
TYPE Original Research
PUBLISHED 01 September 2025
DOI 10.3389/fbinf.2025.1630078

OPEN ACCESS

EDITED BY

Fabricio Martins Lopes,
Universidade Tecnológica Federal do Paraná
(UTFPR), Brazil

REVIEWED BY

Yuki Kagaya,
Purdue University, United States
Gaihua Zhang,
Hunan Normal University, China

*CORRESPONDENCE

Rafael Pereira Lemos,
rafaellemos@ufmg.br

RECEIVED 16 May 2025
ACCEPTED 11 August 2025
PUBLISHED 01 September 2025

CITATION

Lemos RP, Mariano D, Silveira SDA and de
Melo-Minardi RC (2025) COCαDA - a fast and
scalable algorithm for interatomic contact
detection in proteins using Cα distance
matrices.
Front. Bioinform. 5:1630078.
doi: 10.3389/fbinf.2025.1630078

COPYRIGHT

© 2025 Lemos, Mariano, Silveira and de
Melo-Minardi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

COCαDA - a fast and scalable
algorithm for interatomic
contact detection in proteins
using Cα distance matrices

Rafael Pereira Lemos1*, Diego Mariano1,
Sabrina De Azevedo Silveira2 and Raquel C. de Melo-Minardi1

1Laboratory of Bioinformatics and Systems, Department of Computer Science, Federal University of
Minas Gerais, Belo Horizonte, Brazil, 2Laboratory of Bioinformatics, Visualization and Systems,
Department of Informatics, Federal University of Viçosa, Viçosa, Brazil

Protein interatomic contacts, defined by spatial proximity and physicochemical
complementarity at atomic resolution, are fundamental to characterizing
molecular interactions and bonding. Methods for calculating contacts are
generally categorized as cutoff-dependent, which rely on Euclidean distances,
or cutoff-independent, which utilize Delaunay and Voronoi tessellations. While
cutoff-dependent methods are recognized for their simplicity, completeness,
and reliability, traditional implementations remain computationally expensive,
posing significant scalability challenges in the current Big Data era of
bioinformatics. Here, we introduce COCαDA (COntact search pruning by Cα
Distance Analysis), a Python-based command-line tool for improving search
pruning in large-scale interatomic protein contact analysis using alpha-carbon
(Cα) distance matrices. COCαDA detects intra- and inter-chain contacts, and
classifies them into seven different types: hydrogen and disulfide bonds;
hydrophobic effects; attractive, repulsive, and salt-bridge interactions; and
aromatic stackings. To evaluate our tool, we compared it with three traditional
approaches in the literature: all-against-all atom distance calculation (“brute-
force”), static Cα distance cutoff (SC), and Biopython’s NeighborSearch class
(NS). COCαDA demonstrated superior performance compared to the other
methods, achieving on average 6x faster computation times than advanced data
structures like k-d trees from NS, in addition to being simpler to implement and
fully customizable. The presented tool facilitates exploratory and large-scale
analyses of interatomic contacts in proteins in a simple and efficientmanner, also
enabling the integration of results with other tools and pipelines. The COCαDA
tool is freely available at https://github.com/LBS-UFMG/COCaDA.

KEYWORDS

COCαDA, protein interactions, contacts, structural bioinformatics, command-line tool

1 Introduction

Proteins are essential biological macromolecules, composed of amino acid
residues linked by covalent peptide bonds. Their final three-dimensional structure
is shaped not only by these covalent connections but also by weaker interactions

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1630078
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1630078&domain=pdf&date_stamp=
2025-08-27
mailto:rafaellemos@ufmg.br
mailto:rafaellemos@ufmg.br
https://doi.org/10.3389/fbinf.2025.1630078
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1630078/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1630078/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1630078/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1630078/full
https://github.com/LBS-UFMG/COCaDA
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

such as hydrogen bonds, electrostatic forces, and
hydrophobic effects (Smetana and Misra, 2017). The correct folding
and stability of proteins are critical for their biological functions,
making structural analysis fundamental for understanding cellular
mechanisms, identifying therapeutic targets, and guiding the
development of new drugs.

Since the first experimental resolution of a protein structure
in 1958 (Kendrew et al., 1958), the field of structural biology
has seen tremendous advances. Initiatives such as the Protein
Data Bank (PDB, (Berman et al., 2000)) and, more recently, the
AlphaFold Protein Structure Database (AFDB, (Varadi et al., 2024))
have centralized experimentally resolved and computationally
predicted protein structures, making them widely accessible. The
rapid growth of these repositories reflects not only advances in
experimental techniques, such as X-ray crystallography, NMR
spectroscopy, and cryo-electron microscopy, but also the impact
of computational modeling approaches, including deep learning-
based tools such asAlphaFold2 (Jumper et al., 2021) andAlphaFold3
(Abramson et al., 2024). These advances are part of the “Big Data
era in Bioinformatics”, characterized by challenges related to data
storage, processing, and interpretation at scale (Mura et al., 2018;
Pal et al., 2020; Mariano et al., 2023).

The PDB currently holds 238,922 entries, with approximately
92% corresponding to protein structures1. The archive continues
to grow at an annual rate of around 6.5%2, driven by both
experimental and computational contributions (Kovalevskiy et al.,
2024). This exponential expansion highlights the urgent need for
computational strategies that can efficiently organize, validate, and
analyze structural data at large scale. In particular, it is crucial to
develop tools capable of supporting fundamental research, as well as
applications in biomedical and biotechnological fields.

One key aspect of protein structure analysis is the
characterization of interatomic contacts. Contacts are defined as
spatial relationships between atoms or residues either within a
molecule or between molecules, and are crucial for understanding
protein-protein interactions, structural stability, and ligand binding
mechanisms (da Silveira et al., 2009; Pires et al., 2011). In this
context, it is important to distinguish between “contacts”, defined
purely by spatial proximity, and “interactions”, which imply
energetic contributions such as hydrophobic or electrostatic
forces (Godzik et al., 1992; da Silveira et al., 2009). While not
every contact results in a functional interaction, the presence of
contacts is often a prerequisite for biologically relevant interactions.
Therefore, in the remainder of this paper, the terms contact and
interaction may be used interchangeably where appropriate, with
“contact” referring primarily to spatial proximity and “interaction”
to biochemical context.

Computational methods for contact identification offer an
efficient alternative to labor-intensive experimental approaches,
facilitating large-scale analyses across protein families and databases
(Ding and Kihara, 2018). Traditionally, contacts are identified
using Euclidean distance thresholds or cutoff-independent methods

1 Available at https://www.rcsb.org/stats/explore/polymer_entity_type.

Accessed 23 August 2024.

2 Available at https://www.rcsb.org/stats/growth/growth-protein.

Accessed 23 August 2024.

such as Voronoi (Voronoi, 1908) or Delaunay tessellations
(Delaunay, 1934). Although cutoff-independent approaches are
more sophisticated in theory, distance-based methods are often
preferred for their simplicity, efficiency, and interpretability
(da Silveira et al., 2009; Pires et al., 2011). Recent refinements
incorporate physicochemical characteristics such as polarity or
charge alongside spatial proximity, improving the biological
relevance of computational predictions and reducing the incidence
of false positives.

Several tools and databases have been developed to identify
and analyze protein contacts (Wallace et al., 1995; Mancini et al.,
2004; Schreyer and Blundell, 2009; Laskowski and Swindells, 2011;
Bickerton et al., 2011; Pires et al., 2011; Schreyer and Blundell, 2013;
Jubb et al., 2017; Fassio et al., 2020; Pimentel et al., 2021). However,
existing solutions often present one or more limitations: they may
be static, based on predefined datasets; computationally expensive,
hindering large-scale use; restricted by server bottlenecks; limited
to specific contact types such as residue-residue or protein-ligand;
based on cutoff-independent methods; unsupported for modern file
formats such as mmCIF; or discontinued altogether.

While these algorithms are well-established in the literature and
typically can perform well for single structures, their computational
cost becomes a bottleneck in large-scale analyses. Although our
current study is based on experimentally determined structures
from the PDB, the underlying method is designed with scalability
in mind. The landscape of available protein structures has been
further expanded by ultra-large-scale prediction initiatives. Notably,
the AFDB now provides access to millions of high-confidence
predicted models, vastly increasing the volume of structural data
available for analysis.This shift underscores the growing importance
of methods that combine accuracy with computational efficiency, as
the feasibility of analyzing such extensive datasets hinges on scalable
algorithms. In addition, time-resolved techniques such as molecular
dynamics (MD) simulations introduce another dimension of
complexity. These simulations generate thousands of frames per
trajectory, each representing a unique protein conformation.
Performing contact calculations across such datasets requires
algorithms that can process structural information repeatedly and
efficiently.

In response to these challenges, we propose COCαDA (COntact
search pruning by Cα Distance Analysis), a novel, Python-
based approach for efficient large-scale identification of inter- and
intrachain atomic contacts in proteins. COCαDA applies optimized
contact cutoffs derived from a systematic analysis of all protein
structures in the PDB, leveragingmaximumCαdistances to enhance
accuracy and consistency. The tool features a customized parser
capable of handling both PDB and mmCIF formats, offering
options for large file management, residue and contact filtering,
and geometric property calculations such as centroids and normal
vectors for aromatic residues. To support scalability and flexibility,
COCαDA allows parallel batch processing across multiple CPU
cores, and user-defined custom contact distances.

To validate and benchmark COCαDA, we performed two case
studies: a small-scale benchmark involving gold-standard enzyme
superfamilies to compare against existing slower methods, and a
large-scale application covering all PDB entries with fewer than
10,000 residues. These evaluations demonstrate COCαDA’s capacity
for accurate, high-throughput structural analysis, opening new

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.rcsb.org/stats/explore/polymer_entity_type
https://www.rcsb.org/stats/growth/growth-protein
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

FIGURE 1
Overview of the methodology used to create and benchmark COCαDA. Initial contact definitions were based on previously published studies. Along
with a general implementation of contact detection using fixed cutoff distances, these conditions were applied to the full set of protein structures
available in the PDB. This first step led to the creation of a distance matrix, resulting in the improved implementation called COCαDA. COCαDA was
then compared to different methods available in the literature using two distinct datasets. Finally, the results were analyzed in terms of processing time
and complexity, demonstrating that our tool outperforms its competitors.

avenues for research in protein evolution, pathogen mutation
tracking, virtual compound screening, and beyond. COCαDA can
also be easily adapted to any existing analysis workflow, or be run
independently for exploratory purposes.

2 Methodology

Figure 1 outlines the methodology for developing and
benchmarking COCαDA.The process begins with defining contacts
and applying a static cutoff distance to the full PDB dataset.
COCαDA then uses the maximum possible Cα distance matrix
to improve contact detection. The tool was benchmarked against
similar methods using two datasets, focusing on processing time
and computational complexity.

2.1 Contact definition

To store the contact types and their conditions, we used
a dictionary containing all heavy atoms from the 20 standard
amino acids, as defined in (Sobolev et al., 1999; Silva et al.,
2019; Fassio et al., 2020; Barroso et al., 2020; Pimentel et al.,
2021; Dos Santos et al., 2022). All 20 standard amino acids had
their heavy atoms classified by the following characteristics, in
binary form (Table 1): tendency to contribute to hydrophobic
effects, belonging to aromatic groups, having positive charge,
having negative charge, capability of donating or accepting
electrons. The full atom classification table is available in the
Supplementary Table S1.

The possible contact types are: hydrogen and disulfide
bonds; hydrophobic effects; attractive, repulsive, and salt bridge
interactions; and aromatic stackings. This dictionary also contains
the conditions needed for the contact (e.g., to form an attractive
interaction, the atoms must be differently charged), and the range
of Euclidean distances, in angstroms, for the contact to occur
(Table 2).

2.2 Protein Data Bank archive

The full PDB protein archive, in ‘.cif ’ format, was obtained using
in-house scripts to query and download entries directly from the
PDB API. First, a script was used to query the API for entries
containing “Protein” as an exact match from the parameter “entity_
poly.rcsb_entity_polymer_type”.

To avoid rate limits and overwhelming the server, queries had a
1 s delay from one another, and only 25,000 IDs were obtained at a
time. Then, a second script was used, together with the Biopython
Bio. PDB module (Cock et al., 2009), to download all files that
matched the IDs gathered in the first step. All files were downloaded
between July 4th and 10 July 2024.

2.3 Neighbor search implementation using
biopython

To serve as a comparison to our method, the
Biopython package (Cock et al., 2009), largely used in
bioinformatics, was used. The Bio. PDB module contains tools to
parse a. pdb or. cif file, as well as the NeighborSearch (NS) class,
which is useful in interatomic contact determination.

We used an in-house Python script to perform an all-
atom neighbor search of 6Å radius, the maximum distance for
contacts defined in our dictionary. Then, the neighbors were
filtered based on their distance and physicochemical properties
relative to the parent atom. Redundant comparisons were excluded;
for example, if atom “a” was identified as a neighbor of atom
“b,” the comparison was performed only once, preventing the
redundant evaluation of “b” as a neighbor of “a.” The code for
the NS implementation is available at the Supplementary GitHub
repository.

The contacts obtained contained the following information:
chain, residue number, and parent atom name; chain, residue
number, and neighbor atom name (i.e., the atomic pair making the
contact); type of contact; and distance between the two atoms.

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

TABLE 1 Example of the binary classification of heavy atoms, according to their characteristics. For each amino acid residue, all their heavy atoms were
classified in a binary manner, according to the following characteristics (hydrophobic, aromatic, positive, negative, donor, acceptor). Atom names
follow the PDB nomenclature.

Residue Atom Hydrophobic Aromatic Positive Negative Donor Acceptor

Alanine N 0 0 0 0 1 0

Arginine NH2 0 0 1 0 1 0

Glutamate OD1 0 0 0 1 0 1

Glycine CA 0 0 0 0 0 0

Tryptophan CZ2 1 1 0 0 0 0

TABLE 2 Summary of Types, Range and Conditions for contacts to occur. Da = Euclidean distance between the atom pair.

Contact type Range (Å) Condition (other than range)

Hydrogen Bond 0 ≤ Da ≤ 3.9 Acceptor + Donor atoms

Disulfide Bond 0 ≤ Da ≤ 2.8 Cys:SG + Cys:SG atoms

Hydrophobic 2.0 ≤ Da ≤ 4.5 Hydrophobic + Hydrophobic atoms

Repulsive 2.0 ≤ Da ≤ 6.0 Equally charged atoms

Attractive 3.9 ≤ Da ≤ 6.0 Differently charged atoms

Salt Bridge 0 ≤ Da ≤ 3.9 Equally charged atoms + hydrogen bonding

Aromatic Stacking 2.0 ≤ Da ≤ 5.0 Centroids of two aromatic rings in parallel or perpendicular orientation

2.4 General implementation

To analyze the PDB protein archive and obtain the maximum
distances matrix used in the rest of this work, we first devised a
Static Cutoff (SC) implementation, where the Cα cutoff distance was
fixed. Akin to Biopython, proteins are treated as Python objects,
containing chains, residues, and atoms. The package includes a
customized. pdb/.cif parser, optimized to rapidly extract only the
information relevant for contact determination. This makes it more
efficient and lightweight than general-purpose parsers, which are
typically designed to support a broader range of structural analysis
tasks. By default, the parser considers the following criteria: a) Only
the first model of each protein is considered (in the case of proteins
experimentally resolved by NMR); b) Only atoms with occupancy
≥ 0.50 are considered; c) Water molecules, hydrogen atoms, non-
standard residues, nucleic acids (DNA and RNA), and metallic
coordination are not considered.

After parsing, the protein object is passed to a contact calculation
script, where the Cα distances for each pair of residues are obtained,
and filtered based on the fixed cutoff. Centroids of aromatic rings
were calculated using all atoms belonging to the ring, and the
calculation of normal vectors and angles was performed using the
Python NumPy library.

The atoms from the residues that are in range to interact are
then compared to the dictionary previously described, based on
their distance to each other, and their physicochemical properties.

Finally, the contacts are returned in a custom object containing all
their information, similar to the NS method.

2.5 Distance matrix

Throughout the processing of the complete PDB archive using
the SC method, the maximum distances (across all proteins in the
PDB) between the Cα atoms of each amino acid pair were stored in
a distance matrix. Upon completion of the processing, this distance
matrix was then used to update the static cutoff point employed in
the SC method, generating specific values for each amino acid pair.

The distance matrix D = [dij]n×n is a square matrix of size n× n,
where n represents the number of standard amino acids. Each entry
dij corresponds to the maximum distance between the Cα atoms of
the amino acids at positions i and j (e.g., d11 represents an Alanine
pair, and dnn represents a Valine pair):

D =

[[[[[[[

[

d11 d12 ⋯ d1n

d21 d22 ⋯ d2n

⋮ ⋮ ⋱ ⋮

dn1 dn2 ⋯ dnn

]]]]]]]

]

, (1)

where each dij represents the maximum Euclidean distance between
the Cα atoms of the amino acids at positions i and j.

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

FIGURE 2
Scripts used for the COCαDA implementation. The steps for processing the command-line parameters (1), processing the input files and creating the
objects (2), and calculating contacts using the values obtained from the distance matrix (3) are shown.

A total of 210 distance values were obtained, representing each
possible residue pair and excluding redundancies (e.g., Ala-Val is the
same as Val-Ala) (Equation 2).

P =
n (n− 1)

2
+ n, (2)

where P is the number of non-redundant distance pairs, and n is the
number of standard amino acids. In this case, as n= 20, then P= 210.

2.6 COCαDA implementation

The COCαDA tool is implemented similarly to the previous
implementations (NS and SC). A schematic representation of the
implementation is presented in Figure 2.

First, the script “main.py” is executed via the command
line, along with the required parameters, which are processed
by the script “argparser.py” (1). The parameters include the
mandatory file paths (wildcards are accepted), an optional
binary flag for generating an output file in. csv format
(default = no), an optional parameter to parallelize file
processing in batches across any combination of available
CPU cores, and an optional parameter to use custom
contact distances defined by the user instead of those
defined in Table 2 (using the “contact_distances.json” configuration
file). All parameters are fully explained using the ‘-h’ or
‘–help’ flags.

When users specify custom contact cutoffs greater than
the default (6Å), the static Cα–Cα distance matrix is extended

accordingly. This is done by computing an epsilon (ϵ) value,
which is the difference between the user-defined cutoff and
the default maximum cutoff. If ϵ > 0, it is added to all distance
values in the original matrix. This adjustment ensures that
the pruning based on Cα distances remains valid even under
relaxed contact definitions, preserving consistency with the
originally computed matrix while accommodating user-defined
thresholds.

The files are then processed by the script “parser.py” (2),
which utilizes the previously defined classes to create objects
representing proteins, their chains, residues, and atoms. Finally, the
script “contacts.py” receives the objects generated by the parser (3).
The scripts “conditions.py”, which stores the conditions required
for contact detection, and “distances.py”, which stores the values
obtained from the distance matrix, are used to compute the
contacts.

If the user does not specify the. csv output file parameter, only a
summary is displayed in the terminal, containing the protein name,
residue count, number of contacts, and processing time in seconds.
If the parameter is used, in addition to the summary, a. csv file is
generated with detailed information about each detected protein
contact. The columns in the output file are organized as follows:
Chain 1, Residue Number 1, Residue Name 1, Atom Name 1, Chain
2, Residue Number 2, Residue Name 2, Atom Name 2, Distance,
Contact Type. An example output file for PDB ID 101M, as well as a
PyMOL (Schrödinger, LLC) visualization script to help users quickly
explore the results, are available at the Supplementary GitHub
repository.

Frontiers in Bioinformatics 05 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

2.7 Datasets

Two datasets were selected to benchmark our results and
compare them to other competitors (ndataset1 = 896 and ndataset2 =
215,716). The first (D1) is a modified gold-standard set of enzyme
superfamilies (Brown et al., 2006), with 365 unique entries ranging
from 194 to 6,208 residues. For a more balanced comparison, we
split all chains in different files, and treated them separately. The
new modified dataset contains 896 entries, ranging from one to
994 residues (available on the Supplementary GitHub repository).
The second dataset (D2) includes all PDB proteins with less than
10,000 residues, covering approximately 99.2% of all protein entries.
This dataset contains 215,716 unique entries, ranging from three to
10,000 residues.

2.8 Benchmarks

To ensure fairness and eliminate biases, all benchmarks
were conducted simultaneously on a server with the following
specifications: NVIDIA A100 GPU, 768 GB RAM, and a 128-thread
AMD Ryzen Threadripper 5995WX processor. To prevent memory
overload and parallelization issues, each process was executed on an
individual core. Due to its size, dataset D2 was divided into nine
batches of approximately 25,000 files each, with each batch being
processed independently on separate cores.

Althoughmultithreading and batch processing is available for all
implementations (NS, SC, and COCαDA) using the Python module
“concurrent.futures”, each core handled only a distinct batch to
maintain consistency in the results. The total processing time for
each entrywas defined as the sumof the file reading, parsing, contact
detection, and output generation times.

3 Results and discussion

3.1 Maximum distance matrix

In total, 217,454 PDB entries were downloaded in. cif format,
totaling approximately 450 GB (The full ID list is available on the
Supplementary GitHub repository). Proteins ranged from three
(PDB IDs: 1Q7O, 8DDG, 8DDH) to 503,221 (PDB ID: 8GLV)
modeled amino acid residues. To obtain the values for the distance
matrix, we processed all the downloaded files using a fixed Cα
distance cutoff of 21Å for all pairs of residues (SC). This value is
comfortably above the maximum distance between the Cα of a pair
of arginines, the biggest residues by length, that are able to have
contacts between their side-chain atoms (considering a maximum
contact distance of 6Å, as per Table 2). To confirm this, we compared
an all-atom approach (i.e., comparing every atom of the protein
against each other, without cutoffs) to the SC approach using D1,
and no contacts were missed (Supplementary Table S2).

Using the SC implementation and the 217,454 entries
downloaded from the PDB, over 211 million amino acid residues
and 819 million contacts were processed and identified. Along this
process, we stored themaximumCαdistances for every pair of the 20
standard amino acids, and after merging redundancies, we obtained

210 values in a symmetric distance matrix (Figure 3; Equation 1).
The full distance table is available in the Supplementary Table S3.

As the distance matrix is color-coded based on the value of
the maximum Cα distance, we can quickly spot the minimum and
maximum values obtained. For the lowest value encountered, we
found a pair consisting of an alanine and a glycine residue, both
present in the HD chain of PDB ID 6QCM, with a distance of 7.65Å
between their Cα’s (Figure 4A). This is expected, as alanines and
glycines are two of the smallest amino acid residues, differing only by
a single CH3 group in the side chain of the alanine, while glycine has
a hydrogen atom in its side chain.However, evenwith this difference,
the presence of the CH3 group on the side chain of the alanine does
not impact the distance between their Cα atoms, only contributing
to the chirality of the alanine residue. For these two residues, only
hydrogen bonds are possible, as the main chain atoms are only
capable of donating (main chain nitrogen) or accepting (main chain
oxygen) hydrogen atoms.

On the other hand, a pair of two arginine residues, from
chains G and H of PDB ID 3X0Y, represents the highest Cα
distance encountered, of 20.46Å (Figure 4B). This result is also
expected and consistent with the fixed distance of 21Å used in
the SC approach, once again demonstrating that the fixed cutoff
was appropriate to yield no missed contacts. The contact itself is
a repulsive interaction between two NH2 atoms from the residues
side-chains, at a distance of 5.9Å.

If the user wishes to apply custom contact distances instead of
those defined in Table 2, the optional ‘-d’ flag can be used, specifying
the desired values in the “contact_distances.json” configuration file.
This flag extends the Cα distance values in the distance matrix to
incorporate the user-defined distances, ensuring that no contacts
are omitted.

Use-case scenarios for modifying the default cutoff distances
include adopting alternativeminimumormaximumvalues reported
in the literature, such as 6Å for aromatic stacking (Fassio et al., 2022),
or 5Å for hydrophobic effects (Bickerton et al., 2011), instead of
the default 5Å and 4.5Å, respectively. Another common scenario
involves exploratory analyses using step-wise cutoff variations
(da Silveira et al., 2009; Vangone and Bonvin, 2015).

3.2 COCαDA

With the maximum possible Cα distances properly established
for all amino acid residue pairs, we updated with the new values the
“distances” dictionary from the SC implementation (Section 2.4),
which before was fixed at 21Å for all residue pairs. To the joint
implementation of the SC method with the distances updated from
the distance matrix, we gave the name COCαDA.

By using tightly-defined, pair-specific cutoff distances, we can
further enhance the search space pruning compared to using a single
fixed distance threshold. Analysis of the distribution of maximum
Cα distances reveals that most amino acid pairs exhibit distances
well below 21Å, suggesting that introducing pairwise-specific
cutoffs is justified and efficient (Supplementary Figures S1 and S2).
Moreover, given that dictionary lookups in Python operate with
linear average-case complexity (O(1)), storing and querying 210
unique cutoff values introduces negligible computational overhead
relative to using a single fixed value.

Frontiers in Bioinformatics 06 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

FIGURE 3
Distance Matrix between the Cα of all pairs of residues. The intensity of the color indicates the scale of the value (from 7 to 20 Å). The highlighted
diagonal represents pairs of the same residue (e.g., Ala-Ala). The full list of values is available in the Supplementary Table S3.

To improve efficiency, COCαDA employs a stepwise filtering
strategy that first evaluates residue-level proximity based on Cα–Cα
distances. An initial coarse filter excludes residue pairs exceeding
the global maximum cutoff (20.46Å, for Arg–Arg pairs), allowing
early removal of clearly non-interacting pairs. Remaining pairs are
then subjected to a more stringent, pair-specific cutoff comparison
using the distance matrix. Only those pairs that satisfy both criteria
proceed to atomic-level evaluation to determine whether a contact
is present. This tiered approach reduces the number of atomic
comparisons required, helping to balance computational cost with
contact detection accuracy. A schematic illustration of this process
is provided in the Supplementary Figure S3.

The residue-pair-specific distance matrix used in COCαDA
captures the full range of Cα–Cα distances observed across known
protein structures that are compatible with side-chain atomic
contacts. Because these thresholds are grounded in the physical

constraints that govern residue-residue contacts, the method is
broadly applicable regardless of the overall fold, resolution, or origin
of the structuralmodel. Any contact that can realistically occurmust
still conform to these spatial constraints, ensuring generalization
across diverse structural contexts.

While the method is robust to structural variability at the
backbone level, the accuracy of contact detection may be influenced
by uncertainty in side-chain atom positions, particularly in lower-
resolution or flexible regions. In such cases, performance near cutoff
boundaries may be affected, which is an inherent limitation of any
deterministic cutoff-dependent method.

3.3 Benchmarks

To benchmark COCαDA against other approaches used in the
literature, we selected the following: all atoms against all atoms

Frontiers in Bioinformatics 07 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

FIGURE 4
Minimum and maximum entries in the Distance Matrix. (A) Minimum value, in a hydrogen bond between a glycine and an alanine residue. (B) Maximum
value, in a repulsive interaction between two arginine residues. The higher number (larger dotted line) represents the distance between Cα, and the
lower one (smaller dotted line) the contact distance. The PDB IDs are shown in center, and the contact details are shown in the format
Chain:Residue-Atom.

(AllAtoms, used in (Pimentel et al., 2021)), Arpeggio (Jubb et al.,
2017), Arpeggio CLI3 (Jubb et al., 2017), Biopython Neighbor
Search (NS, used in (Bickerton et al., 2011)), and Static Cutoff (SC).
Other methods, like nAPOLI (Fassio et al., 2020), STING Contacts
(Mancini et al., 2004), and PICCOLO (Bickerton et al., 2011), were
not available at the time of search and were not updated recently, so
they were not considered.

Both Arpeggio versions were too slow to process even small
proteins, as our tests showed processing times of approximately 5
and 23 min for a single 1,000 residue protein (PDB ID 6RTH) for
Arpeggio CLI and Arpeggio Web, respectively. For comparison, the
same protein was processed in 0.62s using COCαDA. This can be
due to several factors, but we believe that the explanation lies mainly
in server load (for Arpeggio Web), and the several external libraries
and computing time that are needed to run the more complex
analysis (for both versions). In this way, since a large-scale analysis
would not be feasible due to the large processing times, both versions
(Web and CLI) were disregarded in the subsequent analyses.

For the AllAtoms approach, a new implementation was
developed in Python, in order to incorporate all the previously
defined definitions and constraints, and for the NS method, a
custom implementation was created using Biopython (Cock et al.,
2009), since the PICCOLO tool is currently unavailable. Thus, for
D1, the following methods were compared: AllAtoms, NS, SC and
COCαDA.

The first dataset contains 896 entries, ranging from one to 994
residues. The initial choice of a smaller dataset was made to include
the AllAtoms approach, which is significantly slower than the other
three (but still considerably faster than both versions of Arpeggio),
which would make a large-scale analysis unfeasible.

In Figure 5, it is possible to see that the AllAtoms approach
(orange) rapidly explodes in a quadratic curve compared to the

3 Available at https://github.com/PDBeurope/arpeggio/.

three others, which maintain rather linear calculation times up
to 1,000 residues. Once again, no contacts of any type were
missed in any of the approaches (Supplementary Table S2), but the
AllAtoms approach was removed from further analysis because
of its performance. Comparing the faster approaches, SC (yellow)
obtained calculation times 1.5x faster on average thanNS (magenta),
while COCαDA (cyan) showed calculation times 3.8x faster on
average, obtaining the same contacts.

As the results from the first, small dataset showed a significant
difference in processing times between the 3 fastest approaches,
we then moved to D2, which contains 215,716 unique entries,
ranging from three to 10,000 residues, making approximately 99.2%
of the PDB protein archive. The choice to remove entries above
10,000 residues was made due to the nature of those entries, which
are mostly protein complexes, containing several copies of each
unique chain. This makes them not suitable for contact analysis
directly, requiring some kind of pre-processing, like splitting only
the unique chains or working with each individual protein present
in the complex separately. This can also be true for entries below
10,000 residues, but we believe that this slice correctly represents the
diversity of experimentally resolved protein structures.

Figure 6 shows the results forD2when comparing the COCαDA
(cyan), SC (yellow), and NS (magenta) approaches. It is possible
to see that COCαDA performs better for all proteins, averaging
approximately 6x faster times than NS and 2.5x faster times than SC.
The SC approach performs better than NS in proteins below 5,000
residues, equal between 5,000 and 7,000 residues, and worse above
7,000 residues. However, since the vast majority of PDB entries
fall within the smaller size range (approximately 97.2% of unique
entries have 6,000 or fewer residues), where the performance gain of
COCαDA and SC over NS is most pronounced, the high density of
small proteins in the dataset significantly skews the overall average,
leading to the reported 6x and 2.5x improvement.

Outliers were considered as entries that had a processing time
± 5 times the Standard Deviation for each approach, with less than

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://github.com/PDBeurope/arpeggio/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

FIGURE 5
Protein Size vs. Computation Time plot of Benchmark 1. In the first benchmark, 896 files ranging from 1 to 994 residues were analyzed. COCαDA is
shown in cyan, SC in yellow, NS in magenta, and AllAtoms in orange. Points represent individual entries, with lines showing the fitted curves for the data.

FIGURE 6
Protein Size vs. Computation Time plot of Benchmark 2. In the second benchmark, 215,716 files were analyzed, ranging from 3 to 10,000 residues.
COCαDA is shown in cyan, SC in yellow, and NS in magenta. A detail of the 0–1,000 protein size range is shown in the upper left corner. Points
represent individual entries, with lines showing the fitted curves for the data. Outliers were defined as ± 5 times the Standard Deviation for
each approach.

1% of entries removed. After outlier removal, it is possible to see that
COCαDA has a consistent time vs. size distribution, while the other
two approaches havemore variation.This can be due to the tight and
precise definition of cutoff distances for COCαDA, which speeds up

a lot of the computation, while also limiting structural variations,
like between globular and fibrillar proteins.

The protein size range of 0–1,000 residues is noteworthy, as
shown in detail in the upper left corner of Figure 6. At this

Frontiers in Bioinformatics 09 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

range, we can see the distribution pattern observed in D1, while
also identifying several divergent entries in the NS approach.
The divergent spike is composed exclusively of Nuclear Magnetic
Resonance (NMR) resolved entries, which are usually deposited as
several individual models of the same protein. Due to the nature
of Biopython native parsing, all the models need to be parsed
even if only the first one is of interest, unless the user creates
specific functions for this purpose, thus deviating from the original
implementation of the library. As these NMR entries are small,
the parsing time of several NMR models outpaces the contact
calculation time of the first one, leading to a spike in processing
time. This does not occur in the COCαDA and SC approaches, as
the customized parser handles only the selected model in the file
(the default value is always the first model).

3.4 Empirical complexity analysis

Computing interatomic contacts is inherently a quadratic
problem (O(n2)) because it requires calculating the distance between
every pair of atoms in a protein, such as in the AllAtoms approach.
However, sophisticated data structures, such as k-d trees, can be
employed to avoid calculating distances between atoms/residues
that are too far apart. This approach theoretically reduces the
computational space by pruning irrelevant comparisons, leading to
practical reductions in computation time and typically logarithmic
(O(logn), in the average of cases) or linear (O(n), in the worst
of cases) complexity (Bentley, 1975; Berg et al., 2008). However,
these complexity values refer only to the operations of search,
insertion, and deletion of elements in the trees. For the construction
of a new tree—for example, for a new protein—the processing
is substantially greater, corresponding to a log-linear complexity
(O(nlogn)) in the best-case scenario, for balanced trees (Wald and
Havran, 2006; Brown, 2015).

In the case of small entries, like most of the protein structures,
the memory overhead associated with the allocation and creation of
the tree usually does not outweigh the computational gains in search,
insertion, and deletion operations. Thus, in addition to the high
implementation complexity of k-d trees, the results may turn out to
be worse than those obtained by ‘brute-force’ algorithms, provided
that the latter are properly implemented. These gains are primarily
concentrated in small proteins, which significantly contribute to the
average observed speedup of 6x when comparing COCαDA to NS,
even though the performance benefit becomes less pronounced on
bigger proteins.

Our approach in COCαDA fits as an improvement of classical
‘brute-force’ algorithms (such as AllAtoms) for the calculation of
interatomic contacts in proteins. This is because, theoretically, all
atoms of the protein are checked at least once, but the precise
definitions of cutoff distances for each residue pair significantly
reduce processing time, without the additional cost of using complex
data structures, as is the case with k-d trees.

In this study, we chose to evaluate the complexity of various
algorithms empirically, by comparing standard methods commonly
used in the structural bioinformatics community with the COCαDA
method. These different methods were tested with inputs of
increasing sizes (where n represents the number of residues, which

have on average eight atoms each), and we analyzed the resulting
fitted curves with real datasets.

The curve fittings of the three approaches against the second
dataset demonstrate that both COCαDA (R2 quadratic = 0.99,
Equation 3) and SC (R2 quadratic = 0.97, Equation 4) exhibit
quadratic growth trends, while NS shows a linear growth trend (R2

linear = 0.97, Equation 5). This results demonstrate, experimentally,
the nature of the contact identification functions, which are themost
time-consuming operations. COCαDAand SC act basically as heavy
improvements of ‘brute force’ algorithms, having a time complexity
of O(n2), while the NS contact identification function operates with
a time complexity of O(n), leading to its linear growth pattern.

f (n) = 1.35× 10−7n2 + 5.04× 10−4n− 6.36× 10−3; (3)

g (n) = 1.20× 10−7n2 + 1.60× 10−3n− 9.18× 10−2; (4)

h (n) = 2.37× 10−3n+ 7.94× 10−2, (5)

where f(n), g(n), and h(n) are the best-fitted functions for COCαDA,
SC, and NS, respectively, and n is the number of residues.

However, in the case of the NS approach, the memory overhead
in tree construction is evident, especially for small inputs. It
is possible to observe, in Figure 5, that for proteins of up to
200 residues even the most computationally expensive approach
(AllAtoms) achieves lower processing times than NS. This can
also be seen in the range that includes small entries in D2,
although with less detail due to the massive number of points
(Figure 6, detail).

The analysis of the coefficients from the obtained equations
is another way to explain the poorer performance of NS, even
though it grows linearly compared to the quadratic growth of the
other approaches. Starting with the quadratic coefficients (a), it
can be noted that both are practically insignificant (1.35× 10−7 for
COCαDAand1.20× 10−7 for SC).Thismeans that for smalln values,
as in D2, the quadratic growth is extremely slow, as can be seen from
the slight curve in the data.

As for the linear coefficients (b), there is a significant difference
between COCαDA (5.04× 10−4) and the other two approaches
(1.60× 10−3 for SC and 2.37× 10−3 for NS), with NS showing
the highest value. This difference, along with the low quadratic
coefficients, explains howNS’s linear growth can be less efficient than
the quadratic growth of the other approaches. Furthermore, as the
SC and NS terms are close, between 6,000 and 7,000 residues the
curves invert, representing the point where the quadratic growth of
SC becomes more influential.

Finally, regarding the constant coefficients (c), again there is a
marked difference between the three approaches, with SC having the
smallest value (−9.18× 10−3), followed by COCαDA (−6.36× 10−3),
and NS (7.94× 10−2), the only approach with a positive c value.
This result highlights the memory overhead associated with k-d tree
construction, which causes even small inputs to have a baseline
processing time higher than the actual contact calculation time.

As previously shown, the NS approach (using k-d trees) has
a linear time complexity in the worst case. Meanwhile, COCαDA
exhibits quadratic growth, yet shows lower processing times for
all analyzed entries. By equating the two equations (Equation 3
for COCαDA; Equation 5 for NS), we find that COCαDA

Frontiers in Bioinformatics 10 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

would only yield worse results for proteins with approximately
14,000 residues (Equation 6).

f (n) = h (n) , whenn ≈ 14.000, (6)

where f(n) e h(n) are the best-fitted functions to represent COCαDA
and NS data, respectively, and n is the number of residues.

However, only slightly more than 2,000 entries in the PDB have
a size greater than 14,000 residues, representing less than 1% of all
protein structures. Furthermore, all of these entries correspond to
protein complexes or repetitions of the same protein, as previously
discussed. Therefore, for all practical purposes of contact detection
in proteins, the COCαDA approach demonstrates the best temporal
performance compared to other methodologies in the literature.

4 Conclusion

In a context where the influx of biological data is greater than
ever, there is an increasing need for solutions that are efficient,
robust, and scalable. In response to this demand, we developed
COCαDA, a free, command-line tool designed to efficiently identify
interatomic contacts in proteins at large scale. COCαDA employs
a novel method for defining contact boundaries, based on the
maximum distance between the alpha-carbons of amino acid pairs
collected from all experimentally available proteins in the PDB.

Contact calculation between residues provides essential
information on protein structure, function, stability, evolution,
and molecular interactions. Although existing algorithms perform
well for individual structures, their computational cost can become
limiting in large-scale applications, such as analysis of structural
databases like the PDB and AFDB, and molecular dynamics
simulations where contacts must be recalculated for thousands of
frames. More efficient methods, like the one we present here, enable
faster processing and broader analyses across large datasets.

By leveraging structural and physicochemical knowledge of
amino acids, we derived optimal main-chain alpha-carbon cutoff
values for each amino acid pair, which significantly reduces the
computational cost of detecting interatomic contacts. Advanced
data structures such as k-d trees are efficient for large entries
but introduce unnecessary overhead for the smaller proteins that
dominate the PDB. Instead, COCαDA employs a structure-based
approach that prunes the search space based on Cα distances, which
undergo fewer conformational changes than side-chain atoms.

This approach led to a stable and efficient method tailored
to real-world structural datasets. This strategic simplicity not
only outperforms more complex alternatives in practice but also
simplifies implementation by requiring neither external libraries
nor advanced programming skills. Its scalable performance makes
COCαDA suitable for a wide range of structural bioinformatics
applications, including macromolecular interaction modeling,
functional site prediction, high-throughput structural analysis, and
studies of protein evolution.

The current version of COCαDA generates a ‘.csv’ output file
containing comprehensive information for each detected contact,
includingchainname, residuenameandnumber, atomname,distance
between the atom pairs, and contact type. Because the tool identifies
contacts across all residues, the results can be classified as either intra-
chain or inter-chain contacts, the latter being particularly valuable for

analyses of protein-protein or protein-ligand interfaces. COCαDA is
implemented in Python, and the full source code is publicly available
at https://github.com/LBS-UFMG/COCaDA.

Data availability statement

The datasets presented in this study can be found in online
repositories. This data can be found here: https://github.com/lbs-
ufmg/cocada_supplementary.

Author contributions

RL: Writing – review and editing, Software, Methodology,
Writing – original draft, Formal Analysis, Visualization, Data
curation, Validation, Investigation, Conceptualization. DM:
Validation, Visualization, Formal Analysis, Writing – original draft,
Investigation, Data curation, Methodology, Writing – review and
editing. SS: Supervision,Writing – review and editing,Methodology,
Conceptualization, Writing – original draft. Raquel CM-M: Writing
– original draft, Methodology, Resources, Project administration,
Validation, Conceptualization, Supervision, Funding acquisition,
Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This study was financed
in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001; Fundação de
Amparo à Pesquisa do Estado deMinas Gerais - Brasil (FAPEMIG) -
FinanceCodesAPQ-01834-21,APQ-02690-22,APQ-01838-24; and
Conselho Nacional de Desenvolvimento Científico e Tecnológico -
Brasil (CNPq) - Finance Codes 310406/2023-4, 440307/2022-8.

Acknowledgments

The authors thank the funding agencies: Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
(FAPEMIG), andConselhoNacional deDesenvolvimentoCientífico
e Tecnológico (CNPq).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Frontiers in Bioinformatics 11 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://github.com/LBS-UFMG/COCaDA
https://github.com/lbs-ufmg/cocada_supplementary
https://github.com/lbs-ufmg/cocada_supplementary
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbinf.2025.
1630078/full#supplementary-material

References

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., et al. (2024).
Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature
630, 493–500. doi:10.1038/s41586-024-07487-w

Barroso, J. R. M. S., Mariano, D., Dias, S. R., Rocha, R. E. O., Santos, L. H., Nagem, R.
A. P., et al. (2020). Proteus: an algorithm for proposing stabilizing mutation pairs based
on interactions observed in known protein 3D structures. BMC Bioinforma. 21, 275.
doi:10.1186/s12859-020-03575-6

Bentley, J. L. (1975). Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 509–517. doi:10.1145/361002.361007

Berg, M., Cheong, O., Kreveld, M., and Overmars, M. (2008). “Orthogonal range
searching,” in Computational geometry (Berlin, Heidelberg: Springer), 95–120.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al.
(2000). The protein data bank. Nucleic Acids Res. 28, 235–242. doi:10.1093/nar/28.
1.235

Bickerton, G. R., Higueruelo, A. P., and Blundell, T. L. (2011). Comprehensive,
atomic-level characterization of structurally characterized protein-protein
interactions: the PICCOLO database. BMC Bioinforma. 12, 313. doi:10.1186/1471-
2105-12-313

Brown, R. A. (2015). Building a balanced k-d tree in o(kn log n) time. J. Comput.
Graph. Tech. (JCGT) 4, 50–68. doi:10.48550/arXiv.1410.5420

Brown, S. D., Gerlt, J. A., Seffernick, J. L., and Babbitt, P. C. (2006). A gold standard set
of mechanistically diverse enzyme superfamilies. Genome Biol. 7, R8. doi:10.1186/gb-
2006-7-1-r8

Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., et al.
(2009). Biopython: freely available python tools for computational molecular biology
and bioinformatics. Bioinformatics 25, 1422–1423. doi:10.1093/bioinformatics/btp163

da Silveira, C. H., Pires, D. E. V., Minardi, R. C., Ribeiro, C., Veloso, C. J. M., Lopes, J.
C. D., et al. (2009). Protein cutoff scanning: a comparative analysis of cutoff dependent
and cutoff free methods for prospecting contacts in proteins. Proteins 74, 727–743.
doi:10.1002/prot.22187

Delaunay, B. (1934). “Sur la sphère vide. À lamémoire de georges voronoï,” inBulletin
de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles VII,
793–800.

Ding, Z., and Kihara, D. (2018). Computational methods for predicting protein-
protein interactions using various protein features. Curr. Protoc. Protein Sci. 93, e62.
doi:10.1002/cpps.62

Dos Santos, V. P., Rodrigues, A., Dutra, G., Bastos, L., Mariano, D., Mendonça, J. G.,
et al. (2022). E-Volve: understanding the impact of mutations in SARS-CoV-2 variants
spike protein on antibodies andACE2 affinity through patterns of chemical interactions
at protein interfaces. PeerJ 10, e13099. doi:10.7717/peerj.13099

Fassio, A. V., Santos, L. H., Silveira, S. A., Ferreira, R. S., and de Melo-Minardi, R.
C. (2020). Napoli: a graph-based strategy to detect and visualize conserved protein-
ligand interactions in large-scale. IEEE/ACM Trans. Comp. Biol. Bioinf. 17, 1317–1328.
doi:10.1109/tcbb.2019.2892099

Fassio, A. V., Shub, L., Ponzoni, L., McKinley, J., O’Meara, M. J., Ferreira, R. S.,
et al. (2022). Prioritizing virtual screening with interpretable interaction fingerprints.
J. Chem. Inf. Model. 62, 4300–4318. doi:10.1021/acs.jcim.2c00695

Godzik, A., Kolinski, A., and Skolnick, J. (1992). Topology fingerprint approach
to the inverse protein folding problem. J. Mol. Biol. 227, 227–238. doi:10.1016/0022-
2836(92)90693-e

Jubb, H. C., Higueruelo, A. P., Ochoa-Montaño, B., Pitt, W. R., Ascher, D.
B., and Blundell, T. L. (2017). Arpeggio: a web server for calculating and
visualising interatomic interactions in protein structures. J. Mol. Biol. 429, 365–371.
doi:10.1016/j.jmb.2016.12.004

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature 596,
583–589. doi:10.1038/s41586-021-03819-2

Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., and Phillips,
D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray
analysis. Nature 181, 662–666. doi:10.1038/181662a0

Kovalevskiy, O., Mateos-Garcia, J., and Tunyasuvunakool, K. (2024). AlphaFold two
years on: validation and impact. Proc. Natl. Acad. Sci. U. S. A. 121, e2315002121.
doi:10.1073/pnas.2315002121

Laskowski, R. A., and Swindells, M. B. (2011). LigPlot+: multiple ligand-protein
interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786.
doi:10.1021/ci200227u

Mancini, A. L., Higa, R. H., Oliveira, A., Dominiquini, F., Kuser, P. R.,
Yamagishi, M. E. B., et al. (2004). STING contacts: a web-based application for
identification and analysis of amino acid contacts within protein structure and
across protein interfaces. Bioinformatics 20, 2145–2147. doi:10.1093/bioinformatics/
bth203

Mariano, D., Da Fonseca Júnior, N. J., Santos, L. H., and de Melo-Minardi, R.
C. (2023). Editorial: bioinformatics in the age of data science: algorithms, methods,
and tools applied from omics to structural data. Front. Bioinforma. 3, 1246859.
doi:10.3389/fbinf.2023.1246859

Mura, C., Draizen, E. J., and Bourne, P. E. (2018). Structural biology meets
data science: does anything change? Curr. Opin. Struct. Biol. 52, 95–102.
doi:10.1016/j.sbi.2018.09.003

Pal, S., Mondal, S., Das, G., Khatua, S., and Ghosh, Z. (2020). Big data
in biology: the hope and present-day challenges in it. Gene Rep. 21, 100869.
doi:10.1016/j.genrep.2020.100869

Pimentel, V., Mariano, D., Cantão, L. X. S., Bastos, L. L., Fischer, P., de Lima,
L. H. F., et al. (2021). VTR: a web tool for identifying analogous contacts on
protein structures and their complexes. F. Bioinf. 1, 730350. doi:10.3389/fbinf.
2021.730350

Pires, D. E. V., de Melo-Minardi, R. C., dos Santos, M. A., da Silveira, C. H., Santoro,
M. M., and Meira, W., Jr (2011). Cutoff scanning matrix: structural classification and
function prediction by protein inter-residue distance patterns. BMC Gen. 12, S12.
doi:10.1186/1471-2164-12-S4-S12

Schreyer, A., and Blundell, T. (2009). CREDO: a protein-ligand interaction
database for drug discovery. Chem. Biol. Drug Des. 73, 157–167. doi:10.1111/j.1747-
0285.2008.00762.x

Schreyer, A. M., and Blundell, T. L. (2013). CREDO: a structural
interactomics database for drug discovery. Database (Oxford) 2013, bat049.
doi:10.1093/database/bat049

Silva, M. F. M., Martins, P. M., Mariano, D. C. B., Santos, L. H., Pastorini,
I., Pantuza, N., et al. (2019). Proteingo: motivation, user experience, and learning
of molecular interactions in biological complexes. Entertain. Comput. 29, 31–42.
doi:10.1016/j.entcom.2018.11.001

Smetana, J. H. C., andMisra, G. (2017). “Principles of protein structure and function,”
in Intro. to biomol. Struct. and biophys. (Singapore: Springer), 1–32.

Sobolev, V., Sorokine, A., Prilusky, J., Abola, E. E., and Edelman, M. (1999).
Automated analysis of interatomic contacts in proteins. Bioinformatics 15, 327–332.
doi:10.1093/bioinformatics/15.4.327

Vangone, A., and Bonvin, A.M. (2015). Contacts-based prediction of binding affinity
in protein-protein complexes. Elife 4, e07454. doi:10.7554/elife.07454

Varadi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan,
M., et al. (2024). AlphaFold protein structure database in 2024: providing structure

Frontiers in Bioinformatics 12 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1630078/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1630078/full#supplementary-material
https://doi.org/10.1038/s41586-024-07487-w
https://doi.org/10.1186/s12859-020-03575-6
https://doi.org/10.1145/361002.361007
https://doi.org/10.1093/nar/28.-✐1.235
https://doi.org/10.1093/nar/28.-✐1.235
https://doi.org/10.1186/1471--✐2105-12-313
https://doi.org/10.1186/1471--✐2105-12-313
https://doi.org/10.48550/arXiv.1410.5420
https://doi.org/10.1186/gb-2006-7-1-r8
https://doi.org/10.1186/gb-2006-7-1-r8
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1002/prot.22187
https://doi.org/10.1002/cpps.62
https://doi.org/10.7717/peerj.13099
https://doi.org/10.1109/tcbb.2019.2892099
https://doi.org/10.1021/acs.jcim.2c00695
https://doi.org/10.1016/0022-2836(92)90693-e
https://doi.org/10.1016/0022-2836(92)90693-e
https://doi.org/10.1016/j.jmb.2016.12.004
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/181662a0
https://doi.org/10.1073/pnas.2315002121
https://doi.org/10.1021/ci200227u
https://doi.org/10.1093/bioinformatics/-✐bth203
https://doi.org/10.1093/bioinformatics/-✐bth203
https://doi.org/10.3389/fbinf.2023.1246859
https://doi.org/10.1016/j.sbi.2018.09.003
https://doi.org/10.1016/j.genrep.2020.100869
https://doi.org/10.3389/fbinf.-✐2021.730350
https://doi.org/10.3389/fbinf.-✐2021.730350
https://doi.org/10.1186/1471-2164-12-S4-S12
https://doi.org/10.1111/j.1747-0285.2008.00762.x
https://doi.org/10.1111/j.1747-0285.2008.00762.x
https://doi.org/10.1093/database/bat049
https://doi.org/10.1016/j.entcom.2018.11.001
https://doi.org/10.1093/bioinformatics/15.4.327
https://doi.org/10.7554/elife.07454
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lemos et al. 10.3389/fbinf.2025.1630078

coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368–D375.
doi:10.1093/nar/gkad1011

Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie
des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres
primitifs. J. für die reine und angewandte Math. 134, 198–287. doi:10.1515/crll.1908.
133.97

Wald, I., and Havran, V. (2006). “On building fast kd-trees for ray tracing,
and on doing that in O(N log n),” in 2006 IEEE symposium on interactive ray
tracing.

Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995). LIGPLOT: a program
to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 8,
127–134. doi:10.1093/protein/8.2.127

Frontiers in Bioinformatics 13 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1630078
https://doi.org/10.1093/nar/gkad1011
https://doi.org/10.1515/crll.1908.-✐133.97
https://doi.org/10.1515/crll.1908.-✐133.97
https://doi.org/10.1093/protein/8.2.127
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Methodology
	2.1 Contact definition
	2.2 Protein Data Bank archive
	2.3 Neighbor search implementation using biopython
	2.4 General implementation
	2.5 Distance matrix
	2.6 COCαDA implementation
	2.7 Datasets
	2.8 Benchmarks

	3 Results and discussion
	3.1 Maximum distance matrix
	3.2 COCαDA
	3.3 Benchmarks
	3.4 Empirical complexity analysis

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

