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Structure-based prediction of
SARS-CoV-2 variant properties
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This dataset presents a structure-enriched resource of theoretical and empirical
SARS-CoV-2 spike receptor-binding domain (RBD) variants, developed under
the STAYAHEAD project for pandemic preparedness. It integrates large-
scale in silico structure predictions with empirical biophysical measurements.
The dataset includes 3,705 single-point Wuhan-Hu-1 RBD variants and
100 higher-order Omicron BA.1/BA.2 variants, annotated with AlphaFold2
and ESMFold metrics and Bio2Byte sequence-based predictors. Structural
descriptors—RMSD, TM-score, plDDT, solvent accessibility, hydrophobicity,
aggregation propensity—are linked to ACE2 binding and expression data from
deep mutational scanning. Provided as a FAIR2 Data Package, it supports
structure–function analysis, variant modeling, and responsible reuse in virology,
structural biology, and computational protein science. This collaboration was
co-funded by the PPP Allowance from Health ∼ Holland, Top Sector Life
Sciences and Health, to stimulate public–private partnerships.
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1 Introduction

The rapid emergence and global spread of SARS-CoV-2 variants during the COVID-
19 pandemic underscored the urgent need for timely characterization of mutations in
viral proteins (Korber et al., 2020; World Health Organization, 2023). Among these, the
receptor-binding domain (RBD) of the spike (S) glycoprotein has been of particular interest
due to its direct role in mediating viral entry via the human ACE2 receptor (Lan et al.,
2020). Mutations in the RBD can significantly affect viral infectivity, immune escape,
and pathogenicity (Harvey et al., 2021; McCallum et al., 2021), as observed in multiple
Variants of Concern (VoCs) over the course of the pandemic. While genomic surveillance
efforts have cataloged a vast diversity of spike variants, predictive frameworks capable
of linking sequence variation to functional and biophysical consequences remain limited
(McCallum et al., 2021; Starr et al., 2020).

This dataset was developed as part of the STAYAHEAD initiative, which investigates
structure-informed approaches to forecasting the functional properties of emerging SARS-
CoV-2 variants.The resource centers on the RBDof the ancestralWuhan-Hu-1 spike protein

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1634111
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1634111&domain=pdf&date_stamp=2025-09-05
https://www.doi.org/10.71728/hw56-vj34
mailto:e.a.schultes@lacdr.leidenuniv.nl
mailto:e.a.schultes@lacdr.leidenuniv.nl
https://doi.org/10.3389/fbinf.2025.1634111
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1634111/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1634111/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1634111/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1634111/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


van den Boom et al. 10.3389/fbinf.2025.1634111

and includes a systematically generated set of all possible single-
point missense variants (3,705 in total), together with representative
higher-order variants from the Omicron BA.1 and BA.2 lineages.
These higher-order variants consist of full sets of mutations
observed in actual clinical isolates of BA.1 and BA.2, typically
involving 15–16 amino acid changes within the RBD. By including
these real-world, multi-mutant sequences—rather than exhaustively
enumerating all possible combinations—the dataset enables external
validation of structure–function relationships derived from the 1-
step variant analysis. These Omicron variants serve as extrapolation
benchmarks to assess whether models trained on single-point
mutations can generalize to more complex, naturally occurring
mutational constellations. All variants are annotated with structural
descriptors derived from two leading protein structure prediction
tools—AlphaFold2 (Jumper et al., 2021) and ESMFold (Lin et al.,
2023)—and augmented with sequence-based biophysical predictors
such as disorder, flexibility, and aggregation propensity from the
Bio2Byte suite (Cilia et al., 2013).

To complement structural predictions, empirical measurements
of ACE2 binding affinity and surface expression levels were
integrated for each 1-step variant, based on deep mutational
scanning (DMS) data published by Starr et al. (Starr et al., 2020).
This pairing of theoretical and experimental annotations provides a
foundation for analyzing structure–function relationships across the
spike mutational landscape and supports downstream applications
in protein modeling, variant characterization, and structure-guided
surveillance.

This article presents a detailed description of the FAIR (Cilia et al.,
2013) dataset, including the methods used for its generation, the
scope of structural and functional annotations, and its potential
uses in virology, structural biology, and pandemic preparedness.The
dataset is made available as a FAIR2-compliant package, designed to
reduce ambiguity and enrich contextual metadata, while supporting
traceability and reproducibility across analytical and modeling
workflows.

2 Methods summary

This methods summary details the design, generation, and
preparation of a structured, AI-ready dataset linking SARS-CoV-
2 spike protein variants to biophysical properties relevant to
viral fitness. The dataset was produced within the framework of
Project STAYAHEAD, a pandemic preparedness initiative, and is
fully documented in the accompanying FAIR2 Data Package and
Portal. It includes theoretical variant modeling, large-scale structure
prediction, quantitative feature extraction, integration of empirical
data, and the construction of machine learning–ready matrices. All
steps were conducted with an emphasis on reproducibility, modular
processing, and alignment with FAIR principles, as well as AI-
Readiness and Responsible AI.

2.1 Study design

Themethodological frameworkwas developed to assess whether
predicted structural features of SARS-CoV-2 spike protein variants
could be used to anticipate empirical properties associated with

increased viral transmissibility and immune evasion. The project
focused specifically on the ACE2 receptor-binding domain (RBD)
of the spike protein, which comprises 195 amino acids and plays
a key role in viral entry into host cells. This subdomain was
selected through expert consultation with virologists at Utrecht
University, based on its relevance to receptor binding and its known
accumulation of mutations across variants of concern (VoCs). The
reduced sequence length of the RBD also made it tractable for
high-throughput structural modeling.

To enable systematic exploration of mutational effects, the
sequencespacewasdefinedusingak-stepsubstitutionframework.The
1-step neighborhood, consisting of all single amino acid substitutions,
generated 3,705 unique variants. The 2-step neighborhood expanded
this toover 6.8million theoretical doublemutants.These variantswere
conceptualized as concentric rings of increasing mutational distance
around the reference RBD sequence fromWuhan-Hu-1 (PDB: 6M0J).
While the full space was mapped, this study focused primarily on the
1-step variants for model training and used higher-order variants for
future extrapolation testing.

To ensure transparency and consistency, the dataset was
organized into five curated sequence subsets: (1) a scalability set
of 72 synthetic sequences spanning lengths from 10 to 1,273
residues; (2) a validation pair consisting of the full-length 1,273-
residue spike protein and the 195-residue RBD; (3) the 1-step and
2-step mutational neighborhoods; (4) empirically observed VoCs
including Alpha through Omicron lineages; and (5) 890 control
spike glycoproteins with experimentally determined structures (via
X-ray or Cryo-EM), selected from the Protein Data Bank. These
subsets served different roles in benchmarking, domain validation,
and performance assessment.

2.2 Variance sequence generation

The complete theoretical variant space was generated
computationally using a custom Python script, ViralMutations.py,
designed to introduce aminoacid substitutions into theRBDsequence
providedinFASTAformat.Thescript supportedexhaustivegeneration
of k-step mutational neighborhoods and permitted the construction
of both complete and selective variant subsets. For 1-step variants,
each position in the reference sequence was substituted with all 19
alternative residues, yielding 3,705 unique sequences. The 2-step set
was generated by introducing two non-repeating substitutions per
sequence, resulting in 6,828,315 combinations.

Each variant was saved as an individual FASTA record, labeled
with a unique identifier that captured both the position and the
identity of the mutation (e.g., N501Y). The generated sequences
were grouped into logical subsets for downstream processing. The
scalability subset included 16 sequence lengths sampled from the
full spike protein, each represented by five randomly selected
segments. The paired validation subset contained the full-length
spike and the isolated RBD for comparative modeling.The observed
variant subset includedRBD sequences derived from clinical isolates
spanning multiple VoCs. Control sequences were obtained from
the Protein Data Bank and filtered by length (≤1,278 residues) and
structural quality (verified by X-ray crystallography or Cryo-EM).
All sequences were checked for formatting compliance and naming
consistency before passing into the modeling pipeline.
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2.3 Protein structure prediction

Three structure prediction tools were used: AlphaFold-2 (AF2),
ESMFold, and AlphaFold-Pulldown (AF-PD). All predictions were
executed within a distributed infrastructure consisting of the
Snellius Supercomputer (SURF), a local development workstation,
and a shared 2 TB Research Drive managed via OwnCloud.
Prediction scripts were tested interactively on Snellius using
SBATCH and then submitted for batch processing.

AlphaFold-2 (version 2.3.1) was deployed using the full
required reference databases: BFD, MGnify, PDB70, UniRef30,
UniRef90, and the full PDB, totaling approximately 2.62 TB.
Multiple sequence alignments (MSAs) were constructed using
HHblits and JackHMMer, and structural templates were retrieved
via HHSearch. AF2 generated five ranked models per sequence,
along withMSA files, template alignments, and a serialized features.
pkl file containing residue-level input features and confidence
metrics. All outputs were stored in PDB format and labeled with a
sequence identifier, prediction rank, and timestamp.

ESMFold was used for high-speed, template-free prediction of
single-chain structures. It utilized a pre-trained 15-billion parameter
language model (ESM-2) and required only the input sequence
in FASTA format. The model generated a single deterministic
prediction per sequence, significantly reducing computational
overhead compared to AF2. It did not generate alignments or
templates but provided comparable accuracy for many sequences.

AlphaFold-Pulldown (AF-PD) was used to model RBD–ACE2
complexes. The tool extended AF2-Multimer functionality and
accepted the features. pkl files from AF2 as input. The “pulldown”
mode allowed high-throughput prediction of protein-protein
interactions.Output files included complex PDBs, interfacial contact
maps, per-residue confidence scores, and interaction metrics such
as pDockQ, mpDockQ, ipTM, and PI-Score. Computational tasks
were distributed across CPU and GPU partitions to maximize
throughput.

File sizes ranged from 124 KB per sequence for ESMFold
predictions, to 97.1 MB forAF2 outputs, and up to 1.6 GB forAF-PD
complexes. All files were hash-verified and archived under versioned
directories by variant subset and tool.

2.4 Structural feature extraction

Each predicted structure was analyzed to extract a range of
structural, surface, and interaction features using open-source
software and domain-specific pipelines. Global similarity to the
reference structure (PDB: 6M0J) was assessed using RMSD and
TM-score, calculated via BioPython (Kabsch algorithm) and TM-
align (tmtools). SASA was calculated using FreeSASA with both
Lee-Richards and Shrake-Rupley implementations. Atom radii were
assigned via the ProtOr scale. Electrostatic potentialswere computed
using APBS after PDB2PQR conversion and run with the PARSE
force field.

AlphaFold confidence scores (pLDDT, pTM, ipTM)were parsed
from the original prediction outputs, while ESMFold only contains
a single confidence score (pLDDT). AF-PD scores were extracted
directly from the result_model_x.pkl files and included interface-
specific metrics such as pDockQ, mpDockQ, iPAE, and the PI-Score

(an ML-based score trained on Cryo-EM assemblies). Additional
interaction metrics such as hydrogen bonds, salt bridges, shape
complementarity, and solvation energy were computed from the
predicted interfaces.

To complement structure-derived features, per-residue
predictive features were computed using the Bio2Byte b2btools
package. These included backbone flexibility (DynaMine), early
folding propensity (EFoldMine), disorder (DisoMine), and amyloid
aggregation tendency (AgMata). Each per-residue feature was
averaged across the sequence to yield a single value per variant.
All features were compiled into tabular format and indexed by
sequence ID.

2.5 Integration of empirical data

Empirical biophysical data were sourced from deep mutational
scanning experiments conducted by the BloomLab, covering 1-step
ACE2–RBD variants. Two metrics were used: binding affinity (log
(KD)) and surface expression (log (MFI)), measured using ACE2
binding assays and flow cytometry, respectively.Wild-type reference
values were used to calculate Δ (delta) values, capturing the relative
effect of each mutation on binding or expression.

Variant identifiers were matched via mutation labels (e.g.,
N501Y), and a mapping table was created to align each structure
with its empirical measurement. Variants lacking empirical data
were excluded. The final matched dataset included 3,705 variants
with complete empirical and structural records. Target variables
were appended to the feature table, and all mappings were verified
for consistency.

2.6 Machine learning dataset construction

To support downstream modeling, the complete dataset was
standardized, partitioned, and saved in multiple formats. Structural
features were min-max normalized using StandardScaler from
scikit-learn, while target variables were left untransformed. Datasets
were split into training (80%) and holdout (20%) sets using train_
test_split. Five-fold cross-validation was implemented within the
training set. Two target configurations were supported: one with
binding and expression as targets, and another including delta
binding and delta expression.

Each record in the final matrix included a unique sequence ID,
structural features, and empirical targets. Datasets were saved as.
csv and. pkl files with associated metadata descriptors and schema.
All versions were archived with identifiers for variant subset, model
type, and training configuration. A complete record of the dataset
construction, including preprocessing scripts and provenance logs,
is available through the FAIR2 Data Portal.

3 Data overview

3.1 Data summary

This dataset compiles structural and empirical data on SARS-
CoV-2 spike receptor-binding domain (RBD) variants, generated
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within the STAYAHEAD project to support AI-driven pandemic
preparedness. Focusing on the 195-residue ACE2–RBD (PDB:
6M0J), it includes both clinically observed and theoretically
generated missense variants. Structural features were predicted
using AlphaFold2 (AF), AlphaFold-Pulldown (AF-PD), and
ESMFold (ESM), and were enriched with biophysical descriptors
from the Bio2Byte toolkit. Empirical ACE2 binding and RBD
expression values from deep mutational scanning serve as training
targets for machine learning models.

The dataset comprises five defined subsets—including
mutational scans, clinical isolates, benchmarking sequences, and
experimentally resolved controls—and is formatted for FAIR2

compliance, machine learning readiness, and reproducibility.
cosystem management.

In line with FAIR2 documentation practices, the term
“resources” is used to refer to datasets, files, and other digital
assets contained within the data package. This naming convention
reflects common usage across FAIR-aligned platforms and supports
consistency with the portal structure. The full list of named
datasets—including their concise, machine-actionable filenames
is available and indexed in the Resources section of the FAIR2

Data Portal [https://www.doi.org/10.71728/hw56-vj34]. This
ensures accurate traceability and avoids redundancy between the
manuscript and data portal, which together form an integrated data
publication.

3.2 Quantitative summary of the dataset

This section describes the dataset’s composition, structure
prediction metrics, feature annotations, model performance, and
associated computational costs.

3.2.1 Dataset composition
The complete dataset includes a total of 6,833,011 protein

sequences, grouped across five major categories:

• 1-step variants (n = 3,705): All possible single-residue missense
mutations of the RBD reference sequence.

• 2-step variants (n = 6,828,315): Exhaustive enumeration of
double mutations for combinatorial modeling.

• Observed RBD variants (n = 67): Clinical isolates from
documented SARS-CoV-2 lineages.

• Benchmark and control sequences (n = 964): Including 890
structurally verified spike proteins from PDB and 72 sequences
for benchmarking model runtime and scalability.

• Validation variants (n = 100 each for BA.1 and BA.2): Higher-
order Omicron variants used to assess model generalization
across 15–16 mutation steps.

3.2.2 Structure prediction performance
Protein structureswere predicted using three tools with differing

algorithmic properties:

• AlphaFold2 (AF v2.3.1) yielded highly accurate structures for
wild-type and low-mutation variants:
• RMSD: 0.63 ± 0.02 Å
• TM-score: 0.97 ± 0.001

• Output size: ∼97 MB per structure
• AlphaFold-Pulldown (AF-PD) provided protein–protein
interface metrics, targeting ACE2–RBD interactions:
• RMSD: 0.69 ± 0.02 Å
• TM-score: 0.91 ± 0.001
• Output size: ∼1.6 GB per structure

• ESMFold offered fast, alignment-free structure prediction,
trading off accuracy for scalability:
• RMSD: 19.28 Å
• TM-score: 0.28
• Output size: ∼124 KB per structure

3.2.3 Annotated feature space
For each variant, a set of structural and sequence-based features

was computed:

• Structural descriptors: RMSD, TM-score, plDDT, solvent-
accessible surface area (SASA), and electrostatic potential.

• Multimeric interaction scores (AF-PD only): pDockQ,
mpDockQ, interface pLDDT, iPAE, PI-score, binding energy.

• Sequence-derived features (Bio2Byte): AgMata (amyloid
aggregation), DisoMine (disorder), EFoldMine (early folding),
DynaMine (flexibility).

These features form a structured input space for machine
learning models, with 15–20 numeric descriptors per sequence.

3.2.4 Model performance
Model performance was quantified for both binding and

expression prediction tasks:

• Best model (expression):
• RMSE: 0.63
• R2: 0.42

• Best model (binding):
• RMSE: 0.86
• R2: 0.34

• Top-ranked features across all models included AgMata,
plDDT, RMSD, EarlyFolding, and TM-score.

3.2.5 Predictive generalization
Models were validated on 100 Omicron BA.1 and 100 BA.2

variants, each containing 15–16 mutations. ESM-based models
achieved high predictive fidelity, with three out of four mean
predicted binding and expression values falling within one standard
deviation of empirical measurements, supporting generalization
beyond 1-step variants.

3.3 FAIR2 compliance certification

The dataset supporting the findings of this study is
available through a FAIR2 Data Portal (https://www.doi.org/
10.71728/hw56-vj34), which ensures that the data adhere to
the principles of Findability, Accessibility, Interoperability, and
Reusability (FAIR), with additional emphasis on including detailed
Contextual metadata and AI-Readiness and Responsible AI
practices (Wilkinson et al., 2016). All raw data, metadata, and
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supplementary materials, including detailed protocols andmethods,
are accessible via the FAIR2 Data Portal https://www.doi.org/
10.71728/hw56-vj34.

The dataset has been structured to ensure compliance with
FAIR2 standards, enabling easy integration with other datasets and
promoting reuse in future research (Table 1). Researchers can access
the dataset in multiple formats, and appropriate documentation
is provided to facilitate transparency and reproducibility. Any
updates or corrections to the dataset will also be managed and
tracked through the portal, ensuring long-term accessibility and
version control.

3.3.1 Overall FAIR2 badge compliance
Compliant–The dataset qualifies for the FAIR2 Badge,

meeting all requirements across Findability, Accessibility,
Interoperability, Reusability, AI-Readiness, and Responsible AI.
Suggested enhancements include more detailed metadata on data
transformations and validation, clearer descriptions of sampling
biases, and ethical guidance for specific AI applications.

4 Visual overview

To support intuitive understanding of the dataset’s structure and
content, we provide a set of summary visualizations that highlight
key aspects of dataset size, feature distribution, and inter-variable
relationships.

Figure 1 reveals distinct differences in the distribution
of core features. RMSD and plDDT show a clear separation
between AlphaFold2 and ESMFold predictions, with ESMFold
producing lower-confidence and more variable structures. TM-
score distributions are tightly peaked for AF datasets, while
flatter and lower for ESMFold. Amyloid aggregation propensity
(AgMata) and disorder (DisoMine) features exhibit consistent
patterns across tools, but subtle shifts in BA.1 and BA.2 suggest
functional divergence. The empirical variables (ACE2 binding and
RBD expression) show greater spread in the 1-step variants and
higher central values for Omicron variants.

Figure 2 presents the Pearson correlation matrices illustrating
the relationships between key biophysical properties of the
spike receptor-binding domain (RBD). The analysis covers three
distinct variant datasets: the ancestral Wuhan-Hu-1 (labeled as
“1-step”), Omicron BA.1, and Omicron BA.2. The matrices were
generated independently for predictions from AlphaFold2 (left
column) and ESMFold (right column). To ensure comparability,
the analysis uses a consistent set of five features available across
all datasets: the predicted LDDT score (pLDDT), the template
modeling score (TM-score), the solvent-accessible surface area
(SASA), relative Hydrophobicity, and the root-mean-square
deviation (RMSD).

The resulting heatmaps display distinct correlation patterns that
vary by prediction method and viral lineage. A consistently strong
positive correlation (r > 0.8) is evident between pLDDT and TM-
score in all conditions, which aligns with their function asmetrics of
model confidence and structural accuracy. In contrast, relationships
between other structural metrics and model confidence scores
show notable variability. For example, the correlation between
RMSD and pLDDT is moderately negative in the AlphaFold2

predictions for all variants (Panels A, C, E), whereas this
correlation is substantially weaker or near-zero in the corresponding
ESMFold predictions (Panels B, D, F). The figure provides a
comparative overview of the statistical interplay between predicted
structural features, documenting the differing outputs of the two
computational models.

In Figure 3, each panel shows overlaid distributions of RMSD
(blue), ACE2 binding affinity (log KD, red), and RBD surface
expression (log MFI, green) for different datasets generated using
either AlphaFold2 (AF) or ESMFold (ESM).The left columndisplays
AlphaFold2-based predictions: AF_1step (top), AF_BA2 (middle),
and AF_BA1 (bottom), while the right column shows ESMFold-
based datasets: ESM_1step (top), ESM_BA2 (middle), and ESM_
BA1 (bottom).

RMSDdistributions(blue)highlightmodel-dependentdifferences
in structural confidence. AlphaFold2-predicted structures are tightly
centered around lower RMSD values (∼3–6 Å), reflecting higher
structural consistency, particularly inAF_1step. In contrast, ESMFold
predictions show broader and more variable RMSD distributions
(typically ∼10–16 Å), indicating less precise structural outputs.

Binding affinity (red) distributions for 1-step datasets cluster
near the wild-type range (KD ∼8–9), while those for BA.1 and BA.2
variants shift slightly lower, suggesting reduced ACE2 interaction
in many Omicron variants. Expression values (green) show similar
mutational sensitivity, with altered distributions in BA.1 and
BA.2 datasets—especially in AF_BA1 and ESM_BA2—potentially
reflecting impacts on folding or stability.

Together, these plots summarize how variant class and
prediction model influence structure quality and predicted
biophysical function. Clear trends in RMSD distinguish AF2 vs
ESMFold, while changes in binding and expression highlight
mutational effects across variant groups.

5 Discussion

5.1 The value of the dataset

This dataset provides a structured, extensible, and richly
annotated resource for analyzing how amino acid mutations in the
SARS-CoV-2 spike receptor-binding domain (RBD) affect protein
structure and viral function. Its strength lies in combining three
complementary dimensions: (1) large-scale theoretical mutational
coverage via single-residue substitutions, (2) high-quality predicted
structural features from two distinct structure prediction tools, and
(3) experimental data derived from deep mutational scanning.

By systematically enumerating and structurally characterizing
all 1-step missense variants from the Wuhan-Hu-1 RBD, the
dataset enables fine-grained analysis of mutational landscapes
in a biologically critical region of the spike protein. The
inclusion of real-world, higher-order variants from Omicron
lineages (BA.1 and BA.2) allows validation of structure-function
relationships in emerging variants, and supports generalization of
computational findings.

The dual use of AlphaFold2 and ESMFold provides insight
into tool-specific biases and variability in structure prediction.
AlphaFold2 offers high-confidence, template-based structures,
while ESMFold captures sequence-based generalization without
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TABLE 1 The FAIR2 Compliance Certification presented here was generated through a Human-in-the-Loop (HITL) process combining automated FAIR2

system checks with author-supplied inputs. While certain metadata fields and validations (e.g., DOI registration, schema adherence, file accessibility)
are verified automatically by the FAIR2 platform, other elements—such as domain-specific documentation quality and Responsible AI
considerations—reflect expert curation by the dataset authors.

Criteria Assessment

Findability (F)

F1. Unique identifier The dataset is assigned a globally unique and persistent DOI (https://www.doi.org/10.71728/hw56-vj34), ensuring it can be
reliably cited.

F2. Metadata Metadata includes key fields such as title, creator(s), description, keywords, and versioning. Key variables include
SARS-CoV-2, Spike protein, RBD, AlphaFold2, ESMFold.

F3. Metadata includes data identifiers Themetadata explicitly references the dataset’s DOI, ensuring strong linkage between metadata and the data package.

F4. Searchable metadata Controlled vocabularies from schema.org and MLCommons Croissant are used for key properties. CRediT taxonomy
captures contributor roles.

Indexed in repositories Indexed in the FAIR² Data Portal and DataCite. Registration with general-purpose repositories (e.g., Zenodo) would
broaden accessibility.

Accessibility (A)

A1. Open access The dataset is openly accessible without restriction, in alignment with open science practices.

A2. Long-term access Archival is managed within the FAIR² Data Package, which includes long-term access provisions.

Package and metadata access Access to the dataset is provided via DOI-based redirection, which resolves to a FAIR²-compliant metadata record and
downloadable data package.

Interoperability (I)

I1. Standardized formats Data is available in CSV and JSON formats, compatible with common data science and bioinformatics platforms.
Croissant schema enhances interoperability.

I2. Controlled vocabularies Key descriptors follow schema.org, MLCommons, and CRediT taxonomies. Domain-specific ontologies could further
strengthen cross-dataset integration.

I3. Cross-platform integration The dataset aligns with best practices for biomedical and AI-ready datasets. It can be integrated with machine learning,
visualization, and modeling pipelines.

Reusability (R)

R1. Comprehensive documentation Accompanied by extensive documentation, including data dictionaries, methods, and preprocessing steps.

R1.1. License Licensed under ODC-By v1.0, permitting reuse, redistribution, and modification with attribution.

R1.2. Detailed provenance Metadata includes origin of all data sources, author contributions (via CRediT), and transformation history. Preprocessing
and structural prediction methods are described using the PROV-O ontology.

R1.3. Domain-relevant standards Dataset is aligned with MLCommons Croissant for AI/ML datasets. No domain-specific biomedical standard (e.g.,
MIAME) was aplicable.

Versioning and updates Dataset includes version metadata. Future updates will include changelogs and semantic versioning.

AI-Readiness (AIR)

Structured for machine learning Data is clearly labeled with categorical and numerical types, standardized column names, and consistent formatting
suitable for model pipelines

Scalable Files are optimized for batch processing and large-scale variant screening. Data can be processed using HPC or
cloud-based systems.

Training and validation sets Partitioning by mutation class (e.g., 1-step vs. Omicron BA.1/BA.2) enables robust training/validation splits for supervised
learning tasks.

(Continued on the following page)

Frontiers in Bioinformatics 06 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1634111
https://www.doi.org/10.71728/hw56-vj34
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


van den Boom et al. 10.3389/fbinf.2025.1634111

TABLE 1 (Continued) The FAIR2 Compliance Certification presented here was generated through a Human-in-the-Loop (HITL) process combining
automated FAIR2 system checks with author-supplied inputs. While certain metadata fields and validations (e.g., DOI registration, schema adherence,
file accessibility) are verified automatically by the FAIR2 platform, other elements—such as domain-specific documentation quality and Responsible AI
considerations—reflect expert curation by the dataset authors.

Criteria Assessment

Responsible-AI (RAI)

Ethical standards and misuse The dataset is intended for biological modeling and screening; no personally identifiable data included.

Biases in the dataset Reflects mutation coverage and structure prediction tool availability; no demographic, social, or geographic data are
present.

Data privacy and security Contains no personally identifiable information. Data integrity is ensured through static archiving; no encryption needed.

Fairness and non-discrimination Neutral scientific dataset. Appropriate for objective benchmarking and exploratory model development.

Explainability and interpretability Variables are documented with clear definitions and units. Input features used in machine learning are described,
including transformations.

Data provenance and accountability Well-described fields support interpretability. Additional documentation could enhance transparency of transformation
steps.

Transparency and reporting Dataset includes traceability metadata.

Ethical and social impact The dataset’s relevance to environmental policy and conservation highlights its societal impact, though further ethical
guidance on use cases (e.g., in ecosystem management) could support users applying the data in high-stakes contexts.

Human-in-the-loop (HITL) considerations Can be used to support HITL scenarios in structure-function prediction pipelines or in hypothesis generation tools.

reliance on templates. The addition of Bio2Byte-derived sequence
features, such as aggregation propensity and disorder, further
enriches the representation of molecular properties and increases
compatibility with machine learning workflows.

This dataset bridges a critical gap between sequence surveillance
and functional interpretation. It provides the foundational features
needed to model, classify, or rank novel spike variants by their
potential impact on ACE2 binding and RBD expression—two
properties closely associated with infectivity and immune evasion.
Its structure also supports benchmarking and training of predictive
algorithms, particularly for datasets with similar dimensionality and
biophysical complexity.

Because it is published as a FAIR2 Data Package, this resource
emphasizes not only content completeness but also accessibility,
provenance, and reusability. Detailed metadata, transparent data
provenance, and standardized annotations ensure that the dataset
is readily reusable across structural bioinformatics, computational
virology, and pandemic preparedness applications.

5.2 The limitations of the dataset

Despite its comprehensive scope and careful design, this dataset
has several limitations that should be acknowledged for responsible
reuse and interpretation.

First, the dataset is centered on the ACE2 receptor-binding
domain (RBD) of the SARS-CoV-2 spike protein, comprising 195
residues from the original Wuhan-Hu-1 reference strain. While this
domain is functionally critical and harbors the majority of high-
impact mutations, it represents only a subset of the full spike protein

(1,273 residues) and does not account for mutations outside the
RBD that may affect spike trimerization, fusion dynamics, immune
escape, or protein–protein interactions.

Second, the dataset focuses on single-point (1-step) mutational
variants for model training. While this strategy ensures
interpretability and exhaustive coverage, the ability to generalize
to higher-order variants (e.g., BA.1 and BA.2) is constrained by
the combinatorial complexity of multi-mutation effects, which
may not be linearly additive. Epistatic interactions—where the
effect of one mutation depends on the presence of others—are
not explicitly modeled in the feature space, though some may be
captured implicitly through empirical measurements.

Third, structure prediction outputs vary by tool and carry
intrinsic confidence limitations. AlphaFold2 provides high-quality
structures with reliable plDDT scores, but requires substantial
computational resources and access to large alignment databases.
ESMFold, while faster and alignment-free, produces lower-
confidence structures with higher structural variability, particularly
for longer and more mutated sequences. The dataset includes
both tools to support comparative analysis, but users should
interpret structure-based features in light of their respective
confidence scores.

Fourth, although empirical binding and expression data are
included for all 1-step variants and selected Omicron mutational
variants, thesemeasurements derive from deepmutational scanning
in a controlled in vitro setting. They may not fully reflect the
biophysical context of the full-length spike protein or in vivo viral
dynamics. Additionally, the antibody escape measurements from
the original source were excluded from this dataset, limiting its
immediate applicability for immunogenicity modeling.
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FIGURE 1
Violin plots of feature distributions by dataset.

Finally, the dataset includes only variants derived from a
single reference lineage (Wuhan-Hu-1) and does not capture
natural diversity across global SARS-CoV-2 lineages or host-
specific adaptations. As such, it should be treated as a mutational
perturbation space rather than a direct reflection of global viral
evolution.

These limitations do not undermine the dataset’s utility
but highlight important boundaries for interpretation. Future
expansions could incorporate additional mutational steps,
full spike context, more diverse lineages, and complementary
empirical assays to enhance biological realism and modeling
capacity.
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FIGURE 2
Heatmaps showing pairwise pearson correlations between structural and biophysical features across different datasets. (A) AlphaFols2 - 1step. (B)
ESMFold - 1step. (C) AlphaFols2 - BA.1. (D) ESMFold - BA.1. (E) AlphaFols2 - BA.2. (F) ESMFold - BA.2.

6 Conclusion

The dataset provides a structure- and function-annotated
resource for studying the mutational landscape of the SARS-CoV-2

spike receptor-binding domain (RBD). It integrates comprehensive
1-step missense variants with higher-order Omicron mutational
variants and combines structural predictions from AlphaFold2
and ESMFold with sequence-based biophysical features and
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FIGURE 3
Histograms depicting the distributions of RMSD (blue), binding affinity (log KD, red), and expression levels (log MFI, green) across different datasets.
Datasets generated using AlphaFold2 are labeled with the prefix “AF_”, while those generated with ESMFold use the prefix “ESM_”.

deep mutational scanning data. The result is a curated, multi-
modal dataset designed to facilitate the analysis of how amino
acid substitutions influence spike protein conformation, receptor
binding, and surface expression.

By systematically covering all single-residue RBD mutations
and providing paired theoretical and empirical annotations,
the dataset supports diverse applications, including structural
modeling, functional prediction, mutational effect analysis,

Frontiers in Bioinformatics 10 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1634111
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


van den Boom et al. 10.3389/fbinf.2025.1634111

and variant risk prioritization. The inclusion of real-world
mutational variants from the Omicron BA.1 and BA.2 lineages
enables external validation of learned structure–function
relationships, and the dual-model approach (AF2 and
ESMFold) allows users to compare prediction strategies and
confidence profiles.

Published as a FAIR2 Data Package, the dataset emphasizes
not only scientific depth but also data stewardship. It ensures
that variables are contextualized, provenance is transparent, and
structure–function mappings are reproducible and traceable.
This enables its responsible reuse across computational
virology, protein bioinformatics, and emerging infectious disease
preparedness.

While the dataset is focused on a specific region of the
spike protein and has limitations related to generalizability
and full-protein context, it provides a foundation for future
expansions.Thesemayincludehigher-ordermutationalcombinations,
extended domain coverage, and integration with immune and host
interaction data.

In summary, this resource contributes to the broader effort
of translating viral sequence data into mechanistic insight. It
offers researchers and practitioners a flexible, well-annotated
platform for investigating the molecular consequences of SARS-
CoV-2 spike mutations in support of variant characterization and
pandemic response strategies.

The dataset supporting the findings of this study is available
through a FAIR2 Data Portal, which ensures that the data adhere
to the principles of Findability, Accessibility, Interoperability,
and Reusability (FAIR), with additional emphasis on including
detailed Contextual metadata and AI-Readiness and Responsible
AI practices. All raw data, metadata, and supplementary materials
including detailed protocols and methods, are accessible via the
FAIR2 Data Portal [https://www.doi.org/10.71728/hw56-vj34].
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