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Background: Cellular indexing of transcriptomes and epitopes by sequencing
(CITE-Seq) is a powerful technique to simultaneously measure gene expression
and cell surface protein abundances in individual cells. To obtain accurate and
reliable biological findings from CITE-Seq data, it is critical to ensure rigorous
quality control (QC). However, no public method has yet been developed for
CITE-Seq QC.

Results: In this study, we propose the first software package for multi-
layered, systemic, and quantitative quality control (CITESeQC). Recognizing the
multi-layered nature of CITE-Seq data, CITESeQC performs QC across gene
expressions, surface proteins, and their interactions. It systemically evaluates
all genes and protein markers assayed in the data and filters out some
of them based on individual quality measures. Furthermore, for quantitative
QC that enables objective and standardized analyses, CITESeQC quantifies
cell type-specific expression of genes and surface proteins using Shannon
entropy and correlation-based measures. Finally, to ensure broad applicability,
CITESeQC guides users through a simple process that generates a complete
markdown report with supporting figures and explanations, requiring minimal
user intervention.

Conclusion: By quantifying the quality of CITE-Seq data, CITESeQC enables
precise characterization of gene expression within cell types and reliable
classification of cell types using surface protein markers, thereby enhancing its
value for clinical applications.
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Background

While traditional single-cell RNA-seq techniques assay only
gene expression by capturing and sequencing RNA molecules,
cellular indexing of transcriptomes and epitopes by sequencing
(CITE-Seq) assays both RNA molecules and surface proteins
of interest simultaneously by utilizing unique DNA-barcoded
antibodies, also known as “antibody-derived tags (ADTs)” Since
cell surface proteins serve as markers and communicators of a cell’s
identity and function, CITE-Seq data enable the identification not
only of cell-type specific gene expression patterns but also of cell
types defined by specific surface proteins that may be used for
further clinical applications. For example, although some immune
cell types, suchas y/8 T cells (Zakeri et al., 2022), mucosal-associated
invariant T cells (Li et al, 2023), innate lymphoid cells (ILCs)
(Jacquelot et al., 2022), and neutrophils (Geh et al., 2022), have
demonstrated significant clinical potential, single-cell RNA-seq data
alone are often insufficient to detect them reliably. This limitation
arises from the potentially low RNA content of lineage-defining
transcripts (Stoeckius et al., 2017), the presence of high levels of
RNase (Hao et al., 2021; Mazzurana et al., 2021; Scheyltjens et al.,
2022), or the fact that mRNA expression patterns do not always
correlate with protein expression (Stoeckius et al., 2017).

To ensure high-quality discoveries from CITE-Seq data, the
first critical step is to control the quality (QC) of the input CITE-
Seq data. For QC of CITE-Seq data, previous studies performed
a limited set of analyses, and there was no standalone method.
To develop a desirable standalone method for CITE-Seq QC, we
recognize the following three limitations in the current CITE-Seq
studies. First, some studies performed QC only at the RNA level,
e.g., in terms of either transcriptome library size (Butler et al.,
2018; Stuart et al., 2021), transcriptomic technical artifacts such as
RNA contamination (Hong et al., 2022), or likely empty droplets
or ambient RNAs (Grob et al., 2023; Subramanian et al., 2022).
However, since CITE-Seq assays both RNA and cell surface protein
data, CITE-Seq QC must assess not only individual RNA quality
but also the quality of protein data and their interactions with RNA
data. Specifically, i) the individual protein and RNA data quality
must be controlled, respectively, to faithfully identify cell types with
certain surface proteins and capture the cells’ molecular profiles,
and ii) the relationship between the RNAs and the proteins must
be investigated since, if certain cells express a specific gene that
is readily translated and transported to the surface, the surface
protein abundance level is expected to be correlated with the gene
expression in the cells. Second, while a small number of other studies
used surface protein information for QC, they examined only a
subset of the assayed surface proteins as they were interested in
particular cell types marked by the surface proteins. For example,
one study examined 7 protein markers (CD3, CD4, CD8, CD14,
CD16, CD19, and CD56) out of 188 available markers in the
data to differentiate five cell types (B cells, CD4 T cells, CD8 T
cells, classical monocytes, and natural killer) (Nettersheim et al.,
2022), and another study examined four protein markers, out
of 17 available markers, to differentiate four cell types (T cells,
monocytes, B cells, and cytotoxic T lymphocytes) (Granja et al.,
2019). However, to detect systematic errors that affect most assays
in the data, it is important to examine the majority of RNAs
and proteins rather than a small subset of them. Third, when

Frontiers in Bioinformatics

02

10.3389/fbinf.2025.1630161

the abovementioned studies demonstrated the relationship between
genes and the corresponding proteins, they relied mostly on visual
inspection of a dimensionality-reduced space (e.g., UMAP) for
either the abundance level relationship between genes and proteins
or their cell-type specificity. However, quantitative measures are
needed to objectively assess the relationship between abundance
levels and cell-type specificity. Quantitative measures can help
further compare the data quality across various CITE-Seq datasets
and make the QC analyses scalable.

In this study, we introduce CITESeQC, the first software package
specifically designed to provide a comprehensive and interpretable
set of quantitative metrics for assessing the quality of CITE-Seq
data. Rather than performing direct filtering or removal of cells or
features, CITESeQC serves as a diagnostic framework that guides
users in making informed quality control (QC) decisions tailored
to their dataset. CITESeQC supports multi-layered QC by offering
seven modules for evaluating RNA or protein data individually and
five additional modules for assessing cross-modality relationships,
such as RNA-protein consistency. To ensure systematic coverage,
these 12 modules collectively assess all genes and surface proteins
in the dataset while flagging low-quality features using individual
QC metrics. For quantitative evaluation, CITESeQC computes
Shannon entropy to assess cell type-specific expression patterns
and correlation coefficients to capture expected relationships
between gene expression and protein abundance. Designed for
broad usability, CITESeQC guides users through a streamlined
process that generates a complete markdown report, including
informative visualizations and interpretations, with minimal user
intervention. This flexible, user-guided approach enables researchers
to evaluate data quality in a nuanced and biologically informed
manner—supporting both standardized workflows and exploratory
analyses—without relying on rigid, pre-defined thresholds.

Results

CITESeQC quantifies various aspects of
CITE-Seq quality

CITESeQC provides 12 R modules to assess the quality
of RNAs, surface proteins, and their interactions in multiple
aspects and one R module to define cell clusters or import cell
cluster definitions (Figure 1). The modules also provide quantitative
measures, wherever possible, to test particular hypotheses regarding
the quality.

1. “RNA_read_corr()” produces a scatterplot correlating the
number of molecules/genes with the number of genes
identified in the transcriptome. Since the cutoffs for good-
quality cells will be passed as the arguments to the function,
users can modify them for their data. Default values are from
the Seurat-guided clustering tutorial. Spearman’s correlation
coefficient is calculated to allow users to test the hypothesis
that the total number of genes increases with the number of
detected genes in the transcriptome.

“ADT_read_corr()” produces a scatterplot correlating the
number of detected ADTs with the total number of ADT
molecules identified on the cell surfaces. Since the cutoffs
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identifying good-quality cells are annotated on the plot as
passed as the arguments of the function, users can modify
them for their data. Default values are from the Seurat-
guided clustering tutorial. Spearman’s correlation coefficient
is calculated to allow users to test the hypothesis that the
total number of ADT molecules increases with the number of
detected ADTSs on the cell surface.

. “RNA_mt_read_corr()” produces a scatterplot correlating the
number of genes identified in the transcriptome with the
percentage of the mitochondrial genes. Spearman’s correlation
coefficient is calculated to allow users to test the hypothesis that
the mitochondrial percentage remains constant regardless of
the number of identified molecules.

. “def_clust()” either defines the cell clusters based on the input
gene expression matrix or imports the definition. To define
the cell clusters, it employs the Seurat package with the input
clustering resolution. For each cell cluster, whether defined
internally or imported, this function identifies marker genes
for later use.

. “RNA_dist()”
gene

the
the
using  def_clust().

visualizes specificity of the input

defined or
quantification

expression across cell clusters

imported For and
comparison, it calculates Shannon entropy on the expression
distribution across clusters, which is defined as follows:
H,ormalized = — @Z?leilogz(pi), where N is the number
of clusters (size of the alphabet). A lower value in Shannon
entropy represents a more specific expression of the gene across
the clusters.
. “multiRNA_hist()” is a histogram of Shannon entropy values
of the marker genes identified in def_clust(). The histogram
displays the specificity of marker genes across clusters. Users
can modify the number of marker genes. A histogram peak
at high entropy values suggests that the marker genes lack
specificity.
“ADT_dist()” visualizes the specificity of the input ADT
abundance across the cell clusters. Specifically, it calculates
normalized Shannon entropy on the expression distribution
across clusters. Note that the clusters were defined based on
gene expression unless provided by the users.
“multiADT_hist()” is a histogram of normalized Shannon
entropy values of all ADTs identified for the cell clusters.
The histogram displays the specificity of ADT markers across
clusters. Note that the clusters were defined based on gene
expression unless provided by the users. A histogram peak
at high entropy values suggests that the marker genes lack
specificity.
“RNA_ADT_read_corr()” produces a scatterplot showing the
correlation between the number of assayed genes in the
transcriptome and the number of assayed cell surface proteins
across the cells. Spearman’s correlation coefficient is calculated
to allow users to test the hypothesis that the number of assayed
proteins increases with the number of assayed genes.
“RNA_ADT_UMAP_corr()” produces pairs of UMAP plots
and a scatterplot. Each UMAP plot pair is drawn for the

10.
abundance of the input ADT and the corresponding gene

expression, respectively. The scatterplot plots the abundance of
ADTs and the expression of the RNAs of the input gene.
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FIGURE 1
[llustrative categorization of the 12 R functions in CITESeQC. The

additional def_clust() function needs to be run before running
functions in "with cell clusters” category.

11. “RNA_ADT _cluster_corr()” is a set of scatterplots, each drawn
for each cell cluster, showing the correlation between input
ADT abundance and the corresponding gene expression for
the cluster.

“RNA_ADT_hist()” is a histogram of the correlation
coefficients in all pairs of ADTs and the corresponding genes

12.

in expression.
“RNA_ADT _cluster_hist()” is a set of histograms, each
showing the distribution of the correlation coefficients in all

13.

pairs of ADTs and the corresponding genes for each cell cluster.

CITESeQC interpretation of diagnostic
quality metrics

We demonstrate the applicability of CITESeQC using two
example CITE-Seq datasets from healthy donors. The first
comprises peripheral blood mononuclear cells (PBMCs), and
the second comprises cord blood mononuclear cells (CBMCs).
On the datasets, three functions beginning with either “RNA”
or “ADT” and ending with “read_corr” inspect the correlation
between the total number of reads and those aligned with
RNAs or proteins across cells, enabling users to test whether
the alignment process contributes to the quality. CITESeQC
calculates Spearman’s correlation coeflicient and a permutation-
based p-value as quantitative measures. Our analysis of PBMC and
CBMC datasets (Supplementary Figures SIA-C, 2A-C) confirms
that a valid alignment should yield a positive correlation. The
functions RNA_dist() and ADT_dist() compute the distribution
of a single marker gene or surface protein across cell clusters
using Shannon entropy to quantify target specificity. To illustrate
their utility, we examined CCR7 and CST7 in PBMCs—canonical
markers for naive T cells and cytotoxic lymphocytes, respectively
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(Figures 2A,B). Although both are recognized markers, Seurat’s
built-in module lacks the resolution to differentiate their relative
specificity across clusters (Figures 2C-E). In contrast, our entropy-
based quantification provides a clear, interpretable measure of
specificity. For example, CCR7 is less specific than CST7 (with
entropy values of 2.53 and 2.34, respectively), enabling researchers
to prioritize CST7 over CCR7 for downstream analyses, such as
cell-type annotation, differential expression, and experimental
validation. This added layer of interpretability represents a key
advantage over existing methods. We also showed the specificity
of CCR7 in CBMC and CD14 ADT in PBMC and CBMC (S.
Figures 2D-F). CD14 also shows strong specificity across PBMC
and CBMC cell clusters as it is robustly expressed in classical
and intermediate monocytes, with Shannon entropy values of 2.39
and 3.83, respectively. “multiRNA_hist()” and “multiADT_hist()”
visualize the distribution of Shannon entropy values for marker
genes and surface proteins, respectively. In our analysis, we used
the top 10 marker genes for each cluster and all surface proteins
identified in PBMC and CBMC (Figures 2EG,S; Figures 2G,H). In
addition, three functions beginning with “‘RNA_ADT” and ending
with “corr” allow practitioners to quantify the correlation between
RNAs and surface proteins. Our analysis of CD14 on PBMC and
CCR7 on CBMC (Supplementary Figures SID-G, 3, 4, 5) visually
demonstrates their specificity across cell clusters on UMAP and
using correlation. Finally, two functions beginning with “RNA_
ADT” and ending with “hist” visualize the distribution of the
correlation either across all clusters or for each cluster. Running
the functions on CCR7 and ADT14 shows cluster-specific behavior
of the markers (Supplementary Figures S6,7). Before running
functions that require cell cluster definitions (e.g., RNA_dist()),
def_clust() should be called to either define or import them.

Systematic evaluation of CITESeQC's
sensitivity to technical noise in CITE-Seq
data

To show how CITESeQC detects systemic errors, we performed
two controlled noise-injection experiments using 10% of the cells
randomly selected in the PBMC dataset. First, to simulate noise
introduced by systemic disruptions in feature-count relationships,
we shuffled expression values for 5%, 10%, and 20% of RNA
features and 10%, 20%, and 30% of ADT features. We selected
higher percentages for ADT data to ensure a noticeable effect
despite its smaller feature set (33,538 RNAs vs. 17 ADTs). For
RNA, each condition was repeated 10 times; for ADT, 50 times for
statistical significance and computational efficiency. To quantify the
noise effect, CITESeQC calculates Spearman’s correlation between
nFeature (the number of unique genes or proteins detected in a
cell) and nCount (total count per cell). In high-quality data, these
metrics are expected to show a strong positive correlation—cells
with more detected features tend to have higher total counts.
Our shuffling strategy is to preserve cell-level relationships while
disrupting the gene- or protein-level relationships. In the results, we
observed a consistent decrease in correlation values with increasing
levels of noise for both RNA and ADT (Figures 3A,B). The RNA
modality showed a wider dynamic range of degradation due to its
larger number of features. These results confirm that CITESeQC’s
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correlation-based metrics are sensitive to global disruptions and
can effectively capture systemic quality issues. Second, we evaluated
how increasing randomness affects gene/protein specificity across
clusters, a key step for downstream analyses. We randomly shuffled
10%, 20%, and 30% of RNA and ADT features, respectively, and
defined clusters using the function def clust(). For efficiency, we
selected 10,000 RNA features by ranking genes according to the
standard deviation of their expression across cells and retaining
those with the highest variability. Using the defined clusters, we ran
multiRNA_hist() and multiADT_hist() functions to calculate the
Shannon entropy across all shuffled features. In high-quality data,
markers with specificity should show low entropy. As we increased
the level of noise, the entropy values exhibited a systematic increase,
with the overall distribution shifting toward higher values (i.e.,
rightward shift). For RNA features, we observed significant shifts
in Shannon entropy from 10% to 20% and from 20% to 30% (p-
value: 0.04 and 0.05, respectively, Figure 3C), suggesting a loss of
cluster-specific expression patterns. A similar shift was found for
ADT features, although it was not significant (p-value: 0.2 in both
10%-20% and 20%-30%, Figure 3D), potentially due to the limited
number of measured ADTs (n = 17). These findings demonstrate that
entropy-based metrics in CITESeQC effectively capture the erosion
of biological signal due to random noise. Together, both experiments
validate the sensitivity of CITESeQC to detect quality issues at
multiple levels—global structure and cluster specificity—making
it a valuable tool for CITE-Seq data QC across applications and
platforms.

CITESeQC facilitates marker specificity
analysis

To demonstrate how CITESeQC’s quantitative measures
can improve downstream biological analysis, we systematically
determined a Shannon entropy cutoff to assess the specificity of
marker genes. Specifically, we focused on defining an empirical
threshold that distinguishes truly cluster-specific markers from
background, non-specific genes. To establish this threshold, we first
randomly selected 1,000 expressed RNAs (>5 in average expression)
that were not differentially expressed across any clusters in the
PBMC dataset to serve as a negative control. We then calculated
the Shannon entropy of these non-marker genes across pre-defined
clusters. Because these genes are expected to be broadly and non-
specifically expressed, their entropy distribution reflects a null
distribution of non-specific expression. We defined the marker
specificity cutoft as the 5th percentile of this distribution (i.e., the left
tail), identifying entropy values below this threshold as statistically
specific. We then applied this empirical cutoff to evaluate the top 10,
20, and 30 RNA markers (ranked by differential expression p-value)
identified in our analysis (Supplementary Figure S8). Although the
set with more RNA markers exhibits heterogeneous distribution of
entropy values, the cutoff clearly distinguishes significantly specific
markers from non-specific markers. In PBMCs, for example, entropy
values below 1.45 were deemed specific, with 26 (20%), 39(16%),
and 41 (12%) of the top 10, 20, and 30 markers, respectively, meeting
this criterion (Supplementary Table S1). In CBMCs, where the cutoff
was 0.75, similar trends were observed. This analysis quantitatively
validates which markers are truly specific to each cluster. By
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selecting cluster-specific markers based on CITESeQC entropy-
based specificity, users can enhance the biological interpretability
and clinical utility of single-cell data analyses. This is particularly
important because high-specificity markers are essential for robust
cell type classification, biomarker discovery, therapeutic targeting,
and ensuring reproducibility across datasets.

Discussion

The CITESeQC package is the first software package that
assesses the quality of CITE-Seq data in terms of the individual
RNAs, surface proteins, and their interactions. For quantitative
evaluation, CITESeQC computes Shannon entropy and RNA-ADT
correlation coefficients—two  biologically informed metrics.
Although entropy itself is designed to quantify expression
distribution and is not a direct indicator of technical quality,
it becomes informative about data quality when applied to
marker genes or proteins. In high-quality CITE-Seq data, well-
established cell type markers—such as CD3 for T cells or CD19
for B cells—should exhibit low entropy, with expression localized

to the expected clusters. If these canonical markers instead

Frontiers in Bioinformatics

show unexpectedly high entropy—that is, broadly or randomly
distributed expression—it may suggest technical issues such as
ambient RNA contamination that causes marker expression to
bleed into unrelated clusters, poor clustering resolution that reflects
insufficient transcriptomic signal, or antibody non-specificity or
background staining in the ADT layer. Similarly, for a subset of
well-characterized, high-expression surface markers, a moderate
to strong positive correlation between mRNA and protein levels
is expected in biologically consistent and technically sound CITE-
Seq data. When known concordant markers exhibit unexpectedly
low or erratic correlations, it can suggest technical artifacts
such as antibody dropout or mislabeling, droplet barcoding or
ambient tag misassignment, or batch effects or sample degradation.
CITESeQC does not use these metrics to impose strict thresholds
or automatically discard features; instead, it provides them as
diagnostic tools to allow users to distinguish between meaningful
biological heterogeneity and technical noise. Altogether, we provide
a comprehensive set of computational QC measures for CITE-Seq
data that assess and quantify various aspects of data quality at both
individual RNA and protein levels and in their interactions.

To determine the quality of a CITE-Seq dataset using the
quantitative measures provided by CITESeQC, the next step

06 frontiersin.org
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is to determine appropriate cutoff values for each measure.
However, establishing some cutoff values is not straightforward.
For example, measures correlating RNAs with their corresponding
surface proteins depend not only on data quality but also on
the translation efficiency of the RNAs. Even for datasets of same
quality, translation efficiency can vary across biological contexts
due to post-transcriptional regulatory processes such as alternative
polyadenylation and competing endogenous RNAs (Fan, et al., 2020;
Kim, et al., 2020; Park, et al., 2018). Thus, to assess quality using
correlation measures, we recommend comparing the values with
those from other CITE-Seq datasets for which users have prior
knowledge of data quality. In the future, to perform QC analysis
without reference datasets, we plan to collect multiple CITE-Seq
datasets of both high and low quality and determine cutoff values
directly from the data.

Methods
CITESeQC in user-friendly R markdown

CITESeQC 0.9.1) R package with
minimal prerequisites and is publicly available at https://
github.com/sunjie001130/CITESeQC. It employs the baseline R
packages—graphics, stats, and utils—making it and easy for users
to install. Both the source code and tutorial with example datasets

(version is an

are available to download. The tool can be used in an R script or
R Markdown file. The advantage of this design is that it can allow
the integration of code, visualizations, and explanations in a single
document, which facilitates reproducibility and documentation of
data analysis workflows. Additionally, R markdown files do not
require familiarity with command-line syntax, like many Linux
environment-based software programs.

Experiment data

PBMCs, which have a single round nucleus, include
lymphocytes (T cells, B cells, and NK cells) and monocytes
isolated from peripheral blood. We downloaded the dataset from
https://www.10xgenomics.com/, and CBMCs are derived from
umbilical cord blood. They include hematopoietic stem/progenitor
cells and immune cells that are more naive than adult PBMCs,
making them valuable for studying immune development. We
downloaded the dataset from https://www.ncbinlm.nih.gov/geo/
query/acc.cgi?acc=GSE100866.
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SUPPLEMENTARY FIGURE S1

CITESeQC functions based on correlation drawn for the example PBMC CITE-Seq
dataset. (A) The number of detected genes in each cell is plotted with the number
of molecules. The cutoffs for cells of good quality are annotated on the plot
between red lines. The correlation coefficient and p-value are estimated based on
Spearman’s correlation. (B) The number of detected ADTs in each cell is plotted
with the number of ADT molecules. The correlation coefficient and p-value are
estimated based on Spearman'’s correlation. (C) The number of molecules
identified in the transcriptome is plotted with the percentage of the mitochondrial
genes. The correlation trend can test whether the mitochondrial percentage
remains constant regardless of the number of identified molecules. CITESeQC
functions on the example PBMC dataset showing the distribution of (D) CD14
RNA and (E) ADTs for CD14 on the UMAP space, respectively. (F) Scatterplot
plotting all the cells by the number of ADTs for CD14 and the expression level of
RNA molecules of CD14. (G) Scatterplot plotting all the cells by the total number
of all ADTs on the surface and all RNA molecules in the transcriptome.

SUPPLEMENTARY FIGURE S2

CITESeQC functions based on correlation drawn for the example CBMC
CITE-Seq dataset. (A) The number of detected genes in each cell is plotted with
the number of molecules. The cutoffs for cells of good quality are annotated on
the plot between red lines. The correlation coefficient and p-value are estimated
based on Spearman'’s correlation. (B) The number of detected ADTs in each cell is
plotted with the number of ADT molecules. The correlation coefficient and
p-value are estimated based on Spearman'’s correlation. (C) The number of
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molecules identified in the transcriptome is plotted with the percentage of the
mitochondrial genes. The correlation trend can test whether the mitochondrial
percentage remains constant regardless of the number of identified molecules.
CITESeQC functions showing and quantifying relative abundance distribution of
(D) CCR7 RNA, (E) ADT-CD14 in the example CBMC dataset, and (F) ADT-CD14
in the PBMC dataset. CITESeQC functions showing the distribution of the
Shannon entropy values of (G) the top 10 marker genes from each cluster and (H)
all surface markers across the clusters defined in def_clust() on the example
CBMC dataset.

SUPPLEMENTARY FIGURE S3

Set of scatterplots (A-O) each drawn for each cell cluster in the PBMC dataset,
showing the correlation between ADT-CD14 abundance and the corresponding
gene CD14 expression.

SUPPLEMENTARY FIGURE S4

CITESeQC functions on the example CBMC dataset showing the distribution of
(A) CCR7 RNA and (B) ADTs for CCR7 on the UMAP space, respectively. (C)
Scatterplot plotting all the cells by the number of ADTs for CCR7 and the
expression level of RNA molecules of CCRY. (D) Scatterplot plotting all the cells by
the total number of all ADTs on the surface and all RNA molecules in the
transcriptome.

SUPPLEMENTARY FIGURE S5

Set of scatterplots (A-R) each drawn for each cell cluster in the CBMC dataset,
showing the correlation between ADT-CCR7 abundance and the corresponding
gene CCRY expression.

SUPPLEMENTARY FIGURE S6

Set of histograms for PBMC data, each showing the distribution of the correlation
coefficients in all pairs of ADTs and the corresponding genes across all cell
clusters (A) or for each cell cluster (B-P).

SUPPLEMENTARY FIGURE S7

Set of histograms for CBMC data, each showing the distribution of the correlation
coefficients in all pairs of ADTs and the corresponding genes for each cell cluster
(A-R).

SUPPLEMENTARY FIGURE S8

Shannon entropy density plot of marker genes across defined clusters of RNAs
after 5%, 10%, and 20% shuffling in 10% randomly selected cells of the (A) PBMC
and (B) CBMC datasets with negative control density generated from 1,000
expressed non-DE genes (gray shade).
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