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Objective: Triple-negative breast cancer (TNBC), a classic subtype of breast
cancer, is challenging to treat due to the lack of drug-targeting receptors.
This study aims to explore interferon-related prognostic molecular biomarkers
in TNBC and their potential competing endogenous RNA (ceRNA) regulatory
network in TNBC.

Methods: RNA expression profiles and interferon genes were downloaded from
the Cancer Genome Atlas (TCGA) database and the Gene Set Enrichment
Analysis (GSEA) website, respectively. Univariate and multivariate Cox regression
analyses were performed to identify prognostic genes and construct a risk
model. Single-sample GSEA (ssGSEA) and the CellMiner database were used to
explore the relationships between prognostic genes and both tumor immune
microenvironment and drug sensitivity, respectively. The IncCRNA-miRNA-mRNA
network associated with prognosis was constructed using the ENCORI database.
Finally, the potential interferon-associated INncRNA/miRNA/mRNA regulatory
axis was identified through correlation analysis. The abnormal expressions of
prognostic genes were validated in three TNBC tumor cell lines compared to
normal mammary epithelial cells by using quantitative real-time polymerase
chain reaction (QRT-PCR).

Results: The TNBC prognostic signature comprising four interferon genes
(STXBP1, LAMP3, CD276, and POLR2F) was identified, with their expression
significantly correlated with the infiltration abundance of multiple immune
cells and the drug sensitivity of 30 diverse drugs (ARQ-680, Fluphenazine,
and Chelerythrine, etc.). Furthermore, an interferon-related genes prognostic
ceRNA network was further constructed, consisting of 248 IncRNAs, 66
miRNAs, and 4 mRNAs. As a result, 5 interferon-related ceRNA regulatory
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axes (AC124067.4/hsa-miR-455-3p/STXBP1, RBPMS-AS1/hsa-miR-455-
3p/STXBP1, DNMBP-AS1/hsa-miR-455-3p/STXBP1, FAM198B-AS1/hsa-miR-
455-3p/STXBP1, LIFR-AS1/hsa-miR-455-3p/STXBP1) associated with TNBC
progression were identified. QRT-PCR results showed that all four prognostic
mMRNAs were upregulated in TNBC cells.

Conclusion: This study established a prognostic signature and a ceRNA network
associated with interferon in TNBC, and identified five key regulatory axes.
In the prognostic signature and the ceRNA axes, STXBP1, RBPMS-AS1, and
FAM198B-AS1 were first reported as potential biomarkers of TNBC. These
findings have the potential to provide new insights into the mechanisms driving
TNBC tumorigenesis and development.

triple-negative breast cancer, interferon gene, prognostic signature, ceRNA network,

immune microenvironment

1 Introduction

Breast cancer (BC) is among the most prevalent malignant tumors
and the leading cause of cancer-related deaths among women globally
(Bray et al,, 2024; Kim et al., 2025). According to the latest report of
the World Health Organization, by 2050, the number of new breast
cancer cases worldwide is expected to increase by 38%, and the number
of deaths due to breast cancer will increase by 68% (Kim et al,
2025). Triple-negative breast cancer (TNBC), a distinct subtype of BC,
accounting for approximately 15%-20% of invasive breast cancer cases,
is characterized by high heterogeneity, aggressiveness, and recurrence
rates (Almansour, 2022). Additionally, TNBC lacks specific targets and
effective targeted therapies, which is a major factor contributing to the
failure of anti-cancer treatments and subsequent patient mortality. At
present, surgery combined with systemic chemotherapy remains the
standard treatment for TNBC. However, conventional postoperative
adjuvant chemotherapy shows poor efficacy, with residual metastatic
lesions often leading to tumor recurrence (Chaudhary et al,, 2018).
Thus, identifying new molecular biomarkers is crucial for the early
diagnosis, prognosis, and monitoring of TNBC recurrence in patients.

As a multifunctional cytokine, Interferon (IFN) plays a key role
in the antiviral activity, anti-proliferative, and immunomodulation
(Sikora and Smedley, 1983). IFN can exert both direct and
indirect anti-tumor effects by inducing apoptosis, blocking the
cell cycle, and activating immunomodulatory function (Chang and
Ho, 2025). For example, IFN-B signaling can inhibit the stemness
of cancer cells in TNBC (Doherty et al., 2017). Moreover, the
activation of IFN signaling is crucial for initiating anti-tumor
immunity. Ligand-dependent corepressor protein (LCOR) binds
to IFN-stimulated response elements (ISRE) in an IFN signaling
transduction-independent manner to enhance the effectiveness of
immune checkpoint blockade (ICB) in TNBC (Pérez-Nufiez et al.,
2022). IFN may influence the occurrence and progression of
TNBC by modulating the immune microenvironment. However, the
underlying mechanism of IFN’s role in TNBC immunomodulation
remains unclear. Therefore, further research is needed to elucidate
the relationship between IFN and immunity in TNBC.

Recent researches suggest that the IncRNA-miRNA-mRNA
regulatory network plays a crucial role in the pathogenesis and
progression of various cancers, including liver cancer (Shao et al,,
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2022), bladder cancer (Xiong et al., 2022), and other malignancies
(Zhou et al., 2019). This regulatory network originated from the
competitive endogenous RNA (ceRNA) proposed by Salmena et al.
(2011). According to this theory, IncRNA competes with miRNA
to regulate mRNA expression levels, thereby influencing protein
translation and related cellular activities. Recently, the IncRNA-
miRNA-mRNA regulatory axis has also been found to have a
significant impact on the occurrence, development, and prognosis
of TNBC. For instance, Yang et al. (2021) showed that 1nc049808,
acting as a ceRNA for miR-101, could upregulate FUNDCI,
thereby promoting the proliferation, invasion, and metastasis of
TNBC cells. Similarly, Li C. X. et al. (2022) revealed that knocking
down IncLRP11-AS1 promoted the expression of miR-149-3p,
leading to a decrease in NRP2 levels and inhibiting the malignant
progression of TNBC. Although some progress has been made
in studying the ceRNA network of TNBC (Ma et al, 2020),
research on its interferon-related ceRNA regulatory axis remains
unexplored. Therefore, exploring the IFN-related ceRNA network
and identifying its key regulatory axes and targets may uncover novel
therapeutic targets for TNBC treatment.

In this study, differentially expressed IncRNAs (DELs),
miRNAs (DEMs), and mRNAs (DEGs) were obtained from
TNBC samples in The Cancer Genome Atlas (TCGA) database,
whereas interferon-related genes (IRGs) were downloaded from
the Gene Set Enrichment Analysis (GSEA) website. Interferon-
related differentially expressed mRNAs (IR-DEGs) were then
obtained from the intersection between DEGs and IRGs. Next,
Univariate Cox regression analysis was performed to identify IR-
DEGs associated with survival. An interferon-related prognostic
signature (IRPS) was further established by multivariate Cox
regression analysis, and prognostic IR-DEGs (IR-DEGs-IRPS)
were then identified. The abnormal expressions of these IR-DEGs-
IRPS were also validated by using independent GEO cohorts.
Afterward, the relationship between IRPS and immunotherapy
was analyzed, revealing its immune infiltration landscape.
Targeted pairing of the IR-DEGs-IRPS was performed through
the Encyclopedia of RNA Interactomes (ENCORI) database to
construct an interferon-related prognostic ceRNA network. The
correlation between IR-DEGs expression from ceRNA and drug
sensitivity was further explored using the CellMiner database.
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FIGURE 1
The flow diagram illustrates the step-by-step analysis performed in this study.

Finally, potentially significant regulatory axes within the ceRNA
network were identified based on the targeted “IncRNA-miRNA-
mRNA” interactions, and their potential effect in TNBC was
assessed using GSEA. In addition, we validated the expression of
IR-DEGs-IRPS in vitro (tumor versus normal cell cultures) using
quantitative real-time PCR (qRT-PCR) (Figure 1). This study may
offer new candidate molecular biomarkers for the poor prognosis of
TNBC and contribute to a deeper understanding of the regulatory
mechanisms of interferon-related ceRNA in TNBC occurrence
and development.

2 Materials and methods
2.1 Data acquisition and description

RNA expression data (mRNA, IncRNA, and miRNA)
associated with TNBC, along with clinical survival data, were
retrieved from the TCGA database (https://portal.gdc.cancer.gov/)
(Tomczak et al, 2015). Table 1 displays the sample sizes
of the three kinds of RNA sequencing. A total of 464
interferon genes  (Supplementary Table S1) retrieved
from the Molecular Signatures database (MSigDB) on the
GSEA  website  (http://www.gsea-msigdb.org/gsea/index.jsp)

(Subramanian et al., 2005).

were
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TABLE 1 TNBC and normal samples from TCGA.

RNA sequencing Total Tumor Normal
mRNA 229 116 113
IncRNA 229 116 113
miRNA 122 114 8

2.2 Integrative multi-omics analysis for
IRPS construction and evaluation

2.2.1 Acquisition of differentially expressed RNAs
(DERNAS)

Differential expression analyses of mRNA, IncRNA, and miRNA
from the TCGA database were performed by using the “limma” R
package. Differentially expressed mRNAs (DEGs), IncRNAs (DELs),
and miRNAs (DEMs) were identified based on a threshold of P-adj
< 0.05 and |log2FC| > 1. Then, DEGs were intersected with
interferon-related genes from the MSigDB database to obtain
interferon-related DEGs (IR-DEGs). Heatmaps and volcano plots
for IR-DEGs, DELSs, and DEMs were generated using the “pheatmap”
and “limma” R packages.
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2.2.2 Establishment of the IFN-related prognostic
signature (IRPS)

The “survival” R package was used to conduct univariate Cox
regression analysis on IR-DEGs, with a P-value <0.05 as the
threshold for identifying survival-associated IR-DEGs. Multivariate
Cox regression analysis was then applied to construct the interferon-
related prognostic signature (IRPS). Based on the expression levels and
correlation coefficients of prognostic IR-DEGs (IR-DEGs-IRPS), risk
scores of the patients were calculated by the following formula: risk
score = Exp (mRNA1) x 1 + Exp (mRNA2) x 2 + Exp (mRNA3) x
B3...+ Exp (mRNAn) x Pn. Patients were divided into high- and low-
risk groups according to the median risk score, and survival rates for
both groups were calculated. Kaplan-Meier analysis was performed to
plot the survival curves for the high- and low-risk groups, while 1-year,
3-year, and 5-year receiver operating characteristic (ROC) curves were
generated to assess the reliability of the IRPS.

2.2.3 External validation of prognostic gene
expression using GEO datasets

To validate the expression patterns of the key genes identified
from the TCGA-TNBC analysis, two independent GEO datasets,
GSE65194 (GPL570; normal: TNBC = 11:41), and GSE38959
(GPL4133; normal: TNBC = 13:30), were retrieved from the GEO
database (https://www.ncbi.nlm.nih.gov/gds). Gene expression
matrices were log,-transformed where applicable. Differential
expression analysis within each dataset was performed using the
“limma” R package. For integrative validation, both expression
matrices were merged after retaining only the intersecting genes,
followed by batch effect correction using the ComBat function
from the “sva” package. Statistical comparisons between normal
and TNBC samples were conducted using the unmatched Wilcoxon
rank-sum test, and genes with P < 0.05 were considered statistically
significant. The validation results were visualized using box plots for
each dataset and the combined batch-corrected dataset.

2.2.4 Prediction of immunotherapy response in
IRPS

The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm
integrates characteristics of T cell dysfunction and T cell exclusion
to simulate tumor immune evasion based on gene expression levels,
thereby predicting clinical response to immune checkpoint blockade
(ICB) treatment (Jiang et al., 2018). Using the TIDE web tool (http://
tide.dfciharvard.edu/), the algorithm calculates three scores: TIDE,
Exclusion, and Dysfunction. These scores represent immune evasion
ability, the extent of immune cell exclusion, and the level of immune
dysfunction, respectively (Fu et al., 2020). A t-test was performed to
assess the differences in scores between high-risk and low-risk groups
to evaluate potential variations in ICB response, with a significance
threshold set at P < 0.05.

Tumor mutation burden (TMB), which the
total number of mutations in tumor samples, is increasingly

represents

recognized as a key biomarker for assessing responses to
immunotherapy (Chalmers et al., 2017). The TMB for each patient
was calculated using the “maftools” package, and violin plots were
generated to compare TMB across different risk groups. Spearman
correlation analysis was utilized to evaluate the relationship between
TMB and risk scores, with a significance threshold of P < 0.05.
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2.2.5 Analysis of tumor immune
microenvironment

Single-sample  gene (ssGSEA)
(Hénzelmann et al,, 2013) was employed to assess immune cell
infiltration in TNBC. Using gene sets corresponding to 23 immune
cell typesidentified in previous studies (Miao et al., 2020), the degree of
infiltration for various immune cell types was predicted. Subsequently,

set enrichment analysis

Spearman correlation regression analysis was used to determine the
relationships between IR-DEGs-IRPS and immune cell infiltration,
which were visualized using the “ggplot2” R package.

2.2.6 Construction of the ceRNA network and
identification of the key regulatory axes

Relevant miRNA-mRNA pairs were extracted by the ENCORI
database (http://starbase.sysu.edu.cn/) (Li et al., 2014) based on IR-
DEGs-IRPS, and the miRNAs in these pairs were intersected with
DEMs to identify IRPS-related DEMs. Relevant IncRNA-miRNA
pairs were further extracted using the same database based on IRPS-
related DEMs, and the IncRNAs in IncRNA-miRNA pairs were
intersected with DELs to identify the IRPS-related DELs. The criteria
for selecting upstream miRNAs that bind to mRNAs included
screening at least two miRNAs from seven databases (microT,
miRmap, miRanda, PicTar, PITA, RNA22, and TargetScan), while
upstream IncRNAs that bind to miRNAs were screened only from
the miRanda database. Then, the paired IRPS-related DELs, DEMs,
and IR-DEGs were used as nodes to construct an interferon-related
prognostic IncRNA-miRNA-mRNA network and were visualized by
Cytoscape software.

Based on the ceRNA hypothesis, the level of IncRNA is
expected to be negatively correlated with miRNA level and positively
correlated with mRNA level. LncRNA can downregulate the
expression level of miRNA and reduce its inhibitory effect on mRNA
expression. The correlations among these three RNAs in the ceRNA
network were performed using the “cor” function in R software,
and the ceRNA regulatory axes were identified. A P < 0.05 was
considered statistically significant.

2.2.7 Drug sensitivity analysis

The CellMiner database (https://discover.nci.nih.gov/cellminer/
home.do) (Reinhold et al., 2012) offers extensive data on gene

TABLE 2 Primers used in this study.

Gene Primers
Forward:GCGTCCCTGGCCGTAATTT
LAMP3
Reverse: TGCTTGCTTAGCTGGTTGCT
Forward:AGGGCATAACGATTGTGGAAG
STXBP1
Reverse:GGAGTGATGAGATACACAGCCT
Forward:GCTCCAGATTGCGATGTGTG
POLR2F
Reverse: GGATCTTTCGGGCCTTGAGTT
Forward:CTGGCTTTCGTGTGCTGGAGAA
CD276
Reverse: GCTGTCAGAGTGTTTCAGAGGC
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FIGURE 2

The heatmaps and volcano maps of DERNAs. (A) IR-DEGs heatmap. (B) IR-DEGs volcano maps. (C) DEMs heatmap. (D) DEMs volcano maps. (E) DELs
heatmap. (F) DELs volcano maps. The red and green dots indicate DERNAs with significant upregulation and downregulation, respectively, while the
black dots indicate DERNAs with no significant differences.
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TABLE 3 The results of univariate Cox analysis.

Gene | Log,FC | HR

STXBP1 —-1.535 1.182 1.047 1.334 0.007
IL12RB2 3.469 0.623 0.423 0.917 0.017
CCL16 -2.924 121.093 2.077 7058.725 0.021
POLR2F 1.093 0.021 0.001 0.589 0.023
LAMP3 3.035 0.903 0.822 0.993 0.036
CD276 1.091 1.030 1.000 1.061 0.050

expression and drug activity scores in tumor cells. By employing
Pearson correlation analysis on the relevant drug data obtained
from CellMiner, we evaluated the relationship between IR-DEGs-
IRPS within ceRNAs and drug activity scores. This aimed to identify
potential candidate drugs targeting IR-DEGs-IRPS in ceRNAs.

2.2.8 Functional enrichment analysis

Reactome pathway gene sets (MSigDB C2: Canonical Pathways;
file c2.cp.reactome.v7.5.symbols.gmt) were obtained from MSigDB
and used for Gene Set Enrichment Analysis (GSEA) of IR-DEGs-
IRPS genes within the ceRNA regulatory axes (Liberzon et al., 2011).
We ran 1,000 permutations and considered results significant at
nominal P < 0.05.

2.2.9 Cell culture and qRT-PCR

Three TNBC tumor cell lines: MDA-MB-231 (Sangon Biotech,
China), MDA-MB-468 (Sangon Biotech, China), and HCC 1806
(BDBIO, China), and normal mammary epithelial cells: MCF-10A
(Sangon Biotech, China) were cultured to confluence in 6-well plates
at a plating density of 50,000 cells per well. RNA extraction was
conducted with Trizol reagent (Invitrogen, USA) in accordance with
the established protocol. cDNA synthesis was conducted utilizing
the First-Strand Synthesis Master Mix x (LABLEAD, China). Gene
expression was quantified utilizing the LightCycler 480 system
(Roche Life Sciences, Germany) and SYBR mixture (LABLEAD,
China) with gene-specific primers (Table 2). B-Actin served as an
internal reference gene for data normalization, with expression levels
assessed using the 2724T method, and results presented as a relative
fold change compared to MCF-10A.

2.2.10 Statistical analysis

Statistical analyses for this study were carried out using R 4.2.2,
and a P < 0.05 was considered to indicate statistical significance.

3 Results
3.1 DELs, DEMs and IR-DEGs in TNBC
This study identifies a total of 139 IR-DEGs (upregulated:

111, downregulated: 28) (Figures 2A,B; Supplementary Table S2),
215 DEMs (upregulated: 148, downregulated: 67) (Figures 2C,D;
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Supplementary Table S3), and 1627 DELs (upregulated: 740,
downregulated: 887) (Figures 2E,F; Supplementary Table S4) from
TNBC samples in the TCGA dataset.

3.2 The establishment and evaluation of
the IRPS based on IR-DEGs

The univariate Cox regression analysis identified six survival-
related IR-DEGs (STXBP1, IL12RB2, CCL16, POLR2F, LAMP3,
CD276) (Table 3). An IRPS for TNBC is established through
multivariate Cox regression analysis, leading to the identification
of four IR-DEGs-IRPS, namely, STXBP1, LAMP3, CD276,
and POLR2F (Table 4). Among these, only POLR2F serves as an
independent prognostic factor for TNBC, acting as a low-risk gene
with a hazard ratio (HR) value of less than 1.

The risk score curve indicates that patients classified as low-
risk consistently have lower risk scores, whereas those in the high-
risk category exhibit substantially elevated risk scores (Figure 3A).
Analysis of the survival status diagram reveals a markedly lower
mortality rate for TNBC patients in the low-risk group compared
to their high-risk counterparts (Figure 3B). The heatmap analysis
revealed distinct expression patterns between low- and high-risk
groups, with STXBP1 and CD276 showing elevated expression in
high-risk patients, whereas POLR2F and LAMP3 were generally
expressed at lower levels. These findings suggest that these four genes
may serve as a robust prognostic signature for risk stratification
(Figure 3C). Furthermore, the low-risk group is associated with
a more favorable prognosis as compared with high-risk group in
context of the IRPS (Figure 3D). ROC curves show that the area
under the curve (AUC) values exceeds 0.8 for 1-year, 3-year, and 5-
year survival, thereby confirming the strong predictive capability of
IRPS for TNBC patient outcomes (Figure 3E).

3.3 Validation of TCGA findings using the
GEO datasets

External validation using GSE65194, GSE38959, and a batch-
corrected combined dataset confirmed consistent downregulation
of STXBP1 and upregulation of LAMP3 across all datasets. CD276
and POLR2F followed the TCGA expression trends in GSE38959;
however, neither gene reached statistical significance in GSE65194.
In the combined dataset, CD276 remained consistent with TCGA
trends, while POLR2F showed no significant difference. These
results highlight complete cross-cohort reproducibility for STXBP1
and LAMP3, with acceptable reproducibility for POLR2F and
CD276, as shown in Table 5 and Figure 4.

3.4 The relationship between IRPS and
immunotherapy

The TIDE results reveal that both the TIDE and Dysfunction
scores are significantly higher in the high-risk group compared
to the low-risk group, while the Exclusion score does not differ
significantly between the groups (Figures 5A-C). These findings
suggest that the high-risk group exhibits higher levels of immune
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TABLE 4 Prognostic IR-DEGs of IRPS.

10.3389/fbinf.2025.1629526

Expression
POLR2F -3.034 0.048 0.002 1.000 0.050
Upregulated CD276 0.024 1.025 0.996 1.054 0.094
LAMP3 -0.078 0.925 0.840 1.018 0.110
Downregulated STXBP1 0.109 1.115 0.979 1.270 0.101
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FIGURE 3
Prognosis assessments of IRPS. (A) Risk score curve of TNBC patients. (B) Survival status of TNBC patients. (C) The distribution of IR-DEGs-IRPS
expression profiles. (D) Kaplan-Meier curves for high-risk and low-risk groups. (E) ROC curves for 1-, 3-, and 5-year survival of TNBC patients.
TABLE 5 Results of external cohort validation.
Gene GSE65194 ‘ GSE38959 Combination ‘ TCGA
STXBP1 v v v v
POLR2F ns A ns A
LAMP3 A A A A
CD276 ns A A A

Note: A represents upregulated, ¥ represents downregulated and ns denotes no significant difference.
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FIGURE 4

External validation of gene expression patterns in TNBC across GEO datasets and combined cohorts. Boxplots show expression levels of STXBP1,
POLR2F, LAMP3, and CD276 in normal breast tissue (green) and triple-negative breast cancer (TNBC) tissue (orange) from GSE65194 (top row),
GSE38959 (middle row), and the batch-effect—corrected combined dataset (bottom row). Statistical significance was determined using the Wilcoxon

rank-sum test (p < 0.05, p < 0.01, p < 0.001; ns = not significant).

evasion and immune dysfunction, whereas the low-risk group
may respond more favorably to ICB therapy. Correlation analysis
demonstrates that the risk score is negatively linked with the
TMB score (Figure 5D) and the TMB is higher in the low-
risk group as compared with the high-risk group (Figure 5E).
This indicates that as the risk score increases, the TMB score
decreases, resulting in reduced efficacy of immunotherapy in
TNBC patients. In summary, the low-risk group is likely to
show a better response to immunotherapy compared to the
high-risk group.

3.5 The connection between IRPS and
immune microenvironment

Immunocyte correlation analysis shows that STXBP1 and
POLR2F are considered suppressor genes. Their
expressions are significantly and negatively correlated with the

immune

Frontiers in Bioinformatics

08

immune functions of several cell types, including activated CD4 T
cells, neutrophils, and T helper cells 17 (Th17) (Figure 6A). In
contrast, LAMP3 is regarded as an immune promoter gene, with
its expression showing a significant positive correlation with
the immune functions of activated CD4 T cells and T helper
cells 2 (Th2) (Figure 6A). However, CD276 expression does not
exhibit a significant correlation with the immune functions of 23
different immune cell types (Figure 6A). These findings indicate
that IR-DEGs-IRPS are closely associated with the immune
microenvironment.

Single-cell analysis shows that LAMP3 is highly expressed
in T cells, tissue stem cells, monocytes, and epithelial cells
(Figure 6B). In contrast, STXBP1 and POLR2F exhibit high
expression levels in fibroblasts, tissue stem cells, and smooth
muscle cells, while CD276 is predominantly expressed in
monocytes and fibroblasts (Figure 6B). Thus, the expressions
of these four IR-DEGs-IRPS in various cells are aligning well
with their immunocyte correlations.
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3.6 The construction of the
IncRNA-mMiRNA-mRNA network associated
with interferon

Based on four IR-DEGs-IRPS (STXBP1, LAMP3, CD276, and
POLR2F), a total of 66 DEMs (Supplementary Table S5) and 248
DELs (Supplementary Table S6) were selected from the ENCORI
database. As shown in Figure 7, these IR-DEGs, DEMs, and DELs
constituted 38 DEM-IR-DEG pairs (Supplementary Table S7), 1798
DEL-DEM pairs (Supplementary Table S8), and 137 indirect DEL
and IR-DEG pairs (Supplementary Table S9), forming an interferon-
related prognostic ceRNA network.

3.7 Drug sensitivity analysis of
IR-DEGs-IRPS

Supplementary Table S10 displays 451 pairs between the
abnormal expression of four IR-DEGs-IRPS and the drug sensitivity
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of 295 FDA-approved anti-tumor drugs tested in NCI-60 cancer
cell lines. Among these, 126 drugs within the 155 pairs of mRNA-
drug correlation pairs are found to have drug resistance due to
the overexpression of IR-DEGs-IRPS, while 84 drugs in the 126
pairs exhibit the opposite effect. Furthermore, 85 drugs show
opposite drug sensitivity to different IR-DEGs-IRPS across 170
pairs. Specifically, the upregulation of STXBP1 is associated with
increased drug resistance to 29 drugs (ON-123300, AM-5992,
TPX-0005, ARV-825, SAR-20347, etc.) and with enhanced drug
sensitivity to 42 drugs (ARQ-680, PLX-4720, Vemurafenib, TAK-
632, PLX-8394, etc.). The upregulation of LAMP3 is linked to
increased drug resistance to 20 drugs (Sonidegib, P-529, Irofulven,
PF-4989216, GDC-0084, etc.) and increased drug sensitivity
to 67 drugs (Fluphenazine, Alectinib, Zalcitabine, Ribavirin,
Nelarabine, etc.). The upregulation of CD276 is associated with
increased drug resistance to 140 drugs (AM-5992, CFI-400945,
Artemether, Palbociclib, Barasertib, etc.) and enhanced drug
sensitivity to 48 drugs (GSK-2126458, P-529, VS-5584, Telatinib,
INK-128, etc.). The upregulation of POLR2F is associated with
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increased drug resistance to 51 drugs (Dasatinib, Everolimus,
LY-3023414, spebrutinib, Saracatinib, etc.), and with heightened
drug sensitivity to 54 drugs (Chelerythrine, S-63845, Carmustine,
auranofin, Hydroxyurea, etc.). Figure 8 presents the top 30 drugs
most strongly associated with IR-DEGs-IRPS in the cancer cells.
Among these, 20 drugs (ARQ-680, PLX-4720, Vemurafenib,
TAK-632, PLX-8394, Dabrafenib, Fluphenazine, SB-590885, GSK-
2126458, Chelerythrine, P-529, VS-5584, Telatinib, Alectinib,
Zalcitabine, MLN-2480, INK-128, Refametinib, AZD-8055, S-
63845) increase their drug sensitivity with the overexpression of IR-
DEGs-IRPS, whereas 10 drugs (AM-5992, CFI-400945, Artemether,
Palbociclib, Barasertib, Crizotinib, Gandotinib, Imexon, ABT-348,
Dasatinib) exhibit increased drug resistance with the upregulated
IR-DEGs-IRPS.

3.8 The identification of the
IncRNA-miRNA-mRNA key regulatory axes

In the regulatory axis, miRNA expression is negatively
correlated with both mRNA and IncRNA expressions, while
IncRNA expression is positively correlated with mRNA expression,
consistent with the ceRNA hypothesis. Correlation analysis reveals
that only hsa-miR-455-3p-STXBP1 among the 38 DEM-IR-
DEG pairs showed a significant negative correlation (P < 0.05).
Additionally, 116 of 1798 DEL-DEM pairs exhibit significant
negative correlations (P < 0.05). Among the indirect DEL and
IR-DEG pairs, 103 pairs show significant positive correlations
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(P < 0.05). By using hsa-miR-455-3p as the connecting node,
eight DELs (AF111167.2, AC124067.4, RBPMS-AS1, AL359220.1,
DNMBP-AS1, LINC01550, FAM198B-AS1, LIFR-AS1) negatively
correlated with hsa-miR-455-3p are identified, and five of
them are positively correlated with STXBP1 (Table6). After
combining these five pairs of DEL-DEM with one pair of
DEM-IR-DEG, five potential IncRNA/miRNA/mRNA regulatory
axes are established (AC124067.4/hsa-miR-455-3p/STXBPI,
RBPMS-AS1/hsa-miR-455-3p/STXBP1, DNMBP-AS1/hsa-miR-
455-3p/STXBP1, FAM198B-AS1/hsa-miR-455-3p/STXBP1, LIFR-
AS1/hsa-miR-455-3p/STXBP1) (Figure 9A). Table 7 presents the
differential expression of miRNA and IncRNAs within ceRNA axes
in TNBC by our study.

3.9 GSEA functional enrichment analysis

GSEA analysis reveals that, in TNBC, patients with high
STXBP1 expression were predominantly enriched in 108 pathways,
including those related to biological oxidations, estrogen-dependent
gene expression, and signaling by nuclear receptors (Figure 9B;
Supplementary Table S11). Conversely, patients with low STXBP1
expression were notably enriched in 22 pathways, including
eukaryotic translation initiation, influenza infection, and RNA
processing (Figure 9C; Supplementary Table S12). These findings
suggest that STXBP1 may affect the occurrence and development of
TNBC through these pathways.
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FIGURE 7
The interferon-related ceRNA network. Circles represent IncRNAs, squares represent miRNAs, and rhombuses represent mRNAs. Red denotes

upregulated RNA and blue denotes downregulated RNA.

3.10 Cell culture and CIRT-PCR verification using qRT-PCR. As shown in Figure 10, compared with MCF-
10A cells, the expressions of four prognostic genes (STXBPI,

The transcriptional level of four prognostic genes identified = LAMP3, CD276, and POLR2F) are all significantly upregulated
from the TNBC prognostic signature was evaluated in three  in MDA-MB-231 cells (P < 0.05). In MDA-MB-468 cells, the
TNBC tumor cell lines (MDA-MB-231, MDA-MB-468, and HCC expression levels of three prognostic genes, STXBP1, LAMP3, and

1806) and normal mammary epithelial cells (MCF-10A) by  POLR2E were significantly upregulated (P < 0.05). In HCC1806
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FIGURE 8

The top 30 drugs most strongly associated with IR-DEGs-IRPS. In each subfigure, the Y-axis represents the Z-score of drug activity, and the X-axis
represents the expression level of IR-DEGs-IRPS. Cor stands for correlation coefficient, where its value greater than O indicates a positive correlation
and less than O indicates a negative correlation

cells, STXBP1 and POLR2F showed significant upregulation 4 Discussion
(P < 0.05). Although LAMP3 and CD276 in HCCI1806 also
exhibited upward trends, these changes did not reach statistical
significance (Figure 10). Overall, QRT-PCR results showed that all

four prognostic mRNAs were upregulated in TNBC cells.

Compared with other breast cancer subtypes, chemotherapy
remains the primary treatment for triple-negative breast cancer
(TNBC) due to its aggressive nature and poor prognosis, and there
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TABLE 6 Correlation of DERNA pairs in the ceRNA key axes.

Derna Derna r P
hsa-miR-455-3p STXBP1 ~0.20964 0.02584
AC124067.4 ~0.22746 0.01540
RBPMS-AS1 ~0.20856 0.02664
hsa-miR-455-3p DNMBP-ASI1 ~0.19776 0.03577
FAM198B-AS1 ~0.19250 0.04109
LIFR-AS1 ~0.18684 0.04753
DNMBP-AS1 0.43245 1.72 x 107%
AC124067.4 0.23928 0.01070
STXBP1 FAM198B-AS1 0.23451 0.01241
LIFR-AS1 0.20374 0.03040
RBPMS-AS1 0.18810 0.04603

are no other approved targeted therapies (Chaudhary et al., 2018).
IFN plays a vital role in anti-tumor immunity (Thibaut et al.,
2020). LncRNA can act as ceRNAs for miRNAs, thereby targeting
and regulating mRNAs and forming IncRNA-miRNA-mRNA
regulatory axes. This process participates in the occurrence and
development of TNBC (Alkan and Cansaran-Duman, 2025).
Therefore, studying the construction of interferon-related ceRNA
networks is beneficial for understanding the molecular mechanisms
of interferon genes in TNBC and for identifying new prognostic
biomarkers and therapeutic targets for TNBC.

Our study identified DERNAs comprising 139 IR-DEGs, 215
DEMs, and 1627 DELs based on TNBC RNA profiles from the
TCGA database and the interferon gene set from the GSEA website.
The IRPS, consisting of CD276, POLR2F, LAMP3, and STXBP1
genes, was established through univariate and multivariate Cox
regression analyses. Table 8 presents the aberrant expressions of
these four IR-DEGs-IRPS in TNBC compared to the corresponding
mRNAs reported in existing literature.

Literature evidence supports the overexpression of key genes
such as CD276, LAMP3, and POLR2F in TNBC, consistent with
our computational analyses from TCGA and qRT-PCR validation.
This pattern was further reinforced through external validation in
two independent GEO datasets (GSE65194 and GSE38959) and in
a merged cohort following rigorous batch effect correction, where
LAMP3, CD276 and POLR2F demonstrated particularly consistent
upregulation across datasets. In contrast, STXBP1 has been reported
as downregulated in breast cancer in prior bioinformatics studies,
which is in agreement with our in silico analyses from TCGA and
GEO but differs from our qRT-PCR findings in TNBC cell lines.
Such discrepancies between in silico and in vitro results are well-
documented and are often driven by biological heterogeneity rather
than technical artifacts. Bulk RNA-seq data from TCGA capture an
admixture of tumor, stromal, and immune cells, along with inter-
patient variability in tumor purity, treatment history, and disease
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stage, all of which can influence gene-level expression estimates
(Turashvili and Brogi, 2017; Yadav and De, 2015). Conversely,
qRT-PCR assays in homogeneous in vitro cell populations lack the
complex tumor microenvironment and cell-cell interactions present
in vivo, which can yield divergent expression patterns (Yu et al,
2019). The consistent validation of most target genes across
independent cohorts nevertheless underscores the robustness and
generalizability of our findings.

The inclusion of LAMP3, POLR2E, and STXBP1 in the IRPS
reflects their complementary immune-modulatory functions and
consistent prognostic association in TNBC. LAMP3, predominantly
expressed in tumor-associated dendritic and myeloid cells, promotes
antigen presentation and modulates T-cell activation (Dong et al.,
2025; Li et al,, 2023). POLR2E, a subunit of RNA polymerase II,
has been implicated in DOK3-mediated TNF/MAPK signaling,
influencing macrophage recruitment and polarization (Li P. et al.,
2022). STXBPI, a regulator of vesicle docking and fusion, helps
CXCL chemokine release, promoting macrophage infiltration
and immune evasion (Hao et al, 2025). These mechanisms
span antigen presentation, inflammatory transcriptional control,
and chemokine-mediated immune cell trafficking, three distinct
but converging aspects of tumor-immune crosstalk. Multivariate
analyses confirmed that specific co-expression patterns of these
genes were significantly associated with TNBC survival and
recurrence, supporting their combined prognostic value even in
the absence of demonstrated direct physical interactions. We
acknowledge that functional relationships among the three genes
have not yet been experimentally validated; targeted perturbation
and co-culture studies will be an important direction for future
work. CD276, which emerged from the same regression modelling
process, was also evaluated alongside these genes for prognostic and
immunological relevance.

Immunotherapy is becoming increasingly recognized as a
strategic approach to cancer treatment (Waldman et al., 2020). As
a significant component of immunotherapy, interferon can elicit a
robust immune response during anti-tumor processes (Girard et al.,
2025). TMB and TIDE are two common methods for assessing
the efficacy of immunotherapy. Patients with high TMB scores will
benefit from immunotherapy, for example, patients with mismatch
repair deficiency colorectal cancer (having a large number of somatic
mutations) had better immune-related progression-free survivals on
PD-1/PD-L1 antibody therapy (Le et al., 2015). TIDE improves the
prediction of immune checkpoint inhibitor efficacy by integrating
two mechanisms of tumor immune escape (immune rejection and
immune dysfunction) rather than relying on a single biomarker
(Le et al,, 2015). Considering these, we assessed the relevance of
the IRPS risk score and immunotherapy. Our analysis revealed that
TNBC patients with low-risk scores had a higher tumor mutation
burden and a lower level of immune escape, suggesting they may
benefit more from immunotherapy. Early-stage low-risk TNBC
with strong immunogenicity exhibits higher levels of TMB, PD-
L1 expression, and tumor-infiltrating lymphocytes (TILs), which
contribute to enhanced immunologic function and better response
to immunotherapy (Geurts and Kok, 2023; Keenan and Tolaney,
2020). Our findings emphasize the beneficial role of IRPS in future
immunotherapy strategies for TNBC.

Interestingly, our immune cell infiltration analyses revealed that
STXBP1 and POLR2F exhibited significant negative correlations
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associated with STXBP1 in the low expression group.

The ceRNA network regulatory axes and GSEA enrichment pathway analyses. (A) The targeted regulatory relationships among IncRNA, miRNA, and
MRNA of five potential ceRNA axes in TNBC. (B) Enrichment pathways associated with STXBP1 in the high-expression group. (C) Enrichment pathways

with the infiltrating abundance of various immune cells, including
dendritic cells, YT cells, myeloid-derived suppressor cells (MDSC),
natural killer T cells, and regulatory T cells. Previous research
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has described that IFN-y expression is positively linked with
dendritic cells (Xu et al., 2021) and y8T cells (Yan et al,, 2025),
as well as negatively regulating the production of regulatory T
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TABLE 7 Differential expression of six DERNAs within ceRNA axis in
TNBC in this study.

Expression ’ Id Log,FC P-value
Upregulated hsa-miR-455-3p 3.556 1.85x 107
FAM198B-AS1 -2.898 2.72 %107

LIFR-AS1 -1.802 1.52x 107

Downregulated RBPMS-AS1 -1.903 2.82x 1077
AC124067.4 ~1.348 3.63x 10718

DNMBP-AS1 -1.556 7.79 x 10717

cells (Troschke-Meurer et al., 2019). In turn, regulatory T cells
can directly or indirectly suppress the proliferation and function
of CD4 and CD8T cells, B cells, dendritic cells, macrophages,
and natural killer cells (McCallion et al., 2023). These findings
suggest that STXBP1 and POLR2F may inhibit the tumor immune
microenvironment through IFN-y-mediated pathways. Moreover,
a significant positive correlation is detected between LAMP3 and
immune cell infiltration, including CD4 T cell, CD8 T cell, natural
killer T cell, and Th2 cell. Studies have demonstrated that IFN-\
expression is positively correlated with CD4 T cells, CD8 T cells,
and natural killer T cells (Fu et al, 2020; Weir et al., 2023),
and its overexpression can accelerate the differentiation of Thl
cells while inhibiting Th2 cell-mediated reactions (Koltsida et al.,
2011). Additionally, it is widely accepted that Th2 cytokines can
promote tumor progression (Jou, 2023). These findings imply that
LAMP3 may contribute to tumor progression through IFN-\-
mediated pathways.

According to the results of single-cell analyses, LAMP3,
identified as a critical immune-promoting gene, shows high
expression in T cells, monocytes, tissue stem cells, and epithelial
cells based on single-cell RNA sequencing (scRNA-seq) data.
Notably, LAMP3 expression is most prominent in T cells, and T
cells are associated with a better prognosis of BC (Stanton and
Disis, 2016). This suggests that LAMP3 may be relevant to good
survival outcomes in TNBC patients. In contrast, STXBP1 and
POLR2E both categorized as immune-suppressing genes, exhibit
high expression levels in fibroblasts, tissue stem cells, and smooth
muscle cells in scRNA-seq data. This aligns with prior research
indicating that fibroblasts and associated stromal cells contribute
to immune evasion in the TME by activating cytokine profiles and
reducing T cell activity (Koppensteiner et al., 2022). CD276 exhibits
predominant expression in monocytes and fibroblasts. CD276
may operate through alternative pathways, potentially involving
stromal-immune interactions or modulation of the extracellular
matrix, thereby indirectly influencing immune cell behavior. The
single-cell sequencing results from our study offer a nuanced
perspective on the immune landscape within the TME, highlighting
the diverse roles of immune-regulatory genes in different cellular
contexts. Immune-activating genes are upregulated in pro-immune
cells, while immunosuppressive genes are upregulated in anti-
immune cells, and LAMP3, STXBP1, and POLR2F conform
to this expression pattern. This consistency allows these three
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genes to serve as potential biomarkers or therapeutic targets,
particularly in the context of personalized cancer immunotherapy.
While our single-cell RNA-seq analysis provides insight into
the spatial and cellular expression of LAMP3 and CD276, we
acknowledge that these findings are correlative. However, previous
studies have demonstrated that LAMP3" dendritic cells can drive
T cell exhaustion and Treg recruitment (Wang et al, 2024),
and that CD276 suppresses T cell infiltration and modulates
macrophage polarization in tumors (Liu et al., 2024), suggesting
potential causative roles for these genes in immune modulation.
Nonetheless, functional validation is required to confirm these
mechanisms in TNBC.

Another important finding of this study is the construction of
an interferon-related prognostic ceRNA network consisting of 248
IncRNAs, 66 miRNAs, and 4 mRNAs based on prognostic IR-DEGs.
Five key regulatory axes (AC124067.4/hsa-miR-455-3p/STXBPI,
RBPMS-AS1/hsa-miR-455-3p/STXBP1, DNMBP-AS1/hsa-miR-
455-3p/STXBP1, FAM198B-AS1/hsa-miR-455-3p/STXBP1, LIFR-
AS1/hsa-miR-455-3p/STXBP1) were identified. Notably, these five
ceRNA axes have not been previously reported in any studies.
However, the aberrant changes of these axis-associated RNA
expressions were demonstrated by previous cancer studies (Table 9).
The overexpression of miRNA (hsa-miR-455-3p) of the ceRNA
regulatory axes in TNBC has been confirmed by previous
experimental studies, aligning with our results. Among the five
IncRNAs in the key axes, the downregulation of DNMBP-AS1 and
LIVR-AS1 has been experimentally or bioinformatically proven
by previous studies. In addition, AC124067.4 is shown to be
upregulated in the other bioinformatics study of breast cancer, which
contradicts our finding for TNBC. To investigate this discrepancy
further, we conducted differential expression analysis of breast
cancer data based on the TCGA database and discovered that
AC124067.4 is downregulated in breast cancer, though without
statistical significance (1og2FC = —0.536, P = 0.738). We believe that
the differences may arise from variations in processing methods
or samples included in the two studies. These findings support the
reliability of ceRNA regulatory axes to a certain degree. Notably,
the abnormal expression of RBPMS-AS1 and FAM198B-ASI1 has
not been previously documented in TNBC, and their identification
highlights their potential as novel cancer biomarkers, warranting
further investigation.

Through drug sensitivity analysis, 295 FDA-approved anti-
tumor drugs are screened based on the altered expressions of IR-
DEGs-IRPS within the ceRNA network. This investigation reveals
that 126 drugs show an increase in drug resistance, while 84
drugs exhibit an enhancement in drug sensitivity correlated with
the overexpression of interferon-related mRNAs. These findings
potentially offer better clinical treatment options for TNBC patients.
Among the top 30 mRNA-drug pairs with the highest correlation,
the mechanisms of action for several drugs have been confirmed
by previous studies, such as Fluphenazine and GSK-2126458. The
drug sensitivity of Fluphenazine increased with the upregulation of
LAMP3 expression. Xu et al. (2019) found that Fluphenazine can
restrict the growth of TNBC cells and promote cell apoptosis by
inhibiting the expression of ERK and AKT in RAS/RAF/MEK/ERK
and PI3K-AKT-mTOR pathways. Sun et al. (2022) demonstrated
that ERK and AKT can be activated by overexpression of
LAMP?3, thereby promoting Kaposi sarcoma-associated herpes virus

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1629526
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Liu et al.
5 STXBP1
B 101
w’_\ *k%k
o 8- o
o o
S 2 &
(] @ 6_ [e)
<6
Zq_ *
o o 41 *
o © 1
=L
© 0 5%1 —L 1L
()
> O
@0 @ @
Fo¥ ¥
W D
IS 3 CD276
9 )
? *
) -
S220 s
U= &
Yy o
Eo 11 ‘i‘ o
22 ||°
E 0 T T T T
e N D O
' ,'\Qvf’:b ,VQ) \(bg
SRR
Y FEF T
AR\

gRT-PCR analyses of four IR-DEGs-IRPS. *indicates P < 0.05, **

cleavage, replication, and virion production. Therefore, in order to
better exert the anti-tumor effect of Fluphenazine in TNBC patients,
the specific mechanism of the interaction between LAMP3 and
ERK or AKT in TNBC needs further investigation. Similarly, the
drug sensitivity of GSK-2126458 increased with the upregulation
of CD276. Leung et al. (2014) illustrated that GSK-2126458 plays
an anti-tumor role in TNBC by inhibiting the PI3K/AKT/mTOR
signaling pathway. CD276 has been shown to activate HIF-1a, as
discovered by Hu et al. (2024), further promoting the overexpression
of HB-EGE, and ultimately stimulating the proliferation, invasion,
and angiogenesis of colorectal cancer cells. This suggests that
understanding the interaction mechanism between CD276 and the
PI3K/AKT/mTOR pathway in TNBC development will enhance
the therapeutic value of GSK-2126458. However, other drugs,
including ARQ-680, AM-5992, PLX-4720, TAK-632, and PLX-
8394, have not been reported for TNBC therapy. Therefore, the
therapeutic effects and mechanisms of these drugs on TNBC remain
to be further explored. These findings can assist clinicians in
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selecting more sensitive and precise drugs for individual TNBC
patients with aberrant expression of different prognostic genes.
Thus, our study provides a new perspective for the development of
precision medicine and serves as a reference for research related to
chemotherapy efficacy in TNBC patients.

Interferon plays a crucial role in the tumor microenvironment
2023). Understanding how
interferon genes influence the molecular mechanisms of cancer is

of solid tumors (Martini et al,

essential for advancing cancer treatment (Duplisea et al., 2019).
The characteristics of interferon genes can make them reliable
biomarkers for predicting prognosis and treatment response
in TNBC. Moreover, further exploration of the underlying
mechanisms of the interferon-related ceRNA regulatory axis
in cancer progression is of great significance. At present, the
mechanisms of ceRNA related to TNBC and interferon are
not well understood. The ceRNA regulatory axes established in
this study based on interferon genes can provide a theoretical
framework for understanding the progression of TNBC and
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TABLE 8 Comparison of the aberrant changes of IR-DEGs-IRPS expressions in this study with previous TNBC literature.

IR-DEGs-IRPS  Feature gRT-PCR Abstract
CD276 A f Shi et al. (2025) revealed through in vitro and in vivo experiments that CD276 is highly expressed in TNBC tumor
cells under the regulation of UBE2T/CDC42/CD276 axis, and its upregulation damages the function of CD8" T
cells, leading to tumor cell immune escape and brain metastasis
LAMP3 A ‘ Nagelkerke et al. (2011) detected by real-time polymerase chain reaction and immunohistochemistry that LAMP3
is highly expressed in TNBC cells, and its overexpression is associated with hypoxia-induced treatment resistance
and tumor metastasis
POLR2F A f Utilizing TCGA and Gene Expression Omnibus (GEO) databases, Naorem et al. (2019) discovered that POLR2F is
overexpressed in TNBC samples and is identified as an oncogene
STXBP1 v ﬁ By studying the data of breast cancer patients in UCSC database and TCGA database, Mao et al. (2024) determined
that STXBP1 is lowly expressed in breast cancer tissues and is a prognostic characteristic gene of breast cancer

Notes: A According to previous experimental reports, IR-DEG pps Was upregulated in TNBC, aligning with our computational results.
‘ According to previous calculation reports, IR-DEG zps was upregulated in TNBC, aligning with our computational results.

v According to previous calculation reports, IR-DEG jzps was downregulated in BC, aligning with our computational results in TNBC.
f According to previous experimental reports, IR-DEG s was upregulated in TNBC, aligning with our gRT-PCR results.

ﬂ According to previous calculation reports, IR-DEG zps was downregulated in BC, inconsistent with our qRT-PCR results in TNBC.

TABLE 9 Comparison of the aberrant expressions of six DERNAs in the ceRNA axes with previous TNBC literature.

Derna Feature Abstract
hsa-miR-455-3p A Lietal. (2017) found through qRT-PCR analysis that miR-455-3p levels are significantly increased in TNBC cells. They also
demonstrated that miR-455-3p promotes tumor cell invasion and migration by targeting the tumor suppressor E124,
suggesting that miR-455-3p may serve as a potential prognostic biomarker and therapeutic target in TNBC (Li et al., 2017)
DNMBP-AS1 v According to bioinformatics analysis of the TCGA database and qRT-PCR experiments, Gao et al. (2021) reported that the
expression level of DNMBP-ASI is decreased in BC cells and tissues, whereas the knockdown of DNMBP-AS] is significantly
correlated with a lower overall survival rate in BC patients
LIFR-AS1 v By constructing IncRNA-mediated cross-talk pathway networks in breast cancer subtypes, Wang et al. (2016) identified that
LIPR-AS1 is lowly expressed in BC tissues and is involved in the regulation of proliferation, differentiation, and apoptosis of
the tumor
AC124067.4 A Through bioinformatics analysis of the TCGA database, Dai et al. (2022) illustrated that AC124067.4 is overexpressed in BC
(as shown in Supplementary Table S1 of their article) and is an immune-related prognostic biomarker for BC
RBPMS-AS1 v In this study, RBPMS-AS1 and FAM198B-AS1 are downregulated in TNBC. This is the first time that these two IncRNAs have
FAM198B-AS1 been found to be abnormally expressed in TNBC and is a new biomarker for this tumor

Notes: A As reported experimentally, RNA was upregulated in TNBC, consistent with our computational result.
As reported experimentally, RNA was downregulated in BC, consistent with our computational result in TNBC.
As reported computationally, RNA was downregulated in BC, consistent with our computational result in TNBC.
A As reported computationally, RNA was upregulated in BC, inconsistent with our computational result.

v In our prediction, RNA was downregulated in TNBC, and its abnormal expression in breast cancer had not been reported.

exhibit new prospects and candidate therapeutic targets for
TNBC treatment.

experimental confirmation (e.g., dual-luciferase reporter assays,
gain-/loss-of-function, and rescue experiments). Third, to construct

Despite the promising findings, several limitations should
be acknowledged. First, the prognostic signature and ceRNA
network were derived from retrospective public data (TCGA),
which may introduce biases related to sampling, processing,
and inter-patient heterogeneity; prospective validation in real-
world TNBC cohorts is warranted. Second, the interferon-related
ceRNA axes were inferred computationally; the proposed IncRNA-
miRNA-mRNA relationships remain hypothetical and require

Frontiers in Bioinformatics

the ceRNA network, we relied primarily on miRanda for IncRNA-
miRNA predictions; we recognize this may permit false positives,
future work will incorporate weighted evidence frameworks and
targeted experimental validation. Fourth, all five identified axes
share the same miRNA-mRNA pair (hsa-miR-455-3p/STXBP1),
which may reflect analytical redundancy or network bias rather
than distinct biology; these findings should be interpreted with
caution until validated. Fifth, our qRT-PCR validation used a
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limited panel of TNBC cell lines (MDA-MB-231, MDA-MB-
468, and HCC 1806) and a non-tumorigenic control (MCF-10A).
Although HCC1806 was added to introduce a distinct mutational
background, this panel does not capture the full molecular and
clinical heterogeneity of TNBC, and tissue-level validation (e.g.,
human TNBC vs matched normal, with protein assays such as
Western blot/IHC/ISH) was not performed. Sixth, single-cell and
immune-infiltration analyses are correlative and do not establish
causality; perturbation studies (gene editing, in vivo models, or
blockade experiments) are needed to determine direct effects on
tumor-immune interactions. Finally, drug-sensitivity findings were
based on correlations from CellMiner/NCI-60, which may not
reflect TNBC complexity; pharmacologic testing in TNBC-matched
models (e.g., organoids, PDX) and integration with TNBC-specific
pharmacogenomic datasets are needed to enhance translational
relevance.

5 Conclusion

In summary, this study constructed a prognostic signature and
a ceRNA network associated with interferon for TNBC through
data mining and bioinformatics analysis. Five ceRNA regulatory
axes (AC124067.4/hsa-miR-455-3p/STXBP1, RBPMS-AS1/hsa-
miR-455-3p/STXBPI, DNMBP-AS1/hsa-miR-455-3p/STXBPI,
FAM198B-AS1/hsa-miR-455-3p/STXBP1, LIFR-AS1/hsa-miR-455-
3p/STXBP1) were identified. Additionally, we discovered that
STXBP1 and two downregulated IncRNAs (RBPMS-AS1 and
FAM198B-AS1) serve as novel molecular biomarkers for TNBC.
These findings may significantly contribute to our understanding of
the occurrence and development of TNBC.
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