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Integrated multi-optosis model 
for pan-cancer candidate 
biomarker and therapy target 
discovery

Emanuell Rodrigues de Souza1†, Higor Almeida Cordeiro 
Nogueira1†, Ronaldo da Silva Francisco Junior2, 
Ana Beatriz Garcia1 and Enrique Medina-Acosta1*
1Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do 
Norte Fluminense, Rio de Janeiro, Brazil, 2Pathology Department, Stanford University, Stanford, CA, 
United States

Regulated cell death (RCD) is fundamental to tissue homeostasis and cancer 
progression, influencing therapeutic responses across tumor types. Although 
individual RCD forms have been extensively studied, a comprehensive 
framework integrating multiple RCD processes has been lacking, limiting 
systematic biomarker discovery. To address this gap, we developed a multi-
optosis model that incorporates 25 distinct RCD forms and integrates multi-
omic and phenotypic data across 33 cancer types. This model enables the 
identification of candidate biomarkers with translational relevance through 
genome-wide significant associations. We analyzed 9,385 tumor samples from 
The Cancer Genome Atlas (TCGA) and 7,429 non-tumor samples from the 
Genotype-Tissue Expression (GTEx) database, accessed via UCSCXena. Our 
analysis involved 5,913 RCD-associated genes, spanning 62,090 transcript 
isoforms, 882 mature miRNAs, and 239 cancer-associated proteins. Seven 
omic features—protein expression, mutation, copy number variation, miRNA 
expression, transcript isoform expression, mRNA expression, and CpG 
methylation—were correlated with seven clinical phenotypic features: tumor 
mutation burden, microsatellite instability, tumor stemness metrics, hazard ratio 
contexture, prognostic survival metrics, tumor microenvironment contexture, 
and tumor immune infiltration contexture. We performed over 27 million 
pairwise correlations, resulting in 44,641 multi-omic RCD signatures. These 
signatures capture both unique and overlapping associations between omic 
and phenotypic features. Apoptosis-related genes were recurrent across 
most signatures, reaffirming apoptosis as a central node in cancer-related 
RCD. Notably, isoform-specific signatures were prevalent, indicating critical 
roles for alternative splicing and promoter usage in cancer biology. For 
example, MAPK10 isoforms showed distinct phenotypic correlations, while
COL1A1 and UMOD displayed gene-level coordination in regulating tumor 
stemness. Notably, 879 multi-omic signatures include chimeric antigen 
targets currently under clinical evaluation, underscoring the translational 
relevance of our findings for precision oncology and immunotherapy. 
This integrative resource is publicly available via CancerRCDShiny
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(https://cancerrcdshiny.shinyapps.io/cancerrcdshiny/), supporting future efforts 
in biomarker discovery and therapeutic target development across diverse 
cancer types.
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1 Introduction

Regulated cell death (RCD) represents a highly controlled 
cellular process crucial for development, tissue homeostasis, and 
cellular stress responses (Newton et al., 2024). This process removes 
damaged, unnecessary, or potentially harmful cells, supporting 
organismal function and survival. RCD is essential in cancer 
research, playing dual roles in tumor suppression, progression and 
treatment resistance (Gong et al., 2023; Koren and Fuchs, 2021).

RCD involves a complex network of signals and mechanisms 
from various cell death processes rather than functioning through 
a single, isolated pathway (Galluzzi et al., 2018; Ravel et al., 2020). 
The cell death processes are categorized into types, referred to 
as RCD forms, each playing distinct yet sometimes overlapping 
roles (Peng et al., 2022). The RCD forms include apoptosis 
(Elmore, 2007), necroptosis (Galluzzi et al., 2017), pyroptosis 
(Jorgensen et al., 2017), ferroptosis (Stockwell et al., 2017), 
autophagy (Debnath et al., 2023), cuproptosis (Feng et al., 
2024), mitotic catastrophe (Castedo et al., 2004), parthanatos 
(Fatokun et al., 2014), immunogenic cell death (Choi et al., 2023), 
autosis (Bai et al., 2023), NETosis (Brinkmann et al., 2004), 
disulfidptosis (Zheng et al., 2023), alkaliptosis (Chen F. et al., 2023), 
lysosome-dependent cell death (Aits and Jaattela, 2013), entosis 
(Overholtzer et al., 2007), anoikis (Frisch and Francis, 1994), 
oxeiptosis (Holze et al., 2018), paraptosis (Sperandio et al., 2000), 
cellular senescence (Campisi, 2013), mitoptosis (Lyamzaev et al., 
2020), erebosis (Ciesielski et al., 2022), efferocytosis (Qiu et al., 
2023), mitochondrial permeability transition (Suh et al., 2013), 
methuosis (Maltese and Overmeyer, 2014), and necrosis (Kim et al., 
2019). A summary of the operational definitions for the RCD forms 
is provided in Figure 1 and Supplementary Dataset S1A.

Most studies on RCD in cancer are confined to a death 
form (Liang et al., 2020; Zhang Y. et al., 2022; Zhang Z. et al., 
2022; Xu et al., 2023). Multi-optosis, a growing concept describing 
the crosstalk between different RCD pathways, highlights the 
complexity of RCD in cancer. This interconnectedness can be 
exploited for therapeutic strategies that simultaneously induce 
multiple forms of cell death. Integrating various forms of RCD 
into explorative strategies to discover biomarkers has ranged from 
3-optosis to 15-optosis models in a restricted number of cancer 
types (Su et al., 2023; Sun X. et al., 2024; Zou et al., 2022; 
Wei Q. et al., 2023; Wang and Zhang, 2024).

PANoptosis, a 3-optosis model, describes a unique 
inflammatory RCD pathway, characterized by a coordinated and 
often simultaneous convergence of features from pyroptosis, 
apoptosis, and necroptosis (Sun X. et al., 2024). It is thought 
to play a role in various physiological processes and diseases, 
including cancer (Samir et al., 2020; Wang and Kanneganti, 2021; 
Shi et al., 2023; Zha et al., 2023; Zhu et al., 2023). Research on 

the prognostic value of PANoptosis-related gene signatures in 
cancer is ballooning. In 2024 alone, the 3-optosis model has been 
assessed in a variety of cancers, including lung adenocarcinoma 
(Han et al., 2024), breast cancer (Yu et al., 2024), pancreatic 
adenocarcinoma (Zhao et al., 2024), hepatocellular carcinoma 
(Zha et al., 2023), colon adenocarcinoma (Liu et al., 2024), 
gastric cancer (Liu et al., 2024), head and neck squamous cell 
carcinoma (Gao et al., 2024), glioma (Sun F. et al., 2024), acute 
myeloid leukemia (Tang et al., 2024), thyroid cancer (Xie et al., 
2024), and cutaneous melanoma (Zhong et al., 2023). Some 
models are mixed by including aging-associated and extrusion 
death-associated genes (Su et al., 2023).

A 12-optosis model, encompassing apoptosis, necroptosis, 
pyroptosis, ferroptosis, cuproptosis, entosis, NETosis, parthanatos, 
lysosome-dependent cell death, autophagy-dependent cell death, 
alkaliptosis, and oxeiptosis, was evaluated post-surgery in patients 
with triple-negative breast cancer (Zou et al., 2022). A 13-optosis 
model, including disulfidptosis, was assessed for lung carcinoma 
(Wei Q. et al., 2023). Recently, a 15-optosis model was assessed in 
postoperative bladder cancer patients (Wang and Zhang, 2024). This 
model encompasses pyroptosis, ferroptosis, necroptosis, autophagy, 
immunologic cell death, entosis, cuproptosis, parthanatos, 
lysosome-dependent cell death, intrinsic and extrinsic apoptosis, 
necrosis, and anoikis, as well as apoptosis-like and necrosis-like 
morphologies. The study identified a 13 gene-based cell death 
signature (SFRP1, CDO1, HGF, SETD7, IRAK3, STEAP4, CD22, 
C4A, VIM, TUBB6, MFN2, FOXO3, and YAP1).

Notably, the 13 genes contribute uniquely to the signature, each 
with distinct biological functions and associations with immune, 
tumor microenvironment, and clinical features, rather than sharing 
correlations across all phenotypic or genomic aspects to provide an 
overall prognostic score related to cell death in bladder cancer.

The discovery of molecular markers associated with RCD 
forms can serve as prognostic or predictive biomarkers, guiding 
treatment decisions and monitoring therapeutic responses 
(Zhou Y. et al., 2024). Targeting specific RCD forms can improve 
the effectiveness of current therapies. For example, in patients 
with chronic lymphocytic leukemia and acute myeloid leukemia 
who have relapsed or refractory disease, BH3 mimetics such 
as Venetoclax (ABT-199), designed to mimic the activity of 
BH3-only proteins, can sensitize cancer cells to apoptosis by 
inhibiting anti-apoptotic BCL-2 family proteins (Souers et al., 2013; 
Roberts et al., 2016; DiNardo et al., 2019).

Despite the diverse RCD forms, cancer cells often evade 
these processes through various mechanisms, including those 
involving cancer stem cells, which are the foundation of the 
disease (Hanahan and Weinberg, 2011). This evasion leads to 
unchecked proliferation and tumor development (Castelli et al., 
2021). Many standard cancer treatments, including chemotherapy 
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FIGURE 1
Operational Definitions of Regulated Cell Death Forms. This figure provides detailed operational definitions for the 25 RCD forms in the multi-optosis 
model. Each cell death process is characterized by specific biochemical and morphological features based on the Nomenclature of Cell 
Death 2018 (Galluzzi et al., 2018), with additional definitions derived from original research and reviews in 6,603 PDFs (corpus A).

and radiation, aim to induce RCD in cancer cells. However, 
resistance to these treatments frequently arises from defects in 
RCD pathways. Mutations in genes regulating apoptosis, such as 
TP53 and BCL2, are prevalent in various cancers and contribute to 
resistance to cell death and increased malignancy (Aubrey et al., 
2018; Su et al., 2022). Mutations in genes critical for the execution 
of apoptosis, such as CASP3 and CASP9, have been associated 
with various cancers, resulting in reduced efficacy of chemotherapy 
and radiation treatments (Ghavami et al., 2009). Mutations can 
inactivate apoptotic pathways or alter the expression of regulatory 
proteins, such as BCL-2 family members, contributing to multidrug 
resistance in cancer cells (Neophytou et al., 2021).

Research on identifying potential markers and therapeutic 
targets based on RCD forms in cancer often faces shortcomings. 
Most studies are limited to a single form of RCD (Liang et al., 
2020; Zhang Y. et al., 2022; Zhang Z. et al., 2022; Xu et al., 2023), a 
specific type of cancer (Zou et al., 2022; Yu et al., 2024; Wei Y. et al., 
2023; Chen et al., 2022), or a single type of association (i.e., mRNA 
expression versus T cell infiltrates and overall survival) (Zhu et al., 
2023; Han et al., 2024; Wang X. et al., 2022). Studies often overlook 
the biological significance of whether correlations are positive or 
negative, the perturbances in gene expression compared to non-
tumor samples, or rank the importance of gene signatures based 
on non-adjusted p-values rather than on a genome-wide scale 
(Pan B. et al., 2022; Gadepalli et al., 2021; Ye et al., 2023). Many 
reported gene expression signatures exhibit low correlation scores 

and limited clinical utility, raising questions about their effectiveness 
and reliability (Liang et al., 2020; Pan S. et al., 2022; Wu et al., 2021).

Unlike studies that assume uniform behavior of RCD-related 
genes across cancers, our approach acknowledges that each cancer 
type has its unique molecular and biological context. Thus, a gene 
that induces cell death in one cancer might help another cancer 
evade treatment. An example is TP53, which is commonly known 
to induce apoptosis in many types of cancer. Still, it has been found 
to promote survival in some contexts, depending on the cellular 
environment and specific mutations present (Aubrey et al., 2018). 
We thus recognize the non-uniformity in the involvement and roles 
of RCD-related genes across different RCD forms and cancer types. 
This non-uniformity means that the activities and effects of these 
genes can vary widely between different RCD forms and cancer 
types. By analyzing each gene and cancer type individually, we can 
understand these differences and identify multi-omic signatures that 
accurately capture the specific ways RCD-related genes contribute 
to each cancer. We believe this approach will lead to more precise 
biomarkers and better-targeted therapies.

Building upon the concept of multi-optosis, which describes 
the intricate crosstalk between distinct RCD pathways, our 
model integrates 25 forms of RCD into a comprehensive 
framework (Figure 1; Supplementary Dataset S1A) to enhance the 
identification of candidate biomarkers and potential therapeutic 
targets with genome-wide significance across multiple cancer 
types. The model provides a holistic view of RCD by analyzing 
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multi-omic and phenotypic features as interconnected entities 
to understand their combined impact on cancer rather than 
studying each form independently. The identified signatures 
integrate clinically meaningful associations between multi-omic 
and phenotypic variables across 33 cancer types from The 
Cancer Genome Atlas (TCGA) Pan-Cancer analysis project 
(Cancer Genome Atlas Research et al., 2013), accessible through 
the UCSCXena portal1 (Goldman et al., 2020) and UCSCXena 
Shiny portal2 (Wang S. et al., 2022; Li S. et al., 2024). To 
facilitate data exploration and analysis, we developed two 
user-friendly tools: the CancerRCDShiny web browser (https://
cancerrcdshiny.shinyapps.io/cancerrcdshiny/) and the Cancer 
Regulated Cell Death Data Analyst (https://chatgpt.com/g/g-
8etzMPrtt-cancer-programmed-cell-death-data-analyst). These 
tools enable efficient extraction, analysis, and visualization of RCD 
data in cancer and related signatures, supporting a more effective 
interpretation of relevant data and enhancing the utility and impact 
of our findings.

To our knowledge, this is the first study to systematically map 
and classify Pan-Cancer signatures linked to 25 RCD modalities 
across seven omic layers, integrated with tumor phenotypic traits 
and clinical endpoints. In addition to conceptual innovation, we 
provide an interactive Shiny web application that enables real-time 
exploration of >44,000 multi-omic RCD signatures stratified by 
cancer type, omic modality, phenotype association, and survival 
relevance. 

2 Materials and methods

2.1 Multi-optosis model specificities

The multi-optosis model integrates 25 forms of RCD 
(Figure 1, Supplementary Dataset S1A). Operational definitions 
of twenty forms of RCD followed the recommendations of the 
Nomenclature Committee on Cell Death 2018 (Galluzzi et al., 
2018); RCD operational definitions not provided in the review 
by Galluzzi et al., 2018 were based on original research and 
reviews included 6,603 manually curated, free-access full-text PDF 
documents (Corpus A, Supplementary Material S1). We extracted, 
processed, and analyzed data on various forms of RCD and their 
associations with cancer using the PDF Ai Drive Tool3, which 
utilizes advanced large language models (LLMs) and natural 
language processing (NLP) techniques to extract and contextually 
analyze data. PDF AI Drive uses six AI models to summarize 
and extract structured information from PDF documents. The 
models are Claude 3 Haiku, Claude 3.5 Sonnet, Claude 3 Opus, 
CommandR+, Gemini 1.5 Flash and GPT-4o OpenAI (latest). 
GPT-4o provided us with the most detailed outputs.

A multi-optosis inventory of 5,913 genes was compiled by 
querying each RCD form term in the NCBI Gene database using a 
Boolean approach (Brown et al., 2015) (Supplementary Dataset S1B). 
The information was then programmatically extracted in R using the 

1 UCSCXena: https://xena.ucsc.edu/

2 UCSCXenaShiny: https://shiny.zhoulab.ac.cn/UCSCXenaShiny/#

3 PDF AiDrive: https://myaidrive.com

NCBI “Entrez” package. This approach solely reflects terms related 
to RCD forms and does not imply direct functional or causative 
involvement. 

2.2 Signature construction: mono-omic, 
multi-phenotypic framework

Each signature in our study is designed as a mono-omic, 
multi-phenotypic construct. That is, a given signature is composed 
exclusively of one or more feature elements, derived from a single 
omic layer—either protein expression, somatic mutation, copy 
number variation (CNV), miRNA expression, transcript isoform 
expression, mRNA expression, or CpG methylation. We do not 
combine features from different omic layers within the same 
signature.

This design is guided by both biological rationale and 
computational feasibility. From a biological standpoint, each omic 
layer captures mechanistically distinct processes. Protein expression 
reflects post-translational modification and proteostasis; somatic 
mutations represent irreversible genomic alterations; CNV capture 
structural genome variation; miRNAs regulate gene expression 
post-transcriptionally; transcript isoforms result from alternative 
splicing; mRNA reflects transcriptional output; and methylation 
encodes epigenetic regulation. Merging these heterogeneous 
molecular signals into a single signature would conflate mechanistic 
interpretations and hinder clinical or biological inference.

Technically, the underlying data vary considerably in availability, 
granularity, and completeness across tumor types. RNA-Seq 
data (including mRNA, transcript isoforms, and miRNA) are 
nearly complete across TCGA cohorts. In contrast, RPPA 
protein expression covers only ∼258 targets with variable tumor 
representation, and DNA methylation profiles are probe-limited 
and sample-restricted. Mutation and CNV annotations also differ 
in resolution. A multi-omic integration would require imputation 
or sample filtering, introducing sparsity and reducing analytic 
robustness. By maintaining mono-omic integrity, each signature 
remains self-contained and biologically interpretable, while enabling 
systematic per-layer analysis across 33 cancer types.

Importantly, although each signature is mono-omic in structure, 
its phenotypic annotations—e.g., tumor vs non-tumor expression 
contrast, hazard ratio contexture (HRC), survival metric contexture 
(SMC), tumor microenvironment contexture (TMC), and tumor-
infiltrating lymphocyte contexture (TIC)—may, when required, 
be inferred from mRNA-level or transcript isoform expression 
of the same gene locus. This bi-layer annotation strategy was 
specifically implemented for non-transcriptomic layers—protein, 
mutation, CNV, and methylation—when those layers lacked native 
support for phenotypic inference. For example, in methylation-
specific signatures, TIC was assessed by the mRNA expression level 
of the gene bearing the CpG modification.

This bi-layer annotation logic is consistent with the expression-
centric architecture of the UCSC Xena data model and reflects 
a pragmatic design constraint: we did not develop programmatic 
functions to compute HRC, SMC, TMC, and TIC directly from 
non-expression-based data such as mutations, CNV, or methylation 
profiles. We did implement transcript-based correlates for RPPA 
protein data due to its continuous expression-like structure, but this 
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was not feasible for the categorical or sparse mutation, CNV, or 
methylation datasets.

This design choice is grounded in both biological plausibility and 
practical implementation considerations. Estimating phenotypic 
classifiers (e.g., immune infiltration, hazard ratios) reliably 
requires continuous, high-resolution, and biologically responsive 
signals—criteria met by RNA-based and protein-based datasets 
but not by mutation (sparse), CNV (categorical), or methylation 
(probe-limited) data. Furthermore, no established Pan-Cancer 
methodologies exist for computing immune or risk classifiers 
directly from these non-transcriptomic layers. Attempting such 
estimation would risk generating low-confidence or overfitted 
associations. Our approach thus prioritizes analytical rigor by 
applying a validated transcript-based phenotypic framework, while 
preserving the mono-omic identity of each signature and enhancing 
its biological interpretability.

An omic feature is incorporated into a signature if it reaches 
genome-wide significance for correlation with one of three 
key tumor-intrinsic variables: tumor mutation burden (TMB), 
microsatellite instability (MSI), or tumor stemness metric (TSM). 
These variables were analyzed in high-throughput mode across 
the genome and adjusted for multiple comparisons using the 
Holm–Bonferroni method (adjusted p < 5 × 10−8). All other 
phenotypic associations—namely survival endpoints, HRC, SMC, 
TMC, and TIC—were evaluated individually on a per-feature 
basis using univariate Cox regression or Pearson correlation and 
considered significant at unadjusted p < 0.05.

In the case of multi-element signatures, each feature included 
must share the same correlation direction for the phenotypic 
feature contexture (PFC), identical tumor vs non-tumor polarity, 
and common classification codes for HRC, SMC, TMC, and 
TIC. Features with divergent phenotypic patterns were split into 
separate signatures, each contextualized by its tumor type and 
phenotypic profile. 

2.3 Correlation analysis between 
multi-omic and phenotypic variables in 33 
cancer types

We conducted a comprehensive computational 
analysis correlating multi-omic variables with phenotypic 
outcomes from the TCGA Pan-Cancer analysis project 
(Cancer Genome Atlas Research et al., 2013), using primary datasets 
sourced from the UCSC Xena portal (Goldman et al., 2020), 
including the TCGA Pan-Cancer Atlas (Cancer Genome Atlas 
Research et al., 2013). Secondary datasets were obtained from 
the UCSC XenaShiny portal (Wang S. et al., 2022; Li S. et al., 
2024), including the GTEx dataset4 for non-tumor tissue 
comparisons (Consortium et al., 2013).

The multi-omic feature included RNA-Seq transcriptomics 
(mRNA expression, transcript isoform expression, and miRNA 
expression), CpG methylation (450K array), CNV (gistic2 
thresholded), mutations (SNP and INDEL; MC3 public version), 
and reverse-phase protein expression array (TCGA RPPA 

4 GTEx Portal: https://www.gtexportal.org/

microarray) (Akbani et al., 2014; Sanjai et al., 2024). The 
microarray comprises 258 protein and modification probes 
relative to 210 genes, of which 239 are term-based associated 
with RCD forms (Supplementary Dataset S1C). miRNA gene 
symbols were converted to precursor miRNA identifiers (IDs) using 
“BioMart”5 (Ren et al., 2024), and the precursor IDs were converted 
to mature miRNAs (Supplementary Dataset S1D) using the 
“miRBaseConverter” R package6 to analyze miRNA. Gene symbols 
were converted to transcript IDs (Supplementary Dataset S1E) using 
the “BioMart R” package.

The phenotypic features included the patient’s indexes for 
TMB, MSI, TSM, hazard ratio, prognostic survival metrics, TMC 
and TIC. The term ‘HRC’ refers to the classification of omic 
signatures based on their prognostic association with survival 
outcomes in population-level Cox regression models. Each signature 
is assigned a categorical hazard classification code representing 
either an increased risk (risky), a decreased risk (protective), 
or no significant association across four survival endpoints. The 
signature’s HRC, derived from population-level Cox models, was 
integrated into the rank-based nomenclature system. The analysis 
was performed in R, using functions and customized source 
code based on the UCSC XenaShiny package (Wang S. et al., 
2022; Li S. et al., 2024). These tools enabled us to execute 
multiple iterative analyses between multi-omic and phenotype 
programmatically features across 33 cancer types (n = 9,385 samples,
Supplementary Dataset S1F).

To identify statistically significant associations, 
Holm–Bonferroni correction for multiple testing was applied 
exclusively to correlation analyses involving TMB, MSI, and TSM, 
which were conducted on a genome-wide scale across all omic 
features. Genome-wide significance was defined as an adjusted 
p-value <5 × 10−8. Once these significant omic feature elements 
were identified, subsequent associations with other phenotypic 
variables—including survival endpoints, as well as HRC, SMC, 
TME, and TIC—were evaluated individually for each signature. 
Because these phenotype associations were not derived from 
genome-wide correlation matrices, they were assessed using 
unadjusted p-values, with significance defined at p < 0.05.

For the comparison of mRNA expression between tumor and 
non-tumor tissues, including primary-tissue-matched samples from 
the GTEx project (n = 7,429 samples, Supplementary Dataset S1F), 
we use the Wilcoxon test (Consortium et al., 2013). This 
nonparametric test was selected to handle potential deviations 
from normality in the expression data, ensuring robust 
comparative analysis.

For tumor versus non-tumor expression analyses, gene- and 
isoform-level RNA-Seq data were obtained from the UCSC Xena 
public repository (Goldman et al., 2020; Wang S. et al., 2022; 
Li S. et al., 2024), which hosts uniformly processed expression 
data from both TCGA tumor tissues and GTEx normal samples. 
These datasets were derived from the UCSC Toil RNA-Seq 
Recompute pipeline (Vivian et al., 2017), which implements a 
consistent processing workflow for TCGA and GTEx RNA-Seq 
data and includes batch correction, normalization, and expression 

5 BioMart: https://www.ensembl.org/biomart/

6 R software package: http://www.R-project.org
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quantification under identical conditions. As a result, technical 
confounding because of cross-cohort differences was minimized, 
allowing for valid comparisons between tumor and non-tumor 
profiles. The datasets were retrieved using the UCSCXenaShiny 
application (Wang S. et al., 2022; Li S. et al., 2024).

TCGA versus GTEx tissue RNA-Seq expression profiles were 
classified as unchanged, underexpressed, overexpressed, or with 
no data. Unchanged expression includes genes with a padj-value 
≥0.05. Genes are classified as overexpressed or underexpressed if 
they have a padj-value <0.05. Overexpressed genes show higher 
median expression in tumor tissue, while underexpressed genes 
show lower median expression in tumor tissue, both compared to 
non-tumor tissue.

We performed hazard ratio analysis using the Cox proportional 
hazards regression model to assess the prognostic significance 
of the association between omic variables and patient survival 
outcomes, providing hazard ratios that refer to the relative risk 
of events occurring at any given point in time. Univariate Cox 
proportional hazards models were used to estimate the association 
between each omic feature or signature and survival outcomes. 
Standard clinical covariates (e.g., age, sex, tumor stage) were not 
included at this discovery phase, as the objective was to enable 
large-scale, systematic signature discovery across omic layers and 
cancer types. Expanding the model to include covariate-adjusted 
effects would require redefinition of the signature elements to 
retain correlation within each subgroup, and the construction of 
stratified indices across clinical layers within the Xena-derived 
framework. We acknowledge this as a valid direction for future
validation studies.

Multi-omic features with consistent correlations, showing the 
same direction in tumor versus non-tumor expression, and Cox 
hazard ratio were used to create signatures. These signatures 
were then evaluated individually by summing the values of the 
constituent features (i.e., member 1 + member 2 + …+ member 
n). The prognostic significance of the constructed signatures 
was evaluated using Cox proportional hazards analysis for four 
survival metrics: Disease-Specific Survival (DSS), Disease-Free 
Interval (DFI), Progression-Free Interval (PFI), and Overall Survival 
(OS). Kaplan-Meier survival curves were generated for each 
metric, and log-rank tests were applied to compare survival 
distributions across patient groups, determining the statistical 
significance of observed differences. Together, these survival 
analyses offer a comprehensive view of patient outcomes and 
provide valuable insights into the effectiveness of cancer treatments 
(Royle et al., 2023). The survival metrics are defined: DSS 
specifically measures survival without death attributed to the cancer 
being studied. It provides a more focused measure of treatment 
effectiveness on the targeted disease. DFI assesses the period after 
treatment during which the patient remains free from any signs 
or symptoms of cancer. It is helpful in evaluating the efficacy 
of therapies. PFI measures the duration in which the cancer 
does not progress or worsen. OS is a critical endpoint in cancer 
clinical trials, measuring the time from randomization or diagnosis 
to death from any cause. It is the most definitive endpoint, 
reflecting the ultimate impact of the treatment on patient survival
(Korn and Crowley, 2013). 

2.4 Classification of signatures according 
to the tumor microenvironment profile

We used CIBERSORT (Cell-type Identification By Estimating 
Relative Subsets Of RNA Transcripts) (Newman et al., 2015) 
and xCell (Aran et al., 2017) deconvoluted bulk gene expression 
data from UCSCXenaShiny (Wang S. et al., 2022; Li S. et al., 
2024) to estimate correlations of the multi-omic gene-signature 
feature and the cellular composition of complex tissues based 
on 29 predefined immune cell signature subsets, including B 
cells (naïve, memory, plasma, class-switched memory), T cells 
(CD8+, CD4+ naïve, CD4+ memory resting, CD4+ memory 
activated, CD4+ Th1, CD4+ Th2, follicular helper, regulatory 
Tregs, gamma delta), NK cells (resting and activated), monocytes, 
macrophages (M0, M1, M2), myeloid dendritic cells (resting and 
activated), activated mast cells, eosinophils, neutrophils, cancer-
associated fibroblasts, common lymphoid progenitor, endothelial 
cell, granulocyte-monocyte progenitor, and hematopoietic
stem cell.

We categorized the signatures as anti-tumoral, pro-tumoral, 
or dual with respect to tumor progression. This classification 
was based on the Spearman correlation coefficients between 
mRNA, miRNA, isoform RNA-Seq or protein expression of 
the signature database and the RNA-Seq expression profiles 
of the 29 specific cell infiltrate types representative of the 
tumor microenvironment profile (Supplementary Dataset S1G). We 
used the categorizations “hot,” “cold,” and “variable” for the 
involvement of cell infiltrates, based on evidence from the literature
(Supplementary Dataset S1G).

In this system, the signs and magnitudes of the correlation 
coefficients provide insights into different tumor microenvironment 
scenarios (See Supplementary Figure S1 for the categorization 
framework of tumor microenvironments and immune phenotypes 
across multiple scenarios). A positive correlation with a cell 
type shows a higher presence of that cell type in the tumor 
microenvironment for signatures that are overexpressed in a 
tumor type. Conversely, for underexpressed signatures, a positive 
correlation with a cell type shows a lower presence of that 
cell type. For overexpressed signatures exhibiting a negative 
correlation, the correlation sign also shows a lower presence 
of that cell type. Similarly, underexpressed signatures with a 
negative correlation show a higher presence of that cell type. 
For signatures whose expression profiles are unaltered between 
tumor and non-tumor tissues, a positive correlation indicates the 
presence of cell infiltrates, while a negative correlation indicates
their absence.

We combined the correlation coefficients for all cell types to 
classify the signatures according to the tumor microenvironment, 
considering their signs. Signatures with the highest combined 
magnitude for anti-tumoral cell types were classified as anti-
tumoral. Similarly, signatures with the highest combined 
correlations for pro-tumoral cell types were classified as pro-
tumoral, and signatures with the highest combined correlations 
for dual microenvironment cell types were classified as dual. 
Detailed methodology is provided in Supplementary Material S1
(Methodology 1). 
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2.5 Classification of signatures according 
to the tumor immune phenotype

The tumor immune phenotype, classified as hot, cold, or variable 
based on immune cell infiltration, guides therapeutic interventions 
and identifies patients who are resistant to immunotherapies (Galon 
and Bruni, 2019; Wang L. et al., 2020). Hot tumors exhibit high levels 
of cytotoxic T cells (NK and CD8+) and M1 macrophage signatures, 
while cold tumors show low T cell infiltration, a predominance of 
M2 macrophages, and immunosuppressive cells. Variable tumors 
have intermediate characteristics (Supplementary Dataset S1H). 
Examples include melanoma and lung cancer as hot, and prostate 
and pancreatic cancers as cold. Immune checkpoint inhibitors are 
more effective in hot tumors (Galon and Bruni, 2019; Wang L. et al., 
2020). Strategies to convert cold and variable tumors to hot ones, 
such as nanomedicines and combination therapies, are under 
development (Wang M. et al., 2020).

We employed a classification method analogous to 
immunohistochemistry as a proxy to quantify tumor lymphocyte 
infiltration using RNA-Seq indexes (Aran et al., 2017; Galon and 
Bruni, 2019; Wang M. et al., 2020), allowing for categorization into 
“hot”, “cold”, or “variable”. This enables the automated categorization 
of signatures as “hot”, “cold”, or “variable” in R, thereby enhancing 
the understanding of tumor immunological characteristics and 
potential responses to immunotherapies. “Hot” tumors correlate 
positively with cytotoxic T cells and M1 macrophages, while 
“cold” tumors show low correlations with these cells but high 
correlations with M2 macrophages and Tregs. “Variable” tumors 
exhibit intermediate correlations (Supplementary Dataset S1H).

For classification, we used Spearman correlation coefficients and 
p-value significance to analyze the relationship between RNA-Seq-
based expression profiles of signatures and immune cell profiles (T 
CD8+, NK, M1/M2 macrophages, and Tregs) (Galon and Bruni, 
2019; Wang L. et al., 2020). In ambiguous cases, we applied a 
differentiated weighting criterion, prioritizing CD8+ T cells and 
NK cells because of their importance in classifying “hot” tumors 
and predicting immunotherapy responses. Detailed methodology is 
provided in Supplementary Material S1 (Methodology 2). 

2.6 Multi-optosis and multi-omic signature 
nomenclature

The signature nomenclature system provides a structured 
alphanumeric identifier that categorizes signatures derived 
from multi-omic Pan-Cancer analysis. This system links 
the multi-omic features of target genes with phenotypic 
characteristics across 33 cancer types, ensuring high precision 
and clarity in data organization and retrieval. The signature 
identifier follows an eleven-component structure: CTAB-GSI. 
GFC.PFC.SCS.TNC.HRC.SMC.TMC.TIC.RCD (i.e., KIRP-
107.3.2.N.1.44.44.1.1.2) (Figure 2).

Each component is defined as:
CTAB refers to a 3- or 4-letter abbreviation representing 

the cancer type from the TCGA database (i.e., KIRP for kidney 
renal papillary cell carcinoma; see Supplementary Dataset S1I 
for cancer type abbreviations).

GSI is a 1- to 4-digit identifier (i.e., 107) unique to each signature 
within a cancer type.

GFC represents the genomic feature contexture of the signature: 
1 for Protein expression, 2 for Mutations, 3 for CNV, 4 for miRNA 
expression, 5 for Transcript expression, 6 for mRNA expression, and 
seven for CpG Methylation.

PFC denotes the phenotypic feature contexture linked to the 
signature: 1 for TMB, 2 for MSI, and 3 for TSM.

SCS shows the Spearman Correlation Sign: P for positive and N 
for negative correlations.

TNC represents tumor versus non-tumor tissue expression 
contexture: 0 for no data, 1 for unchanged expression, 2 for 
underexpressed, and 3 for overexpressed.

HRC stands for Hazard Ratio contexture, represented 
as the alphanumeric array 1N2N3N4N. This shorthand 
notation encodes the significance levels of multiple survival 
metrics. The digits 1 to 4 correspond to the survival metrics: 
DSS, DFI, PFI, and OS, respectively. The letter N denotes 
the hazard effect, classified as A (no effect), B (risky), or
C (protective).

SMC is the Kaplan-Meier survival distribution contexture 
across patient groups. It also follows the array 1N2N3N4N, where 
the digits 1 to 4 correspond to survival metrics: DSS, DFI, 
PFI, and OS, respectively. However, the categorization of the 
letters A, B, C, and D across multi-omic features reflects distinct 
classifications based on specific criteria. The letter A is used 
universally for all omic layers (Protein, Mutation, CNV, miRNA, 
Transcript, mRNA, and Methylation) when the category is “NS”
(Not Significant).

The letter B varies according to the omic layer. For Protein, 
miRNA, Transcript, mRNA, and Methylation, it corresponds 
to the category “High”. For the Mutation feature, B represents 
“MT” (Mutant), while for the CNV feature, B refers to 
“Deleted.” Similarly, the letter C also differs by omic layer. 
For Protein, miRNA, Transcript, mRNA, and Methylation, C 
corresponds to the category “Low.” For the Mutation feature, 
it represents “WT” (Wild Type), and for CNV, it reflects the
“Duplicated” status.

The letter D is used explicitly for the CNV feature and 
represents the category “Deleted/Duplicated,” which encompasses 
both deletion and duplication events.

There are 128 combinations of the 1N2N3N4N array for 
hazard values and survival metrics. Each array combination 
is reassigned to a specific numerical identifier ranging 
from 0 to 127 (Supplementary Dataset S1J). For instance, 
1A2A3A4A (no effect for DSS, DFI, PFI, and OS) is reclassified 
to the identifier 0. In contrast, 1A2A3A4B (no effect for DSS, DFI, 
and PFI, yet “risky” for OS) is reclassified accordingly under the 
identifier 1.

TMC refers to the Tumor Microenvironment contexture: 1 
for anti-tumoral, 2 for dual, 3 for pro-tumoral, and 4 for no 
significant data.

TIC is the tumor-infiltrating lymphocyte contexture, which 
defines immune cell infiltration: 1 for “hot”, 2 for “variable”, 3 for 
“cold”, and 4 for no significant data.

RCD is a 1- to 2-digit code representing the number of RCD 
forms linked to the signature.
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FIGURE 2
Multi-omic Signature Nomenclature and Coding System. This figure details the nomenclature and coding system used for multi-omic signatures in the 
multi-optosis model. Each signature is uniquely identified by a series of codes that represent different attributes: the cancer type abbreviation is a 
three- or four-letter abbreviation denoting the TCGA cancer type (i.e., KIRP for kidney renal papillary cell carcinoma); the phenotypic feature code is a 
one-digit code showing the specific phenotypic feature associated with the signature; the genomic feature code is a one-digit code representing the 
multi-omic feature; the signature identifier is a unique three-digit number assigned to each signature within a specific cancer type; the correlation 
sign shows the type of association, with ‘P' for positive and ‘N' for negative; the TCGA versus GTEx expression code is a one-digit code showing the 
gene expression profile in tumor tissue compared to non-tumor tissue; the Cox metrics code is a two-digit code representing the Cox proportional 
hazards metric used in the analysis; the survival metrics code is a two-digit code showing the specific survival metric applied; and the tumor infiltration 
code is a one-digit code representing the tumor immune infiltration profile. An example of a multi-omic signature identifier, such as 
KIRP-107.3.2.N.1.44.44.1.1.2, illustrates how these codes combine to form a comprehensive identifier for each signature. This standardized coding 
system enables precise classification and analysis of signatures in cancer research.

2.7 Signature rank method

We developed the Cancer Multi-optosis Multi-omic Signature 
Rank Calculator in R to evaluate how effectively a signature 
provides valuable, actionable insights to improve patient 
care or inform clinical decisions—its clinical meaningfulness 
potential—within our Pan-Cancer multi-optosis and multi-
omic model. This system ranks candidate biomarker signatures 
by integrating multi-omic and phenotypic identifiers. Each 
component within a signature is assigned an integer rank 
based on its importance in predicting patient outcomes, such 
as survival prognosis (Liu et al., 2018) and immunotherapy 
potential. The immunotherapy potential is assessed using 
TME and TIC identifiers, applying the concepts of immune 
“hotness” and “coldness,” which reflect the level of immune 
infiltration in tumors (Galon and Bruni, 2019; Wang L. et al., 
2020). A rank is assigned to each signature component 
through a mapping function in R, which attributes integer 
values to multi-omic and phenotypic identifiers. The final 
rank for each signature is obtained by summing the ranks 
of its individual components. Detailed criteria for assigning 
ranking values are provided in Supplementary Material S1
(Methodology 3). 

2.8 Drug-gene interaction analysis

To identify potential therapeutic targets, we conducted a 
comprehensive cross-referencing analysis of gene components from 
the top-ranked multi-modular and clinically meaningful signatures. 
The gene members of these signatures were queried against the 
Drug–Gene Interaction Database (DGIdb 5)7 (Cannon et al., 
2024), which integrates drug-gene interaction and druggability 
data from multiple sources, facilitating the exploration of potential 
pharmacological interventions.

To construct the drug-gene interaction network, we retrieved 
curated interaction data from DGIdb 5.0, excluding undefined 
or unknown interaction types to ensure the identification of 
meaningful associations. The dataset was processed in R using 
the “tidyverse” suite, which included data cleaning, removal of 
redundant entries, and standardization of gene and drug names. 
A bipartite network was generated, where genes (from top-ranked 
multi-omic RCD signatures) formed one node type, and drugs 
(categorized by interaction type) formed the other node type. The 
edges in the network represent drug-gene interaction relationships, 

7 DGIdb: https://dgidb.org
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as defined by DGIdb. Network visualization was performed using 
“igraph” and “ggraph” for static rendering, with the Fruchterman-
Reingold force-directed layout applied to optimize node distribution 
and improve clarity. 

2.9 Validation using the independent 
PRECOG cancer database

To validate the prognostic value of the selected mRNA-specific 
signatures associated with risk, protection, and poor prognosis, 
we used the PRECOG (PREdiction of Clinical Outcomes from 
Genomic Profiles) database8 (Gentles et al., 2015). PRECOG is 
a curated resource that provides a standardized meta-analysis 
framework to generate prognostic meta-Z scores, which quantify the 
strength and direction of the association between gene expression 
and OS across multiple cancer types. The database integrates 
transcriptomic data from publicly available datasets, encompassing 
28 cancer types independent of TCGA but equivalent to 24 
TCGA cancer types (Supplementary Dataset S1I). Meta-Z scores 
were extracted from the PRECOG repository for each gene within 
the 126 signatures selected for their association with risk or 
protection in all survival metrics and with anti-tumoral, pro-
tumoral, or dual microenvironment cell profiles, as well as hot, 
cold, or variable immune infiltrates (Supplementary Dataset S1K). 
To validate significantly poorer or better prognosis associations, 
the validation process relied on stringent statistical thresholds 
(|Meta-Z| > 3.09 or < −3.09, p < 0.001). This validation set of 
signatures represents only 11 TCGA cancer types (ACC, BLCA, 
BRCA, CESC, HNSC, KIRP, LGG, LUAD, LUSC, PRAD, STAD). 
For single-gene signatures, the corresponding meta-Z score was 
retrieved for each cancer type. For multi-gene signatures, each gene 
was queried individually, and the median meta-Z score across all 
genes was computed to derive the final signature-level score. To 
identify cancer-specific prognostic associations, we compared the 
direction of association between PRECOG meta-Z scores and our 
gene signatures, refining the selection of relevant cancer-specific 
signatures. Positive meta-Z scores show a poor prognosis, while 
negative scores suggest a favorable prognosis. 

2.10 PDF-Ai-assisted evidence of 
involvement of signature members in the 
multi-optosis model

A drawback of most multi-omic studies aimed at discovering 
biomarkers in cancer is the lack of cross-referencing with databases. 
Flat lists of genes with limited features are often reported (Ravel et al., 
2020; Gadepalli et al., 2021; Wang et al., 2018; Zhou and Bao, 2020), 
which restricts our understanding of their potential applications. We 
implemented a PDF generative artificial intelligence-based (PDF-
Ai) strategy to provide evidence-based support for the involvement 
of the identified signature members. The strategy cross-references 
signature members with structured information from the scientific 
literature. This approach uses LLMs within a ChatGPT-based PDF-AI 

8 PRECOG: https://precog.stanford.edu/

analysis tool to extract relevant data directly from the PDF corpus 
A, ensuring robustness and reproducibility. The method involves 
several key supervised, executable sequential tasks that focus on 
identifying mentions of gene members of the signatures, associated 
RCD forms, and cancer types (see Supplementary Material S1 – 
Methodology 4). The last step involves validating the cross-
referenced data through manual review and automated checks 
to ensure data integrity and reliability. Any discrepancies were 
resolved manually to maintain the robustness of the dataset. By 
implementing this PDF-AI strategy, the applicability of findings 
is enhanced through a user-friendly data analysis tool. The 
structured tabular output information was compiled to create the 
Cancer Regulated Cell Death Data Analyst (https://chatgpt.com/
g/g-8etzMPrtt-cancer-programmed-cell-death-data-analyst), a user-
friendly, publicly accessible GPT-based chat software engineer for 
extracting, analyzing, and visualizing RCD data in cancer and signature 
members. This tool enables Chat-GPT registered users to access and 
interpret the relevant data efficiently, enhancing the applicability and 
impact of our findings. 

A detailed inventory of established immunotherapy targets and 
their presence within the multi-omic RCD signature repertoire 
is presented in Supplementary Dataset S1L. The relevance and 
representation of these targets were assessed by cross-referencing 
with a curated corpus (Corpus B) of 642 manually selected PDF 
articles using PDF AI extraction (Supplementary Material S1).

The PDF corpora were compiled using the NCBI pubmed R 
package, and the RIS identifiers were used to download free-text 
using EndNote™ citation software (https://endnote.com/). 

3 Results

The construction and analysis of the multi-optosis model, 
depicted in the workflow (Figure 3), provide a comprehensive 
framework that integrates 25 distinct forms of RCD (Figure 1). This 
model is founded on a core gene set of 5,913 RCD term-based 
gene symbols (Supplementary Dataset S1B). The broader RCD gene 
inventory comprises 62,090 transcripts, spanning both primary and 
alternative isoforms, 882 mature miRNAs (representing both 5p 
and 3p strands), and 239 proteins known to be associated with 
cancer, including post-translational modifications. These elements 
form the backbone of our investigation, offering extensive coverage 
of RCD-related genes across cancer types.

Approximately 40% (n = 2,403) of all genes in the 
inventory are involved in two or more forms of RCD 
(Supplementary Dataset S1B). Genes exclusively associated 
with apoptosis account for approximately 42% (n = 2,511) 
of the target genes, showing no term-based association with 
other RCD forms. The RCD forms with the fewest associated 
genes are alkaliptosis, lysosome-dependent cell death, and 
methuosis (Supplementary Dataset S1M).

Notably, 422 genes in the inventory are established Cancer Gene 
Census Tier 1 driver genes (n = 584, 72.3%) in COSMIC (Catalogue 
Of Somatic Mutations In Cancer)9 (Sondka et al., 2018) and other 
databases (Kinnersley et al., 2024). These include oncogenes, tumor 

9 COSMIC: https://cancer.sanger.ac.uk/cosmic
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FIGURE 3
Workflow of the Multi-Optosis Model Analysis. This workflow illustrates the detailed process for constructing and analyzing a multi-optosis model 
focusing on 25 RCD mechanisms. The process begins with identifying 5,913 RCD-related genes using the NCBI “Entrez” function in R. Multi-omic and 
phenotypic data from TCGA Pan-Cancer are then integrated using the “Get Xena” R script. Expression and correlation analyses are conducted with a 
stringent p-value threshold (<5e-8) using the “main” R script, then consolidating all results into a single data frame. The hazard ratio is assessed for four 
survival metrics: overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) using Cox 
proportional hazards models and log-rank tests. Tumors are classified into “hot”, variable, or “cold” categories based on immune infiltration profiles. 
Each signature is assigned a unique nomenclature, and significance scoring is applied. The roles and involvement of gene members in various RCD 
forms in cancer are investigated. Finally, cross-referencing and visualization are enabled through the CancerRCDShiny web browser and the 
LLM-based Cancer Regulated Cell Death Data Analyst tool, allowing for interactive exploration and visualization of the findings. This structured 
approach integrates computational and statistical methods to enhance understanding of RCD mechanisms in cancer.

suppressors, and fusion genes, all linked to at least one RCD form 
(Supplementary Dataset S1B). Driver genes such as TP53, AKT1, 
MTOR, CD274, PTEN, and STAT3 are linked to at least eight RCD 
forms. Among these, TP53 stands out as the most prominent driver 
gene, being associated with 12 distinct forms of RCD: anoikis, 
apoptosis, autophagy, cellular senescence, entosis, ferroptosis, 
mitochondrial permeability transition, mitotic catastrophe, 
necroptosis, pyroptosis, necrosis, and autosis. However, several 
non-driver genes, such as SIRT3, CXCL8, NFKB1, STING1, and TNF, 
are noteworthy for their presence across at least eight RCD forms
(Supplementary Dataset S1B).

The multi-optosis model integrates multi-omic and phenotypic 
reiterative correlations estimated from the TCGA Pan-Cancer 
secondary database (Goldman et al., 2020; Wang S. et al., 2022; 
Li S. et al., 2024), using R coding based on functionalities from 
the UCSCXenaShiny (Wang S. et al., 2022; Li S. et al., 2024). 
Correlation analyses were performed between the seven omic 
features and seven phenotypic and clinical variables in 33 cancer 
types. For each gene target, survival metrics were assessed using 
Cox proportional hazards models. Unique, single-gene, and multi-
gene signatures were constructed based on feature commonalities, 
and their prognostic values were evaluated using the log-rank 

test across four survival metrics. Each signature was then queried 
for significant correlations with the expression profiles indicative 
of immune and nonimmune cell infiltrates to determine their 
association values with the TMC. We performed 27, 238, 756 pair 
associations between multi-omic, phenotypic, risk, survival and cell 
immune infiltration features.

The multi-omic and phenotypic features associated with each 
gene member in the signatures are compiled into an extensive 
integrative database (Supplementary Dataset S2) comprising 44,641 
multi-omic signatures across 32 cancer types. None of the target 
genes achieved genome-wide significance with phenotypic variables 
in Diffuse Large B-cell Lymphoma (DLBC).

The number of elements per signature ranged from 1 
to 2,052 (mean = 4.3; median = 1; Q1 = 1; Q3 = 2; P90 
= 6, meaning that only 10% of signatures contain over six 
elements; Supplementary Dataset S2). Importantly, for the multi-
member signatures, all the components share the association 
features, the RCD type(s), and the statistical significance 
level. The maximum number of member elements per omic 
feature is: 2,052 (Transcript), 487 (Mutation), 477 (mRNA), 
423 (Methylation), 124 (CNV), 58 (miRNA) and 4 (protein)
(Supplementary Figure S2).
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To investigate whether the number of multi-omic signatures 
identified per cancer type was influenced by cohort size, we assessed 
the association between the number of patients and the number of 
signatures across the 32 tumor types analyzed. A Spearman’s rank 
correlation analysis revealed a positive monotonic relationship (ρ 
= 0.794, p = 5.9 × 10−8), indicating that, overall, cancer types with 
larger patient cohorts tended to contribute more signatures.

However, several tumor types exhibited signature-to-patient 
ratios that markedly exceeded the overall trend. For instance, 
Thymoma (THYM) yielded 1,564 signatures from only 119 patients 
(ratio = 13.14), Skin Cutaneous Melanoma (SKCM) produced 
1,210 signatures from 102 patients (ratio = 11.86), and Kidney 
Chromophobe (KICH) yielded 744 signatures from 66 patients 
(ratio = 11.27). Even Pancreatic Adenocarcinoma (PAAD), with 178 
patients, showed an elevated ratio of 10.51.

In contrast, other tumor types with substantially larger sample 
sizes—such as Breast Invasive Carcinoma (BRCA) with 1,092 
patients—displayed a considerably lower ratio of 3.24, emphasizing 
that signature richness is not merely proportional to cohort size, 
but may reflect intrinsic biological or molecular heterogeneity across 
tumor types.

These results suggest that while sample size contributes to 
statistical power, it does not solely account for the observed variation 
in signature yield. Instead, intrinsic biological factors—such as 
tumor heterogeneity, distinct molecular programs, and RCD 
pathway diversity—likely shape the landscape of detectable 
prognostic signals.

The distribution of multi-omic signatures across omic features 
and cancer types is represented in Figure 4. This accumulated 
histogram provides insight into the proportional presence of each 
omic feature within different cancer types, with the absolute 
accumulated counts for each feature depicted.

The top-ranked cancer types, based on the number of signatures 
for each omic feature, reveal specific molecular patterns (Figure 4). 
Breast Cancer (BRCA) has the highest number of signatures 
associated with CNV, protein expression, transcript, and miRNA, 
with absolute counts of 413, 45, 1,286, and 129, respectively. Prostate 
Cancer (PRAD) ranks the highest in methylation-associated 
signatures, totaling 663, while LGG (Lower Grade Glioma) has 
the greatest number of mutation-linked signatures, with 910. Lung 
Adenocarcinoma (LUAD) exhibits a high frequency of mRNA-
associated signatures, totaling 755.

Of the 5,913 target genes, 5,777 (97.7%) reached a significant 
correlation and are therefore included as elements in the signature 
database. Of the remaining genes, 101 did not achieve significance, 
and 35 lacked data in the Xena database. Most of the signatures 
include at least one apoptosis-related gene (34,500; 77.2%). This rate 
is expected, as 4,812 (81.4%) of the target genes are associated with 
apoptosis (Supplementary Dataset S2).

Among the transcript isoform signatures, the ten most 
frequently occurring genes were EFEMP2, ABI3BP, TPM1, ELN, 
FN1, COL1A1, DCN, PDLIM7, TCF4, and COL1A2, each appearing 
in 69–91 signatures. Collectively, these genes are associated with 
anoikis, apoptosis, autophagy, cellular senescence, necrosis, and 
pyroptosis (Supplementary Dataset S1N).

The identifier KIRP-107.3.2.N.1.44.44.1.1.2 exemplifies the 
nomenclature system used throughout, as shown in Figure 2. KIRP 
represents the cancer type abbreviation (CTAB) for Kidney Renal 

Papillary Cell Carcinoma, and 107 is the Gene Signature Identifier 
(GSI), showing the 107th signature identified for this cancer type. 
The Genomic Feature Code (GFC) is 3, corresponding to CNV, 
while the phenotypic feature contexture (PFC) is 2, indicating MSI. 
The Spearman Correlation Sign (SCS) is denoted as N, indicating a 
negative correlation. The tumor versus non-tumor tissue expression 
contexture (TNC) is 1, indicating that gene expression remains 
unchanged in tumor tissue compared to non-tumor tissue. The 
HRC is 44, based on the combination 1B2B3B4B, which shows a 
risk effect by all survival metrics (DSS, DFI, PFI, and OS). The 
survival metric contexture (SMC) is also 44, derived from the 
combination 1B2B3B4B, reflecting specific prognostic implications 
across all four survival outcomes. The tumor microenvironment 
contexture (TMC) is 1, indicating a correlation with an anti-tumoral 
environment immune profile. The tumor-infiltrating lymphocyte 
contexture (TIC) is 1, showing an association with “hot” profiling 
of immune cell infiltration. Finally, RCD is 2, signifying that the 
gene members are associated with two RCD forms, namely apoptosis 
and necrosis.

The commonalities of the signatures can be explored and 
analyzed purposefully or guided. Here, we exemplified the 
downstream analysis in two ways. The first is selecting signatures 
whose elements capture the highest impact rank in given omic-
phenotype associations. The members of such signatures can pertain 
to different RCD forms (RCD Multi-Modular signatures). The 
second is selecting signatures that are RCD form-specific. 

3.1 Exploring signatures with RCD 
multi-modular elements

Signatures composed of genes co-associated with multiple RCD 
forms revealed prevalent negative correlations with phenotypic traits 
and frequent tumor overexpression, highlighting coordinated multi-
death pathway regulation.

Thirty thousand eight hundred seventy-seven signatures 
exhibit multi-modular involvement in RCD, where each 
gene component within a signature is involved in the same 
RCD forms. Details of these signatures are available in 
Supplementary Dataset S2. A negative correlation was observed 
between multi-omic and phenotypic features in most signatures 
(n = 17,069). Most multi-modular signatures were overexpressed 
in tumor tissues compared to non-tumor tissues (n = 13,898; 
Supplementary Dataset S2). Selected examples of RCD multi-
modular signatures are shown in Table 1.

3.2 Exploring signatures with RCD-specific 
elements

A total of 13,764 (30.83%) signatures were identified as RCD-
specific, with apoptosis-specific signatures being the most prevalent; 
a ranked subset revealed clinically relevant patterns across omic 
layers and RCD forms. These signatures encompass 20 of 25 different 
RCD types. Because 81.4% of genes in the inventory are term-based 
associated with apoptosis, we identified a large number of apoptosis-
specific signatures (n = 5,793; 42%) (Supplementary Dataset S2).
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FIGURE 4
Accumulated histogram illustrating the distribution of multi-omic signatures by multi-omic feature across various cancer types. Each bar represents a 
unique Cancer Type Abbreviation, with colors depicting the relative proportions of signatures across multi-omic feature. The height of each bar shows 
the absolute accumulated count of signatures for each multi-omic feature within each cancer type. The Okabe-Ito color-blind friendly palette has 
been applied to enhance accessibility for all viewers.

We applied a sequential ranking strategy to identify the most 
representative signatures that prioritized both performance and 
comprehensive representation. For each unique RCD form, the 
most informative signature was selected based on the highest rank 
value, reflecting the overall importance of the signature. Where 
multiple signatures shared the same ranking value, ties were resolved 
by considering the highest value in additional variables in the 
following order: the number of gene components in the signature, 
TIC, TMC, SMC, and HRC. This ensured that ties were broken 
systematically based on biological relevance. We verified that each 
omic feature was included in the final selection to represent all 
unique omic features comprehensively. If any were missing, the 
highest-ranked signature for the missing omic feature was added, 
following the same tie-breaking hierarchy. This method allowed us 
to generate a ranked list of signatures that reflected their importance 
and ensured balanced coverage of RCD forms and multi-omic 
features. The top-ranked signatures by comprehensive RCD type-
specific and multi-omic feature representation are presented
in Table 2.

We next illustrate the clinical meaningfulness potential 
of the signature database by providing a signature for 
each omic feature selected from the top-ranked signatures
(Table 3).

3.3 mRNA-specific signatures

A total of 10,096 mRNA-specific signatures (22.6% of 
the dataset) were identified, many of which demonstrated 
significant associations with immune infiltration, transcriptional 
profiles, and survival risk across cancer types. These 
signatures (Supplementary Dataset S3) included between 1 and 
477 genes per signature (mean = 3.8; median = 1; Q1 = 1; Q3 = 
2; P90 = 5). Of these, 7,278 (72.1%) showed negative correlation 
with phenotypic features, and 6,842 (94.1%) were associated with 
TSM. Within this TSM-associated group, 2,479 (36.2%) signatures 
indicated increased risk, while 1,709 (24.9%) were protective across 
at least one survival metric.

Among the mRNA-specific signatures, 3,864 (38.3%) were 
associated with anti-tumoral transcriptional profiles, 2,101 
(20.8%) with pro-tumoral profiles, and 2,750 (27.2%) with dual 
microenvironment profiles, reflecting diverse roles in tumor 
progression. Based on their correlation with immune cell infiltration 
profiles, the mRNA-specific signatures were categorized as 
“hot” (n = 273; 2.7%), showing robust immune cell presence, 
“cold” (n = 781; 7.7%), reflecting minimal immune infiltration, 
and “variable” (n = 1,540; 15.2%), denoting an intermediate 
or mixed immune environment.
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TABLE 1  Top-ranked multi-modular RCD signatures with comprehensive multi-omic representation.

Rank Nomenclature Signature Elements Omic feature RCD count RCD forms

48 KIRP-1086.1.3.P.3.44.34.1.1.5 P62LCKLIGAND 1 Protein 5 Apoptosis, Autophagy, 
Ferroptosis, Parthanatos, 
Autosis

48 KIRC-169.2.1.P.2.71.45.1.1.2 (CPEB4 + NF2) 2 Mutation 2 Apoptosis, Ferroptosis

47 KIRP-
419.3.2.N.1.44.114.1.1.2

(SLC16A1 + SNHG3) 2 CNV 2 Apoptosis, Autophagy

47 KIRC-168.2.2.P.2.71.45.1.1.2 (CPEB4 + NF2) 2 Mutation 2 Apoptosis, Ferroptosis

47 KIRP-107.3.2.N.1.44.44.1.1.2 (CXCL10 + TNFRSF4) 2 CNV 2 Apoptosis, Necrosis

46 CESC-215.5.3.N.2.44.44.1.1.3 (ENST00000511732 + 
ENST00000471344 + 
ENST00000559488)

3 Transcript 3 Apoptosis, Autophagy, 
Necrosis

46 KIRP-
927.3.2.N.3.15.125.1.1.3

GBP5 1 CNV 3 Apoptosis, Pyroptosis, 
Necrosis

45 CESC-283.6.3.N.2.44.44.1.1.3 (ITGB3 + POSTN) 2 mRNA 3 Apoptosis, Autophagy, 
Necrosis

44 BRCA-
2207.5.3.N.3.93.95.1.1.3

ENST00000518797 1 Transcript 3 Apoptosis, Autophagy, 
Necrosis

44 BRCA-
1496.1.3.P.3.71.71.1.1.2

CASPASE7CLEAVEDD198 1 Protein 2 Apoptosis, Autophagy

44 CESC-332.6.3.N.2.44.44.1.1.2 ADAMTS12 1 mRNA 2 Apoptosis, Necrosis

43 BRCA-1629.2.1.P.3.7.44.1.1.2 CXCR6 1 Mutation 2 Apoptosis, Autophagy

42 SKCM-
711.5.3.N.3.71.71.1.1.5

ENST00000378588 1 Transcript 5 Apoptosis, Ferroptosis, 
NETosis, Parthanatos, 
Necrosis

42 CESC-420.6.3.N.2.15.44.1.1.3 COL1A1 1 mRNA 3 Apoptosis, Autophagy, 
Necrosis

40 HNSC-
1855.4.3.P.3.71.64.1.1.4

hsa-miR-142-3p 1 miRNA 4 Apoptosis, Autophagy, 
Ferroptosis, Necrosis

36 PRAD-
521.5.3.N.2.26.20.1.1.6

(ENST00000355622 + 
ENST00000394487)

2 Transcript 6 Apoptosis, Autophagy, 
Ferroptosis, Necroptosis, 
Pyroptosis, Necrosis

35 BRCA-2459.7.3.N.2.7.94.1.1.2 FHIT 1 Methylation 2 Apoptosis, Autophagy

33 BLCA-576.7.3.N.3.20.5.1.1.6 AIM2 1 Methylation 6 Apoptosis, Autophagy, 
Cellular senescence, 
Ferroptosis, Pyroptosis, 
Necrosis

32 LUSC-933.4.3.N.2.62.30.1.1.4 (`hsa-miR-145-3p` + 
“hsa-miR-145-5p”)

2 miRNA 4 Anoikis, Apoptosis, 
Autophagy, Necrosis

31 BRCA-1824.5.3.N.2.1.1.1.1.6 ENST00000321556 1 Transcript 6 Apoptosis, Autophagy, 
Cellular senescence, 
Ferroptosis, Pyroptosis, 
Mitoptosis
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TABLE 2  Top-ranked RCD type-specific signatures with comprehensive multi-omic representation.

Rank Nomenclature Signature Elements Omic feature RCD count RCD forms

47 BRCA-70.2.1.P.2.95.47.1.2.1 (ADAMTS8 + PARP3 + 
UBA7)

3 Mutation 1 Apoptosis

45 BRCA-
2233.5.2.N.2.95.56.1.1.1

ENST00000524317 1 Transcript 1 Apoptosis

44 KIRP-83.3.2.N.3.44.115.1.2.1 (CCNB2 + LHX2 + RPL5 + 
TICRR)

4 CNV 1 Autophagy

44 KIRP-
408.3.2.N.2.44.126.1.2.1

(PHGDH + PRRX2) 2 CNV 1 Ferroptosis

43 CESC-69.6.3.N.2.44.44.1.1.1 (CASC15 + COL4A1 + 
COL4A2 + DLL4 + 
FAM171B+ FOXC2 + GPR4 
+ LAMA1 + LAMC1 + 
MATN3 + MSRB3 + NT5E + 
PXDN + RHOB + SMARCA1 
+ TMEM98)

16 mRNA 1 Apoptosis

42 LUAD-
2334.6.1.N.2.95.95.1.2.1

NFIX 1 mRNA 1 Cellular senescence

41 BRCA-
1368.6.3.P.3.44.81.1.2.1

ANLN 1 mRNA 1 Pyroptosis

39 HNSC-
156.7.3.N.3.71.55.1.1.1

(CEBPE + SIRPG) 2 Methylation 1 Necrosis

38 BRCA-1503.2.1.P.2.9.39.1.2.1 CCDC178 1 Mutation 1 Anoikis

37 HNSC-656.4.3.P.3.71.71.1.2.1 (`hsa-miR-135b-3p` + 
“hsa-miR-135b-5p”)

2 miRNA 1 Apoptosis

36 KIRC-1057.5.3.P.2.71.71.1.2.1 ENST00000227868 1 Transcript 1 Cuproptosis

36 KIRC-1100.5.3.P.2.71.71.1.2.1 ENST00000282050 1 Transcript 1 Mitochondrial permeability 
transition

36 LGG-1758.5.3.P.3.95.94.2.3.1 ENST00000366898 1 Transcript 1 Mitoptosis

35 STAD-356.5.3.N.3.44.44.3.2.1 (ENST00000261037 + 
ENST00000463753)

2 Transcript 1 Parthanatos

34 KIRC-867.3.3.N.2.71.31.1.2.1 AJAP1 1 CNV 1 Disulfidptosis

34 KIRC-
1869.6.3.N.3.35.35.1.2.1

MIIP 1 mRNA 1 Mitotic catastrophe

34 LGG-974.6.3.N.3.35.35.1.2.1 (FCGBP + NAT2) 2 mRNA 1 Necroptosis

32 LGG-1928.5.3.N.2.35.35.2.2.1 ENST00000484221 1 Transcript 1 Immunogenic cell death

30 LGG-2590.2.1.P.2.71.11.3.2.1 MTUS2 1 Mutation 1 Entosis

28 LGG-2390.7.3.P.3.71.71.2.3.1 KCNN3 1 Methylation 1 NETosis

22 THYM-1073.1.3.P.3.2.2.2.3.1 GATA3 1 Protein 1 Necrosis

22 LGG-1356.7.3.P.3.62.71.2.4.1 ATP6V0D1 1 Methylation 1 Alkaliptosis

18 PRAD-2393.7.3.P.2.0.14.3.2.1 OXSR1 1 Methylation 1 Oxeiptosis

16 THYM-573.7.3.P.3.7.2.2.4.1 ABCC11 1 Methylation 1 Efferocytosis
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TABLE 3  Seven top-ranked signatures by multi-omic feature.

Rank Nomenclature Signature Elements Omic feature RCD count RCD forms

48 KIRC-169.2.1.P.2.71.45.1.1.2 (CPEB4 + NF2) 2 Mutation 2 Apoptosis, Ferroptosis

47 KIRP-
419.3.2.N.1.44.114.1.1.2

(SLC16A1 + SNHG3) 2 CNV 2 Apoptosis, Autophagy

46 CESC-215.5.3.N.2.44.44.1.1.3 (ENST00000511732 + 
ENST00000471344 + 
ENST00000559488)

3 Transcript 3 Apoptosis, Autophagy, 
Necrosis

45 CESC-283.6.3.N.2.44.44.1.1.3 (ITGB3 + POSTN) 2 mRNA 3 Apoptosis, Autophagy, 
Necrosis

44 BRCA-
1496.1.3.P.3.71.71.1.1.2

CASPASE7CLEAVEDD198 1 Protein 2 Apoptosis, Autophagy

40 HNSC-
1855.4.3.P.3.71.64.1.1.4

hsa-miR-142-3p 1 miRNA 4 Apoptosis, Autophagy, 
Ferroptosis, Necrosis

39 HNSC-
156.7.3.N.3.71.55.1.1.1

(CEBPE + SIRPG) 2 Methylation 1 Necrosis

The identifier CESC-283.6.3.N.2.44.44.1.1.3 exemplifies an 
mRNA-specific signature comprising two gene members: ITGB3
and POSTN, which are associated with apoptosis, autophagy, 
and necrosis (Table 3). These genes play diverse roles in 
RCD, cell survival, and migration across various cell types, 
contributing to cancer progression, immune modulation, and 
cellular stress responses. As part of the same signature, each 
gene consistently shares correlation signs across all phenotypic 
features in patients with cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC) (Figure 5). Specifically, 
mRNA expression levels of these genes exhibit a negative correlation 
with TSM (Figure 5A), show lower expression in tumor samples 
relative to non-tumor tissue TSM (Figure 5B), and correlate 
with risk across all survival metrics (Figures 5C–F). Elevated 
expression of these genes is associated with poor prognosis across 
all survival metrics (Figures 5I,J). In contrast, their expression 
profiles correlate with an anti-tumor transcriptional profile within 
the tumor microenvironment and a “hot” immune infiltrate 
transcriptional profile (Figure 5K).

3.4 Transcript-level gene signatures

Transcript-level analyses revealed 16,244 signatures with 
widespread isoform-specific associations to stemness, prognosis, 
and immune context, including rare cases where all isoforms from 
a locus showed coordinated phenotypic correlation. Given that 
many gene loci express multiple transcripts through alternative 
splicing and promoter usage, we hypothesize that specific transcripts 
retain the correlation observed in the mRNA analysis. This suggests 
that individual transcript expression offers more precise insights 
into cancer progression and therapy response. By analyzing these 
specific transcripts, we aim to identify transcript-specific signatures 
that could serve as accurate prognostic and diagnostic markers, 
enhancing our understanding of the molecular mechanisms and 
heterogeneity in cancer phenotypes.

It is important to note that, for most genes, only a single 
transcript isoform was consistently detected at quantifiable 
levels across tumor samples, such that gene-level and transcript-
level associations often reflect the same underlying isoform-
specific signal.

We identified 16,244 transcript-specific signatures, with 
each signature containing between 1 and 2,052 transcript 
elements (mean = 5.9; median = 1; Q3 = 3 and P90 = 8) 
(Supplementary Dataset S4). The mean number of transcript 
members per signature was 3.9 (range, 1–49) for signatures 
associated with risk and 4.1 (range, 1–76) for those associated 
with protection (Supplementary Dataset S4). Approximately 
62.8% (n = 10,207) were associated with risk or protection 
in at least one survival metric. From those, we identified 605 
(5.9%) signatures associated with risk across all patient survival 
metrics and 270 (2.7%) signatures with protective association 
in all four patient survival metrics. Most signatures ascribed 
correlations between transcript expression and TSM (86% for 
risk and 92% for protective signatures). Transcript signature 
overexpression was the feature most frequently associated with 
risk (54.5%), whereas underexpression was mainly associated with 
protection (47%). Example: CESC-215.5.3.N.2.44.44.1.1.3 refers to 
the transcript expression (ENST00000511732 + ENST00000471344 
+ ENST00000559488), which negatively correlated with stemness 
in CESC patients (Supplementary Figure S3A). There was 
significantly lower transcript signature expression in tumor 
samples compared to normal tissue (Supplementary Figure S3B). 
Transcript overexpression is associated with increased risk in DSS 
(Supplementary Figure S3C), DFI (Supplementary Figure S3D), PFI 
(Supplementary Figure S3E), and OS (Supplementary Figure S3F) 
survival metrics. Transcript signature overexpression was 
associated with poor prognosis in all survival metrics 
(Supplementary Figure S3G–J). Transcript signature expression 
correlated with an anti-tumor transcriptional profile within 
the tumor microenvironment and a “hot” immune infiltrate 
transcriptional profile (Figure 3K).
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FIGURE 5
Phenotypic associations and prognostic significance of the mRNA signature CESC-283.6.3.N.2.44.44.1.1.3 in cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC). (A) shows a radar plot illustrating the negative correlation between mRNA signature expression and TSM across 
multiple cancer types. (B) demonstrates significantly lower mRNA signature expression in tumor samples compared to normal tissue (∗∗∗∗p < 0.0001).
(C–F) present hazard ratio (HR) analyses evaluating the prognostic associations of the mRNA signature with clinical outcomes across various cancer 
types, including (C) Disease-Specific Survival, (D) Disease-Free Interval (E) Progression-Free Interval, and (F) Overall Survival, where a positive log HR 
indicates a risk effect of the mRNA signature. (G–J) display Kaplan-Meier survival curves for CESC patients stratified by high and low mRNA signature 
expression, with significant survival outcomes for (G) Disease-Specific Survival (p = 0.000411), (H) Disease-Free Interval (p = 0.00596), (I)
Progression-Free Interval (p = 0.000214), and (J) Overall Survival (p = 0.000404). (K) illustrates the correlation between the mRNA signature and 
immune cell infiltration in CESC, highlighting associations with various immune cell types.
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FIGURE 6
Sankey diagram depicting the negative correlations of COL1A1 and UMOD gene isoforms with stemness across specific cancer signatures. The source 
nodes represent the COL1A1 and UMOD gene loci, each linked to their respective transcript isoforms identified in the dataset. The numbers in 
parentheses indicate the number of connection strokes. All 13 COL1A1 isoforms consistently exhibit negative associations with TSM in the 
HNSC-308.5.3.N.3.0.0.3.2.3 signature (comprising 46 elements), while all 12 UMOD isoforms similarly show negative correlations with TSM in the 
KICH-117.5.3.N.2.0.0.2.4.3 signature (comprising 61 elements). The thickness of the stroke connection lines represents the frequency of correlations 
between nodes (genes, transcripts, phenotypes, and cancer types), emphasizing the uniform contribution of each gene’s isoforms to the observed 
phenotype. This consistent transcript-level correlation across all isoforms of COL1A1 and UMOD suggests a coordinated regulatory function in 
modulating TSM within these cancer contexts. The corresponding dynamic network diagram is available in 
Supplementary Material S1 (Supplementary Figure S12).

An interesting observation in multi-transcript genes is worth 
noting; first, the highest number of transcripts per gene that 
correlated with a phenotype in a cancer type was 19, and was limited 
to the CD36 (19 out of 24 transcripts), ABI3BP (19/29), and TCF4
(19/93) genes. Second, correlations with all transcript isoforms per 
gene were extremely rare. Examples include COL1A1 (a known 
cancer driver gene) with its 13 isoforms, which are negatively 
correlated with stemness in the multi-element signature HNSC-
308.5.3.N.3.0.0.3.2.3, comprising 46 member elements, and UMOD
with its 12 transcripts, also negatively associated with stemness 
in the multi-element signature KICH-117.5.3.N.2.0.0.2.4.3, which 
comprises 61 member elements (Figure 6). Thus, for those 
signatures, all the COL1A1-and UMOD-specific transcripts 
consistently retained the correlation with stemness. Hence, for 
these genes, the entire gene loci, rather than individual isoforms, 
uniformly contribute to the observed phenotype, highlighting a 
coordinated regulatory role of these genes in maintaining the 
correlation with stemness. The uniformity across all isoforms within 
a gene is an uncommon and significant finding, underscoring the 
comprehensive influence of these genes on the stemness phenotype.

In contrast, for most multi-transcript RCD genes, the 
correlations were transcript isoform-specific rather than involving 
the entire gene locus transcript repertoire. Isoform-specific 
signatures refer to the unique associations of transcript variants from 
a single gene locus with distinct clinical and phenotypic outcomes. 

These signatures enable the identification of specific transcript 
variants that contribute to cancer progression, prognosis, and 
therapeutic response. Specifically, for the MAPK10 gene, which has 
192 known transcripts, our analysis revealed that only 24 transcripts 
showed significant correlations with metrics such as TSM, TMB, or 
MSI across 17 cancer types, appearing in up to 47 different signature 
identifiers (Figure 7, Supplementary Dataset S1O). The remaining 
180 transcripts from this locus showed no meaningful association. 
The highest number of MAPK10 transcript members per signature 
was 12, observed in LUAD-350.5.3.N.2.0.0.1.4.2. Notably, distinct 
MAPK10 transcript isoforms were associated with divergent 
phenotypes across cancer types. For example, ENST00000486985 
expression was positively correlated with MSI in lung squamous 
cell carcinoma (LUSC) patients (LUSC-1549.5.2.P.1.4.0.4.4.2). 
In contrast, ENST00000502302 was negatively correlated with 
TMB in lung adenocarcinoma (LUAD) patients (LUAD-
1824.5.1.N.1.0.0.3.4.2). Similarly, ENST00000395169 exhibited 
a protective role correlating with favorable outcomes in LGG 
(LGG-1814.5.3.P.3.93.72.2.3.2), whereas ENST00000395160, a 
different isoform from the same locus, was associated with 
risk, by four survival metrics, in stomach adenocarcinoma 
(STAD-1718.5.3.N.1.44.0.3.4.2). These isoform-specific correlations 
underscore the heterogeneity within the MAPK10 gene locus, 
where distinct transcripts contribute variably to cancer progression, 
phenotypic features, and therapeutic responses across cancer types.
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FIGURE 7
Sankey diagram illustrating transcript-specific associations of the MAPK10 gene across various phenotypes and cancer types. The MAPK10 gene locus 
appears as the source node, connected to its specific transcript isoforms identified in the dataset. Each transcript is further linked to phenotypic profiles 
(i.e., TSM, TMB, MSI) and mapped to cancer types such as BRCA, COAD, and GBM. The numbers in parentheses indicate the number of connection 
strokes. The thickness of each link represents the frequency of correlation between MAPK10 transcripts and the respective phenotypes or cancer types, 
highlighting both transcript-specific and phenotype-driven associations within multi-transcript gene correlations. For example, the transcript 
ENST00000486985 (signature identifier: LUSC-1549.5.2.P.1.4.0.4.4.2) shows a positive correlation with MSI in patients with LUSC, while the isoform 
ENST00000502302 (LUAD-1824.5.1.N.1.0.0.3.4.2) demonstrates a negative correlation with TMB in LUAD patients. The corresponding interactive 
proportional node dynamic network is available in Supplementary Material S1 (Supplementary Figure S13).

TABLE 4  Examples of transcript-specific correlations of MAPK10 with cancer types, phenotypic features, and prognostic outcomes.

Signature 
identifier

Transcript ID Cancer type Phenotypic 
correlation

Correlation 
direction

Comment

LGG-
1814.5.3.P.3.93.72.2.3.2

ENST00000395169 LGG (Lower-Grade 
Glioma)

Favorable outcomes Protective Correlated with better 
survival outcomes

STAD-
1718.5.3.N.1.44.0.3.4.2

ENST00000395160 STAD (Stomach 
Adenocarcinoma)

Poor prognosis Risk Linked to worse survival 
outcomes

LUSC-
1549.5.2.P.1.4.0.4.4.2

ENST00000486985 LUSC (Lung Squamous 
Cell Carcinoma)

MSI Positive Transcript positively 
correlated with MSI 
phenotype

LUAD-
1824.5.1.N.1.0.0.3.4.2

ENST00000502302 LUAD (Lung 
Adenocarcinoma)

TMB Negative Transcript negatively 
correlated with high 
TMB, a hallmark of poor 
prognosis in LUAD.

Table 4 summarizes the transcript-specific correlations of the 
MAPK10 gene with cancer types, phenotypic characteristics, and 
prognostic outcomes, as detailed above. Each transcript is linked to 
a unique signature identifier, highlighting its distinct role in cancer 
progression, its associated phenotypic features, and therapeutic 
relevance.

3.5 miRNA-specific signatures

A total of 1,470 miRNA-specific signatures were identified, 
with over half associated with prognostic outcomes and immune 

phenotypes, revealing transcriptomic roles for miRNAs such as 
hsa-miR-142-3p across multiple RCD forms and cancer types. 
The miRNA-specific signatures are composed of 1–58 elements 
(mean = 2.2; median = 1; Q3 = 2; P90 = 4). Of these, 954 
(64.9%) contain a single miRNA element. Among the miRNA-
specific signatures, 786 (53.5%) correlated with risk or protection 
in at least one survival metric. Of these, 41 (5.2%) correlated 
with risk and 16 (2%) with protection in all four metrics 
of survival (Supplementary Dataset S5). The miRNA signatures 
correlated with distinct tumor microenvironment profiles, 
including anti-tumoral, pro-tumoral, and variable conditions. 
We highlight the signature HNSC-1855.4.3.P.3.71.64.1.1.4, which 
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corresponds to hsa-miR-142-3p, the mature form of MIR142
in head and neck squamous cell carcinoma (HNSC) patients.
Cross-referencing public datasets revealed MIR142 is involved 
in four RCD forms—apoptosis, autophagy, ferroptosis and 
necrosis—emphasizing its critical role in hematopoiesis, immune 
regulation, and cancer progression by modulating various target 
genes involved in T cell differentiation, inflammation, and 
tumorigenesis.

hsa-miR-142-3p expression shows a positive correlation with TSM 
(Supplementary Figure S4A). It is overexpressed in HNSC tumors 
as compared with non-tumor tissues (Supplementary Figure S4B). 
While hsa-miR-142-3p overexpression was associated with protection 
in DSS (Supplementary Figure S4C), PFI (Supplementary Figure S4E) 
and OS (Supplementary Figure S4F), the underexpression 
was associated with poorer prognosis, as reflected in DSS 
(Supplementary Figure S4G), PFI (Supplementary Figure S4I), 
and OS (Supplementary Figure S4J). Furthermore, hsa-miR-
142-3p expression was linked to an anti-tumoral profile 
in the tumor microenvironment, characterized by a “hot” 
immune infiltrate, indicative of active immune engagement
(Supplementary Figure S4K). 

3.6 Gene-specific CpG methylation 
signatures

We identified 6,109 CpG methylation-specific gene signatures, 
most of which were associated with TSM and included subsets 
linked to immune infiltration profiles and patient outcomes across 
all survival metrics. The gene-specific CpG methylation signatures 
exhibit element counts ranging from 1 to 423 per signature (mean = 
3.2; median = 1; Q1 = 1; Q3 = 2; P90 = 5), of which 4,246 (69.5%) 
contain a single CpG Methylation-specific member. The majority (n 
= 5,350; 87.6%) was associated with TSM. Of these, 192 (3.59%) 
were linked to an increased risk, while 60 (1.12%) were protective 
in all four metrics of survival (Supplementary Dataset S6). These 
signatures were further stratified based on their correlation with 
tumor microenvironment profiles, showing anti-tumoral (n = 98; 
38.9%), pro-tumoral (n = 42; 16.7%), and dual (n = 54; 21.4%) 
characteristics. The methylation signatures associated with TSM 
were classified according to their association with immune cell 
infiltration profiles, showing “hot” (n = 6; 2.4%), “cold” (n = 16; 
6.4%), or variable (n = 25; 9.9%) immune phenotypes.

For instance, the signature HNSC-156.7.3.N.3.71.55.1.1.1 
demonstrates a negative correlation between CpG methylation 
at the CEBPE and SIRPG loci and TSM in HNSC patients 
(Supplementary Figure S5A). CEBPE and SIRPG mRNA 
expression levels were higher in tumor than in non-tumor 
samples (Supplementary Figure S5B). CEBPE and SIRPG mRNA 
expression levels are associated with protection in DSS 
(Supplementary Figure S5C), PFI (Supplementary Figure S5E), and 
OS (Supplementary Figure S5F). High methylation levels at CEBPE
and SIRPG are linked to a poorer prognosis in all survival metrics 
(Supplementary Figures S5G–J). Furthermore, CEBPE and SIRPG
mRNA expression correlates with an anti-tumor microenvironment 
transcriptional profile and is linked to a “hot” immune infiltration 
profile in HNSC patients (Supplementary Figure S5K). 

3.7 Protein-specific signatures

We identified 258 protein-specific signatures, predominantly 
correlated with TSM and microenvironmental phenotypes, 
including a small subset linked to survival outcomes. The protein-
specific signatures contain between 1 and 4 elements (mean = 1.1; 
median = 1; Q1 = 1; Q3 = 1; P90 = 1). Of these, the majority 
(254; 98.5%) exhibited a correlation with TSM, with 153 (60.2%) 
showing a positive correlation and 101 (39.8%) displaying a negative 
correlation. Among these, 7 (2.76%) were associated with an 
increased risk, while 1 (0.4%) was linked to protective effects in all 
four metrics of survival (Supplementary Dataset S7). Furthermore, 
47 (18.22%) protein-specific signatures correlated with anti-
tumoral profiles and 147 (57%) with dual tumor microenvironment 
profiles. Protein signatures also correlated with immune 
phenotypes categorized as “hot” (4; 1.3%), “cold” (11; 4.26%), 
or “variable” (17; 6.6%). Example: BRCA-1496.1.3.P.3.71.71.1.1.2 
refers to the expression of the CASPASE7CLEAVEDD198 
protein modification, which positively correlated with stemness 
in BRCA patients (Supplementary Figure S6A). There was 
significantly higher mRNA expression for the gene encoding the 
signature element in tumor samples compared to normal tissue
(Supplementary Figure S6B).

Protein overexpression is protective in DSS (Supplementary 
Figure S6C), PFI (Supplementary Figure S6E) and OS 
(Supplementary Figure S6F), survival metrics. Low protein 
expression was associated with poor prognosis in the same 
survival metrics (Supplementary Figures S6G,I,J). Moreover, 
CASPASE7CLEAVEDD198 expression correlated with anti-
tumoral microenvironment and “hot” immune infiltration profiles
(Supplementary Figure S6K). 

3.8 Mutation-specific signatures

We identified 8,022 mutation-specific signatures, predominantly 
associated with TMB and immunophenotypic heterogeneity, with a 
minority showing prognostic correlations. The signatures comprise 
1 to 487 elements (mean = 3.6; median = 1; Q1 = 1; Q3 = 1; P90 = 5). 
Of these, 5,464 (68.1%) consisted of a single element. The majority 
showed a positive correlation with TMB (5,880; 73.3%) and MSI 
(2,136; 26.6%), while a small subset (3; 0.04%) showed a positive 
correlation with TSM (Supplementary Dataset S8).

The TMB-associated signatures were linked to risk (n = 229; 
3.9%), protection (n = 96; 1.63%), “cold” immune cell profiles (n 
= 437; 5.45%), “hot” immune profiles (n = 200; 3.4%), “variable” 
immune profiles (n = 627; 10.7%), pro-tumoral (n = 687; 11.7%), 
anti-tumoral (1,426; 24.3%) and dual tumor microenvironment 
profiles (n = 1,501; 25.5%) (Supplementary Dataset S8). 
For example, signature KIRC-169.2.1.P.2.71.45.1.1.2, which 
features the mutation commonalities of CPEB4 and NF2
genes, is positively associated with TMB in KIRC patients 
(Supplementary Figure S7A). mRNA expression of the signature 
element was significantly higher in tumor versus non-tumor samples 
(Supplementary Figure S7B). mRNA expression of those genes 
was a protective factor in DSS (Supplementary Figure S7C), PFI 
(Supplementary Figure S7E) and OS (Supplementary Figure S7F). 
Mutations in those genes were associated with poor prognosis 
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in all metrics (Supplementary Figures S3G–J). mRNA expression 
of the signature elements correlated with anti-tumoral 
microenvironment and “hot” immune infiltration profiles
(Supplementary Figure S7K). 

3.9 CNV-specific signatures

We identified 2,442 CNV-specific signatures, over half of 
which were associated with TSM, with a minority demonstrating 
consistent prognostic and immune microenvironment correlations. 
Each CNV-specific signature comprises 1 and 124 elements (mean 
= 2.4; median = 1; Q1 = 1; Q3 = 2; P90 = 4), 675 (27.6%) of which 
comprise >1 element. Most of the CNV-specific signatures (1,313; 
53.8%) were associated with TSM (Supplementary Dataset S9). 
Among these, 915 (69.9%) exhibited a negative correlation, while 
398 (30.3%) demonstrated a positive correlation. Among the CNV 
signatures that correlated with TSM, 54 (4.1%) were associated with 
risk or protection across all four survival metrics. A portion of 
these signatures correlated with anti-tumoral (n = 24; 44.4%), pro-
tumoral (n = 8; 14.8%) and dual expression profiles (n = 19; 35.2%). 
These signatures were associated with tumor immune infiltration, 
characterized as “cold” (n = 11; 20.4%), “hot” (n = 3; 5.6%) or 
“variable” (n = 9; 16.7%).

For example, signature KIRP-107.3.2.N.1.44.44.1.1.2, 
comprising CXCL10 and TNFRSF4, showed CNV negatively 
correlated with MSI in KIRP Supplementary Figure S8A). 
mRNA expression of the CNV signature constituents 
was unchanged between tumors and non-tumor samples 
(Supplementary Figure S8B). mRNA overexpression of these 
genes was associated with an increased risk in DSS 
(Supplementary Figure S8C), DFI (Supplementary Figure S8D), PFI 
(Supplementary Figure S8E) and OS (Supplementary Figure S8F). 
Patients with CNV deletions exhibited poor prognosis 
across all survival metrics (Supplementary Figures S8G–J). 
Furthermore, mRNA expression of CXCL10 and TNFRSF4
was associated with anti-tumoral and “hot” immune 
microenvironment profiles (Supplementary Figure S8K).

Table 5 provides a consolidated overview of the classification 
and distribution of multi-omic signatures, including mRNA, 
transcript, miRNA, CpG methylation, CNV, mutation, and protein, 
according to their hazard-risk assessment (risky, protective, or 
poor prognostic signatures) and their correlation with tumor 
microenvironment and immune phenotype profiles. These profiles 
are further categorized based on anti-tumoral, pro-tumoral, or dual 
microenvironment classifications, as well as immune phenotypes, 
into “hot,” “cold,” or variable categories. This summary highlights 
the complexity of prognostic and therapeutic insights derived from 
distinct multi-omic features, providing a deeper understanding 
of their contextual relevance in cancer research and facilitating 
the discovery of new biomarkers and therapeutic targets for 
enhanced patient outcomes. By integrating diverse molecular 
features, we highlight the differential associations of multi-omic 
signatures with tumor prognosis and therapeutic informativeness, 
defined as the clinical relevance of biomarkers in guiding
treatment decisions.

3.10 Clinically meaningful signatures

By integrating diverse molecular features, we identified 
167 clinically meaningful signatures across five omic features: 
Transcript, mRNA, CNV, Methylation, and Mutation. These 
signatures are characterized by consistent associations 
with prognostic outcomes and immune microenvironment 
phenotypes in 11 cancer types, including STAD, PRAD, LUSC, 
LUAD, LGG, KIRP, KIRC, HNSC, CESC, BRCA, and ACC 
(Supplementary Dataset S1P). The selection process focused on 
signatures with significant associations with hazard ratio and 
prognostic metrics across all four survival outcomes: DSS, DFI, 
PFI and OS. These signatures also showed robust correlations 
with immune infiltration profiles, which were categorized into 
anti-tumoral, pro-tumoral, or dual microenvironment roles, and 
immune phenotypes classified as “hot,” “cold,” or “variable”. 
Among these, the top most clinically significant signatures are 
presented in Table 6.

3.11 Identification of potential therapeutic 
targets through known drug-gene 
interactions in top-ranked gene signatures

To identify potential therapeutic targets, we analyzed the gene 
components of the leading multi-modular signatures (Table 1), RCD 
type-specific signatures (Table 2), multi-omic feature signatures 
(Table 3) and top clinically meaningful signatures (Table 6). 
Collectively, these top 45 signatures (Supplementary Dataset S1Q) 
encompass 84 distinct genes (Supplementary Dataset S1R). By 
inputting this list into the DGIdb (Cannon et al., 2024), we found 
that 27 of the 84 genes are associated with 146 known drug 
interactions, as detailed in Supplementary Dataset S1S. Notably, 
59.6% (n = 87) of these interactions involve drug inhibitors. The 
genes with the highest number of drug interactions include APBB1, 
NAT2, ITGB3, RHOB, TLR4, ATP5F1A, TNFRSF4, GATA3, PARP3, 
RPL5 (Supplementary Figure S11). 

3.12 Independent validation of prognostic 
signatures using PRECOG

To ensure the robustness and generalizability of our findings, we 
assessed the prognostic value of 126 top, clinically meaningful, 
mRNA-specific signatures (Supplementary Dataset S1K) using 
the independent PRECOG database. Of the 126 signatures 
selected for their association with risk, protection, and poor 
prognosis—as well as their links to anti-tumoral, pro-tumoral, or 
dual microenvironment cell profiles and immune infiltrates—we 
successfully validated 73 signatures in five PRECOG cancer 
types (Lung cancer ADENO, Breast cancer, Brain cancer Glioma, 
Brain cancer Astrocytoma, and Prostate cancer). These PRECOG 
cancer types are equivalent to the TCGA cancer types LUAD, 
BRCA, LGG, and PRAD, in which these signatures were initially 
identified (Figure 8). This validation underscores the clinical 
relevance of these signatures and their potential utility in diverse 
patient populations.
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FIGURE 8
Heatmap of prognostic meta-Z scores from the PRECOG independent database. This heatmap illustrates the association between mRNA-specific 
signatures (y-axis) and PRECOG cancer types (x-axis). Median meta-Z scores were computed based on overall survival (OS) metrics. Cells are 
color-coded: blue denotes a favorable prognosis (negative meta-Z scores), red indicates a poor prognosis (positive meta-Z scores), and gray represents 
neutral or non-significant values. Black-bordered cells highlight statistically significant associations (|Meta-Z| > 3.09 or < −3.09, p < 0.001). The asterisk 
within the black-bordered cells marks signatures whose prognostic values were validated in both direction and strength in TCGA-equivalent PRECOG 
cancer types.
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3.13 CancerRCDShiny: exploring 
multi-omic signatures in RCD for cancer 
research

We implemented CancerRCDShiny (https://cancerrcdshiny.
shinyapps.io/cancerrcdshiny/), a tool designed to facilitate the 
exploration and analysis of signatures associated with RCD forms 
in cancer. This R Shiny app is tailored for researchers and clinicians 
aiming to uncover the molecular underpinnings of cancer through 
the lens of cell death processes. CancerRCDShiny integrates a 
robust database encompassing 25 distinct RCD forms and 32 
cancer types, enabling users to explore the intricate relationships 
between signatures and cancer phenotypes. The app employs 
rigorous genome-wide significance filters to identify the most 
relevant signatures, ensuring access to high-confidence data for 
thorough analysis and interpretation. Users can explore multiple 
gene features and phenotypic attributes, providing a comprehensive 
view of the genetic landscape associated with RCD in cancer. The 
app features a user-friendly interface with dynamic visualization 
tools, enabling users to easily navigate data, create custom plots, 
and generate detailed reports. Researchers can tailor their queries 
to specific RCD forms, cancer types, or omic features, facilitating 
targeted investigations. CancerRCDShiny is an essential resource 
for precision oncology, empowering researchers to uncover novel 
insights and advance cancer research.

CancerRCDShiny also contains an RCD Multi-omic Signature 
Identifier Interpreter function that deciphers the complex 
nomenclature of the signatures. This function enables users to paste 
any RCD signature identifier from the database and download the 
interpreted identifier in text format. 

3.14 Performance of the cancer regulated 
cell death data analyst tool

The Cancer Regulated Cell Death Data Analyst is a specialized 
GPT-based software tool designed to extract and process 
information from various file formats, generating structured tabular 
outputs in. csv format to address specific research queries related to 
RCD in cancer. It offers robust capabilities, including automated data 
cleaning, integration with external databases, and NLP techniques 
for extracting insights from unstructured text. The tool supports 
interactive dashboards for real-time visualization, functional 
annotation and enrichment analysis, predictive modeling using 
machine learning, and customizable reporting. Additional features 
include secure user authentication, data encryption, API access 
for seamless integration with other software tools, collaborative 
functionalities for team-based analysis, version control for data and 
workflows, and educational resources. It also provides advanced R 
code suggestions for in-depth analysis, such as data visualization 
through plots and images, explicitly tailored for RCD research. A 
built-in feedback mechanism ensures continuous improvement, 
while enhanced plotting and imaging capabilities further refine 
data interpretation and analysis. The tool can be accessed at URL: 
https://chatgpt.com/g/g-8etzMPrtt-cancer-regulated-cell-death-
data-analyst. 

4 Discussion

4.1 Holistic approach and context-specific 
analysis

Our multi-optosis model is integrative and holistic, querying 
5,913 genes associated with RCD, encompassing 62,090 transcripts, 
882 mature miRNAs and 239 cancer-associated proteins and protein 
modifications (for 193 genes) from 25 distinct RCD forms. The 
model assumes non-uniformity in the activity and effects of the 
RCD gene components across different cancer types. Each cancer 
type is analyzed separately, ensuring that the unique biological 
contexts and specific molecular mechanisms of each cancer type 
are thoroughly considered. When querying target genes, we treat 
the RCD gene inventory as a whole; however, each gene is 
conceptually tagged to one or more RCD forms. This approach 
enables us to account for the unique biological contexts and specific 
molecular mechanisms of each cancer type, thereby ensuring a 
comprehensive understanding of the associations between RCD 
gene partners in cancer progression and treatment resistance. By 
combining these elements, our model uncovers new biomarkers and 
therapeutic target candidates, opening avenues for more effective 
cancer treatments.

The signature database developed in this study offers a valuable 
resource for advancing cancer research and treatment through 
multiple RCD signaling pathways. The signature identifiers are 
enriched with meaningful information encoded in the nomenclature 
system, unveiling hidden correlations between multi-omic and 
phenotypic features. Our rank-scoring system integrates multiple 
critical factors to assess the overall significance and correlation of 
each signature, providing preliminary evidence for their prognostic 
value. This method offers a comprehensive framework for evaluating 
signatures in cancer research. Our process ensures a balanced and 
accurate assessment of each signature’s relevance by considering 
multiple factors, including cancer type, survival metrics, and multi-
omic and phenotypic features. The scoring of signatures can facilitate 
the prioritization of signatures for further investigation, ultimately 
accelerating the discovery of actionable insights and improving 
patient outcomes.

Currently, no signature identifier system in the literature 
incorporates multi-omics features as comprehensively as our model 
does. Most studies on signatures related to RCD and cancer 
list signatures based on a single type of association (Wang and 
Zhang, 2024; Bao et al., 2014; Cai et al., 2020; Chen et al., 
2020; Chang et al., 2021; Modarres et al., 2021; Wan et al., 2021; 
Bian et al., 2022; Li et al., 2022; Yao et al., 2022; Chen L. et al., 2023; 
Li J. et al., 2024; Zhou X. et al., 2024). Our model’s novel integration 
of multi-omics features and multiple phenotypic attributes provides 
a more holistic and informative framework for understanding 
cancer biology. The uniqueness of our integrated multi-omic, multi-
feature signature discovery approach significantly enhances the 
potential of key biomarkers and therapeutic targets.

However, we recognize the necessity of thorough validation 
across independent datasets to confirm the reliability of these 
signatures in clinical settings. Therefore, validation in independent 
datasets is necessary to establish the clinical applicability of our 
findings fully.
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As a discovery-phase analysis encompassing over 44,000 mono-
omic signatures, our model prioritized genome-scale screening 
using univariate Cox models. While this approach enables broad 
comparability across tumor types and omic layers, we recognize that 
downstream validation through multivariate modeling—including 
adjustment for clinical confounders such as age, sex, and stage—is 
essential to confirm independent prognostic utility. Importantly, 
implementation of covariate-adjusted survival modeling would 
entail redefinition of the signature construction logic to ensure 
that association signals are preserved across clinical strata, and 
would require computational infrastructure beyond the current 
framework. We plan to address this in future validation phases.

The ability to stratify tumors or patients based on multiple layers 
of omic regulation (e.g., miRNA and methylation) is particularly 
valuable for building interpretable prognostic and mechanistic 
models. We recognize that resampling-based methods, such as 
bootstrapping or subsampling, are valuable tools for assessing 
the stability of candidate signatures. Given the exploratory and 
genome-wide scope of the present analysis—encompassing over 
44,000 multi-omic signatures across 33 cancer types—bootstrap-
based stability testing was not implemented at this stage due to 
computational limitations. In this discovery context, the presented 
top-ranked signatures are demonstrative in nature, selected to 
illustrate biologically and clinically meaningful associations across 
omic layers. They are not intended as definitive biomarkers. 
Systematic prioritization and validation of signature robustness will 
be the focus of future follow-up analyses. 

4.2 Interpretation of multi-omic and 
phenotype correlations and their signs

The signatures identified through specific multi-omic and 
phenotype correlations are candidate proxies for diagnosis, 
prognosis, or therapeutic response. Integrating positive and negative 
correlations into our analysis provides a more comprehensive 
understanding of the signatures associated with various cancer 
phenotypes. This thorough approach enables the identification of 
potential oncogenes and tumor suppressors, paving the way for 
the development of more tailored and effective cancer treatments. 
For instance, positive correlations between gene expression and 
TSM could indicate aggressive cancer phenotypes, metastasis, 
and therapy resistance. Examples include overexpression of the 
pluripotency- and apoptosis-related POU5F1 (OCT4) (i.e., TGCT-
15.6.3.P.3.0.0.2.4.2), SOX2 (i.e., LUSC-2293.6.3.P.3.62.30.1.4.3), 
and NANOG (i.e., TGCT-4.6.3.P.3.0.0.2.4.1) genes in various 
cancer types associated with stemness and poor prognosis 
(Clemente-Perivan et al., 2020; Chiou et al., 2010; Wu et al., 2012; 
Gutekunst et al., 2013; Upadhyay et al., 2020; Mehrzad et al., 2022; 
Fang et al., 2023; von Eyben et al., 2023; Zhu and Xu, 2024).

Negative correlations provide equally critical insights. A 
negative correlation between gene CNV and a particular phenotype 
(i.e., stemness) could indicate genes that suppress aggressive traits or 
resistance mechanisms. For example, TP53 deletion/duplication was 
correlated with poor prognosis in Liver hepatocellular carcinoma 
(LICH) patients (LIHC-1867.3.3.N.3.0.126.1.4.12). TP53 plays a 
crucial role in DNA repair and apoptosis (Blagih et al., 2020).

The link between TP53 CNV changes and adverse outcomes in 
LIHC suggests its potential as a marker for high-risk patients. Loss 
of TP53 function can weaken DNA repair and apoptosis, facilitating 
tumor progression. This underscores TP53’s role in restraining 
tumor aggressiveness, highlighting it as a potential therapeutic 
target. Exploring similar negatively correlated genes can reveal 
critical mechanisms in cancer suppression and inform targeted 
therapies.

Identifying genes that are negatively correlated with aggressive 
tumor features can highlight potential tumor suppressors or 
biomarkers of less aggressive disease. For example, reduced 
levels of E-cadherin (CDH1) are associated with increased 
invasiveness and metastasis in several types of cancer (Berx and 
Van Roy, 2001). We identified 16 signatures with CDH1, which 
is overexpressed in ten cancer types (PAAD, COAD, BRCA, 
LGG, HNSC, THYM, STAD, READ, GBM, and PRAD). In head 
and neck squamous cell carcinoma (HNSC) patients, CDH1
mRNA expression was found to be negatively correlated with 
MSI (HNSC-814.6.2.N.3.0.0.2.2.3) (Supplementary Dataset S3). 
Notably, CDH1 mutations in HNSC patients are rare 
(Supplementary Dataset S1T) compared to TP53 mutations 
(Supplementary Dataset S1U and Supplementary Figure S9).

This negative correlation suggests that higher CDH1 expression 
may contribute to tumor stability and cohesion, consistent with 
its role as a tumor suppressor and adhesion molecule. In 
HNSC, where high MSI frequently correlates with aggressive 
behavior and poor prognosis, elevated CDH1 expression may help 
preserve cellular integrity, potentially limiting the tumor’s invasive 
capacity. This aligns with CDH1’s function in stabilizing cell-
cell interactions and opposing epithelial-mesenchymal transition, 
a process often heightened in MSI-high tumors (Berx and 
Van Roy, 2001; Liu et al., 2017).

The presence of solo CDH1 signatures across different cancer 
types further underscores CDH1’s potential as a marker of epithelial 
integrity and reduced invasiveness, especially in tumors with a 
preserved epithelial phenotype. Using CDH1 as an indicator of 
cellular cohesion could improve patient stratification, identifying 
patients who may benefit from therapies focused on maintaining 
cell adhesion and curbing invasion-related pathways. This finding 
supports the need for further research into the role of CDH1 in tumor 
stability and its potential as a biomarker across various cancer types.

Thus, in contrast to models restricted to canonical forms of cell 
death, our 25-form RCD framework preserves the mechanistic and 
phenotypic diversity of RCD programs, offering greater resolution 
for identifying tumor-specific vulnerabilities and informing 
precision oncology strategies. 

4.3 Prognostic and diagnostic potential of 
transcript-specific signatures

The transcript-level correlations observed for MAPK10
underscore the importance of distinguishing specific isoforms in 
cancer research and clinical applications. While MAPK10 as a gene 
locus shows variability across cancer types, individual transcripts 
reveal distinct associations with phenotypic features and patient 
outcomes. This specificity highlights the potential for isoform-level 
resolution to refine prognostic tools and therapeutic strategies. For 
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instance, identifying protective or risk-associated transcripts can 
enhance the accuracy of patient stratification, allowing for more 
personalized treatment plans.

The distinct roles of MAPK10 isoforms in tumor progression and 
interactions with the microenvironment also emphasize the need 
for targeted therapeutic approaches. By isolating isoforms associated 
with pro-tumoral or anti-tumoral phenotypes, therapies could be 
designed to selectively modulate these transcripts, maximizing 
treatment efficacy while minimizing off-target effects. This approach 
could be precious in cancers where MAPK10 isoforms contribute 
differentially to immune infiltrates, such as “cold” or “hot” tumors, 
potentially guiding the selection of immunotherapy strategies.

The heterogeneity within MAPK10 reinforces the importance 
of transcriptomics in understanding cancer biology. Whole-gene 
analyses may overlook critical isoform-specific contributions 
that drive tumor behavior and therapeutic response. As such, 
incorporating transcript-level data into clinical workflows 
could enhance diagnostic precision, prognosis accuracy, and 
the development of isoform-targeted therapies, representing a 
significant advancement in precision oncology. 

4.4 Application and translational potential 
in clinical settings

Cancer therapies, including immunotherapy, aim to eliminate 
cancer cells, with their success often influenced by genes that 
regulate cell death. Most RCD-associated genes play either a pro-
RCD or an anti-RCD role. However, depending on the cancer 
context, specific RCD-associated genes can promote or inhibit 
cell death, affecting their suitability as therapeutic targets. It is 
also known that some genes exhibit dual roles, acting as pro-
RCD or anti-RCD agents based on the cancer type. For example, 
SLC7A11, which codes for a component of a sodium-independent, 
anionic amino acid transport system specific for cysteine and 
glutamate, promotes resistance to ferroptosis in gliomas (e.g., 
LGG-2956.3.3.N.3.0.0.2.4.4) but inhibits ferroptosis in endometrial 
carcinoma (e.g., UCEC-1106.2.1.P.3.2.0.2.4.4) (Fang et al., 2023; Zhu 
and Xu, 2024; Liu et al., 2020) (Supplementary Dataset S1V).

In cancer treatment, genes that promote RCD are often 
considered desirable targets because they facilitate the elimination 
of cancer cells. Conversely, genes that inhibit RCD can contribute 
to therapy resistance, making them challenging targets in specific 
cancers. Customizing therapeutic strategies based on the gene’s role 
in RCD within the specific cancer type can optimize treatment 
outcomes. Therapies should be aligned with whether a gene’s 
function is to promote or inhibit cell death, ensuring that the 
approach enhances the effectiveness of the treatment.

The RCD signature database holds significant promise for 
practical application in preclinical settings, offering valuable tools 
for patient stratification, personalized treatment plans, prognostic 
applications, and therapeutic decision-making. These signatures 
may enable categorizing patients based on their molecular profiles, 
leading to more tailored and effective treatment strategies.

We identified 148 gene signatures with somatic mutations 
positively correlated with TMB and with immunotherapeutic 
potential by their association with immune infiltrate profiles 
in fourteen cancer types (Supplementary Dataset S1W). The 

distribution of these mutation-specific signatures by cancer type 
and their immunotherapeutic potential is shown in Figure 9. 
Mutations in these genes are likely sources of neoantigens, as high 
TMB produces more immunogenic mutations (Zhang et al., 2024). 
This connection suggests the mutation-specific signatures could 
identify neoantigen targets for personalized therapies, such as cancer 
vaccines or T cell-based treatments.

The practical application of our findings lies in stratifying 
patients by using the signatures as prognostic tools to guide 
therapeutic decisions based on the cancer’s molecular profile 
(Wang D. R. et al., 2022). To bring our multi-omic signature 
database into clinical practice, it is essential to conduct rigorous 
clinical trials that validate both its efficacy and reliability. This 
involves evaluating the predictive power of the signatures across 
diverse patient cohorts and confirming reproducibility in different 
clinical settings (Wang D. R. et al., 2022). Notably, cross-referencing 
the gene components in the database with existing literature reveals 
that some signatures or their members have already been evaluated 
in previous preclinical studies, which highlights the translational 
potential of our findings, bridging preclinical insights with clinical 
applications. Out of the 150 widely recognized immunological 
targets in cancer research, 91 (60,7%) are included in the signatures 
identified in this study (Supplementary Dataset S1L). 

4.5 Cases of clinically validated RCD 
multi-omic signatures

We identified 879 multi-omic signatures (Supplementary 
Dataset S10) that contain at least one gene member from 
27 out of 29 genes whose protein products are classified as 
chimeric antigen receptor (CAR) targets and are currently 
under investigation in clinical trials as identified by 
Clinicaltrials.gov (Dannenfelser et al., 2020).

We exemplify the translational impact of the RCD multi-
omic signature database with two cases in which members of 
the multi-optosis signatures have been clinically validated in 
independent studies. The first case is CD274 (a driver gene that 
encodes for PD-L1) (Topalian et al., 2012). The finding that 
CD274 is involved in eight RCD processes (apoptosis, autophagy, 
cuproptosis, efferocytosis, ferroptosis, necroptosis, pyroptosis, and 
necrosis) expands our understanding of the multifaceted roles of 
PD-L1 in cancer biology (Supplementary Dataset S1B). This broad 
involvement suggests that PD-L1 may influence tumor progression 
and response to therapy through multiple pathways, not just 
immune evasion. This knowledge can lead to targeted and effective 
therapeutic strategies that address these various pathways.

The positive correlation between CD274 mutations and TMB 
in GBM-410.2.1.P.3.35.0.4.4.8, LGG-1442.2.1.P.3.35.0.3.4.8, and 
PAAD-773.2.1.P.3.42.0.2.4.8 suggests that higher TMB, often 
associated with better responses to immunotherapy, is linked to 
the occurrence of CD274 mutations (Supplementary Figure S10, 
Supplementary Dataset S1X). Given the low frequency of CD274
somatic mutations in those cancer types (0.4%; 4 mutations in 
998 patients, Supplementary Dataset S1X), as compared to TP53, 
a prominent driver cancer gene (Supplementary Dataset S1Y), the 
findings highlight that even rare mutations can have significant 
clinical implications. Patients with high TMB are more likely to 
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FIGURE 9
Accumulated histogram illustrating the distribution of mutation-specific signatures by meaningful immunotherapy potential across cancer types. The 
histogram shows the absolute counts of signatures associated with the combined Tumor Microenvironment Contexture (TMC) and Tumor-infiltrating 
lymphocyte contexture (TIC) ranks. Each bar represents a specific cancer type abbreviation (CTAB), and segments within the bars show the distribution 
of combined ranks categorized as Anti-tumoral & Hot, Dual & Variable, and Pro-tumoral & Cold, among others. The colors correspond to the 
Combined TMC and TIC ranks, mapped using the Okabe-Ito color palette extended for color-blind friendliness. Data were processed and summarized 
from multi-omic analyses of mutation-associated signatures with the potential for immunotherapy (Supplementary Dataset S1W).

have neoantigens that enhance the immune response, making them 
better candidates for immunotherapy. This correlation can guide 
the selection of patients for immune checkpoint inhibitor therapies, 
potentially leading to better clinical responses.

The identification of CD274 mutations as a risk factor in 
at least one survival metric in patients with GBM, LGG, and 
PAAD (Supplementary Figure S9) aligns with previously reported 
associations (Zeng et al., 2023; Chen et al., 2018; Fen et al., 
2017). It reinforces the role of PD-L1 as a critical biomarker for 
patient stratification in these cancers. Clinicians can assess PD-L1 
expression levels to identify patients more likely to benefit from 
PD-L1/PD-1 checkpoint blockade therapies, thus personalizing 
treatment plans and improving outcomes.

Understanding the diverse roles of CD274 in 
various RCD processes (apoptosis, autophagy, cuproptosis, 
efferocytosis, ferroptosis, necroptosis, pyroptosis, and 
necrosis) (Supplementary Dataset S1B) and its positive 
association with TMB can inform the development of 
combination therapies. For instance, combining PD-L1 
inhibitors with agents targeting specific RCD pathways (i.e., 
ferroptosis inducers or necroptosis inhibitors) could enhance 
therapeutic efficacy by simultaneously disrupting multiple tumor
survival mechanisms.

The second case example is the AXL receptor tyrosine kinase, 
which plays critical roles in cellular functions such as growth, 
migration, aggregation, and anti-inflammation in multiple cell 
types (Goyette and Cote, 2022), and it is term-based associated 
with apoptosis, efferocytosis, necroptosis, and necrosis in various 
cancer types (Supplementary Dataset S1B). Our findings show that 
AXL mRNA expression is negatively correlated with stemness in 
PAAD-718.6.3.N.3.44.43.3.4.4, LGG-1367.6.3.N.3.35.35.2.4.4, and 
STAD-1167.6.3.N.3.35.1.3.2.4 patients (Supplementary Dataset S3). 
Specifically, these signatures indicate that high AXL expression 
is linked to decreased stemness in these cancers. Conversely, 
in PAAD and STAD patients, AXL mutations show a positive 
correlation with TMB (Supplementary Dataset S3). The frequency 
of AXL somatic mutations in those cancer types is low (5.5%; 34 
mutations in 616 patients, Supplementary Dataset S1Z) compared 
to TP53 (Supplementary Figure S9, Supplementary Dataset S1AA). 
Thus, adverting that even infrequent mutations can have significant 
clinical implications. Notably, the overexpression of AXL in these 
three cancer types is a risk factor across three to four metrics of 
patient survival (Supplementary Dataset S3).

Cross-referencing shows that anti-human monoclonal 
antibodies targeting the AXL receptor tyrosine kinase inhibit 
AXL activity effectively, limiting the proliferation and migration 
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of pancreatic cancer cells in vitro and in vivo (Leconet et al., 
2014). This evidence suggests a promising approach for 
immunotherapy in PAAD, LGG, and STAD patients, underscoring 
the potential for these signatures to inform innovative therapeutic 
strategies involving anti-AXL antibodies and small molecule 
AXL kinase inhibitors. Dysregulated AXL expression in STAD 
is highlighted as a promising therapeutic target, further 
supporting the relevance and potential impact of targeting AXL 
in gastrointestinal cancers (Pidkovka et al., 2023). 

4.6 Validation in PRECOG cancer types

While 73 of the 126 mRNA-specific signatures were successfully 
validated in PRECOG cancer types equivalent to TCGA (Lung 
adenocarcinoma, Breast cancer, Glioma, Astrocytoma, and Prostate 
cancer), the validation rate (58.4%) highlights important biological 
and technical considerations. Several factors may explain why 
not all signatures showed consistent prognostic value across the 
independent PRECOG dataset: (1) lack of equivalent TCGA versus
PRECOG cancer type (example: CESC - Cervical squamous cell 
carcinoma and endocervical adenocarcinoma; n = 5 signatures); 
(2) gene absent in PRECOG (example: ADAMTS9-AS1 in PRAD-
1064.6.3.N.2.95.26.1.2.1); (3) the validation process relied on 
stringent statistical thresholds (|Meta-Z| > 3.09 or < −3.09, p < 
0.001) to identify significant poorer or better prognosis, respectively. 
Signatures with weaker but still biologically relevant effects may not 
have met these thresholds in PRECOG, leading to their exclusion 
from the validated set. (4) Some signatures may exhibit cancer-
specific prognostic value, meaning they are highly relevant in 
certain cancer types but not others. While PRECOG includes cancer 
types equivalent to TCGA, the absence of certain subtypes or 
including additional subtypes in PRECOG could explain why some 
signatures were not validated. (5) For multi-gene signatures, the 
median meta-Z score was computed across all genes, which may 
dilute the contribution of individual genes with strong prognostic 
effects. This aggregation approach could cause the loss of signal 
for signatures where only a subset of genes drives the prognostic
association.

Despite these challenges, the validation of 73 signatures in 
PRECOG underscores their robustness and clinical relevance 
across independent datasets. The validation rate highlights 
the complexity of translating gene expression signatures into 
universally applicable prognostic tools and emphasizes the 
need for further refinement and context-specific validation in
future studies. 

4.7 Advanced tools for RCD data analysis

Although existing resources provide valuable insights, they have 
limitations that our model addresses. Four comprehensive and 
interactive online tools are currently available to support research 
on RCD in cancer: RCD map10 (Ravel et al., 2020), FerrDb11 

10 RCD map: https://navicell.vincent-noel.fr/pages/maps_rcd.html

11 FerrDb: http://www.zhounan.org/ferrdb/legacy/index.html

(Zhou and Bao, 2020), HAMdb12 (Wang et al., 2018), XDeathDB13 
(Gadepalli et al., 2021) and RCDdb14 (Wang et al., 2024). The 
first appears to have inactive hyperlinks. FerrDb is dedicated 
to ferroptosis regulators and disease associations. It categorizes 
regulators into genes (drivers, suppressors, markers, unclassified) 
and substances (pure and mixtures like iron, erastin, and herbal 
extracts). These are further classified as inducers or inhibitors. 
FerrDb includes seven curated datasets. HAMdb is a database 
of autophagy modulators and their disease links, containing 796 
proteins, 841 chemicals, and 132 miRNAs. It helps identify new 
modulators, drug candidates, and therapeutic targets through a 
user-friendly interface for easy searching and browsing, advancing 
autophagy research in cancer and other diseases. XDeathDB gathers 
information about a 12-optosis model that includes intrinsic 
apoptosis, autosis, efferocytosis, ferroptosis, immunogenic cell 
death, lysosomal cell death, mitotic cell death, mitochondrial 
permeability transition, necroptosis, parthanatos, and pyroptosis. It 
integrates big data for cell death gene-disease associations, gene-cell 
death pathway associations, pathway-cell death mode associations, 
and cell death-cell death associations derived from literature reviews 
and public databases. RCDdb features over 3,000 literature-derived 
annotations covering 1,850 RCD-associated genes linked to 15 RCD 
forms (apoptosis, pyroptosis, necroptosis, autophagy-dependent cell 
death, entotic cell death, NETotic cell death, parthanatos, MPT-
driven necrosis, immunogenic cell death, lysosome-dependent 
cell death, ferroptosis, alkaliptosis, oxeiptosis, cuproptosis, and 
disulfidptosis). It integrates data on diseases, drugs, pathways, 
proteins, and gene expression and provides advanced visualization 
tools and three analytical modules to enable users to identify and 
study RCD-related features.

The RCDdb is the first comprehensive, manually curated 
database focused on annotating and analyzing the 15 
known RCD forms.

Despite their comprehensive scopes, FerrDb, HAMdb, 
XDeathDB and RCDdb do not index outputs by significance, 
making it challenging to prioritize critical associations, which 
can hinder effective data utilization and research prioritization. 
We developed the CancerRCDShiny web browser and the Cancer 
Regulated Cell Death Data Analyst tools to address these gaps. 
These new tools enhance the utility and impact of our findings, 
making them more accessible and actionable for researchers and 
clinicians. Their integrative and user-friendly design facilitates 
efficient extraction, analysis, and visualization of RCD data in 
cancer, ultimately advancing our understanding and treatment 
of cancer through more precise biomarkers and targeted
therapies. 

5 Shortcomings and limitations

This study has shortcomings and limitations that should be 
considered when selecting impactful signatures. First, the gene 
inventory is an ongoing effort, which means some genes reported 

12 HAMdb: http://hamdb.scbdd.com/

13 XDeathDB: https://pcm2019.shinyapps.io/XDeathDB/

14 RCDdb: http://chenyclab.com/RCDdb/
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in various studies may have been omitted since our catalog is 
primarily based on the NCBI Gene database. Despite our cross-
referencing, relying on a single database means the catalog may 
not comprehensively include all genes associated with RCD forms 
reported in the literature.

Second, using a stringent genome-wide significance threshold 
(padj-value < 5 × 10^-8) while minimizing false positives may 
reduce sensitivity, especially in smaller datasets or those with lower 
signal-to-noise ratios. Users should consider the specific context of 
their dataset and study design when applying this threshold. A less 
stringent threshold might enhance sensitivity in particular scenarios 
while maintaining the stringent threshold is crucial in larger datasets 
to control false discovery rates. We have made our source code 
publicly available, enabling researchers to fine-tune the significance
threshold.

Third, the signatures identified in this study are related 
to primary tumor samples. Therefore, the impact values 
of these signatures in recurrent tumors, metastatic tumors, 
and primary blood-derived cancers were not addressed in 
this study. Future studies should expand the analysis to 
these other tumor types to provide a more comprehensive 
understanding of the signatures’ roles across different cancer stages
and contexts.

While our model currently includes seven multi-omic layers 
with broad Pan-Cancer coverage from TCGA, epitranscriptomic 
modifications such as N6-methyladenosine (m6A) were not 
included due to the absence of high-resolution, uniformly 
processed m6A data across cancer types. As such datasets become 
more widely available, future iterations of the CancerRCDShiny 
framework will seek to incorporate m6A and related RNA 
modifications to further refine isoform-level phenotypic
associations.

Fourth, the corpora of PDFs comprise only free-access full-text 
files. This limitation may cause a biased dataset, as some relevant 
studies published in subscription-based journals were not included. 
Cross-referencing gene targets and gene components of signatures 
might miss critical information available in those restricted-access 
publications. Future research should incorporate a broader range of 
manually curated sources to ensure greater accuracy and depth in 
the findings.

Lastly, although this study identifies biomarkers with potential 
immunotherapeutic applications, it does not incorporate AI-driven 
drug discovery or molecular docking methods to identify or validate 
therapeutic compounds. Such approaches could refine our ability 
to screen for specific inhibitors or activators targeting RCD-related 
pathways and enhance the translational relevance of our findings. 
Future research should aim to integrate AI and docking-based 
platforms into the CancerRCDShiny tool to support the discovery 
of novel drugs targeting the multi-omic signatures identified in 
this study. 

6 Strengths

This study offers a comprehensive analysis of 25 forms 
of RCD in cancer, integrating seven multi-omic layers to 
identify biologically grounded and clinically relevant signatures. 
A structured scoring system was implemented to assess 

signature significance, supported by a PDF-AI-based literature 
mining strategy for evidence-based validation. The Multi-
Optosis framework was intentionally designed to preserve the 
biological and phenotypic heterogeneity inherent to multi-
omic cancer data, rather than reducing the complexity of 
over 44,000 multi-layered signatures into meta-signatures. 
This approach enables context-specific interrogation across 
omic layers, phenotypic attributes, and tumor types. By 
systematically integrating RCD forms with phenotypic and 
survival traits across multiple cancers, the model establishes a 
structured and reproducible platform for biomarker discovery 
and therapeutic target prioritization. The adoption of a 
distinct signature nomenclature and the implementation of 
an interactive Shiny application (CancerRCDShiny) further 
distinguish this resource from general-purpose Pan-Cancer 
studies by providing biologically coherent and clinically
interpretable outputs. 

7 Concluding remarks

This study introduces the multi-optosis framework as a novel, 
integrative approach for investigating RCD mechanisms in cancer. 
By incorporating 25 distinct forms of RCD, the model transcends 
traditional, single-pathway analyses, offering a holistic view of 
the intricate crosstalk between RCD pathways. This framework 
advances our understanding of cancer progression and treatment 
resistance while providing a robust platform for identifying genome-
wide biomarkers and actionable therapeutic targets. Notably, the 
multi-optosis model lays the foundation for clinical applications, 
such as stratifying patients based on RCD-related phenotypes and 
designing therapies that target multiple RCD pathways for enhanced
efficacy.

We developed a signature database enriched with a systematic 
nomenclature that reveals hidden correlations between multi-omic 
and phenotypic features. Our ranking method ensures a balanced 
and comprehensive assessment of signature relevance by integrating 
survival metrics and tumor immune infiltration profiles. This 
prioritization speeds up the discovery of actionable insights and 
supports the development of personalized therapeutic strategies to 
improve patient outcomes.

Practical applications of our findings are facilitated by user-
friendly tools such as CancerRCDShiny and the Cancer Regulated 
Cell Death Data Analyst. These tools enable researchers and 
clinicians to explore RCD multi-omic signatures efficiently, 
leveraging dynamic visualization and customizable reporting 
capabilities to enhance data interpretation.

By addressing the complexity and heterogeneity of cancer 
biology, the multi-optosis framework provides a detailed 
understanding of RCD gene associations in cancer progression 
and resistance. This integrative approach paves the way for 
identifying candidate biomarkers and therapeutic targets, driving 
the development of more effective cancer treatments.

Together, the multi-optosis model and its associated tools 
represent a significant advancement in cancer biomarker discovery 
and translational research, offering invaluable resources for 
personalized cancer therapies and improved clinical outcomes.
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