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Background: Cellular indexing of transcriptomes and epitopes by sequencing 
(CITE-Seq) is a powerful technique to simultaneously measure gene expression 
and cell surface protein abundances in individual cells. To obtain accurate and 
reliable biological findings from CITE-Seq data, it is critical to ensure rigorous 
quality control (QC). However, no public method has yet been developed for 
CITE-Seq QC.
Results: In this study, we propose the first software package for multi-
layered, systemic, and quantitative quality control (CITESeQC). Recognizing the 
multi-layered nature of CITE-Seq data, CITESeQC performs QC across gene 
expressions, surface proteins, and their interactions. It systemically evaluates 
all genes and protein markers assayed in the data and filters out some 
of them based on individual quality measures. Furthermore, for quantitative 
QC that enables objective and standardized analyses, CITESeQC quantifies 
cell type-specific expression of genes and surface proteins using Shannon 
entropy and correlation-based measures. Finally, to ensure broad applicability, 
CITESeQC guides users through a simple process that generates a complete 
markdown report with supporting figures and explanations, requiring minimal 
user intervention.
Conclusion: By quantifying the quality of CITE-Seq data, CITESeQC enables 
precise characterization of gene expression within cell types and reliable 
classification of cell types using surface protein markers, thereby enhancing its 
value for clinical applications.
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Background

While traditional single-cell RNA-seq techniques assay only 
gene expression by capturing and sequencing RNA molecules, 
cellular indexing of transcriptomes and epitopes by sequencing 
(CITE-Seq) assays both RNA molecules and surface proteins 
of interest simultaneously by utilizing unique DNA-barcoded 
antibodies, also known as “antibody-derived tags (ADTs).” Since 
cell surface proteins serve as markers and communicators of a cell’s 
identity and function, CITE-Seq data enable the identification not 
only of cell-type specific gene expression patterns but also of cell 
types defined by specific surface proteins that may be used for 
further clinical applications. For example, although some immune 
cell types, such as γ/δ T cells (Zakeri et al., 2022), mucosal-associated 
invariant T cells (Li et al., 2023), innate lymphoid cells (ILCs) 
(Jacquelot et al., 2022), and neutrophils (Geh et al., 2022), have 
demonstrated significant clinical potential, single-cell RNA-seq data 
alone are often insufficient to detect them reliably. This limitation 
arises from the potentially low RNA content of lineage-defining 
transcripts (Stoeckius et al., 2017), the presence of high levels of 
RNase (Hao et al., 2021; Mazzurana et al., 2021; Scheyltjens et al., 
2022), or the fact that mRNA expression patterns do not always 
correlate with protein expression (Stoeckius et al., 2017).

To ensure high-quality discoveries from CITE-Seq data, the 
first critical step is to control the quality (QC) of the input CITE-
Seq data. For QC of CITE-Seq data, previous studies performed 
a limited set of analyses, and there was no standalone method. 
To develop a desirable standalone method for CITE-Seq QC, we 
recognize the following three limitations in the current CITE-Seq 
studies. First, some studies performed QC only at the RNA level, 
e.g., in terms of either transcriptome library size (Butler et al., 
2018; Stuart et al., 2021), transcriptomic technical artifacts such as 
RNA contamination (Hong et al., 2022), or likely empty droplets 
or ambient RNAs (Grob et al., 2023; Subramanian et al., 2022). 
However, since CITE-Seq assays both RNA and cell surface protein 
data, CITE-Seq QC must assess not only individual RNA quality 
but also the quality of protein data and their interactions with RNA 
data. Specifically, i) the individual protein and RNA data quality 
must be controlled, respectively, to faithfully identify cell types with 
certain surface proteins and capture the cells’ molecular profiles, 
and ii) the relationship between the RNAs and the proteins must 
be investigated since, if certain cells express a specific gene that 
is readily translated and transported to the surface, the surface 
protein abundance level is expected to be correlated with the gene 
expression in the cells. Second, while a small number of other studies 
used surface protein information for QC, they examined only a 
subset of the assayed surface proteins as they were interested in 
particular cell types marked by the surface proteins. For example, 
one study examined 7 protein markers (CD3, CD4, CD8, CD14, 
CD16, CD19, and CD56) out of 188 available markers in the 
data to differentiate five cell types (B cells, CD4 T cells, CD8 T 
cells, classical monocytes, and natural killer) (Nettersheim et al., 
2022), and another study examined four protein markers, out 
of 17 available markers, to differentiate four cell types (T cells, 
monocytes, B cells, and cytotoxic T lymphocytes) (Granja et al., 
2019). However, to detect systematic errors that affect most assays 
in the data, it is important to examine the majority of RNAs 
and proteins rather than a small subset of them. Third, when 

the abovementioned studies demonstrated the relationship between 
genes and the corresponding proteins, they relied mostly on visual 
inspection of a dimensionality-reduced space (e.g., UMAP) for 
either the abundance level relationship between genes and proteins 
or their cell-type specificity. However, quantitative measures are 
needed to objectively assess the relationship between abundance 
levels and cell-type specificity. Quantitative measures can help 
further compare the data quality across various CITE-Seq datasets 
and make the QC analyses scalable.

In this study, we introduce CITESeQC, the first software package 
specifically designed to provide a comprehensive and interpretable 
set of quantitative metrics for assessing the quality of CITE-Seq 
data. Rather than performing direct filtering or removal of cells or 
features, CITESeQC serves as a diagnostic framework that guides 
users in making informed quality control (QC) decisions tailored 
to their dataset. CITESeQC supports multi-layered QC by offering 
seven modules for evaluating RNA or protein data individually and 
five additional modules for assessing cross-modality relationships, 
such as RNA–protein consistency. To ensure systematic coverage, 
these 12 modules collectively assess all genes and surface proteins 
in the dataset while flagging low-quality features using individual 
QC metrics. For quantitative evaluation, CITESeQC computes 
Shannon entropy to assess cell type-specific expression patterns 
and correlation coefficients to capture expected relationships 
between gene expression and protein abundance. Designed for 
broad usability, CITESeQC guides users through a streamlined 
process that generates a complete markdown report, including 
informative visualizations and interpretations, with minimal user 
intervention. This flexible, user-guided approach enables researchers 
to evaluate data quality in a nuanced and biologically informed 
manner—supporting both standardized workflows and exploratory 
analyses—without relying on rigid, pre-defined thresholds.

Results

CITESeQC quantifies various aspects of 
CITE-Seq quality

CITESeQC provides 12 R modules to assess the quality 
of RNAs, surface proteins, and their interactions in multiple 
aspects and one R module to define cell clusters or import cell 
cluster definitions (Figure 1). The modules also provide quantitative 
measures, wherever possible, to test particular hypotheses regarding 
the quality. 

1. “RNA_read_corr()” produces a scatterplot correlating the 
number of molecules/genes with the number of genes 
identified in the transcriptome. Since the cutoffs for good-
quality cells will be passed as the arguments to the function, 
users can modify them for their data. Default values are from 
the Seurat-guided clustering tutorial. Spearman’s correlation 
coefficient is calculated to allow users to test the hypothesis 
that the total number of genes increases with the number of 
detected genes in the transcriptome.

2. “ADT_read_corr()” produces a scatterplot correlating the 
number of detected ADTs with the total number of ADT 
molecules identified on the cell surfaces. Since the cutoffs 
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identifying good-quality cells are annotated on the plot as 
passed as the arguments of the function, users can modify 
them for their data. Default values are from the Seurat-
guided clustering tutorial. Spearman’s correlation coefficient 
is calculated to allow users to test the hypothesis that the 
total number of ADT molecules increases with the number of 
detected ADTs on the cell surface.

3. “RNA_mt_read_corr()” produces a scatterplot correlating the 
number of genes identified in the transcriptome with the 
percentage of the mitochondrial genes. Spearman’s correlation 
coefficient is calculated to allow users to test the hypothesis that 
the mitochondrial percentage remains constant regardless of 
the number of identified molecules.

4. “def_clust()” either defines the cell clusters based on the input 
gene expression matrix or imports the definition. To define 
the cell clusters, it employs the Seurat package with the input 
clustering resolution. For each cell cluster, whether defined 
internally or imported, this function identifies marker genes 
for later use.

5. “RNA_dist()” visualizes the specificity of the input 
gene expression across the cell clusters defined or 
imported using def_clust(). For quantification and 
comparison, it calculates Shannon entropy on the expression 
distribution across clusters, which is defined as follows:
Hnormalized = −

1
log2(N)
∑n

i=1pi log2(pi), where N is the number 
of clusters (size of the alphabet). A lower value in Shannon 
entropy represents a more specific expression of the gene across 
the clusters.

6. “multiRNA_hist()” is a histogram of Shannon entropy values 
of the marker genes identified in def_clust(). The histogram 
displays the specificity of marker genes across clusters. Users 
can modify the number of marker genes. A histogram peak 
at high entropy values suggests that the marker genes lack 
specificity.

7. “ADT_dist()” visualizes the specificity of the input ADT 
abundance across the cell clusters. Specifically, it calculates 
normalized Shannon entropy on the expression distribution 
across clusters. Note that the clusters were defined based on 
gene expression unless provided by the users.

8. “multiADT_hist()” is a histogram of normalized Shannon 
entropy values of all ADTs identified for the cell clusters. 
The histogram displays the specificity of ADT markers across 
clusters. Note that the clusters were defined based on gene 
expression unless provided by the users. A histogram peak 
at high entropy values suggests that the marker genes lack 
specificity.

9. “RNA_ADT_read_corr()” produces a scatterplot showing the 
correlation between the number of assayed genes in the 
transcriptome and the number of assayed cell surface proteins 
across the cells. Spearman’s correlation coefficient is calculated 
to allow users to test the hypothesis that the number of assayed 
proteins increases with the number of assayed genes.

10. “RNA_ADT_UMAP_corr()” produces pairs of UMAP plots 
and a scatterplot. Each UMAP plot pair is drawn for the 
abundance of the input ADT and the corresponding gene 
expression, respectively. The scatterplot plots the abundance of 
ADTs and the expression of the RNAs of the input gene.

FIGURE 1
Illustrative categorization of the 12 R functions in CITESeQC. The 
additional def_clust() function needs to be run before running 
functions in “with cell clusters” category.

11. “RNA_ADT_cluster_corr()” is a set of scatterplots, each drawn 
for each cell cluster, showing the correlation between input 
ADT abundance and the corresponding gene expression for 
the cluster.

12. “RNA_ADT_hist()” is a histogram of the correlation 
coefficients in all pairs of ADTs and the corresponding genes 
in expression.

13. “RNA_ADT_cluster_hist()” is a set of histograms, each 
showing the distribution of the correlation coefficients in all 
pairs of ADTs and the corresponding genes for each cell cluster.

CITESeQC interpretation of diagnostic 
quality metrics

We demonstrate the applicability of CITESeQC using two 
example CITE-Seq datasets from healthy donors. The first 
comprises peripheral blood mononuclear cells (PBMCs), and 
the second comprises cord blood mononuclear cells (CBMCs). 
On the datasets, three functions beginning with either “RNA” 
or “ADT” and ending with “read_corr” inspect the correlation 
between the total number of reads and those aligned with 
RNAs or proteins across cells, enabling users to test whether 
the alignment process contributes to the quality. CITESeQC 
calculates Spearman’s correlation coefficient and a permutation-
based p-value as quantitative measures. Our analysis of PBMC and 
CBMC datasets (Supplementary Figures S1A–C, 2A–C) confirms 
that a valid alignment should yield a positive correlation. The 
functions RNA_dist() and ADT_dist() compute the distribution 
of a single marker gene or surface protein across cell clusters 
using Shannon entropy to quantify target specificity. To illustrate 
their utility, we examined CCR7 and CST7 in PBMCs—canonical 
markers for naïve T cells and cytotoxic lymphocytes, respectively 
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(Figures 2A,B). Although both are recognized markers, Seurat’s 
built-in module lacks the resolution to differentiate their relative 
specificity across clusters (Figures 2C–E). In contrast, our entropy-
based quantification provides a clear, interpretable measure of 
specificity. For example, CCR7 is less specific than CST7 (with 
entropy values of 2.53 and 2.34, respectively), enabling researchers 
to prioritize CST7 over CCR7 for downstream analyses, such as 
cell-type annotation, differential expression, and experimental 
validation. This added layer of interpretability represents a key 
advantage over existing methods. We also showed the specificity 
of CCR7 in CBMC and CD14 ADT in PBMC and CBMC (S. 
Figures 2D–F). CD14 also shows strong specificity across PBMC 
and CBMC cell clusters as it is robustly expressed in classical 
and intermediate monocytes, with Shannon entropy values of 2.39 
and 3.83, respectively. “multiRNA_hist()” and “multiADT_hist()” 
visualize the distribution of Shannon entropy values for marker 
genes and surface proteins, respectively. In our analysis, we used 
the top 10 marker genes for each cluster and all surface proteins 
identified in PBMC and CBMC (Figures 2F,G,S; Figures 2G,H). In 
addition, three functions beginning with “RNA_ADT” and ending 
with “corr” allow practitioners to quantify the correlation between 
RNAs and surface proteins. Our analysis of CD14 on PBMC and 
CCR7 on CBMC (Supplementary Figures S1D–G, 3, 4, 5) visually 
demonstrates their specificity across cell clusters on UMAP and 
using correlation. Finally, two functions beginning with “RNA_
ADT” and ending with “hist” visualize the distribution of the 
correlation either across all clusters or for each cluster. Running 
the functions on CCR7 and ADT14 shows cluster-specific behavior 
of the markers (Supplementary Figures S6, 7). Before running 
functions that require cell cluster definitions (e.g., RNA_dist()), 
def_clust() should be called to either define or import them.

Systematic evaluation of CITESeQC’s 
sensitivity to technical noise in CITE-Seq 
data

To show how CITESeQC detects systemic errors, we performed 
two controlled noise-injection experiments using 10% of the cells 
randomly selected in the PBMC dataset. First, to simulate noise 
introduced by systemic disruptions in feature-count relationships, 
we shuffled expression values for 5%, 10%, and 20% of RNA 
features and 10%, 20%, and 30% of ADT features. We selected 
higher percentages for ADT data to ensure a noticeable effect 
despite its smaller feature set (33,538 RNAs vs. 17 ADTs). For 
RNA, each condition was repeated 10 times; for ADT, 50 times for 
statistical significance and computational efficiency. To quantify the 
noise effect, CITESeQC calculates Spearman’s correlation between 
nFeature (the number of unique genes or proteins detected in a 
cell) and nCount (total count per cell). In high-quality data, these 
metrics are expected to show a strong positive correlation—cells 
with more detected features tend to have higher total counts. 
Our shuffling strategy is to preserve cell-level relationships while 
disrupting the gene- or protein-level relationships. In the results, we 
observed a consistent decrease in correlation values with increasing 
levels of noise for both RNA and ADT (Figures 3A,B). The RNA 
modality showed a wider dynamic range of degradation due to its 
larger number of features. These results confirm that CITESeQC’s 

correlation-based metrics are sensitive to global disruptions and 
can effectively capture systemic quality issues. Second, we evaluated 
how increasing randomness affects gene/protein specificity across 
clusters, a key step for downstream analyses. We randomly shuffled 
10%, 20%, and 30% of RNA and ADT features, respectively, and 
defined clusters using the function def_clust(). For efficiency, we 
selected 10,000 RNA features by ranking genes according to the 
standard deviation of their expression across cells and retaining 
those with the highest variability. Using the defined clusters, we ran 
multiRNA_hist() and multiADT_hist() functions to calculate the 
Shannon entropy across all shuffled features. In high-quality data, 
markers with specificity should show low entropy. As we increased 
the level of noise, the entropy values exhibited a systematic increase, 
with the overall distribution shifting toward higher values (i.e., 
rightward shift). For RNA features, we observed significant shifts 
in Shannon entropy from 10% to 20% and from 20% to 30% (p-
value: 0.04 and 0.05, respectively, Figure 3C), suggesting a loss of 
cluster-specific expression patterns. A similar shift was found for 
ADT features, although it was not significant (p-value: 0.2 in both 
10%–20% and 20%–30%, Figure 3D), potentially due to the limited 
number of measured ADTs (n = 17). These findings demonstrate that 
entropy-based metrics in CITESeQC effectively capture the erosion 
of biological signal due to random noise. Together, both experiments 
validate the sensitivity of CITESeQC to detect quality issues at 
multiple levels—global structure and cluster specificity—making 
it a valuable tool for CITE-Seq data QC across applications and 
platforms.

CITESeQC facilitates marker specificity 
analysis

To demonstrate how CITESeQC’s quantitative measures 
can improve downstream biological analysis, we systematically 
determined a Shannon entropy cutoff to assess the specificity of 
marker genes. Specifically, we focused on defining an empirical 
threshold that distinguishes truly cluster-specific markers from 
background, non-specific genes. To establish this threshold, we first 
randomly selected 1,000 expressed RNAs (>5 in average expression) 
that were not differentially expressed across any clusters in the 
PBMC dataset to serve as a negative control. We then calculated 
the Shannon entropy of these non-marker genes across pre-defined 
clusters. Because these genes are expected to be broadly and non-
specifically expressed, their entropy distribution reflects a null 
distribution of non-specific expression. We defined the marker 
specificity cutoff as the 5th percentile of this distribution (i.e., the left 
tail), identifying entropy values below this threshold as statistically 
specific. We then applied this empirical cutoff to evaluate the top 10, 
20, and 30 RNA markers (ranked by differential expression p-value) 
identified in our analysis (Supplementary Figure S8). Although the 
set with more RNA markers exhibits heterogeneous distribution of 
entropy values, the cutoff clearly distinguishes significantly specific 
markers from non-specific markers. In PBMCs, for example, entropy 
values below 1.45 were deemed specific, with 26 (20%), 39(16%), 
and 41 (12%) of the top 10, 20, and 30 markers, respectively, meeting 
this criterion (Supplementary Table S1). In CBMCs, where the cutoff 
was 0.75, similar trends were observed. This analysis quantitatively 
validates which markers are truly specific to each cluster. By 
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FIGURE 2
CITESeQC functions showing and quantifying relative abundance distribution of (A) CCR7 RNA and (B) CST7 in the example PBMC dataset. The amount 
of uncertainty in the probability distribution is measured by Shannon entropy. UMAP showing specificity across cell clusters for (C) CCR7 and (D) CST7.
(E) UMAP showing the cell cluster definition in the PBMC dataset. CITESeQC functions showing the distribution of the Shannon entropy values of (F)
the top 10 marker genes from each cluster and (G) all surface markers across the clusters defined in def_clust() on the example PBMC dataset.
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FIGURE 3
Spearman’s correlation of 10% randomly selected cells in the PBMC dataset estimated between nFeature and nCount of (A) RNAs after 5%, 10%, and 
20% shuffling and (B) all ADTs after 10%, 20%, and 30% shuffling. Shannon entropy density plot of marker genes in 10% randomly selected cells of the 
PBMC dataset estimated across defined clusters of (C) RNAs after 10%, 20%, and 30% shuffling and (D) all ADTs after 10%, 20%, and 30% shuffling.

selecting cluster-specific markers based on CITESeQC entropy-
based specificity, users can enhance the biological interpretability 
and clinical utility of single-cell data analyses. This is particularly 
important because high-specificity markers are essential for robust 
cell type classification, biomarker discovery, therapeutic targeting, 
and ensuring reproducibility across datasets.

Discussion

The CITESeQC package is the first software package that 
assesses the quality of CITE-Seq data in terms of the individual 
RNAs, surface proteins, and their interactions. For quantitative 
evaluation, CITESeQC computes Shannon entropy and RNA–ADT 
correlation coefficients—two biologically informed metrics. 
Although entropy itself is designed to quantify expression 
distribution and is not a direct indicator of technical quality, 
it becomes informative about data quality when applied to 
marker genes or proteins. In high-quality CITE-Seq data, well-
established cell type markers—such as CD3 for T cells or CD19 
for B cells—should exhibit low entropy, with expression localized 
to the expected clusters. If these canonical markers instead 

show unexpectedly high entropy—that is, broadly or randomly 
distributed expression—it may suggest technical issues such as 
ambient RNA contamination that causes marker expression to 
bleed into unrelated clusters, poor clustering resolution that reflects 
insufficient transcriptomic signal, or antibody non-specificity or 
background staining in the ADT layer. Similarly, for a subset of 
well-characterized, high-expression surface markers, a moderate 
to strong positive correlation between mRNA and protein levels 
is expected in biologically consistent and technically sound CITE-
Seq data. When known concordant markers exhibit unexpectedly 
low or erratic correlations, it can suggest technical artifacts 
such as antibody dropout or mislabeling, droplet barcoding or 
ambient tag misassignment, or batch effects or sample degradation. 
CITESeQC does not use these metrics to impose strict thresholds 
or automatically discard features; instead, it provides them as 
diagnostic tools to allow users to distinguish between meaningful 
biological heterogeneity and technical noise. Altogether, we provide 
a comprehensive set of computational QC measures for CITE-Seq 
data that assess and quantify various aspects of data quality at both 
individual RNA and protein levels and in their interactions.

To determine the quality of a CITE-Seq dataset using the 
quantitative measures provided by CITESeQC, the next step 
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is to determine appropriate cutoff values for each measure. 
However, establishing some cutoff values is not straightforward. 
For example, measures correlating RNAs with their corresponding 
surface proteins depend not only on data quality but also on 
the translation efficiency of the RNAs. Even for datasets of same 
quality, translation efficiency can vary across biological contexts 
due to post-transcriptional regulatory processes such as alternative 
polyadenylation and competing endogenous RNAs (Fan, et al., 2020; 
Kim, et al., 2020; Park, et al., 2018). Thus, to assess quality using 
correlation measures, we recommend comparing the values with 
those from other CITE-Seq datasets for which users have prior 
knowledge of data quality. In the future, to perform QC analysis 
without reference datasets, we plan to collect multiple CITE-Seq 
datasets of both high and low quality and determine cutoff values 
directly from the data.

Methods

CITESeQC in user-friendly R markdown

CITESeQC (version 0.9.1) is an R package with 
minimal prerequisites and is publicly available at https://
github.com/sunjie001130/CITESeQC. It employs the baseline R 
packages—graphics, stats, and utils—making it and easy for users 
to install. Both the source code and tutorial with example datasets 
are available to download. The tool can be used in an R script or 
R Markdown file. The advantage of this design is that it can allow 
the integration of code, visualizations, and explanations in a single 
document, which facilitates reproducibility and documentation of 
data analysis workflows. Additionally, R markdown files do not 
require familiarity with command-line syntax, like many Linux 
environment-based software programs. 

Experiment data

PBMCs, which have a single round nucleus, include 
lymphocytes (T cells, B cells, and NK cells) and monocytes 
isolated from peripheral blood. We downloaded the dataset from 
https://www.10xgenomics.com/, and CBMCs are derived from 
umbilical cord blood. They include hematopoietic stem/progenitor 
cells and immune cells that are more naive than adult PBMCs, 
making them valuable for studying immune development. We 
downloaded the dataset from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE100866.
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SUPPLEMENTARY FIGURE S1 
CITESeQC functions based on correlation drawn for the example PBMC CITE-Seq 
dataset. (A) The number of detected genes in each cell is plotted with the number 
of molecules. The cutoffs for cells of good quality are annotated on the plot 
between red lines. The correlation coefficient and p-value are estimated based on 
Spearman’s correlation. (B) The number of detected ADTs in each cell is plotted 
with the number of ADT molecules. The correlation coefficient and p-value are 
estimated based on Spearman’s correlation. (C) The number of molecules 
identified in the transcriptome is plotted with the percentage of the mitochondrial 
genes. The correlation trend can test whether the mitochondrial percentage 
remains constant regardless of the number of identified molecules. CITESeQC 
functions on the example PBMC dataset showing the distribution of (D) CD14 
RNA and (E) ADTs for CD14 on the UMAP space, respectively. (F) Scatterplot 
plotting all the cells by the number of ADTs for CD14 and the expression level of 
RNA molecules of CD14. (G) Scatterplot plotting all the cells by the total number 
of all ADTs on the surface and all RNA molecules in the transcriptome.

SUPPLEMENTARY FIGURE S2 
CITESeQC functions based on correlation drawn for the example CBMC 
CITE-Seq dataset. (A) The number of detected genes in each cell is plotted with 
the number of molecules. The cutoffs for cells of good quality are annotated on 
the plot between red lines. The correlation coefficient and p-value are estimated 
based on Spearman’s correlation. (B) The number of detected ADTs in each cell is 
plotted with the number of ADT molecules. The correlation coefficient and
p-value are estimated based on Spearman’s correlation. (C) The number of 

molecules identified in the transcriptome is plotted with the percentage of the 
mitochondrial genes. The correlation trend can test whether the mitochondrial 
percentage remains constant regardless of the number of identified molecules. 
CITESeQC functions showing and quantifying relative abundance distribution of
(D) CCR7 RNA, (E) ADT-CD14 in the example CBMC dataset, and (F) ADT-CD14 
in the PBMC dataset. CITESeQC functions showing the distribution of the 
Shannon entropy values of (G) the top 10 marker genes from each cluster and (H) 
all surface markers across the clusters defined in def_clust() on the example 
CBMC dataset.

SUPPLEMENTARY FIGURE S3 
Set of scatterplots (A-O) each drawn for each cell cluster in the PBMC dataset, 
showing the correlation between ADT-CD14 abundance and the corresponding 
gene CD14 expression.

SUPPLEMENTARY FIGURE S4 
CITESeQC functions on the example CBMC dataset showing the distribution of
(A) CCR7 RNA and (B) ADTs for CCR7 on the UMAP space, respectively. (C)
Scatterplot plotting all the cells by the number of ADTs for CCR7 and the 
expression level of RNA molecules of CCR7. (D) Scatterplot plotting all the cells by 
the total number of all ADTs on the surface and all RNA molecules in the 
transcriptome.

SUPPLEMENTARY FIGURE S5 
Set of scatterplots (A-R) each drawn for each cell cluster in the CBMC dataset, 
showing the correlation between ADT-CCR7 abundance and the corresponding 
gene CCR7 expression.

SUPPLEMENTARY FIGURE S6 
Set of histograms for PBMC data, each showing the distribution of the correlation 
coefficients in all pairs of ADTs and the corresponding genes across all cell 
clusters (A) or for each cell cluster (B-P).

SUPPLEMENTARY FIGURE S7 
Set of histograms for CBMC data, each showing the distribution of the correlation 
coefficients in all pairs of ADTs and the corresponding genes for each cell cluster
(A-R).

SUPPLEMENTARY FIGURE S8 
Shannon entropy density plot of marker genes across defined clusters of RNAs 
after 5%, 10%, and 20% shuffling in 10% randomly selected cells of the (A) PBMC 
and (B) CBMC datasets with negative control density generated from 1,000 
expressed non-DE genes (gray shade).
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