Pharmacophore queried
ligands exhibited a median strain value of 0.05 kcal/mol, with
only small energy reductions observed upon optimization. In
comparison, DiffSBDD and Pocket2Mol had median strain
energies of 295.7 kcal/mol and 351.5 kcal/mol, respectively. The
difference in average strain energies of each set of ligands is
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TABLE 1 Number of targets for which Generated or Reference pharmacophores have the best result for each metric; Equal indicates when the
Generated and Reference pharmacophores had the same value for the
metric on a target.

Avg EF Max EF Avg F1 Max F1

Generated 18 20 71 46

Reference 84 65 31 56

Equal 0 17 0 0

FIGURE 8
Comparison of average strain energies for ligands in minimized poses. Average strain energy shown on log scale.

visualized in Figure 8. The orders of magnitude difference in strain
energies between methods indicates that PharmacoForge retrieves
commercially available molecules in realistic conformations,
improving on an existing problem with de novo 3D molecule
generative methods.

5.3.3 Ligand minimization with GNINA
The results of minimizing the de-strained molecules are

shown in Figure 9 and reported in Table 2. Ligands identified
with pharmacophore search from generated pharmacophores have
similar predicted affinity for the target proteins as generated
ligands. The strained predicted affinities for the best 100 ligands are
similar between PharmacoForge and DiffSBDD results; Pocket2Mol
compounds have the best average affinity for the targets. After
de-straining, compounds from both DiffSBDD and Pocket2Mol
see decreased affinity for the targets as indicated by a larger
Vina score, with Vina scores of DiffSBDD ligands increasing by
5.1 kcal/mol and Pocket2Mol by 3.2 kcal/mol. The Vina score for
PharmacoForge increases by just 0.37 kcal/mol by comparison, and
the de-strained results have the highest affinity for the targets.
PharmacoForge is less impacted by the issue of highly strained
ligands seen with purely generative models. PharmacoForge also
has a narrower distribution compared to the predicted affinity

range of both DiffSBDD and Pocket2Mol, with a standard deviation
for de-strained predicted affinity of 2.13 compared to 5.15 and
2.56, respectively; PharmacoForge achieves more consistent results
across targets.

5.3.4 Ligand docking with GNINA
The docking result shown in Figure 10 and Table 3 includes

a random baseline of CHEMBL compounds for comparison;
the randomly selected compounds were kept in their original
pose and not de-strained. All methods surpass the random
baseline for both original and de-strained poses by at least
−5.5 kcal/mol. As also seen inminimization results, PharmacoForge
and DiffSBDD perform comparably while Pocket2Mol ligands have
the greatest affinity for the target proteins. De-straining of the
ligands results in an increased Vina score, indicating a decrease in
predicted affinity for DiffSBDD and Pocket2Mol, while de-straining
PharmacoForge found ligands leads to a slight improvement
in predicted affinity. The Vina score increases for DiffSBDD
and Pocket2Mol by 3.2 kcal/mol and 1.1 kcal/mol, respectively.
The ligands identified through pharmacophore search have high
predicted affinity for their targets while maintaining a natural pose,
and de-straining of the pose does not lead to a loss of affinity for the
target as seen in generated ligands.
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FIGURE 9
Distribution of Vina docking scores from minimization, which evaluates generated poses at a locally optimum configuration close to the generated
pose. Results shown for the top 100 ligands for each DUD-E target. Original pose Vina scores on top half of each violin plot with de-strained Vina
scores on the bottom half.

TABLE 2 Minimization mean scores comparison between original and de-strained poses with standard error.

Model Affinity (Vina) ↓ CNN affinity ↑ CNN VS score ↑

Original Poses

Pocket2Mol −11.69±0.03 7.12± 0.01 3.92± 0.03

DiffSBDD −10.06± 0.02 7.27±0.01 4.14±0.02

PharmacoForge −9.38± 0.01 7.05± 0.01 2.95± 0.02

Destrain Poses

Pocket2Mol −8.45± 0.05 7.35±0.01 2.06± 0.02

DiffSBDD −4.94± 0.05 6.34± 0.01 2.19± 0.02

PharmacoForge −9.01±0.02 6.99± 0.01 2.82±0.02

Best score for each column is listed in bold.

FIGURE 10
Distribution of predicted binding affinity from docking, which does not use the initial generated pose and so results can be meaningfully compared to a
random sample of compounds. Results shown for the top 100 ligands for each target. Original pose Vina scores on top half of each violin plot with
de-strained Vina scores on the bottom half. Random baseline includes only original scores.
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TABLE 3 Docking mean scores comparison between original and de-strained poses with standard error.

Model Affinity (Vina) ↓ CNN affinity ↑ CNN VS score ↑

Original Poses

Random −5.08± 0.01 6.70± 0.00 3.63± 0.0

Pocket2Mol −11.73±0.03 8.01± 0.01 6.66± 0.02

DiffSBDD −10.83± 0.02 8.55±0.02 6.66± 0.01

PharmacoForge −10.39± 0.01 8.40± 0.12 8.30±0.09

Destrain Poses

Pocket2Mol −10.59± 0.03 7.71± 0.02 3.68± 0.04

DiffSBDD −7.65± 0.03 6.80± 0.03 4.06± 0.03

PharmacoForge −10.49±0.02 7.73±0.02 4.98±0.04

Best score for each column is listed in bold.

6 Conclusion

In this work, we presented PharmacoForge, which generates
novel pharmacophores conditioned on a protein pocket. Generating
pharmacophores leverages the power of generative modeling to
create a structural description of the desired molecules that can
be used to rapidly screen libraries of valid, commercially available,
synthetically accessible molecules.

Our pharmacophore screening results surpass existing
automated pharmacophore generationmethods and are comparable
with existing methods for de novo ligand generation without
suffering fromhigh strain. Further additions to predict directionality
for relevant pharmacophore features as well as learned model-
determined pharmacophore size may improve the screening
performance.

Automated pharmacophore elucidation eliminates barriers to
further adoption of pharmacophore screening in drug discovery
campaigns to allow for accelerated screening of large chemical
databases. The interpretability of pharmacophores enables human-
in-the-loop discovery where experts work with generativemodels to
ultimately uncover commercially available leads for drug discovery.
Recent work in generative models for de novo ligand design
create new ligands based on a pharmacophore, which has led to
improvements in validity and target affinity for generated ligands
(Ziv et al., 2025; Zhu et al., 2023; Wang and Rajapakse, 2024;
Wang et al., 2022; Imrie et al., 2021). Accurately identifying
key ligand-protein interactions in the binding pocket allows for
better informed ligand generation but pharmacophore-based ligand
generative models require a high-quality pharmacophore to be
effective. Automating pharmacophore generation can directly
complement these efforts by enabling a fully-automated ligand
generation pipeline that produces higher quality ligands than
current ligand generative models. Automated pharmacophore
generation has immediate value as an aid to existing virtual
screening pipelines and holds promise as an important step in future
ligand generative models.

PharmacoForge is available for use as a Google Colaboratory
notebook here, and the full model implementation and
open source training code are available at https://github.
com/eflynn8/pharmacophore-diffusion.
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