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Integrated multi-optosis model
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Ana Beatriz Garcia® and Enrique Medina-Acosta'*
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Norte Fluminense, Rio de Janeiro, Brazil, ’Pathology Department, Stanford University, Stanford, CA,
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Regulated cell death (RCD) is fundamental to tissue homeostasis and cancer
progression, influencing therapeutic responses across tumor types. Although
individual RCD forms have been extensively studied, a comprehensive
framework integrating multiple RCD processes has been lacking, limiting
systematic biomarker discovery. To address this gap, we developed a multi-
optosis model that incorporates 25 distinct RCD forms and integrates multi-
omic and phenotypic data across 33 cancer types. This model enables the
identification of candidate biomarkers with translational relevance through
genome-wide significant associations. We analyzed 9,385 tumor samples from
The Cancer Genome Atlas (TCGA) and 7,429 non-tumor samples from the
Genotype-Tissue Expression (GTEx) database, accessed via UCSCXena. Our
analysis involved 5,913 RCD-associated genes, spanning 62,090 transcript
isoforms, 882 mature miRNAs, and 239 cancer-associated proteins. Seven
omic features—protein expression, mutation, copy number variation, miRNA
expression, transcript isoform expression, mRNA expression, and CpG
methylation—were correlated with seven clinical phenotypic features: tumor
mutation burden, microsatellite instability, tumor stemness metrics, hazard ratio
contexture, prognostic survival metrics, tumor microenvironment contexture,
and tumor immune infiltration contexture. We performed over 27 million
pairwise correlations, resulting in 44,641 multi-omic RCD signatures. These
signatures capture both unique and overlapping associations between omic
and phenotypic features. Apoptosis-related genes were recurrent across
most signatures, reaffirming apoptosis as a central node in cancer-related
RCD. Notably, isoform-specific signatures were prevalent, indicating critical
roles for alternative splicing and promoter usage in cancer biology. For
example, MAPK10 isoforms showed distinct phenotypic correlations, while
COL1A1 and UMOD displayed gene-level coordination in regulating tumor
stemness. Notably, 879 multi-omic signatures include chimeric antigen
targets currently under clinical evaluation, underscoring the translational
relevance of our findings for precision oncology and immunotherapy.
This integrative resource is publicly available via CancerRCDShiny
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(https://cancerrcdshiny.shinyapps.io/cancerrcdshiny/), supporting future efforts
in biomarker discovery and therapeutic target development across diverse

cancer types.
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1 Introduction

Regulated cell death (RCD) represents a highly controlled
cellular process crucial for development, tissue homeostasis, and
cellular stress responses (Newton et al., 2024). This process removes
damaged, unnecessary, or potentially harmful cells, supporting
organismal function and survival. RCD is essential in cancer
research, playing dual roles in tumor suppression, progression and
treatment resistance (Gong et al., 2023; Koren and Fuchs, 2021).

RCD involves a complex network of signals and mechanisms
from various cell death processes rather than functioning through
a single, isolated pathway (Galluzzi et al., 2018; Ravel et al., 2020).
The cell death processes are categorized into types, referred to
as RCD forms, each playing distinct yet sometimes overlapping
roles (Peng et al., 2022). The RCD forms include apoptosis
(Elmore, 2007), necroptosis (Galluzzi et al, 2017), pyroptosis
(Jorgensen et al., 2017), ferroptosis (Stockwell et al, 2017),
autophagy (Debnath et al, 2023), cuproptosis (Feng et al,
2024), mitotic catastrophe (Castedo et al., 2004), parthanatos
(Fatokun et al., 2014), immunogenic cell death (Choi et al., 2023),
autosis (Bai et al., 2023), NETosis (Brinkmann et al., 2004),
disulfidptosis (Zheng et al., 2023), alkaliptosis (Chen F. et al., 2023),
lysosome-dependent cell death (Aits and Jaattela, 2013), entosis
(Overholtzer et al., 2007), anoikis (Frisch and Francis, 1994),
oxeiptosis (Holze et al., 2018), paraptosis (Sperandio et al., 2000),
cellular senescence (Campisi, 2013), mitoptosis (Lyamzaev et al.,
2020), erebosis (Ciesielski et al., 2022), efferocytosis (Qiu et al.,
2023), mitochondrial permeability transition (Suh et al., 2013),
methuosis (Maltese and Overmeyer, 2014), and necrosis (Kim et al.,
2019). A summary of the operational definitions for the RCD forms
is provided in Figure 1 and Supplementary Dataset SIA.

Most studies on RCD in cancer are confined to a death
form (Liang et al, 2020; Zhang Y. et al., 2022; Zhang Z. et al,,
2022; Xu et al., 2023). Multi-optosis, a growing concept describing
the crosstalk between different RCD pathways, highlights the
complexity of RCD in cancer. This interconnectedness can be
exploited for therapeutic strategies that simultaneously induce
multiple forms of cell death. Integrating various forms of RCD
into explorative strategies to discover biomarkers has ranged from
3-optosis to 15-optosis models in a restricted number of cancer
types (Su et al., 2023; SunX. et al, 2024; Zou et al, 2022;
Wei Q. et al,, 2023; Wang and Zhang, 2024).

PANoptosis,
inflammatory RCD pathway, characterized by a coordinated and

a 3-optosis model, describes a unique
often simultaneous convergence of features from pyroptosis,
apoptosis, and necroptosis (Sun X. et al, 2024). It is thought
to play a role in various physiological processes and diseases,
including cancer (Samir et al.,, 2020; Wang and Kanneganti, 2021;

Shi et al., 2023; Zha et al., 2023; Zhu et al., 2023). Research on
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the prognostic value of PANoptosis-related gene signatures in
cancer is ballooning. In 2024 alone, the 3-optosis model has been
assessed in a variety of cancers, including lung adenocarcinoma
(Han et al, 2024), breast cancer (Yu et al., 2024), pancreatic
adenocarcinoma (Zhao et al., 2024), hepatocellular carcinoma
(Zha et al, 2023), colon adenocarcinoma (Liu et al, 2024),
gastric cancer (Liu et al., 2024), head and neck squamous cell
carcinoma (Gao et al.,, 2024), glioma (Sun E et al., 2024), acute
myeloid leukemia (Tang et al., 2024), thyroid cancer (Xie et al,,
2024), and cutaneous melanoma (Zhong et al, 2023). Some
models are mixed by including aging-associated and extrusion
death-associated genes (Su et al., 2023).

A 12-optosis model, encompassing apoptosis, necroptosis,
pyroptosis, ferroptosis, cuproptosis, entosis, NETosis, parthanatos,
lysosome-dependent cell death, autophagy-dependent cell death,
alkaliptosis, and oxeiptosis, was evaluated post-surgery in patients
with triple-negative breast cancer (Zou et al., 2022). A 13-optosis
model, including disulfidptosis, was assessed for lung carcinoma
(Wei Q. et al., 2023). Recently, a 15-optosis model was assessed in
postoperative bladder cancer patients (Wang and Zhang, 2024). This
model encompasses pyroptosis, ferroptosis, necroptosis, autophagy,
cuproptosis,
lysosome-dependent cell death, intrinsic and extrinsic apoptosis,

immunologic cell death, entosis, parthanatos,
necrosis, and anoikis, as well as apoptosis-like and necrosis-like
morphologies. The study identified a 13 gene-based cell death
signature (SFRP1, CDOI, HGF, SETD7, IRAK3, STEAP4, CD22,
C4A, VIM, TUBB6, MFN2, FOXO3, and YAPI).

Notably, the 13 genes contribute uniquely to the signature, each
with distinct biological functions and associations with immune,
tumor microenvironment, and clinical features, rather than sharing
correlations across all phenotypic or genomic aspects to provide an
overall prognostic score related to cell death in bladder cancer.

The discovery of molecular markers associated with RCD
forms can serve as prognostic or predictive biomarkers, guiding
treatment decisions and monitoring therapeutic responses
(Zhou Y. et al., 2024). Targeting specific RCD forms can improve
the effectiveness of current therapies. For example, in patients
with chronic lymphocytic leukemia and acute myeloid leukemia
who have relapsed or refractory disease, BH3 mimetics such
as Venetoclax (ABT-199), designed to mimic the activity of
BH3-only proteins, can sensitize cancer cells to apoptosis by
inhibiting anti-apoptotic BCL-2 family proteins (Souers et al., 2013;
Roberts et al., 2016; DiNardo et al., 2019).

Despite the diverse RCD forms, cancer cells often evade
these processes through various mechanisms, including those
involving cancer stem cells, which are the foundation of the
disease (Hanahan and Weinberg, 2011). This evasion leads to
unchecked proliferation and tumor development (Castelli et al.,
2021). Many standard cancer treatments, including chemotherapy
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RCD form

Apoptosis
Necroptosis
Pyroptosis
Ferroptosis
Autophagy
Cuproptosis

Mitotic catastrophe
Parthanatos
Immunogenic cell death
Autosis

NETosis
Disulfidptosis
Alkaliptosis
Lysosome-dependente cell death
Entosis

Anoikis

Oxeiptosis
Paraptosis

Cellular senescence
Mitoptosis

Erebosis
Efferocytosis

Mitochondrial permeability transition

10.3389/fbinf.2025.1630518

Operational Definition

Programmed cell death with cell shrinkage, chromatin condensation, and DNA fragmentation, causing autonomous lysis without inflammation.
Programmed necrosis regulated by RIPK1, RIPK3, and MLKL, causing mitochondrial dysfunction, plasma membrane rupture, and inflammation.
Programmed cell death involving caspase-1 and gasdermin-mediated cell lysis, associated with inflammation.

Iron-dependent cell death with lipid peroxide accumulation. Oxidative, non-apoptotic, and programmed via iron-induced lipid peroxide damage.
Self-digestion via lysosomes, degrading cell components. Essential for maintaining cell function and homeostasis.

Regulated cell death driven by copper accumulation and associated mitochondrial stress.

Cell death resulting from abnormal mitosis, often due to mitotic failure and genomic instability.

Programmed cell death via hyperactivated PARP-1, causing DNA fragmentation and AlF translocation to the nucleus.

Form of cell death that activates the immune system against dead cell antigens.

A subtype of autophagy-dependent cell death, dependent on the Na+/K+-ATPase pump.

Neutrophil cell death releasing NETSs to trap pathogens; an inflammatory cell death mode of neutrophils.

Condition in which abnormal expression of SLC7A11 under glucose starvation causes disulfide accumulation and stress leading to cell death.
pH-dependent cell death triggered by alkaline conditions, involving NF-kB pathways and CA9 downregulation.

Cell death dependent on the permeabilization of lysosomes and the release of cathepsins.

Cell death resulting from one cell being engulfed by another. Form of cell death characterized by the engulfment and killing of one cell by another.
Form of apoptosis induced by detachment from the extracellular matrix, critical for preventing metastasis.

Regulated form of cell death driven by oxidative stress and characterized by the involvement of KEAP1 and NRF2.

Non-apoptotic cell death with cytoplasmic vacuolation, distinct from apoptosis, involving vacuolization.

Stable cell cycle arrest where cells remain metabolically active but no longer proliferate.

Selective elimination of damaged mitochondria, triggered by mitochondrial permeability transition and oxidative stress.

Novel form of cell death reported during the natural turnover of gut enterocytes.

Process by which apoptotic or dead cells are removed by phagocytic cells, preventing an inflammatory response.

Involves the opening of a non-selective pore in the inner mitochondrial membrane, leading to loss of membrane potential and cell death.

Methuosis

Necrosis

FIGURE 1

Unique morphological characteristics involving vacuolization distinct from other forms of cell death.

Accidental, unregulated cell death with inflammation. Involves programmed necrosis via intracellular signaling pathways.

Operational Definitions of Regulated Cell Death Forms. This figure provides detailed operational definitions for the 25 RCD forms in the multi-optosis
model. Each cell death process is characterized by specific biochemical and morphological features based on the Nomenclature of Cell
Death 2018 (Galluzzi et al., 2018), with additional definitions derived from original research and reviews in 6,603 PDFs (corpus A).

and radiation, aim to induce RCD in cancer cells. However,
resistance to these treatments frequently arises from defects in
RCD pathways. Mutations in genes regulating apoptosis, such as
TP53 and BCL2, are prevalent in various cancers and contribute to
resistance to cell death and increased malignancy (Aubrey et al.,
2018; Su et al,, 2022). Mutations in genes critical for the execution
of apoptosis, such as CASP3 and CASP9, have been associated
with various cancers, resulting in reduced efficacy of chemotherapy
and radiation treatments (Ghavami et al., 2009). Mutations can
inactivate apoptotic pathways or alter the expression of regulatory
proteins, such as BCL-2 family members, contributing to multidrug
resistance in cancer cells (Neophytou et al., 2021).

Research on identifying potential markers and therapeutic
targets based on RCD forms in cancer often faces shortcomings.
Most studies are limited to a single form of RCD (Liang et al.,
2020; Zhang Y. et al., 2022; Zhang Z. et al., 2022; Xu et al., 2023), a
specific type of cancer (Zou et al., 2022; Yu et al., 2024; Wei Y. et al.,
2023; Chen et al., 2022), or a single type of association (i.e., mRNA
expression versus T cell infiltrates and overall survival) (Zhu et al.,
2023; Han et al., 2024; Wang X. et al., 2022). Studies often overlook
the biological significance of whether correlations are positive or
negative, the perturbances in gene expression compared to non-
tumor samples, or rank the importance of gene signatures based
on non-adjusted p-values rather than on a genome-wide scale
(Pan B. et al,, 2022; Gadepalli et al., 2021; Ye et al., 2023). Many
reported gene expression signatures exhibit low correlation scores
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and limited clinical utility, raising questions about their effectiveness
and reliability (Liang et al., 2020; Pan S. et al., 2022; Wu et al., 2021).

Unlike studies that assume uniform behavior of RCD-related
genes across cancers, our approach acknowledges that each cancer
type has its unique molecular and biological context. Thus, a gene
that induces cell death in one cancer might help another cancer
evade treatment. An example is TP53, which is commonly known
to induce apoptosis in many types of cancer. Still, it has been found
to promote survival in some contexts, depending on the cellular
environment and specific mutations present (Aubrey et al., 2018).
We thus recognize the non-uniformity in the involvement and roles
of RCD-related genes across different RCD forms and cancer types.
This non-uniformity means that the activities and effects of these
genes can vary widely between different RCD forms and cancer
types. By analyzing each gene and cancer type individually, we can
understand these differences and identify multi-omic signatures that
accurately capture the specific ways RCD-related genes contribute
to each cancer. We believe this approach will lead to more precise
biomarkers and better-targeted therapies.

Building upon the concept of multi-optosis, which describes
the intricate crosstalk between distinct RCD pathways, our
model integrates 25 forms of RCD into a comprehensive
framework (Figure 1; Supplementary Dataset S1A) to enhance the
identification of candidate biomarkers and potential therapeutic
targets with genome-wide significance across multiple cancer
types. The model provides a holistic view of RCD by analyzing
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multi-omic and phenotypic features as interconnected entities
to understand their combined impact on cancer rather than
studying each form independently. The identified signatures
integrate clinically meaningful associations between multi-omic
and phenotypic variables across 33 cancer types from The
Cancer Genome Atlas (TCGA) Pan-Cancer analysis project
(Cancer Genome Atlas Research et al, 2013), accessible through
the UCSCXena portal' (Goldman et al,, 2020) and UCSCXena
Shiny portal?> (Wang$. et al, 2022; LiS. et al, 2024). To
facilitate data exploration and analysis, we developed two
user-friendly tools: the CancerRCDShiny web browser (https://
cancerrcdshiny.shinyapps.io/cancerrcdshiny/) and the Cancer
Regulated Cell Death Data Analyst (https://chatgpt.com/g/g-
These
tools enable efficient extraction, analysis, and visualization of RCD

8etzMPrtt-cancer-programmed-cell-death-data-analyst).

data in cancer and related signatures, supporting a more effective
interpretation of relevant data and enhancing the utility and impact
of our findings.

To our knowledge, this is the first study to systematically map
and classify Pan-Cancer signatures linked to 25 RCD modalities
across seven omic layers, integrated with tumor phenotypic traits
and clinical endpoints. In addition to conceptual innovation, we
provide an interactive Shiny web application that enables real-time
exploration of >44,000 multi-omic RCD signatures stratified by
cancer type, omic modality, phenotype association, and survival
relevance.

2 Materials and methods
2.1 Multi-optosis model specificities

The multi-optosis model integrates 25 forms of RCD
(Figure 1, Supplementary Dataset S1A). Operational definitions
of twenty forms of RCD followed the recommendations of the
Nomenclature Committee on Cell Death 2018 (Galluzzi et al.,
2018); RCD operational definitions not provided in the review
by Galluzzi etal., 2018 were based on original research and
reviews included 6,603 manually curated, free-access full-text PDF
documents (Corpus A, Supplementary Material S1). We extracted,
processed, and analyzed data on various forms of RCD and their
associations with cancer using the PDF Ai Drive Tool®, which
utilizes advanced large language models (LLMs) and natural
language processing (NLP) techniques to extract and contextually
analyze data. PDF AI Drive uses six AI models to summarize
and extract structured information from PDF documents. The
models are Claude 3 Haiku, Claude 3.5 Sonnet, Claude 3 Opus,
CommandR+, Gemini 1.5 Flash and GPT-40 OpenAl (latest).
GPT-40 provided us with the most detailed outputs.

A multi-optosis inventory of 5,913 genes was compiled by
querying each RCD form term in the NCBI Gene database using a

Boolean approach (Brown etal., 2015) (Supplementary Dataset S1B).

The information was then programmatically extracted in R using the

1 UCSCXena: https://xena.ucsc.edu/
2 UCSCXenaShiny: https://shiny.zhoulab.ac.cn/UCSCXenaShiny/#
3 PDF AiDrive: https://myaidrive.com
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NCBI “Entrez” package. This approach solely reflects terms related
to RCD forms and does not imply direct functional or causative
involvement.

2.2 Signature construction: mono-omic,
multi-phenotypic framework

Each signature in our study is designed as a mono-omic,
multi-phenotypic construct. That is, a given signature is composed
exclusively of one or more feature elements, derived from a single
omic layer—either protein expression, somatic mutation, copy
number variation (CNV), miRNA expression, transcript isoform
expression, mRNA expression, or CpG methylation. We do not
combine features from different omic layers within the same
signature.

This design is guided by both biological rationale and
computational feasibility. From a biological standpoint, each omic
layer captures mechanistically distinct processes. Protein expression
reflects post-translational modification and proteostasis; somatic
mutations represent irreversible genomic alterations; CNV capture
structural genome variation; miRNAs regulate gene expression
post-transcriptionally; transcript isoforms result from alternative
splicing; mRNA reflects transcriptional output; and methylation
encodes epigenetic regulation. Merging these heterogeneous
molecular signals into a single signature would conflate mechanistic
interpretations and hinder clinical or biological inference.

Technically, the underlying data vary considerably in availability,
granularity, and completeness across tumor types. RNA-Seq
data (including mRNA, transcript isoforms, and miRNA) are
nearly complete across TCGA cohorts. In contrast, RPPA
protein expression covers only ~258 targets with variable tumor
representation, and DNA methylation profiles are probe-limited
and sample-restricted. Mutation and CNV annotations also differ
in resolution. A multi-omic integration would require imputation
or sample filtering, introducing sparsity and reducing analytic
robustness. By maintaining mono-omic integrity, each signature
remains self-contained and biologically interpretable, while enabling
systematic per-layer analysis across 33 cancer types.

Importantly, although each signature is mono-omic in structure,
its phenotypic annotations—e.g., tumor vs non-tumor expression
contrast, hazard ratio contexture (HRC), survival metric contexture
(SMC), tumor microenvironment contexture (TMC), and tumor-
infiltrating lymphocyte contexture (TIC)—may, when required,
be inferred from mRNA-level or transcript isoform expression
of the same gene locus. This bi-layer annotation strategy was
specifically implemented for non-transcriptomic layers—protein,
mutation, CNV, and methylation—when those layers lacked native
support for phenotypic inference. For example, in methylation-
specific signatures, TIC was assessed by the mRNA expression level
of the gene bearing the CpG modification.

This bi-layer annotation logic is consistent with the expression-
centric architecture of the UCSC Xena data model and reflects
a pragmatic design constraint: we did not develop programmatic
functions to compute HRC, SMC, TMC, and TIC directly from
non-expression-based data such as mutations, CNV, or methylation
profiles. We did implement transcript-based correlates for RPPA
protein data due to its continuous expression-like structure, but this
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was not feasible for the categorical or sparse mutation, CNV, or
methylation datasets.

This design choice is grounded in both biological plausibility and
practical implementation considerations. Estimating phenotypic
classifiers (e.g., immune infiltration, hazard ratios) reliably
requires continuous, high-resolution, and biologically responsive
signals—criteria met by RNA-based and protein-based datasets
but not by mutation (sparse), CNV (categorical), or methylation
(probe-limited) data. Furthermore, no established Pan-Cancer
methodologies exist for computing immune or risk classifiers
directly from these non-transcriptomic layers. Attempting such
estimation would risk generating low-confidence or overfitted
associations. Our approach thus prioritizes analytical rigor by
applying a validated transcript-based phenotypic framework, while
preserving the mono-omic identity of each signature and enhancing
its biological interpretability.

An omic feature is incorporated into a signature if it reaches
genome-wide significance for correlation with one of three
key tumor-intrinsic variables: tumor mutation burden (TMB),
microsatellite instability (MSI), or tumor stemness metric (TSM).
These variables were analyzed in high-throughput mode across
the genome and adjusted for multiple comparisons using the
Holm-Bonferroni method (adjusted p < 5 x 107%). All other
phenotypic associations—namely survival endpoints, HRC, SMC,
TMC, and TIC—were evaluated individually on a per-feature
basis using univariate Cox regression or Pearson correlation and
considered significant at unadjusted p < 0.05.

In the case of multi-element signatures, each feature included
must share the same correlation direction for the phenotypic
feature contexture (PFC), identical tumor vs non-tumor polarity,
and common classification codes for HRC, SMC, TMC, and
TIC. Features with divergent phenotypic patterns were split into
separate signatures, each contextualized by its tumor type and
phenotypic profile.

2.3 Correlation analysis between
multi-omic and phenotypic variables in 33
cancer types

We conducted a comprehensive computational
analysis correlating multi-omic variables with phenotypic
outcomes from the TCGA Pan-Cancer analysis project

(Cancer Genome Atlas Research etal., 2013), using primary datasets
sourced from the UCSC Xena portal (Goldman et al., 2020),
including the TCGA Pan-Cancer Atlas (Cancer Genome Atlas
Research et al., 2013). Secondary datasets were obtained from
the UCSC XenaShiny portal (Wang$S. et al, 2022; LiS. et al,
2024), including the GTEx dataset! for non-tumor tissue
comparisons (Consortium et al., 2013).

The multi-omic feature included RNA-Seq transcriptomics
(mRNA expression, transcript isoform expression, and miRNA
expression), CpG methylation (450K array), CNV (gistic2
thresholded), mutations (SNP and INDEL; MC3 public version),
and reverse-phase protein expression array (TCGA RPPA

4  GTEx Portal: https://www.gtexportal.org/
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microarray) (Akbani et al, 2014; Sanjai et al., 2024). The
microarray comprises 258 protein and modification probes
relative to 210 genes, of which 239 are term-based associated
with RCD forms (Supplementary Dataset SIC). miRNA gene
symbols were converted to precursor miRNA identifiers (IDs) using
“BioMart™ (Ren et al., 2024), and the precursor IDs were converted
to mature miRNAs (Supplementary Dataset S1D) using the
“miRBaseConverter” R package® to analyze miRNA. Gene symbols
were converted to transcript IDs (Supplementary Dataset S1E) using
the “BioMart R” package.

The phenotypic features included the patient’s indexes for
TMB, MSI, TSM, hazard ratio, prognostic survival metrics, TMC
and TIC. The term ‘HRC’ refers to the classification of omic
signatures based on their prognostic association with survival
outcomes in population-level Cox regression models. Each signature
is assigned a categorical hazard classification code representing
either an increased risk (risky), a decreased risk (protective),
or no significant association across four survival endpoints. The
signature’s HRC, derived from population-level Cox models, was
integrated into the rank-based nomenclature system. The analysis
was performed in R, using functions and customized source
code based on the UCSC XenaShiny package (Wang$. et al,
2022; LiS. et al, 2024). These tools enabled us to execute
multiple iterative analyses between multi-omic and phenotype
programmatically features across 33 cancer types (n = 9,385 samples,
Supplementary Dataset S1F).

To
Holm-Bonferroni correction for multiple testing was applied

identify  statistically ~ significant  associations,
exclusively to correlation analyses involving TMB, MSI, and TSM,
which were conducted on a genome-wide scale across all omic
features. Genome-wide significance was defined as an adjusted
p-value <5 x 1078, Once these significant omic feature elements
were identified, subsequent associations with other phenotypic
variables—including survival endpoints, as well as HRC, SMC,
TME, and TIC—were evaluated individually for each signature.
Because these phenotype associations were not derived from
genome-wide correlation matrices, they were assessed using
unadjusted p-values, with significance defined at p < 0.05.

For the comparison of mRNA expression between tumor and
non-tumor tissues, including primary-tissue-matched samples from
the GTEx project (n = 7,429 samples, Supplementary Dataset S1F),
we use the Wilcoxon test (Consortium et al, 2013). This
nonparametric test was selected to handle potential deviations
from normality in the expression data, ensuring robust
comparative analysis.

For tumor versus non-tumor expression analyses, gene- and
isoform-level RNA-Seq data were obtained from the UCSC Xena
public repository (Goldman et al., 2020; WangS. et al.,, 2022;
LiS. et al, 2024), which hosts uniformly processed expression
data from both TCGA tumor tissues and GTEx normal samples.
These datasets were derived from the UCSC Toil RNA-Seq
Recompute pipeline (Vivian et al, 2017), which implements a
consistent processing workflow for TCGA and GTEx RNA-Seq
data and includes batch correction, normalization, and expression

5 BioMart: https://www.ensembl.org/biomart/

6 R software package: http://www.R-project.org

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1630518
https://www.gtexportal.org/
https://www.ensembl.org/biomart/
http://www.R-project.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Rodrigues de Souza et al.

quantification under identical conditions. As a result, technical
confounding because of cross-cohort differences was minimized,
allowing for valid comparisons between tumor and non-tumor
profiles. The datasets were retrieved using the UCSCXenaShiny
application (Wang S. et al., 2022; Li S. et al., 2024).

TCGA versus GTEx tissue RNA-Seq expression profiles were
classified as unchanged, underexpressed, overexpressed, or with
no data. Unchanged expression includes genes with a padj-value
>0.05. Genes are classified as overexpressed or underexpressed if
they have a padj-value <0.05. Overexpressed genes show higher
median expression in tumor tissue, while underexpressed genes
show lower median expression in tumor tissue, both compared to
non-tumor tissue.

We performed hazard ratio analysis using the Cox proportional
hazards regression model to assess the prognostic significance
of the association between omic variables and patient survival
outcomes, providing hazard ratios that refer to the relative risk
of events occurring at any given point in time. Univariate Cox
proportional hazards models were used to estimate the association
between each omic feature or signature and survival outcomes.
Standard clinical covariates (e.g., age, sex, tumor stage) were not
included at this discovery phase, as the objective was to enable
large-scale, systematic signature discovery across omic layers and
cancer types. Expanding the model to include covariate-adjusted
effects would require redefinition of the signature elements to
retain correlation within each subgroup, and the construction of
stratified indices across clinical layers within the Xena-derived
framework. We acknowledge this as a valid direction for future
validation studies.

Multi-omic features with consistent correlations, showing the
same direction in tumor versus non-tumor expression, and Cox
hazard ratio were used to create signatures. These signatures
were then evaluated individually by summing the values of the
constituent features (i.e., member 1 + member 2 + ...+ member
n). The prognostic significance of the constructed signatures
was evaluated using Cox proportional hazards analysis for four
survival metrics: Disease-Specific Survival (DSS), Disease-Free
Interval (DFI), Progression-Free Interval (PFI), and Overall Survival
(OS). Kaplan-Meier survival curves were generated for each
metric, and log-rank tests were applied to compare survival
distributions across patient groups, determining the statistical
significance of observed differences. Together, these survival
analyses offer a comprehensive view of patient outcomes and
provide valuable insights into the effectiveness of cancer treatments
(Royle et al, 2023). The survival metrics are defined: DSS
specifically measures survival without death attributed to the cancer
being studied. It provides a more focused measure of treatment
effectiveness on the targeted disease. DFI assesses the period after
treatment during which the patient remains free from any signs
or symptoms of cancer. It is helpful in evaluating the efficacy
of therapies. PFI measures the duration in which the cancer
does not progress or worsen. OS is a critical endpoint in cancer
clinical trials, measuring the time from randomization or diagnosis
to death from any cause. It is the most definitive endpoint,
reflecting the ultimate impact of the treatment on patient survival
(Korn and Crowley, 2013).
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2.4 Classification of signatures according
to the tumor microenvironment profile

We used CIBERSORT (Cell-type Identification By Estimating
Relative Subsets Of RNA Transcripts) (Newman et al,, 2015)
and xCell (Aran et al,, 2017) deconvoluted bulk gene expression
data from UCSCXenaShiny (WangS. et al., 2022; LiS. et al,
2024) to estimate correlations of the multi-omic gene-signature
feature and the cellular composition of complex tissues based
on 29 predefined immune cell signature subsets, including B
cells (naive, memory, plasma, class-switched memory), T cells
(CD8", CD4" naive, CD4" memory resting, CD4" memory
activated, CD4* Thl, CD4" Th2, follicular helper, regulatory
Tregs, gamma delta), NK cells (resting and activated), monocytes,
macrophages (M0, M1, M2), myeloid dendritic cells (resting and
activated), activated mast cells, eosinophils, neutrophils, cancer-
associated fibroblasts, common lymphoid progenitor, endothelial
cell, granulocyte-monocyte progenitor, and hematopoietic
stem cell.

We categorized the signatures as anti-tumoral, pro-tumoral,
or dual with respect to tumor progression. This classification
was based on the Spearman correlation coefficients between
mRNA, miRNA, isoform RNA-Seq or protein expression of
the signature database and the RNA-Seq expression profiles
of the 29 specific cell infiltrate types representative of the
tumor microenvironment profile (Supplementary Dataset S1G). We
used the categorizations “hot” “cold, and “variable” for the
involvement of cell infiltrates, based on evidence from the literature
(Supplementary Dataset S1G).

In this system, the signs and magnitudes of the correlation
coeflicients provide insights into different tumor microenvironment
scenarios (See Supplementary Figure S1 for the categorization
framework of tumor microenvironments and immune phenotypes
across multiple scenarios). A positive correlation with a cell
type shows a higher presence of that cell type in the tumor
microenvironment for signatures that are overexpressed in a
tumor type. Conversely, for underexpressed signatures, a positive
correlation with a cell type shows a lower presence of that
cell type. For overexpressed signatures exhibiting a negative
correlation, the correlation signalso shows a lower presence
of that cell type. Similarly, underexpressed signatures with a
negative correlation show a higher presence of that cell type.
For signatures whose expression profiles are unaltered between
tumor and non-tumor tissues, a positive correlation indicates the
presence of cell infiltrates, while a negative correlation indicates
their absence.

We combined the correlation coefficients for all cell types to
classify the signatures according to the tumor microenvironment,
considering their signs. Signatures with the highest combined
magnitude for anti-tumoral cell types were classified as anti-
Similarly, signatures with the highest combined
correlations for pro-tumoral cell types were classified as pro-

tumoral.

tumoral, and signatures with the highest combined correlations
for dual microenvironment cell types were classified as dual.
Detailed methodology is provided in Supplementary Material S1
(Methodology 1).
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2.5 Classification of signatures according
to the tumor immune phenotype

The tumor immune phenotype, classified as hot, cold, or variable
based on immune cell infiltration, guides therapeutic interventions
and identifies patients who are resistant to immunotherapies (Galon
and Bruni, 2019; Wang L. et al., 2020). Hot tumors exhibit high levels
of cytotoxic T cells (NK and CD8") and M1 macrophage signatures,
while cold tumors show low T cell infiltration, a predominance of
M2 macrophages, and immunosuppressive cells. Variable tumors
have intermediate characteristics (Supplementary Dataset SIH).
Examples include melanoma and lung cancer as hot, and prostate
and pancreatic cancers as cold. Immune checkpoint inhibitors are
more effective in hot tumors (Galon and Bruni, 2019; Wang L. et al.,
2020). Strategies to convert cold and variable tumors to hot ones,
such as nanomedicines and combination therapies, are under
development (Wang M. et al., 2020).

We
immunohistochemistry as a proxy to quantify tumor lymphocyte
infiltration using RNA-Seq indexes (Aran et al., 2017; Galon and

employed a classification method analogous to

Bruni, 2019; Wang M. et al., 2020), allowing for categorization into
“hot’, “cold”, or “variable”. This enables the automated categorization
of signatures as “hot’, “cold’, or “variable” in R, thereby enhancing
the understanding of tumor immunological characteristics and
potential responses to immunotherapies. “Hot” tumors correlate
positively with cytotoxic T cells and M1 macrophages, while
“cold” tumors show low correlations with these cells but high
correlations with M2 macrophages and Tregs. “Variable” tumors
exhibit intermediate correlations (Supplementary Dataset S1H).

For classification, we used Spearman correlation coefficients and
p-value significance to analyze the relationship between RNA-Seq-
based expression profiles of signatures and immune cell profiles (T
CD8", NK, M1/M2 macrophages, and Tregs) (Galon and Bruni,
2019; Wang L. et al, 2020). In ambiguous cases, we applied a
differentiated weighting criterion, prioritizing CD8" T cells and
NK cells because of their importance in classifying “hot” tumors
and predicting immunotherapy responses. Detailed methodology is
provided in Supplementary Material S1 (Methodology 2).

2.6 Multi-optosis and multi-omic signature
nomenclature

The signature nomenclature system provides a structured

alphanumeric identifier that categorizes signatures derived

This
the multi-omic features of target genes with phenotypic

from multi-omic Pan-Cancer analysis. system links
characteristics across 33 cancer types, ensuring high precision
and clarity in data organization and retrieval. The signature
identifier follows an eleven-component structure: CTAB-GSI.
GFC.PFC.SCS.TNC.HRC.SMC.TMC.TIC.RCD  (ie, KIRP-
107.3.2.N.1.44.44.1.1.2) (Figure 2).

Each component is defined as:

CTAB refers to a 3- or 4-letter abbreviation representing
the cancer type from the TCGA database (i.e., KIRP for kidney
renal papillary cell carcinoma; see Supplementary Dataset S11I

for cancer type abbreviations).
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GSlisa 1- to 4-digit identifier (i.e., 107) unique to each signature
within a cancer type.

GEC represents the genomic feature contexture of the signature:
1 for Protein expression, 2 for Mutations, 3 for CNV, 4 for miRNA
expression, 5 for Transcript expression, 6 for mRNA expression, and
seven for CpG Methylation.

PFC denotes the phenotypic feature contexture linked to the
signature: 1 for TMB, 2 for MSI, and 3 for TSM.

SCS shows the Spearman Correlation Sign: P for positive and N
for negative correlations.

TNC represents tumor versus non-tumor tissue expression
contexture: 0 for no data, 1 for unchanged expression, 2 for
underexpressed, and 3 for overexpressed.

HRC stands for Hazard Ratio contexture, represented
the IN2N3N4N. This shorthand
notation encodes the significance levels of multiple survival

as alphanumeric array
metrics. The digits 1 to 4 correspond to the survival metrics:
DSS, DFI, PFI, and OS, respectively. The letter N denotes
the hazard effect, classified as A (no effect), B (risky), or
C (protective).

SMC is the Kaplan-Meier survival distribution contexture
across patient groups. It also follows the array IN2N3N4N, where
the digits 1 to 4 correspond to survival metrics: DSS, DFI,
PFI, and OS, respectively. However, the categorization of the
letters A, B, C, and D across multi-omic features reflects distinct
classifications based on specific criteria. The letter A is used
universally for all omic layers (Protein, Mutation, CNV, miRNA,
Transcript, mRNA, and Methylation) when the category is “NS”
(Not Significant).

The letter B varies according to the omic layer. For Protein,
miRNA, Transcript, mRNA, and Methylation, it corresponds
to the category “High”. For the Mutation feature, B represents
“MT” (Mutant), while for the CNV feature,
“Deleted” Similarly, the letter C also differs by omic layer.
For Protein, miRNA, Transcript, mRNA, and Methylation, C
corresponds to the category “Low” For the Mutation feature,
it represents “WT” (Wild Type), and for CNV, it reflects the
“Duplicated” status.

The letter D is used explicitly for the CNV feature and
represents the category “Deleted/Duplicated,” which encompasses

B refers to

both deletion and duplication events.

There are 128 combinations of the IN2N3N4N array for
hazard values and survival metrics. Each array combination
to numerical identifier
from 0 to 127 (Supplementary Dataset S1J). For instance,
1A2A3A4A (no effect for DSS, DFI, PFI, and OS) is reclassified
to the identifier 0. In contrast, 1A2A3A4B (no effect for DSS, DFI,
and PFI, yet “risky” for OS) is reclassified accordingly under the
identifier 1.

TMC refers to the Tumor Microenvironment contexture: 1

is reassigned a specific ranging

for anti-tumoral, 2 for dual, 3 for pro-tumoral, and 4 for no
significant data.

TIC is the tumor-infiltrating lymphocyte contexture, which
defines immune cell infiltration: 1 for “hot”, 2 for “variable”, 3 for
“cold”, and 4 for no significant data.

RCD is a 1- to 2-digit code representing the number of RCD
forms linked to the signature.
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PFC
Phenotypic feature code

Represents the phenotypic feature
associated with the gene signature.

GSI
Gene signature identifier

Three-digit identifier uniquely
assigned to each gene signature
within a specific cancer type.

KIRP-1

CTAB
Cancer Type Abbreviation

3-letter or 4-letter abbreviation
representing the TCGA cancer type.

GFC
Genomic Feature Code

Represents the multi-omic feature
type of the signature

SCs
Association Sign

)7.3.2.N.1.

Show the type of
association: P for positive
association and N for
negative association

FIGURE 2

Multi-omic Signature Nomenclature and Coding System. This figure details the nomenclature and coding system used for multi-omic signatures in the
multi-optosis model. Each signature is uniquely identified by a series of codes that represent different attributes: the cancer type abbreviation is a
three- or four-letter abbreviation denoting the TCGA cancer type (i.e., KIRP for kidney renal papillary cell carcinoma); the phenotypic feature code is a
one-digit code showing the specific phenotypic feature associated with the signature; the genomic feature code is a one-digit code representing the
multi-omic feature; the signature identifier is a unique three-digit number assigned to each signature within a specific cancer type; the correlation
sign shows the type of association, with ‘P* for positive and ‘N’ for negative; the TCGA versus GTEx expression code is a one-digit code showing the
gene expression profile in tumor tissue compared to non-tumor tissue; the Cox metrics code is a two-digit code representing the Cox proportional
hazards metric used in the analysis; the survival metrics code is a two-digit code showing the specific survival metric applied; and the tumor infiltration
code is a one-digit code representing the tumor immune infiltration profile. An example of a multi-omic signature identifier, such as
KIRP-107.3.2.N.1.44.44.1.1.2, illustrates how these codes combine to form a comprehensive identifier for each signature. This standardized coding
system enables precise classification and analysis of signatures in cancer research.

TNC
TCGA vs GTEx expression code

One-digit code representing the expression profile
in tumor versus normal tissue.

SMC
Survival Metrics Code

Two-digit code representing the
survival metric used.

TIC
Tumor Infiltration Code

One-digit code representing the
tumor immune infltration profile.

RCD
Code

One-digit code representing
the number of RCD

T™C
Microenvironment Code

One-digit code representing the
tumor microenvironment profile.

HRC
Cox Metrics Code

Two-digit code
representing the Cox
metric used.

2.7 Signature rank method

We developed the Cancer Multi-optosis Multi-omic Signature
Rank Calculator in R to evaluate how effectively a signature
provides improve patient
care or inform clinical decisions—its clinical meaningfulness

valuable, actionable insights to
potential —within our Pan-Cancer multi-optosis and multi-
omic model. This system ranks candidate biomarker signatures
by integrating multi-omic and phenotypic identifiers. Each
component within a signature is assigned an integer rank
based on its importance in predicting patient outcomes, such
as survival prognosis (Liu et al, 2018) and immunotherapy
potential. The immunotherapy potential is assessed using
TME and TIC identifiers, applying the concepts of immune
“hotness” and “coldness,” which reflect the level of immune
infiltration in tumors (Galon and Bruni, 2019; Wang L. et al,
2020). A rank is assigned to each signature component
through a mapping function in R, which attributes integer
values to multi-omic and phenotypic identifiers. The final
rank for each signature is obtained by summing the ranks
of its individual components. Detailed criteria for assigning
ranking values

(Methodology 3).

are provided in Supplementary Material S1
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2.8 Drug-gene interaction analysis

To identify potential therapeutic targets, we conducted a
comprehensive cross-referencing analysis of gene components from
the top-ranked multi-modular and clinically meaningful signatures.
The gene members of these signatures were queried against the
Drug-Gene Interaction Database (DGIdb 5)7 (Cannon et al,
2024), which integrates drug-gene interaction and druggability
data from multiple sources, facilitating the exploration of potential
pharmacological interventions.

To construct the drug-gene interaction network, we retrieved
curated interaction data from DGIdb 5.0, excluding undefined
or unknown interaction types to ensure the identification of
meaningful associations. The dataset was processed in R using
the “tidyverse” suite, which included data cleaning, removal of
redundant entries, and standardization of gene and drug names.
A bipartite network was generated, where genes (from top-ranked
multi-omic RCD signatures) formed one node type, and drugs
(categorized by interaction type) formed the other node type. The
edges in the network represent drug-gene interaction relationships,

7 DGldb: https://dgidb.org
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as defined by DGIdb. Network visualization was performed using
“igraph” and ‘ggraph” for static rendering, with the Fruchterman-
Reingold force-directed layout applied to optimize node distribution
and improve clarity.

2.9 Validation using the independent
PRECOG cancer database

To validate the prognostic value of the selected mRNA-specific
signatures associated with risk, protection, and poor prognosis,
we used the PRECOG (PREdiction of Clinical Outcomes from
Genomic Profiles) database® (Gentles et al, 2015). PRECOG is
a curated resource that provides a standardized meta-analysis
framework to generate prognostic meta-Z scores, which quantify the
strength and direction of the association between gene expression
and OS across multiple cancer types. The database integrates
transcriptomic data from publicly available datasets, encompassing
28 cancer types independent of TCGA but equivalent to 24
TCGA cancer types (Supplementary Dataset S1I). Meta-Z scores
were extracted from the PRECOG repository for each gene within
the 126 signatures selected for their association with risk or
protection in all survival metrics and with anti-tumoral, pro-
tumoral, or dual microenvironment cell profiles, as well as hot,
cold, or variable immune infiltrates (Supplementary Dataset S1K).
To validate significantly poorer or better prognosis associations,
the validation process relied on stringent statistical thresholds
(|[Meta-Z| > 3.09 or < -3.09, p < 0.001). This validation set of
signatures represents only 11 TCGA cancer types (ACC, BLCA,
BRCA, CESC, HNSC, KIRP, LGG, LUAD, LUSC, PRAD, STAD).
For single-gene signatures, the corresponding meta-Z score was
retrieved for each cancer type. For multi-gene signatures, each gene
was queried individually, and the median meta-Z score across all
genes was computed to derive the final signature-level score. To
identify cancer-specific prognostic associations, we compared the
direction of association between PRECOG meta-Z scores and our
gene signatures, refining the selection of relevant cancer-specific
signatures. Positive meta-Z scores show a poor prognosis, while
negative scores suggest a favorable prognosis.

2.10 PDF-Ai-assisted evidence of
involvement of signature members in the
multi-optosis model

A drawback of most multi-omic studies aimed at discovering
biomarkers in cancer is the lack of cross-referencing with databases.
Flat lists of genes with limited features are often reported (Ravel et al.,
2020; Gadepalli et al., 2021; Wang et al., 2018; Zhou and Bao, 2020),
which restricts our understanding of their potential applications. We
implemented a PDF generative artificial intelligence-based (PDF-
Al) strategy to provide evidence-based support for the involvement
of the identified signature members. The strategy cross-references
signature members with structured information from the scientific
literature. This approach uses LLMs within a ChatGPT-based PDF-AI

8 PRECOG: https://precog.stanford.edu/

Frontiers in Bioinformatics

09

10.3389/fbinf.2025.1630518

analysis tool to extract relevant data directly from the PDF corpus
A, ensuring robustness and reproducibility. The method involves
several key supervised, executable sequential tasks that focus on
identifying mentions of gene members of the signatures, associated
RCD forms, and cancer types (see Supplementary Material S1 -
Methodology 4). The last step involves validating the cross-
referenced data through manual review and automated checks
to ensure data integrity and reliability. Any discrepancies were
resolved manually to maintain the robustness of the dataset. By
implementing this PDF-AI strategy, the applicability of findings
is enhanced through a user-friendly data analysis tool. The
structured tabular output information was compiled to create the
Cancer Regulated Cell Death Data Analyst (https://chatgpt.com/
g/g-8etzMPrtt-cancer-programmed-cell-death-data-analyst), a user-
friendly, publicly accessible GPT-based chat software engineer for
extracting, analyzing, and visualizing RCD data in cancer and signature
members. This tool enables Chat-GPT registered users to access and
interpret the relevant data efficiently, enhancing the applicability and
impact of our findings.

A detailed inventory of established immunotherapy targets and
their presence within the multi-omic RCD signature repertoire
is presented in Supplementary Dataset SIL. The relevance and
representation of these targets were assessed by cross-referencing
with a curated corpus (Corpus B) of 642 manually selected PDF
articles using PDF AI extraction (Supplementary Material SI).

The PDF corpora were compiled using the NCBI pubmed R
package, and the RIS identifiers were used to download free-text
using EndNote™ citation software (https://endnote.com/).

3 Results

The construction and analysis of the multi-optosis model,
depicted in the workflow (Figure 3), provide a comprehensive
framework that integrates 25 distinct forms of RCD (Figure 1). This
model is founded on a core gene set of 5913 RCD term-based
gene symbols (Supplementary Dataset S1B). The broader RCD gene
inventory comprises 62,090 transcripts, spanning both primary and
alternative isoforms, 882 mature miRNAs (representing both 5p
and 3p strands), and 239 proteins known to be associated with
cancer, including post-translational modifications. These elements
form the backbone of our investigation, offering extensive coverage
of RCD-related genes across cancer types.

Approximately 40% (n 2,403) of all genes in the
in two or more forms of RCD

inventory are involved

(Supplementary Dataset SIB).  Genes  exclusively associated
with apoptosis account for approximately 42% (n = 2,511)
of the target genes, showing no term-based association with
other RCD forms. The RCD forms with the fewest associated
genes are alkaliptosis, lysosome-dependent cell death, and
methuosis (Supplementary Dataset S1M).

Notably, 422 genes in the inventory are established Cancer Gene
Census Tier 1 driver genes (n = 584, 72.3%) in COSMIC (Catalogue
Of Somatic Mutations In Cancer)® (Sondka et al., 2018) and other

databases (Kinnersley et al., 2024). These include oncogenes, tumor

9 COSMIC: https://cancer.sanger.ac.uk/cosmic
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Workflow of the Multi-Optosis Model Analysis. This workflow illustrates the detailed process for constructing and analyzing a multi-optosis model
focusing on 25 RCD mechanisms. The process begins with identifying 5,913 RCD-related genes using the NCBI “Entrez” function in R. Multi-omic and
phenotypic data from TCGA Pan-Cancer are then integrated using the “Get Xena” R script. Expression and correlation analyses are conducted with a
stringent p-value threshold (<5e-8) using the “main” R script, then consolidating all results into a single data frame. The hazard ratio is assessed for four
survival metrics: overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFl) using Cox
proportional hazards models and log-rank tests. Tumors are classified into "hot”, variable, or “cold” categories based on immune infiltration profiles.

LLM-based Cancer Regulated Cell Death Data Analyst tool, allowing for interactive exploration and visualization of the findings. This structured
approach integrates computational and statistical methods to enhance understanding of RCD mechanisms in cancer.

Infiltration
analysis

Log-rank tests

H

L

is applied. The roles and involvement of gene members in various RCD
are enabled through the CancerRCDShiny web browser and the

suppressors, and fusion genes, all linked to at least one RCD form
(Supplementary Dataset S1B). Driver genes such as TP53, AKTI,
MTOR, CD274, PTEN, and STAT3 are linked to at least eight RCD
forms. Among these, TP53 stands out as the most prominent driver
gene, being associated with 12 distinct forms of RCD: anoikis,
apoptosis, autophagy, cellular senescence, entosis, ferroptosis,
mitochondrial permeability transition, mitotic catastrophe,
necroptosis, pyroptosis, necrosis, and autosis. However, several
non-driver genes, such as SIRT3, CXCL8, NFKBI, STING1, and TNF,
are noteworthy for their presence across at least eight RCD forms
(Supplementary Dataset SIB).

The multi-optosis model integrates multi-omic and phenotypic
reiterative correlations estimated from the TCGA Pan-Cancer
secondary database (Goldman et al., 2020; Wang S. et al., 2022;
LiS. et al,, 2024), using R coding based on functionalities from
the UCSCXenaShiny (WangS. et al, 2022; LiS. et al, 2024).
Correlation analyses were performed between the seven omic
features and seven phenotypic and clinical variables in 33 cancer
types. For each gene target, survival metrics were assessed using
Cox proportional hazards models. Unique, single-gene, and multi-
gene signatures were constructed based on feature commonalities,

and their prognostic values were evaluated using the log-rank
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test across four survival metrics. Each signature was then queried
for significant correlations with the expression profiles indicative
of immune and nonimmune cell infiltrates to determine their
association values with the TMC. We performed 27, 238, 756 pair
associations between multi-omic, phenotypic, risk, survival and cell
immune infiltration features.

The multi-omic and phenotypic features associated with each
gene member in the signatures are compiled into an extensive
integrative database (Supplementary Dataset S2) comprising 44,641
multi-omic signatures across 32 cancer types. None of the target
genes achieved genome-wide significance with phenotypic variables
in Diffuse Large B-cell Lymphoma (DLBC).

The number of elements per signature ranged from 1
to 2,052 (mean = 4.3; median I; Q1 = 1; Q3 = 2; P90
= 6, meaning that only 10% of signatures contain over six

elements; Supplementary Dataset S2). Importantly, for the multi-
member signatures, all the components share the association
features, the RCD type(s), and the statistical significance
level. The maximum number of member elements per omic
feature is: 2,052 (Transcript), 487 (Mutation), 477 (mRNA),
423 (Methylation), 124 (CNV), 58 (miRNA) and 4 (protein)
(Supplementary Figure S2).
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To investigate whether the number of multi-omic signatures
identified per cancer type was influenced by cohort size, we assessed
the association between the number of patients and the number of
signatures across the 32 tumor types analyzed. A Spearman’s rank
correlation analysis revealed a positive monotonic relationship (p
=0.794, p = 5.9 x 107%), indicating that, overall, cancer types with
larger patient cohorts tended to contribute more signatures.

However, several tumor types exhibited signature-to-patient
ratios that markedly exceeded the overall trend. For instance,
Thymoma (THYM) yielded 1,564 signatures from only 119 patients
13.14), Skin Cutaneous Melanoma (SKCM) produced
1,210 signatures from 102 patients (ratio = 11.86), and Kidney
Chromophobe (KICH) yielded 744 signatures from 66 patients
(ratio = 11.27). Even Pancreatic Adenocarcinoma (PAAD), with 178
patients, showed an elevated ratio of 10.51.

(ratio

In contrast, other tumor types with substantially larger sample
sizes—such as Breast Invasive Carcinoma (BRCA) with 1,092
patients—displayed a considerably lower ratio of 3.24, emphasizing
that signature richness is not merely proportional to cohort size,
but may reflect intrinsic biological or molecular heterogeneity across
tumor types.

These results suggest that while sample size contributes to
statistical power, it does not solely account for the observed variation
in signature yield. Instead, intrinsic biological factors—such as
tumor heterogeneity, distinct molecular programs, and RCD
pathway diversity—likely shape the landscape of detectable
prognostic signals.

The distribution of multi-omic signatures across omic features
and cancer types is represented in Figure 4. This accumulated
histogram provides insight into the proportional presence of each
omic feature within different cancer types, with the absolute
accumulated counts for each feature depicted.

The top-ranked cancer types, based on the number of signatures
for each omic feature, reveal specific molecular patterns (Figure 4).
Breast Cancer (BRCA) has the highest number of signatures
associated with CNV, protein expression, transcript, and miRNA,
with absolute counts of 413, 45, 1,286, and 129, respectively. Prostate
Cancer (PRAD) ranks the highest in methylation-associated
signatures, totaling 663, while LGG (Lower Grade Glioma) has
the greatest number of mutation-linked signatures, with 910. Lung
Adenocarcinoma (LUAD) exhibits a high frequency of mRNA-
associated signatures, totaling 755.

Of the 5,913 target genes, 5,777 (97.7%) reached a significant
correlation and are therefore included as elements in the signature
database. Of the remaining genes, 101 did not achieve significance,
and 35 lacked data in the Xena database. Most of the signatures
include at least one apoptosis-related gene (34,500; 77.2%). This rate
is expected, as 4,812 (81.4%) of the target genes are associated with
apoptosis (Supplementary Dataset S2).

Among the transcript isoform signatures, the ten most
frequently occurring genes were EFEMP2, ABI3BP, TPMI, ELN,
ENI, COLIAI, DCN, PDLIM7, TCF4, and COL1A2, each appearing
in 69-91 signatures. Collectively, these genes are associated with
anoikis, apoptosis, autophagy, cellular senescence, necrosis, and
pyroptosis (Supplementary Dataset SIN).

The identifier KIRP-107.3.2.N.1.44.44.1.1.2 exemplifies the
nomenclature system used throughout, as shown in Figure 2. KIRP
represents the cancer type abbreviation (CTAB) for Kidney Renal
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Papillary Cell Carcinoma, and 107 is the Gene Signature Identifier
(GSI), showing the 107th signature identified for this cancer type.
The Genomic Feature Code (GFC) is 3, corresponding to CNV,
while the phenotypic feature contexture (PFC) is 2, indicating MSL
The Spearman Correlation Sign (SCS) is denoted as N, indicating a
negative correlation. The tumor versus non-tumor tissue expression
contexture (TNC) is 1, indicating that gene expression remains
unchanged in tumor tissue compared to non-tumor tissue. The
HRC is 44, based on the combination 1B2B3B4B, which shows a
risk effect by all survival metrics (DSS, DFI, PFIL, and OS). The
survival metric contexture (SMC) is also 44, derived from the
combination 1B2B3B4B, reflecting specific prognostic implications
across all four survival outcomes. The tumor microenvironment
contexture (TMC) is 1, indicating a correlation with an anti-tumoral
environment immune profile. The tumor-infiltrating lymphocyte
contexture (TIC) is 1, showing an association with “hot” profiling
of immune cell infiltration. Finally, RCD is 2, signifying that the
gene members are associated with two RCD forms, namely apoptosis
and necrosis.

The commonalities of the signatures can be explored and
analyzed purposefully or guided. Here, we exemplified the
downstream analysis in two ways. The first is selecting signatures
whose elements capture the highest impact rank in given omic-
phenotype associations. The members of such signatures can pertain
to different RCD forms (RCD Multi-Modular signatures). The
second is selecting signatures that are RCD form-specific.

3.1 Exploring signatures with RCD
multi-modular elements

Signatures composed of genes co-associated with multiple RCD
forms revealed prevalent negative correlations with phenotypic traits
and frequent tumor overexpression, highlighting coordinated multi-
death pathway regulation.

Thirty thousand eight hundred seventy-seven signatures
exhibit in RCD, where
gene component within a signature is involved in the same
RCD forms. Details of these
Supplementary Dataset S2. A negative correlation was observed

multi-modular  involvement each

signatures are available in
between multi-omic and phenotypic features in most signatures
(n = 17,069). Most multi-modular signatures were overexpressed
in tumor tissues compared to non-tumor tissues (n = 13,898;
Supplementary Dataset S2). Selected examples of RCD multi-

modular signatures are shown in Table 1.

3.2 Exploring signatures with RCD-specific
elements

A total of 13,764 (30.83%) signatures were identified as RCD-
specific, with apoptosis-specific signatures being the most prevalent;
a ranked subset revealed clinically relevant patterns across omic
layers and RCD forms. These signatures encompass 20 of 25 different
RCD types. Because 81.4% of genes in the inventory are term-based
associated with apoptosis, we identified a large number of apoptosis-
specific signatures (n = 5,793; 42%) (Supplementary Dataset S2).
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FIGURE 4

Accumulated histogram illustrating the distribution of multi-omic signatures by multi-omic feature across various cancer types. Each bar represents a
unique Cancer Type Abbreviation, with colors depicting the relative proportions of signatures across multi-omic feature. The height of each bar shows
the absolute accumulated count of signatures for each multi-omic feature within each cancer type. The Okabe-Ito color-blind friendly palette has

been applied to enhance accessibility for all viewers.

We applied a sequential ranking strategy to identify the most
representative signatures that prioritized both performance and
comprehensive representation. For each unique RCD form, the
most informative signature was selected based on the highest rank
value, reflecting the overall importance of the signature. Where
multiple signatures shared the same ranking value, ties were resolved
by considering the highest value in additional variables in the
following order: the number of gene components in the signature,
TIC, TMC, SMC, and HRC. This ensured that ties were broken
systematically based on biological relevance. We verified that each
omic feature was included in the final selection to represent all
unique omic features comprehensively. If any were missing, the
highest-ranked signature for the missing omic feature was added,
following the same tie-breaking hierarchy. This method allowed us
to generate a ranked list of signatures that reflected their importance
and ensured balanced coverage of RCD forms and multi-omic
features. The top-ranked signatures by comprehensive RCD type-
specific and multi-omic feature representation are presented
in Table 2.

We next illustrate the clinical meaningfulness potential
of the signature database by providing a signature for
each omic feature selected from the top-ranked signatures
(Table 3).
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3.3 mRNA-specific signatures

A total of 10,096 mRNA-specific signatures (22.6% of
the dataset) were identified, many of which demonstrated
significant associations with immune infiltration, transcriptional
profiles, and survival types. These
signatures (Supplementary Dataset S3) included between 1 and

risk across cancer
477 genes per signature (mean = 3.8; median = 1; Q1 = 1; Q3 =
2; P90 = 5). Of these, 7,278 (72.1%) showed negative correlation
with phenotypic features, and 6,842 (94.1%) were associated with
TSM. Within this TSM-associated group, 2,479 (36.2%) signatures
indicated increased risk, while 1,709 (24.9%) were protective across
at least one survival metric.

Among the mRNA-specific signatures, 3,864 (38.3%) were
associated with anti-tumoral transcriptional profiles, 2,101
(20.8%) with pro-tumoral profiles, and 2,750 (27.2%) with dual
microenvironment profiles, reflecting diverse roles in tumor
progression. Based on their correlation with immune cell infiltration
profiles, the mRNA-specific signatures were categorized as
“hot” (n = 273; 2.7%), showing robust immune cell presence,
“cold” (n = 781; 7.7%), reflecting minimal immune infiltration,

and “variable” (n = 1,540; 15.2%), denoting an intermediate
or mixed immune environment.
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TABLE 1 Top-ranked multi-modular RCD signatures with comprehensive multi-omic representation.

10.3389/fbinf.2025.1630518

Nomenclature Signature Elements | Omic feature RCD count | RCD forms
48 KIRP-1086.1.3.P.3.44.34.1.1.5 P62LCKLIGAND Protein 5 Apoptosis, Autophagy,
Ferroptosis, Parthanatos,
Autosis
48 KIRC-169.2.1.P2.71.45.1.1.2 (CPEB4 + NF2) Mutation 2 Apoptosis, Ferroptosis
47 KIRP- (SLC16A1 + SNHG3) CNV 2 Apoptosis, Autophagy
419.3.2.N.1.44.114.1.1.2
47 KIRC-168.2.2.P.2.71.45.1.1.2 (CPEB4 + NF2) Mutation 2 Apoptosis, Ferroptosis
47 KIRP-107.3.2.N.1.44.44.1.1.2 (CXCL10 + TNFRSF4) CNV 2 Apoptosis, Necrosis
46 CESC-215.5.3.N.2.44.44.1.1.3 (ENST00000511732 + Transcript 3 Apoptosis, Autophagy,
ENST00000471344 + Necrosis
ENST00000559488)
46 KIRP- GBP5 CNV 3 Apoptosis, Pyroptosis,
927.3.2.N.3.15.125.1.1.3 Necrosis
45 CESC-283.6.3.N.2.44.44.1.1.3 (ITGB3 + POSTN) mRNA 3 Apoptosis, Autophagy,
Necrosis
44 BRCA- ENST00000518797 Transcript 3 Apoptosis, Autophagy,
2207.5.3.N.3.93.95.1.1.3 Necrosis
44 BRCA- CASPASE7CLEAVEDD198 Protein 2 Apoptosis, Autophagy
1496.1.3.P.3.71.71.1.1.2
44 CESC-332.6.3.N.2.44.44.1.1.2 ADAMTSI12 mRNA 2 Apoptosis, Necrosis
43 BRCA-1629.2.1.P.3.7.44.1.1.2 CXCR6 Mutation 2 Apoptosis, Autophagy
42 SKCM- ENST00000378588 Transcript 5 Apoptosis, Ferroptosis,
711.5.3.N.3.71.71.1.1.5 NETosis, Parthanatos,
Necrosis
42 CESC-420.6.3.N.2.15.44.1.1.3 COL1A1 mRNA 3 Apoptosis, Autophagy,
Necrosis
40 HNSC- hsa-miR-142-3p miRNA 4 Apoptosis, Autophagy,
1855.4.3.P.3.71.64.1.1.4 Ferroptosis, Necrosis
36 PRAD- (ENST00000355622 + Transcript 6 Apoptosis, Autophagy,
521.5.3.N.2.26.20.1.1.6 ENST00000394487) Ferroptosis, Necroptosis,
Pyroptosis, Necrosis
35 BRCA-2459.7.3.N.2.7.94.1.1.2 | FHIT Methylation 2 Apoptosis, Autophagy
33 BLCA-576.7.3.N.3.20.5.1.1.6 AIM2 Methylation 6 Apoptosis, Autophagy,
Cellular senescence,
Ferroptosis, Pyroptosis,
Necrosis
32 LUSC-933.4.3.N.2.62.30.1.1.4 (“hsa-miR-145-3p" + miRNA 4 Anoikis, Apoptosis,
“hsa-miR-145-5p”) Autophagy, Necrosis
31 BRCA-1824.5.3.N.2.1.1.1.1.6 ENST00000321556 Transcript 6 Apoptosis, Autophagy,
Cellular senescence,
Ferroptosis, Pyroptosis,
Mitoptosis
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TABLE 2 Top-ranked RCD type-specific signatures with comprehensive multi-omic representation.

10.3389/fbinf.2025.1630518

Nomenclature Signature Elements | Omic feature RCD forms
47 BRCA-70.2.1.P2.95.47.1.2.1 (ADAMTS8 + PARP3 + 3 Mutation Apoptosis
UBA7)
45 BRCA- ENST00000524317 1 Transcript Apoptosis
2233.5.2.N.2.95.56.1.1.1
44 KIRP-83.3.2.N.3.44.115.1.2.1 (CCNB2 + LHX2 + RPL5 + 4 CNV Autophagy
TICRR)
44 KIRP- (PHGDH + PRRX2) 2 CNV Ferroptosis
408.3.2.N.2.44.126.1.2.1
43 CESC-69.6.3.N.2.44.44.1.1.1 (CASC15 + COL4A1 + 16 mRNA Apoptosis
COL4A2 + DLL4 +
FAM171B+ FOXC2 + GPR4
+ LAMAI + LAMCI1 +
MATN3 + MSRB3 + NT5E +
PXDN + RHOB + SMARCA1
+ TMEM98)
42 LUAD- NFIX 1 mRNA Cellular senescence
2334.6.1.N.2.95.95.1.2.1
41 BRCA- ANLN 1 mRNA Pyroptosis
1368.6.3.P.3.44.81.1.2.1
39 HNSC- (CEBPE + SIRPG) 2 Methylation Necrosis
156.7.3.N.3.71.55.1.1.1
38 BRCA-1503.2.1.P.2.9.39.1.2.1 CCDC178 1 Mutation Anoikis
37 HNSC-656.4.3.P.3.71.71.1.2.1 (*hsa-miR-135b-3p" + 2 miRNA Apoptosis
“hsa-miR-135b-5p”)
36 KIRC-1057.5.3.P.2.71.71.1.2.1 ENST00000227868 1 Transcript Cuproptosis
36 KIRC-1100.5.3.P.2.71.71.1.2.1 | ENST00000282050 1 Transcript Mitochondrial permeability
transition
36 LGG-1758.5.3.P.3.95.94.2.3.1 ENST00000366898 1 Transcript Mitoptosis
35 STAD-356.5.3.N.3.44.44.3.2.1 (ENST00000261037 + 2 Transcript Parthanatos
ENST00000463753)
34 KIRC-867.3.3.N.2.71.31.1.2.1 AJAP1 1 CNV Disulfidptosis
34 KIRC- MIIP 1 mRNA Mitotic catastrophe
1869.6.3.N.3.35.35.1.2.1
34 LGG-974.6.3.N.3.35.35.1.2.1 (FCGBP + NAT2) 2 mRNA Necroptosis
32 LGG-1928.5.3.N.2.35.35.2.2.1 = ENST00000484221 1 Transcript Immunogenic cell death
30 LGG-2590.2.1.P2.71.11.3.2.1 MTUS2 1 Mutation Entosis
28 LGG-2390.7.3.P3.71.71.2.3.1 KCNN3 1 Methylation NETosis
22 THYM-1073.1.3.P.3.2.2.2.3.1 GATA3 1 Protein Necrosis
22 LGG-1356.7.3.P.3.62.71.2.4.1 ATP6VOD1 1 Methylation Alkaliptosis
18 PRAD-2393.7.3.P2.0.14.3.2.1 OXSR1 1 Methylation Oxeiptosis
16 THYM-573.7.3.P3.7.2.2.4.1 ABCCl1 1 Methylation Efferocytosis
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TABLE 3 Seven top-ranked signatures by multi-omic feature.

10.3389/fbinf.2025.1630518

Rank Nomenclature ’ Signature Elements ‘ Omic feature RCD count ’ RCD forms
48 KIRC-169.2.1.P.2.71.45.1.1.2 (CPEB4 + NF2) 2 Mutation 2 Apoptosis, Ferroptosis
47 KIRP- (SLC16A1 + SNHG3) 2 CNV 2 Apoptosis, Autophagy
419.3.2.N.1.44.114.1.1.2
46 CESC-215.5.3.N.2.44.44.1.1.3 (ENST00000511732 + 3 Transcript 3 Apoptosis, Autophagy,
ENST00000471344 + Necrosis
ENST00000559488)
45 CESC-283.6.3.N.2.44.44.1.1.3 (ITGB3 + POSTN) 2 mRNA 3 Apoptosis, Autophagy,
Necrosis
44 BRCA- CASPASE7CLEAVEDD198 1 Protein 2 Apoptosis, Autophagy
1496.1.3.P.3.71.71.1.1.2
40 HNSC- hsa-miR-142-3p 1 miRNA 4 Apoptosis, Autophagy,
1855.4.3.P.3.71.64.1.1.4 Ferroptosis, Necrosis
39 HNSC- (CEBPE + SIRPG) 2 Methylation 1 Necrosis
156.7.3.N.3.71.55.1.1.1

The identifier CESC-283.6.3.N.2.44.44.1.1.3 exemplifies an
mRNA-specific signature comprising two gene members: ITGB3
and POSTN, which are associated with apoptosis, autophagy,
and necrosis (Table 3). These genes play diverse roles in
RCD, cell survival, and migration across various cell types,
contributing to cancer progression, immune modulation, and
cellular stress responses. As part of the same signature, each
gene consistently shares correlation signs across all phenotypic
features in patients with cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC) (Figure5). Specifically,
mRNA expression levels of these genes exhibit a negative correlation
with TSM (Figure 5A), show lower expression in tumor samples
relative to non-tumor tissue TSM (Figure 5B), and correlate
with risk across all survival metrics (Figures 5C-F). Elevated
expression of these genes is associated with poor prognosis across
all survival metrics (Figures 5L]). In contrast, their expression
profiles correlate with an anti-tumor transcriptional profile within
the tumor microenvironment and a “hot” immune infiltrate
transcriptional profile (Figure 5K).

3.4 Transcript-level gene signatures

Transcript-level analyses revealed 16,244 signatures with
widespread isoform-specific associations to stemness, prognosis,
and immune context, including rare cases where all isoforms from
a locus showed coordinated phenotypic correlation. Given that
many gene loci express multiple transcripts through alternative
splicing and promoter usage, we hypothesize that specific transcripts
retain the correlation observed in the mRNA analysis. This suggests
that individual transcript expression offers more precise insights
into cancer progression and therapy response. By analyzing these
specific transcripts, we aim to identify transcript-specific signatures
that could serve as accurate prognostic and diagnostic markers,
enhancing our understanding of the molecular mechanisms and
heterogeneity in cancer phenotypes.
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It is important to note that, for most genes, only a single
transcript isoform was consistently detected at quantifiable
levels across tumor samples, such that gene-level and transcript-
level associations often reflect the same underlying isoform-
specific signal.

We identified 16,244 transcript-specific signatures, with
each signature containing between 1 and 2,052 transcript
elements (mean 5.9; median = 1; Q3 = 3 and P90 = 8)
(Supplementary Dataset S4). The mean number of transcript

members per signature was 3.9 (range, 1-49) for signatures
associated with risk and 4.1 (range, 1-76) for those associated
with  protection
62.8% (n
in at least one survival metric. From those, we identified 605

(Supplementary Dataset S4).  Approximately

= 10,207) were associated with risk or protection
(5.9%) signatures associated with risk across all patient survival
metrics and 270 (2.7%) signatures with protective association
in all four patient survival metrics. Most signatures ascribed
correlations between transcript expression and TSM (86% for
risk and 92% for protective signatures). Transcript signature
overexpression was the feature most frequently associated with
risk (54.5%), whereas underexpression was mainly associated with
protection (47%). Example: CESC-215.5.3.N.2.44.44.1.1.3 refers to
the transcript expression (ENST00000511732 + ENST00000471344
+ ENST00000559488), which negatively correlated with stemness
in CESC patients There was
significantly lower transcript signature expression in tumor

(Supplementary Figure S3A).

samples compared to normal tissue (Supplementary Figure S3B).
Transcript overexpression is associated with increased risk in DSS
(Supplementary Figure S3C), DFI (Supplementary Figure S3D), PFI
(Supplementary Figure S3E), and OS (Supplementary Figure S3F)
survival metrics. Transcript overexpression was
associated with poor prognosis all

(Supplementary Figure S3G-J). Transcript signature expression

signature

in survival metrics
correlated with an anti-tumor transcriptional profile within
the tumor microenvironment and a “hot” immune infiltrate

transcriptional profile (Figure 3K).
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FIGURE 5

Phenotypic associations and prognostic significance of the mRNA signature CESC-283.6.3.N.2.44.44.1.1.3 in cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC). (A) shows a radar plot illustrating the negative correlation between mRNA signature expression and TSM across
multiple cancer types. (B) demonstrates significantly lower mRNA signature expression in tumor samples compared to normal tissue (****p < 0.0001).
(C—F) present hazard ratio (HR) analyses evaluating the prognostic associations of the mRNA signature with clinical outcomes across various cancer
types, including (C) Disease-Specific Survival, (D) Disease-Free Interval (E) Progression-Free Interval, and (F) Overall Survival, where a positive log HR
indicates a risk effect of the mRNA signature. (G-J) display Kaplan-Meier survival curves for CESC patients stratified by high and low mRNA signature
expression, with significant survival outcomes for (G) Disease-Specific Survival (p = 0.000411), (H) Disease-Free Interval (p = 0.00596), (1)
Progression-Free Interval (p = 0.000214), and (J) Overall Survival (p = 0.000404). (K) illustrates the correlation between the mRNA signature and
immune cell infiltration in CESC, highlighting associations with various immune cell types.
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FIGURE 6

Supplementary Material S1 (Supplementary Figure S12).

Sankey diagram depicting the negative correlations of COLIA1 and UMOD gene isoforms with stemness across specific cancer signatures. The source
nodes represent the COLIA1 and UMOD gene loci, each linked to their respective transcript isoforms identified in the dataset. The numbers in
parentheses indicate the number of connection strokes. All 13 COL1A1 isoforms consistently exhibit negative associations with TSM in the
HNSC-308.5.3.N.3.0.0.3.2.3 signature (comprising 46 elements), while all 12 UMOD isoforms similarly show negative correlations with TSM in the
KICH-117.5.3.N.2.0.0.2.4.3 signature (comprising 61 elements). The thickness of the stroke connection lines represents the frequency of correlations
between nodes (genes, transcripts, phenotypes, and cancer types), emphasizing the uniform contribution of each gene’s isoforms to the observed
phenotype. This consistent transcript-level correlation across all isoforms of COL1IA1 and UMOD suggests a coordinated regulatory function in
modulating TSM within these cancer contexts. The corresponding dynamic network diagram is available in
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An interesting observation in multi-transcript genes is worth
noting; first, the highest number of transcripts per gene that
correlated with a phenotype in a cancer type was 19, and was limited
to the CD36 (19 out of 24 transcripts), ABI3BP (19/29), and TCF4
(19/93) genes. Second, correlations with all transcript isoforms per
gene were extremely rare. Examples include COLIAI (a known
cancer driver gene) with its 13 isoforms, which are negatively
correlated with stemness in the multi-element signature HNSC-
308.5.3.N.3.0.0.3.2.3, comprising 46 member elements, and UMOD
with its 12 transcripts, also negatively associated with stemness
in the multi-element signature KICH-117.5.3.N.2.0.0.2.4.3, which
comprises 61 member elements (Figure6). Thus, for those
all the COLIAI-and UMOD-specific transcripts
consistently retained the correlation with stemness. Hence, for

signatures,

these genes, the entire gene loci, rather than individual isoforms,
uniformly contribute to the observed phenotype, highlighting a
coordinated regulatory role of these genes in maintaining the
correlation with stemness. The uniformity across all isoforms within
a gene is an uncommon and significant finding, underscoring the
comprehensive influence of these genes on the stemness phenotype.

In contrast, for most multi-transcript RCD genes, the
correlations were transcript isoform-specific rather than involving
the entire gene locus transcript repertoire. Isoform-specific
signatures refer to the unique associations of transcript variants from
a single gene locus with distinct clinical and phenotypic outcomes.
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These signatures enable the identification of specific transcript
variants that contribute to cancer progression, prognosis, and
therapeutic response. Specifically, for the MAPKI0 gene, which has
192 known transcripts, our analysis revealed that only 24 transcripts
showed significant correlations with metrics such as TSM, TMB, or
MSTI across 17 cancer types, appearing in up to 47 different signature
identifiers (Figure 7, Supplementary Dataset S10). The remaining
180 transcripts from this locus showed no meaningful association.
The highest number of MAPK10 transcript members per signature
was 12, observed in LUAD-350.5.3.N.2.0.0.1.4.2. Notably, distinct
MAPKIO transcript isoforms were associated with divergent
phenotypes across cancer types. For example, ENST00000486985
expression was positively correlated with MSI in lung squamous
cell carcinoma (LUSC) patients (LUSC-1549.5.2.P.1.4.0.4.4.2).
In contrast, ENST00000502302 was negatively correlated with
TMB in lung adenocarcinoma (LUAD) patients (LUAD-
1824.5.1.N.1.0.0.3.4.2). Similarly, ENST00000395169 exhibited
a protective role correlating with favorable outcomes in LGG
(LGG-1814.5.3.P.3.93.72.2.3.2), ENST00000395160, a
different isoform from the same locus, was associated with

whereas

risk, by four survival metrics, in stomach adenocarcinoma
(STAD-1718.5.3.N.1.44.0.3.4.2). These isoform-specific correlations
underscore the heterogeneity within the MAPKIO gene locus,
where distinct transcripts contribute variably to cancer progression,
phenotypic features, and therapeutic responses across cancer types.
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FIGURE 7

Sankey diagram illustrating transcript-specific associations of the MAPK10 gene across various phenotypes and cancer types. The MAPK10 gene locus
appears as the source node, connected to its specific transcript isoforms identified in the dataset. Each transcript is further linked to phenotypic profiles
(i.e., TSM, TMB, MSI) and mapped to cancer types such as BRCA, COAD, and GBM. The numbers in parentheses indicate the number of connection
strokes. The thickness of each link represents the frequency of correlation between MAPK10 transcripts and the respective phenotypes or cancer types,
highlighting both transcript-specific and phenotype-driven associations within multi-transcript gene correlations. For example, the transcript
ENST00000486985 (signature identifier: LUSC-1549.5.2.P.1.4.0.4.4.2) shows a positive correlation with MSI in patients with LUSC, while the isoform
ENST00000502302 (LUAD-1824.5.1.N.1.0.0.3.4.2) demonstrates a negative correlation with TMB in LUAD patients. The corresponding interactive
proportional node dynamic network is available in Supplementary Material S1 (Supplementary Figure S13).

TABLE 4 Examples of transcript-specific correlations of MAPK10 with cancer types, phenotypic features, and prognostic outcomes.

Signature Transcript ID | Cancer type Phenotypic Correlation Comment

identifier correlation direction

LGG- ENST00000395169 LGG (Lower-Grade Favorable outcomes Protective Correlated with better

1814.5.3.P.3.93.72.2.3.2 Glioma) survival outcomes

STAD- ENST00000395160 | STAD (Stomach Poor prognosis Risk Linked to worse survival

1718.5.3.N.1.44.0.3.4.2 Adenocarcinoma) outcomes

LUSC- ENST00000486985 | LUSC (Lung Squamous MSI Positive Transcript positively

1549.5.2.P.1.4.0.4.4.2 Cell Carcinoma) correlated with MSI
phenotype

LUAD- ENST00000502302 | LUAD (Lung TMB Negative Transcript negatively

1824.5.1.N.1.0.0.3.4.2 Adenocarcinoma) correlated with high
TMB, a hallmark of poor
prognosis in LUAD.

Table 4 summarizes the transcript-specific correlations of the
MAPKI0 gene with cancer types, phenotypic characteristics, and
prognostic outcomes, as detailed above. Each transcript is linked to
a unique signature identifier, highlighting its distinct role in cancer
progression, its associated phenotypic features, and therapeutic
relevance.

3.5 miRNA-specific signatures

A total of 1,470 miRNA-specific signatures were identified,
with over half associated with prognostic outcomes and immune
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phenotypes, revealing transcriptomic roles for miRNAs such as
hsa-miR-142-3p across multiple RCD forms and cancer types.
The miRNA-specific signatures are composed of 1-58 elements
(mean 2.2; median = 1; Q3 = 2; P90 = 4). Of these, 954
(64.9%) contain a single miRNA element. Among the miRNA-
specific signatures, 786 (53.5%) correlated with risk or protection

in at least one survival metric. Of these, 41 (5.2%) correlated
with risk and 16 (2%) with protection in all four metrics
of survival (Supplementary Dataset S5). The miRNA signatures
correlated with distinct tumor microenvironment profiles,
including anti-tumoral, pro-tumoral, and variable conditions.

We highlight the signature HNSC-1855.4.3.P.3.71.64.1.1.4, which
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corresponds to hsa-miR-142-3p, the mature form of MIRI42
in head and neck squamous cell carcinoma (HNSC) patients.
Cross-referencing public datasets revealed MIRI42 is involved
in four RCD forms—apoptosis, autophagy, ferroptosis and
necrosis—emphasizing its critical role in hematopoiesis, immune
regulation, and cancer progression by modulating various target
genes involved in T cell differentiation, inflammation, and
tumorigenesis.

hsa-miR-142-3p expression shows a positive correlation with TSM
(Supplementary Figure S4A). It is overexpressed in HNSC tumors
as compared with non-tumor tissues (Supplementary Figure S4B).
While hsa-miR-142-3p overexpression was associated with protection
in DSS (Supplementary Figure S4C), PFI (Supplementary Figure S4E)
and OS the
was associated with poorer prognosis, as reflected in DSS
PFI

(Supplementary Figure S4F), underexpression
(Supplementary Figure S4G),
and OS (Supplementary Figure S4]).
142-3p linked to
in the tumor microenvironment, characterized by a “hot”
infiltrate,

(Supplementary Figure S4K).

(Supplementary Figure S4I),
Furthermore, hsa-miR-

expression was an anti-tumoral profile

immune indicative of active immune engagement

3.6 Gene-specific CpG methylation
signatures

We identified 6,109 CpG methylation-specific gene signatures,
most of which were associated with TSM and included subsets
linked to immune infiltration profiles and patient outcomes across
all survival metrics. The gene-specific CpG methylation signatures
exhibit element counts ranging from 1 to 423 per signature (mean =
3.2; median = 1; Q1 = 1; Q3 = 2; P90 = 5), of which 4,246 (69.5%)
contain a single CpG Methylation-specific member. The majority (n
= 5,350; 87.6%) was associated with TSM. Of these, 192 (3.59%)
were linked to an increased risk, while 60 (1.12%) were protective
in all four metrics of survival (Supplementary Dataset S6). These
signatures were further stratified based on their correlation with
tumor microenvironment profiles, showing anti-tumoral (n = 98;
38.9%), pro-tumoral (n = 42; 16.7%), and dual (n = 54; 21.4%)
characteristics. The methylation signatures associated with TSM
were classified according to their association with immune cell
infiltration profiles, showing “hot” (n = 6; 2.4%), “cold” (n = 16;
6.4%), or variable (n = 25; 9.9%) immune phenotypes.

For instance, the signature HNSC-156.7.3.N.3.71.55.1.1.1
demonstrates a negative correlation between CpG methylation
at the CEBPE and SIRPG loci and TSM in HNSC patients
CEBPE SIRPG  mRNA
expression levels were higher in tumor than in non-tumor
samples (Supplementary Figure S5B). CEBPE and SIRPG mRNA
in DSS
(Supplementary Figure S5C), PFI (Supplementary Figure S5E), and
OS (Supplementary Figure S5F). High methylation levels at CEBPE
and SIRPG are linked to a poorer prognosis in all survival metrics
(Supplementary Figures S5G-]). Furthermore, CEBPE and SIRPG
mRNA expression correlates with an anti-tumor microenvironment

(Supplementary Figure S5A). and

expression levels are associated with protection

transcriptional profile and is linked to a “hot” immune infiltration
profile in HNSC patients (Supplementary Figure S5K).
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3.7 Protein-specific signatures

We identified 258 protein-specific signatures, predominantly
correlated with TSM and microenvironmental phenotypes,
including a small subset linked to survival outcomes. The protein-
specific signatures contain between 1 and 4 elements (mean = 1.1;
median = 1; Ql = 1; Q3 = 1; P90 = 1). Of these, the majority
(254; 98.5%) exhibited a correlation with TSM, with 153 (60.2%)
showing a positive correlation and 101 (39.8%) displaying a negative
correlation. Among these, 7 (2.76%) were associated with an
increased risk, while 1 (0.4%) was linked to protective effects in all
four metrics of survival (Supplementary Dataset S7). Furthermore,
47 (18.22%) protein-specific signatures correlated with anti-
tumoral profiles and 147 (57%) with dual tumor microenvironment
profiles. Protein signatures also correlated with immune
phenotypes categorized as “hot” (4; 1.3%), “cold” (11; 4.26%),
or “variable” (17; 6.6%). Example: BRCA-1496.1.3.P.3.71.71.1.1.2
refers to the expression of the CASPASE7CLEAVEDDI198
protein modification, which positively correlated with stemness
in BRCA patients
significantly higher mRNA expression for the gene encoding the

(Supplementary Figure S6A). There was
signature element in tumor samples compared to normal tissue
(Supplementary Figure S6B).

Protein overexpression is protective in DSS (Supplementary
Figure S6C), PFI oS
(Supplementary Figure S6F), Low protein

(Supplementary Figure S6E)  and

survival metrics.
expression was associated with poor prognosis in the same
survival metrics  (Supplementary Figures S6G,I,J).  Moreover,
CASPASE7CLEAVEDD198

tumoral microenvironment and “hot” immune infiltration profiles

expression correlated with anti-

(Supplementary Figure S6K).

3.8 Mutation-specific signatures

We identified 8,022 mutation-specific signatures, predominantly
associated with TMB and immunophenotypic heterogeneity, with a
minority showing prognostic correlations. The signatures comprise
1 to 487 elements (mean = 3.6; median = 1; Q1 = 1; Q3 = 1; P90 = 5).
Of these, 5,464 (68.1%) consisted of a single element. The majority
showed a positive correlation with TMB (5,880; 73.3%) and MSI
(2,1365 26.6%), while a small subset (3; 0.04%) showed a positive
correlation with TSM (Supplementary Dataset S8).

The TMB-associated signatures were linked to risk (n = 229;
3.9%), protection (n = 96; 1.63%), “cold” immune cell profiles (n
= 437; 5.45%), “hot” immune profiles (n = 200; 3.4%), “variable”
immune profiles (n = 627; 10.7%), pro-tumoral (n = 687; 11.7%),
anti-tumoral (1,426; 24.3%) and dual tumor microenvironment

profiles (n = 1,501; 25.5%) (Supplementary Dataset S8).
For example, signature KIRC-169.2.1.P2.71.45.1.1.2, which
features the mutation commonalities of CPEB4 and NF2

genes, is positively associated with TMB in KIRC patients
(Supplementary Figure S7A). mRNA expression of the signature
element was significantly higher in tumor versus non-tumor samples
(Supplementary Figure S7B). mRNA expression of those genes
was a protective factor in DSS (Supplementary Figure S7C), PFI
(Supplementary Figure S7E) and OS (Supplementary Figure S7F).
Mutations in those genes were associated with poor prognosis
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in all metrics (Supplementary Figures S3G-J). mRNA expression
of the
microenvironment and

elements correlated with anti-tumoral

“hot”
(Supplementary Figure S7K).

signature

immune infiltration profiles

3.9 CNV-specific signatures

We identified 2,442 CNV-specific signatures, over half of
which were associated with TSM, with a minority demonstrating
consistent prognostic and immune microenvironment correlations.
Each CNV-specific signature comprises 1 and 124 elements (mean
= 2.4; median = 1; Q1 = 1; Q3 = 2; P90 = 4), 675 (27.6%) of which
comprise >1 element. Most of the CNV-specific signatures (1,313;
53.8%) were associated with TSM (Supplementary Dataset S9).
Among these, 915 (69.9%) exhibited a negative correlation, while
398 (30.3%) demonstrated a positive correlation. Among the CNV
signatures that correlated with TSM, 54 (4.1%) were associated with
risk or protection across all four survival metrics. A portion of
these signatures correlated with anti-tumoral (n = 24; 44.4%), pro-
tumoral (n = 8; 14.8%) and dual expression profiles (n = 19; 35.2%).
These signatures were associated with tumor immune infiltration,
characterized as “cold” (n = 11; 20.4%), “hot” (n = 3; 5.6%) or
“variable” (n = 9; 16.7%).

For  example, signature  KIRP-107.3.2.N.1.44.44.1.1.2,
comprising CXCL10 and TNFRSF4, showed CNV negatively
correlated with MSI in KIRP Supplementary Figure S8A).
mRNA CNV
was unchanged between tumors

expression of the signature  constituents

and non-tumor samples
(Supplementary Figure S8B). mRNA overexpression of these
in DSS

(Supplementary Figure S8C), DFI (Supplementary Figure S8D), PFI

genes was associated with an increased risk

(Supplementary Figure S8E) and OS (Supplementary Figure S8F).

with  CNV  deletions

across all survival metrics (Supplementary Figures S8G-J).

Furthermore, mRNA expression of CXCLIO and TNFRSF4
“hot”

microenvironment profiles (Supplementary Figure S8K).

Patients exhibited poor prognosis

was associated with anti-tumoral and immune

Table 5 provides a consolidated overview of the classification
and distribution of multi-omic signatures, including mRNA,
transcript, miRNA, CpG methylation, CNV, mutation, and protein,
according to their hazard-risk assessment (risky, protective, or
poor prognostic signatures) and their correlation with tumor
microenvironment and immune phenotype profiles. These profiles
are further categorized based on anti-tumoral, pro-tumoral, or dual
microenvironment classifications, as well as immune phenotypes,
into “hot,” “cold,” or variable categories. This summary highlights
the complexity of prognostic and therapeutic insights derived from
distinct multi-omic features, providing a deeper understanding
of their contextual relevance in cancer research and facilitating
the discovery of new biomarkers and therapeutic targets for
enhanced patient outcomes. By integrating diverse molecular
features, we highlight the differential associations of multi-omic
signatures with tumor prognosis and therapeutic informativeness,
defined as the clinical relevance of biomarkers in guiding
treatment decisions.
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3.10 Clinically meaningful signatures

By integrating diverse molecular features, we identified
167 clinically meaningful signatures across five omic features:
Transcript, mRNA, CNV, Methylation, and Mutation. These
signatures are characterized by consistent associations
with prognostic outcomes and immune microenvironment
phenotypes in 11 cancer types, including STAD, PRAD, LUSC,
LUAD, LGG, KIRP, KIRC, HNSC, CESC, BRCA, and ACC
(Supplementary Dataset S1P). The selection process focused on
signatures with significant associations with hazard ratio and
prognostic metrics across all four survival outcomes: DSS, DFI,
PFI and OS. These signatures also showed robust correlations
with immune infiltration profiles, which were categorized into
anti-tumoral, pro-tumoral, or dual microenvironment roles, and
immune phenotypes classified as “hot] “cold or “variable”
Among these, the top most clinically significant signatures are

presented in Table 6.

3.11 Identification of potential therapeutic
targets through known drug-gene
interactions in top-ranked gene signatures

To identify potential therapeutic targets, we analyzed the gene
components of the leading multi-modular signatures (Table 1), RCD
type-specific signatures (Table 2), multi-omic feature signatures
(Table 3) and top clinically meaningful signatures (Table 6).
Collectively, these top 45 signatures (Supplementary Dataset S1Q)
encompass 84 distinct genes (Supplementary Dataset SIR). By
inputting this list into the DGIdb (Cannon et al., 2024), we found
that 27 of the 84 genes are associated with 146 known drug
interactions, as detailed in Supplementary Dataset SIS. Notably,
59.6% (n = 87) of these interactions involve drug inhibitors. The
genes with the highest number of drug interactions include APBBI,
NAT2, ITGB3, RHOB, TLR4, ATP5F1A, TNFRSF4, GATA3, PARP3,
RPL5 (Supplementary Figure S11).

3.12 Independent validation of prognostic
signatures using PRECOG

To ensure the robustness and generalizability of our findings, we
assessed the prognostic value of 126 top, clinically meaningful,
mRNA-specific signatures (Supplementary Dataset SIK) using
the independent PRECOG database. Of the 126 signatures
selected for their association with risk, protection, and poor
prognosis—as well as their links to anti-tumoral, pro-tumoral, or
dual microenvironment cell profiles and immune infiltrates—we
successfully validated 73 signatures in five PRECOG cancer
types (Lung cancer ADENO, Breast cancer, Brain cancer Glioma,
Brain cancer Astrocytoma, and Prostate cancer). These PRECOG
cancer types are equivalent to the TCGA cancer types LUAD,
BRCA, LGG, and PRAD, in which these signatures were initially
identified (Figure 8). This validation underscores the clinical
relevance of these signatures and their potential utility in diverse
patient populations.
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FIGURE 8

Heatmap of prognostic meta-Z scores from the PRECOG independent database. This heatmap illustrates the association between mRNA-specific
signatures (y-axis) and PRECOG cancer types (x-axis). Median meta-Z scores were computed based on overall survival (OS) metrics. Cells are
color-coded: blue denotes a favorable prognosis (negative meta-Z scores), red indicates a poor prognosis (positive meta-Z scores), and gray represents
neutral or non-significant values. Black-bordered cells highlight statistically significant associations (|Meta-Z| > 3.09 or < -3.09, p < 0.001). The asterisk
within the black-bordered cells marks signatures whose prognostic values were validated in both direction and strength in TCGA-equivalent PRECOG
cancer types.
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3.13 CancerRCDShiny: exploring
multi-omic signatures in RCD for cancer
research

We implemented CancerRCDShiny (https://cancerrcdshiny.
shinyapps.io/cancerrcdshiny/), a tool designed to facilitate the
exploration and analysis of signatures associated with RCD forms
in cancer. This R Shiny app is tailored for researchers and clinicians
aiming to uncover the molecular underpinnings of cancer through
the lens of cell death processes. CancerRCDShiny integrates a
robust database encompassing 25 distinct RCD forms and 32
cancer types, enabling users to explore the intricate relationships
between signatures and cancer phenotypes. The app employs
rigorous genome-wide significance filters to identify the most
relevant signatures, ensuring access to high-confidence data for
thorough analysis and interpretation. Users can explore multiple
gene features and phenotypic attributes, providing a comprehensive
view of the genetic landscape associated with RCD in cancer. The
app features a user-friendly interface with dynamic visualization
tools, enabling users to easily navigate data, create custom plots,
and generate detailed reports. Researchers can tailor their queries
to specific RCD forms, cancer types, or omic features, facilitating
targeted investigations. CancerRCDShiny is an essential resource
for precision oncology, empowering researchers to uncover novel
insights and advance cancer research.

CancerRCDShiny also contains an RCD Multi-omic Signature
Identifier Interpreter the
nomenclature of the signatures. This function enables users to paste

function that deciphers complex
any RCD signature identifier from the database and download the

interpreted identifier in text format.

3.14 Performance of the cancer regulated
cell death data analyst tool

The Cancer Regulated Cell Death Data Analyst is a specialized
GPT-based software tool designed to extract and process
information from various file formats, generating structured tabular
outputs in. csv format to address specific research queries related to
RCD in cancer. It offers robust capabilities, including automated data
cleaning, integration with external databases, and NLP techniques
for extracting insights from unstructured text. The tool supports
interactive dashboards for real-time visualization, functional
annotation and enrichment analysis, predictive modeling using
machine learning, and customizable reporting. Additional features
include secure user authentication, data encryption, API access
for seamless integration with other software tools, collaborative
functionalities for team-based analysis, version control for data and
workflows, and educational resources. It also provides advanced R
code suggestions for in-depth analysis, such as data visualization
through plots and images, explicitly tailored for RCD research. A
built-in feedback mechanism ensures continuous improvement,
while enhanced plotting and imaging capabilities further refine
data interpretation and analysis. The tool can be accessed at URL:
https://chatgpt.com/g/g-8etzMPrtt-cancer-regulated-cell-death-
data-analyst.
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4 Discussion

4.1 Holistic approach and context-specific
analysis

Our multi-optosis model is integrative and holistic, querying
5,913 genes associated with RCD, encompassing 62,090 transcripts,
882 mature miRNAs and 239 cancer-associated proteins and protein
modifications (for 193 genes) from 25 distinct RCD forms. The
model assumes non-uniformity in the activity and effects of the
RCD gene components across different cancer types. Each cancer
type is analyzed separately, ensuring that the unique biological
contexts and specific molecular mechanisms of each cancer type
are thoroughly considered. When querying target genes, we treat
the RCD gene inventory as a whole; however, each gene is
conceptually tagged to one or more RCD forms. This approach
enables us to account for the unique biological contexts and specific
molecular mechanisms of each cancer type, thereby ensuring a
comprehensive understanding of the associations between RCD
gene partners in cancer progression and treatment resistance. By
combining these elements, our model uncovers new biomarkers and
therapeutic target candidates, opening avenues for more effective
cancer treatments.

The signature database developed in this study offers a valuable
resource for advancing cancer research and treatment through
multiple RCD signaling pathways. The signature identifiers are
enriched with meaningful information encoded in the nomenclature
system, unveiling hidden correlations between multi-omic and
phenotypic features. Our rank-scoring system integrates multiple
critical factors to assess the overall significance and correlation of
each signature, providing preliminary evidence for their prognostic
value. This method offers a comprehensive framework for evaluating
signatures in cancer research. Our process ensures a balanced and
accurate assessment of each signature’s relevance by considering
multiple factors, including cancer type, survival metrics, and multi-
omic and phenotypic features. The scoring of signatures can facilitate
the prioritization of signatures for further investigation, ultimately
accelerating the discovery of actionable insights and improving
patient outcomes.

Currently, no signature identifier system in the literature
incorporates multi-omics features as comprehensively as our model
does. Most studies on signatures related to RCD and cancer
list signatures based on a single type of association (Wang and
Zhang, 2024; Bao et al, 2014; Cai et al, 2020; Chen et al,
2020; Chang et al., 2021; Modarres et al., 2021; Wan et al., 2021;
Bian et al., 2022; Li et al., 2022; Yao et al., 2022; Chen L. et al., 2023;
LiJ. etal., 2024; Zhou X. et al., 2024). Our model’s novel integration
of multi-omics features and multiple phenotypic attributes provides
a more holistic and informative framework for understanding
cancer biology. The uniqueness of our integrated multi-omic, multi-
feature signature discovery approach significantly enhances the
potential of key biomarkers and therapeutic targets.

However, we recognize the necessity of thorough validation
across independent datasets to confirm the reliability of these
signatures in clinical settings. Therefore, validation in independent
datasets is necessary to establish the clinical applicability of our
findings fully.
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As a discovery-phase analysis encompassing over 44,000 mono-
omic signatures, our model prioritized genome-scale screening
using univariate Cox models. While this approach enables broad
comparability across tumor types and omic layers, we recognize that
downstream validation through multivariate modeling—including
adjustment for clinical confounders such as age, sex, and stage—is
essential to confirm independent prognostic utility. Importantly,
implementation of covariate-adjusted survival modeling would
entail redefinition of the signature construction logic to ensure
that association signals are preserved across clinical strata, and
would require computational infrastructure beyond the current
framework. We plan to address this in future validation phases.

The ability to stratify tumors or patients based on multiple layers
of omic regulation (e.g., miRNA and methylation) is particularly
valuable for building interpretable prognostic and mechanistic
models. We recognize that resampling-based methods, such as
bootstrapping or subsampling, are valuable tools for assessing
the stability of candidate signatures. Given the exploratory and
genome-wide scope of the present analysis—encompassing over
44,000 multi-omic signatures across 33 cancer types—bootstrap-
based stability testing was not implemented at this stage due to
computational limitations. In this discovery context, the presented
top-ranked signatures are demonstrative in nature, selected to
illustrate biologically and clinically meaningful associations across
omic layers. They are not intended as definitive biomarkers.
Systematic prioritization and validation of signature robustness will
be the focus of future follow-up analyses.

4.2 Interpretation of multi-omic and
phenotype correlations and their signs

The signatures identified through specific multi-omic and
phenotype correlations are candidate proxies for diagnosis,
prognosis, or therapeutic response. Integrating positive and negative
correlations into our analysis provides a more comprehensive
understanding of the signatures associated with various cancer
phenotypes. This thorough approach enables the identification of
potential oncogenes and tumor suppressors, paving the way for
the development of more tailored and effective cancer treatments.
For instance, positive correlations between gene expression and
TSM could indicate aggressive cancer phenotypes, metastasis,
and therapy resistance. Examples include overexpression of the
pluripotency- and apoptosis-related POU5FI (OCT4) (i.e., TGCT-
15.6.3.P3.0.0.2.4.2), SOX2 (ie., LUSC-2293.6.3.P.3.62.30.1.4.3),
and NANOG (ie, TGCT-4.6.3.P.3.0.0.2.4.1) genes in various
cancer types associated with stemness and poor prognosis
(Clemente-Perivan et al., 2020; Chiou et al., 2010; Wu et al., 2012;
Gutekunst et al., 2013; Upadhyay et al., 2020; Mehrzad et al., 2022;
Fang et al., 2023; von Eyben et al., 2023; Zhu and Xu, 2024).

Negative correlations provide equally critical insights. A
negative correlation between gene CNV and a particular phenotype
(i.e., stemness) could indicate genes that suppress aggressive traits or
resistance mechanisms. For example, TP53 deletion/duplication was
correlated with poor prognosis in Liver hepatocellular carcinoma
(LICH) patients (LIHC-1867.3.3.N.3.0.126.1.4.12). TP53 plays a
crucial role in DNA repair and apoptosis (Blagih et al., 2020).
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The link between TP53 CNV changes and adverse outcomes in
LIHC suggests its potential as a marker for high-risk patients. Loss
of TP53 function can weaken DNA repair and apoptosis, facilitating
tumor progression. This underscores TP53’s role in restraining
tumor aggressiveness, highlighting it as a potential therapeutic
target. Exploring similar negatively correlated genes can reveal
critical mechanisms in cancer suppression and inform targeted
therapies.

Identifying genes that are negatively correlated with aggressive
tumor features can highlight potential tumor suppressors or
biomarkers of less aggressive disease. For example, reduced
levels of E-cadherin (CDHI) are associated with increased
invasiveness and metastasis in several types of cancer (Berx and
Van Roy, 2001). We identified 16 signatures with CDHI, which
is overexpressed in ten cancer types (PAAD, COAD, BRCA,
LGG, HNSC, THYM, STAD, READ, GBM, and PRAD). In head
and neck squamous cell carcinoma (HNSC) patients, CDHI
mRNA expression was found to be negatively correlated with
MSI (HNSC-814.6.2.N.3.0.0.2.2.3) (Supplementary Dataset S3).
Notably, CDHI in HNSC patients are rare
(Supplementary Dataset S1T) TP53 mutations
(Supplementary Dataset S1U and Supplementary Figure S9).

mutations
compared to

This negative correlation suggests that higher CDHI expression
may contribute to tumor stability and cohesion, consistent with
its role as a tumor suppressor and adhesion molecule. In
HNSC, where high MSI frequently correlates with aggressive
behavior and poor prognosis, elevated CDHI expression may help
preserve cellular integrity, potentially limiting the tumor’s invasive
capacity. This aligns with CDHI’s function in stabilizing cell-
cell interactions and opposing epithelial-mesenchymal transition,
a process often heightened in MSI-high tumors (Berx and
Van Roy, 2001; Liu et al., 2017).

The presence of solo CDHI signatures across different cancer
types further underscores CDHI’s potential as a marker of epithelial
integrity and reduced invasiveness, especially in tumors with a
preserved epithelial phenotype. Using CDHI as an indicator of
cellular cohesion could improve patient stratification, identifying
patients who may benefit from therapies focused on maintaining
cell adhesion and curbing invasion-related pathways. This finding
supports the need for further research into the role of CDH1I in tumor
stability and its potential as a biomarker across various cancer types.

Thus, in contrast to models restricted to canonical forms of cell
death, our 25-form RCD framework preserves the mechanistic and
phenotypic diversity of RCD programs, offering greater resolution
for identifying tumor-specific vulnerabilities and informing
precision oncology strategies.

4.3 Prognostic and diagnostic potential of
transcript-specific signatures

MAPKI0
underscore the importance of distinguishing specific isoforms in

The transcript-level correlations observed for
cancer research and clinical applications. While MAPKI0 as a gene
locus shows variability across cancer types, individual transcripts
reveal distinct associations with phenotypic features and patient
outcomes. This specificity highlights the potential for isoform-level
resolution to refine prognostic tools and therapeutic strategies. For
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instance, identifying protective or risk-associated transcripts can
enhance the accuracy of patient stratification, allowing for more
personalized treatment plans.

The distinct roles of MAPK10 isoforms in tumor progression and
interactions with the microenvironment also emphasize the need
for targeted therapeutic approaches. By isolating isoforms associated
with pro-tumoral or anti-tumoral phenotypes, therapies could be
designed to selectively modulate these transcripts, maximizing
treatment efficacy while minimizing off-target effects. This approach
could be precious in cancers where MAPKI0 isoforms contribute
differentially to immune infiltrates, such as “cold” or “hot” tumors,
potentially guiding the selection of immunotherapy strategies.

The heterogeneity within MAPKI0 reinforces the importance
of transcriptomics in understanding cancer biology. Whole-gene
analyses may overlook critical isoform-specific contributions
that drive tumor behavior and therapeutic response. As such,
data
could enhance diagnostic precision, prognosis accuracy, and

incorporating transcript-level into clinical workflows
the development of isoform-targeted therapies, representing a

significant advancement in precision oncology.

4.4 Application and translational potential
in clinical settings

Cancer therapies, including immunotherapy, aim to eliminate
cancer cells, with their success often influenced by genes that
regulate cell death. Most RCD-associated genes play either a pro-
RCD or an anti-RCD role. However, depending on the cancer
context, specific RCD-associated genes can promote or inhibit
cell death, affecting their suitability as therapeutic targets. It is
also known that some genes exhibit dual roles, acting as pro-
RCD or anti-RCD agents based on the cancer type. For example,
SLC7A11, which codes for a component of a sodium-independent,
anionic amino acid transport system specific for cysteine and
glutamate, promotes resistance to ferroptosis in gliomas (e.g.,
LGG-2956.3.3.N.3.0.0.2.4.4) but inhibits ferroptosis in endometrial
carcinoma (e.g., UCEC-1106.2.1.P.3.2.0.2.4.4) (Fang et al., 2023; Zhu
and Xu, 2024; Liu et al., 2020) (Supplementary Dataset S1V).

In cancer treatment, genes that promote RCD are often
considered desirable targets because they facilitate the elimination
of cancer cells. Conversely, genes that inhibit RCD can contribute
to therapy resistance, making them challenging targets in specific
cancers. Customizing therapeutic strategies based on the gene’s role
in RCD within the specific cancer type can optimize treatment
outcomes. Therapies should be aligned with whether a gene’s
function is to promote or inhibit cell death, ensuring that the
approach enhances the effectiveness of the treatment.

The RCD signature database holds significant promise for
practical application in preclinical settings, offering valuable tools
for patient stratification, personalized treatment plans, prognostic
applications, and therapeutic decision-making. These signatures
may enable categorizing patients based on their molecular profiles,
leading to more tailored and effective treatment strategies.

We identified 148 gene signatures with somatic mutations
positively correlated with TMB and with immunotherapeutic
potential by their association with immune infiltrate profiles
in fourteen cancer types (Supplementary Dataset SIW). The
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distribution of these mutation-specific signatures by cancer type
and their immunotherapeutic potential is shown in Figure 9.
Mutations in these genes are likely sources of neoantigens, as high
TMB produces more immunogenic mutations (Zhang et al., 2024).
This connection suggests the mutation-specific signatures could
identify neoantigen targets for personalized therapies, such as cancer
vaccines or T cell-based treatments.

The practical application of our findings lies in stratifying
patients by using the signatures as prognostic tools to guide
therapeutic decisions based on the cancer’s molecular profile
(Wang D.R. et al, 2022). To bring our multi-omic signature
database into clinical practice, it is essential to conduct rigorous
clinical trials that validate both its efficacy and reliability. This
involves evaluating the predictive power of the signatures across
diverse patient cohorts and confirming reproducibility in different
clinical settings (Wang D. R. et al., 2022). Notably, cross-referencing
the gene components in the database with existing literature reveals
that some signatures or their members have already been evaluated
in previous preclinical studies, which highlights the translational
potential of our findings, bridging preclinical insights with clinical
applications. Out of the 150 widely recognized immunological
targets in cancer research, 91 (60,7%) are included in the signatures
identified in this study (Supplementary Dataset S1L).

4.5 Cases of clinically validated RCD
multi-omic signatures

We identified 879 multi-omic signatures (Supplementary
Dataset S10) that contain at least one gene member from
27 out of 29 genes whose protein products are classified as
chimeric antigen receptor (CAR) targets and are currently
under investigation in clinical trials as identified by
Clinicaltrials.gov (Dannenfelser et al., 2020).

We exemplify the translational impact of the RCD multi-
omic signature database with two cases in which members of
the multi-optosis signatures have been clinically validated in
independent studies. The first case is CD274 (a driver gene that
encodes for PD-L1) (Topalian et al, 2012). The finding that
CD274 is involved in eight RCD processes (apoptosis, autophagy,
cuproptosis, efferocytosis, ferroptosis, necroptosis, pyroptosis, and
necrosis) expands our understanding of the multifaceted roles of
PD-L1 in cancer biology (Supplementary Dataset S1B). This broad
involvement suggests that PD-L1 may influence tumor progression
and response to therapy through multiple pathways, not just
immune evasion. This knowledge can lead to targeted and effective
therapeutic strategies that address these various pathways.

The positive correlation between CD274 mutations and TMB
in GBM-410.2.1.P.3.35.0.4.4.8, LGG-1442.2.1.P.3.35.0.3.4.8, and
PAAD-773.2.1.P.3.42.0.2.4.8 suggests that higher TMB, often
associated with better responses to immunotherapy, is linked to
the occurrence of CD274 mutations (Supplementary Figure S10,
Supplementary Dataset S1X). Given the low frequency of CD274
somatic mutations in those cancer types (0.4%; 4 mutations in
998 patients, Supplementary Dataset S1X), as compared to TP53,
a prominent driver cancer gene (Supplementary Dataset S1Y), the
findings highlight that even rare mutations can have significant

clinical implications. Patients with high TMB are more likely to
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Accumulated histogram illustrating the distribution of mutation-specific signatures by meaningful immunotherapy potential across cancer types. The
histogram shows the absolute counts of signatures associated with the combined Tumor Microenvironment Contexture (TMC) and Tumor-infiltrating
lymphocyte contexture (TIC) ranks. Each bar represents a specific cancer type abbreviation (CTAB), and segments within the bars show the distribution
of combined ranks categorized as Anti-tumoral & Hot, Dual & Variable, and Pro-tumoral & Cold, among others. The colors correspond to the
Combined TMC and TIC ranks, mapped using the Okabe-Ito color palette extended for color-blind friendliness. Data were processed and summarized
from multi-omic analyses of mutation-associated signatures with the potential for immunotherapy (Supplementary Dataset S1W).
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have neoantigens that enhance the immune response, making them
better candidates for immunotherapy. This correlation can guide
the selection of patients for immune checkpoint inhibitor therapies,
potentially leading to better clinical responses.

The identification of CD274 mutations as a risk factor in
at least one survival metric in patients with GBM, LGG, and
PAAD (Supplementary Figure S9) aligns with previously reported
associations (Zeng et al, 2023; Chen et al, 2018; Fen et al,
2017). It reinforces the role of PD-L1 as a critical biomarker for
patient stratification in these cancers. Clinicians can assess PD-L1
expression levels to identify patients more likely to benefit from
PD-L1/PD-1 checkpoint blockade therapies, thus personalizing
treatment plans and improving outcomes.

Understanding  the CD274 in
(apoptosis, autophagy, cuproptosis,

diverse  roles  of

various RCD processes

efferocytosis, ~ ferroptosis,  necroptosis,  pyroptosis, and
necrosis)  (Supplementary Dataset SIB)  and  its
association with TMB can

combination therapies. For

positive
development of
combining PD-L1

inform the
instance,
inhibitors with agents targeting specific RCD pathways (i.e.,
ferroptosis inducers or necroptosis inhibitors) could enhance
therapeutic efficacy by simultaneously disrupting multiple tumor
survival mechanisms.
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The second case example is the AXL receptor tyrosine kinase,
which plays critical roles in cellular functions such as growth,
migration, aggregation, and anti-inflammation in multiple cell
types (Goyette and Cote, 2022), and it is term-based associated
with apoptosis, efferocytosis, necroptosis, and necrosis in various
cancer types (Supplementary Dataset S1B). Our findings show that
AXL mRNA expression is negatively correlated with stemness in
PAAD-718.6.3.N.3.44.43.3.4.4, LGG-1367.6.3.N.3.35.35.2.4.4, and
STAD-1167.6.3.N.3.35.1.3.2.4 patients (Supplementary Dataset S3).
Specifically, these signatures indicate that high AXL expression
is linked to decreased stemness in these cancers. Conversely,
in PAAD and STAD patients, AXL mutations show a positive
correlation with TMB (Supplementary Dataset S3). The frequency
of AXL somatic mutations in those cancer types is low (5.5%; 34
mutations in 616 patients, Supplementary Dataset S17) compared
to TP53 (Supplementary Figure S9, Supplementary Dataset SIAA).
Thus, adverting that even infrequent mutations can have significant
clinical implications. Notably, the overexpression of AXL in these
three cancer types is a risk factor across three to four metrics of
patient survival (Supplementary Dataset S3).
shows that
antibodies targeting the AXL receptor tyrosine kinase inhibit

Cross-referencing anti-human  monoclonal

AXL activity effectively, limiting the proliferation and migration
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of pancreatic cancer cells in vitro and in vivo (Leconet et al.,
2014). This
immunotherapy in PAAD, LGG, and STAD patients, underscoring

evidence suggests a promising approach for

the potential for these signatures to inform innovative therapeutic
strategies involving anti-AXL antibodies and small molecule
AXL kinase inhibitors. Dysregulated AXL expression in STAD
is highlighted as further
supporting the relevance and potential impact of targeting AXL

a promising therapeutic target,

in gastrointestinal cancers (Pidkovka et al., 2023).

4.6 Validation in PRECOG cancer types

While 73 of the 126 mRNA-specific signatures were successfully
validated in PRECOG cancer types equivalent to TCGA (Lung
adenocarcinoma, Breast cancer, Glioma, Astrocytoma, and Prostate
cancer), the validation rate (58.4%) highlights important biological
and technical considerations. Several factors may explain why
not all signatures showed consistent prognostic value across the
independent PRECOG dataset: (1) lack of equivalent TCGA versus
PRECOG cancer type (example: CESC - Cervical squamous cell
carcinoma and endocervical adenocarcinoma; n = 5 signatures);
(2) gene absent in PRECOG (example: ADAMTS9-AS1 in PRAD-
1064.6.3.N.2.95.26.1.2.1); (3) the validation process relied on
stringent statistical thresholds (|Meta-Z| > 3.09 or < -3.09, p <
0.001) to identify significant poorer or better prognosis, respectively.
Signatures with weaker but still biologically relevant effects may not
have met these thresholds in PRECOG, leading to their exclusion
from the validated set. (4) Some signatures may exhibit cancer-
specific prognostic value, meaning they are highly relevant in
certain cancer types but not others. While PRECOG includes cancer
types equivalent to TCGA, the absence of certain subtypes or
including additional subtypes in PRECOG could explain why some
signatures were not validated. (5) For multi-gene signatures, the
median meta-Z score was computed across all genes, which may
dilute the contribution of individual genes with strong prognostic
effects. This aggregation approach could cause the loss of signal
for signatures where only a subset of genes drives the prognostic
association.

Despite these challenges, the validation of 73 signatures in
PRECOG underscores their robustness and clinical relevance
across independent datasets. The validation rate highlights
the complexity of translating gene expression signatures into
universally applicable prognostic tools and emphasizes the
need for further refinement and context-specific validation in
future studies.

4.7 Advanced tools for RCD data analysis

Although existing resources provide valuable insights, they have
limitations that our model addresses. Four comprehensive and
interactive online tools are currently available to support research
on RCD in cancer: RCD map10 (Ravel et al., 2020), FerrDb!!

10 RCD map: https://navicell.vincent-noel.fr/pages/maps_rcd.html
11 FerrDb: http://www.zhounan.org/ferrdb/legacy/index.html
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(Zhou and Bao, 2020), HAMdb'? (Wang et al., 2018), XDeathDB"?
(Gadepalli et al., 2021) and RCDdb™ (Wang et al., 2024). The
first appears to have inactive hyperlinks. FerrDb is dedicated
to ferroptosis regulators and disease associations. It categorizes
regulators into genes (drivers, suppressors, markers, unclassified)
and substances (pure and mixtures like iron, erastin, and herbal
extracts). These are further classified as inducers or inhibitors.
FerrDb includes seven curated datasets. HAMdb is a database
of autophagy modulators and their disease links, containing 796
proteins, 841 chemicals, and 132 miRNAs. It helps identify new
modulators, drug candidates, and therapeutic targets through a
user-friendly interface for easy searching and browsing, advancing
autophagy research in cancer and other diseases. XDeathDB gathers
information about a 12-optosis model that includes intrinsic
apoptosis, autosis, efferocytosis, ferroptosis, immunogenic cell
death, lysosomal cell death, mitotic cell death, mitochondrial
permeability transition, necroptosis, parthanatos, and pyroptosis. It
integrates big data for cell death gene-disease associations, gene-cell
death pathway associations, pathway-cell death mode associations,
and cell death-cell death associations derived from literature reviews
and public databases. RCDdb features over 3,000 literature-derived
annotations covering 1,850 RCD-associated genes linked to 15 RCD
forms (apoptosis, pyroptosis, necroptosis, autophagy-dependent cell
death, entotic cell death, NETotic cell death, parthanatos, MPT-
driven necrosis, immunogenic cell death, lysosome-dependent
cell death, ferroptosis, alkaliptosis, oxeiptosis, cuproptosis, and
disulfidptosis). It integrates data on diseases, drugs, pathways,
proteins, and gene expression and provides advanced visualization
tools and three analytical modules to enable users to identify and
study RCD-related features.

The RCDdb is the first comprehensive, manually curated

database focused on annotating and analyzing the 15
known RCD forms.
Despite their comprehensive scopes, FerrDb, HAMdb,

XDeathDB and RCDdb do not index outputs by significance,
making it challenging to prioritize critical associations, which
can hinder effective data utilization and research prioritization.
We developed the CancerRCDShiny web browser and the Cancer
Regulated Cell Death Data Analyst tools to address these gaps.
These new tools enhance the utility and impact of our findings,
making them more accessible and actionable for researchers and
clinicians. Their integrative and user-friendly design facilitates
efficient extraction, analysis, and visualization of RCD data in
cancer, ultimately advancing our understanding and treatment
of cancer through more precise biomarkers and targeted
therapies.

5 Shortcomings and limitations

This study has shortcomings and limitations that should be
considered when selecting impactful signatures. First, the gene
inventory is an ongoing effort, which means some genes reported

12 HAMdb: http://hamdb.scbdd.com/
13 XDeathDB: https://pcm2019.shinyapps.io/XDeathDB/
14 RCDdb: http://chenyclab.com/RCDdb/
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in various studies may have been omitted since our catalog is
primarily based on the NCBI Gene database. Despite our cross-
referencing, relying on a single database means the catalog may
not comprehensively include all genes associated with RCD forms
reported in the literature.

Second, using a stringent genome-wide significance threshold
(padj-value < 5 x 10"-8) while minimizing false positives may
reduce sensitivity, especially in smaller datasets or those with lower
signal-to-noise ratios. Users should consider the specific context of
their dataset and study design when applying this threshold. A less
stringent threshold might enhance sensitivity in particular scenarios
while maintaining the stringent threshold is crucial in larger datasets
to control false discovery rates. We have made our source code
publicly available, enabling researchers to fine-tune the significance
threshold.

Third, the signatures identified in this study are related
the
of these signatures in recurrent tumors, metastatic tumors,

to primary tumor samples. Therefore, impact values
and primary blood-derived cancers were not addressed in
this study. Future studies should expand the analysis to
these other tumor types to provide a more comprehensive
understanding of the signatures’ roles across different cancer stages
and contexts.

While our model currently includes seven multi-omic layers
with broad Pan-Cancer coverage from TCGA, epitranscriptomic
modifications such as N®-methyladenosine (m®A) were not
included due to the absence of high-resolution, uniformly
processed m°A data across cancer types. As such datasets become
more widely available, future iterations of the CancerRCDShiny
framework will seek to incorporate m®A and related RNA
modifications to further refine isoform-level phenotypic
associations.

Fourth, the corpora of PDFs comprise only free-access full-text
files. This limitation may cause a biased dataset, as some relevant
studies published in subscription-based journals were not included.
Cross-referencing gene targets and gene components of signatures
might miss critical information available in those restricted-access
publications. Future research should incorporate a broader range of
manually curated sources to ensure greater accuracy and depth in
the findings.

Lastly, although this study identifies biomarkers with potential
immunotherapeutic applications, it does not incorporate AI-driven
drug discovery or molecular docking methods to identify or validate
therapeutic compounds. Such approaches could refine our ability
to screen for specific inhibitors or activators targeting RCD-related
pathways and enhance the translational relevance of our findings.
Future research should aim to integrate AI and docking-based
platforms into the CancerRCDShiny tool to support the discovery
of novel drugs targeting the multi-omic signatures identified in

this study.

6 Strengths

This study offers a comprehensive analysis of 25 forms
of RCD in cancer, integrating seven multi-omic layers to
identify biologically grounded and clinically relevant signatures.
A structured scoring system was implemented to assess
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signature significance, supported by a PDF-Al-based literature
mining strategy for evidence-based validation. The Multi-
Optosis framework was intentionally designed to preserve the
biological and phenotypic heterogeneity inherent to multi-
omic cancer data, rather than reducing the complexity of
44,000 multi-layered
This approach enables context-specific interrogation across
phenotypic attributes, types. By
systematically integrating RCD forms with phenotypic and

over signatures into meta-signatures.

omic layers, and tumor
survival traits across multiple cancers, the model establishes a
structured and reproducible platform for biomarker discovery
and therapeutic target prioritization. The adoption of a
distinct signature nomenclature and the implementation of
further

distinguish this resource from general-purpose Pan-Cancer

an interactive Shiny application (CancerRCDShiny)

studies by providing biologically coherent and clinically

interpretable outputs.

7 Concluding remarks

This study introduces the multi-optosis framework as a novel,
integrative approach for investigating RCD mechanisms in cancer.
By incorporating 25 distinct forms of RCD, the model transcends
traditional, single-pathway analyses, offering a holistic view of
the intricate crosstalk between RCD pathways. This framework
advances our understanding of cancer progression and treatment
resistance while providing a robust platform for identifying genome-
wide biomarkers and actionable therapeutic targets. Notably, the
multi-optosis model lays the foundation for clinical applications,
such as stratifying patients based on RCD-related phenotypes and
designing therapies that target multiple RCD pathways for enhanced
efficacy.

We developed a signature database enriched with a systematic
nomenclature that reveals hidden correlations between multi-omic
and phenotypic features. Our ranking method ensures a balanced
and comprehensive assessment of signature relevance by integrating
survival metrics and tumor immune infiltration profiles. This
prioritization speeds up the discovery of actionable insights and
supports the development of personalized therapeutic strategies to
improve patient outcomes.

Practical applications of our findings are facilitated by user-
friendly tools such as CancerRCDShiny and the Cancer Regulated
Cell Death Data Analyst. These tools enable researchers and
clinicians to explore RCD multi-omic signatures efficiently,
leveraging dynamic visualization and customizable reporting
capabilities to enhance data interpretation.

By addressing the complexity and heterogeneity of cancer
biology, the a detailed
understanding of RCD gene associations in cancer progression

multi-optosis  framework provides
and resistance. This integrative approach paves the way for
identifying candidate biomarkers and therapeutic targets, driving
the development of more effective cancer treatments.

Together, the multi-optosis model and its associated tools
represent a significant advancement in cancer biomarker discovery
and translational research, offering invaluable resources for
personalized cancer therapies and improved clinical outcomes.
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