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BC-predict: mining of signal
biomarkers and production of
models for early-stage breast
cancer subtyping and prognosis
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!Systems Computational Biology Lab, Department of Bioinformatics, School of Chemical and
Biotechnology, SASTRA Deemed University, Thanjavur, India, ’Lincoln City Hospital, United
Lincolnshire Hospitals, National Health Service, Lincoln, United Kingdom

Introduction: Disease heterogeneity is the hallmark of breast cancer, which is
the most common female malignancy. With a disturbing increase in mortality
and disease burden, there remains a need for effective early-stage theragnostic
and prognostic biomarkers. In this work, we improved on BrcaDx (https://
apalania.shinyapps.io/brcadx/) for cancer vs control screening and examined
a cluster of adjoining learning problems in breast cancer heterogeneity: (i)
identification of metastatic cancers; (i) molecular subtyping (TNBC, HER2, or
luminal); and (iii) histological subtyping (invasive ductal or invasive lobular).
Methods: We analyzed the transcriptomic profiles of breast cancer patients from
public-domain databases such as the TCGA using stage-encoded problem-
specific statistical models of gene expression and unveiled stage-salient and
progression-significant genes. Using a consensus approach, we identified
potential machine learning features, and considered six model classes for each
learning problem, with hyperparameter optimization on a training dataset and
evaluation on a holdout test dataset. A nested approach enabled us to identify
the best model class for each learning problem.

Results: External validation of the best models yielded balanced accuracies
of 9742% for cancer vs normal; 88.22% for metastatic v/s non metastatic;
88.79% for ternary molecular subtyping; and ensemble accuracy of 94.23%
for histological subtyping. The model for molecular subtyping was validated
on a 26-sample TNBC-only out-of-distribution cohort, yielding 25 correct
predictions. We performed a late integration of multi-omics datasets by
validating the feature space used in each problem with miRNA profiles,
methylation profiles, and commercial breast cancer panels.

Discussion: Pending prospective studies, we have translated the models into
BC-Predict that forks the best models developed for each problem in a unified
interface and provides a complete readout for input instances of expression
data, including uncertainty estimates. BC-Predict is freely available for non-
commercial purposes at: https://apalania.shinyapps.io/BC-Predict.
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breast cancer heterogeneity, molecular and histological subtype, metastatic disease,
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1 Introduction

Breast cancer is the most common cancer in women, accounting
for 32% of all female cancers globally and 28.2% of female cancers in
India (Siegel et al., 2024). With about 2.3 million new cases globally
in 2020 (11.7% of total), its incidence surpasses that of lung cancer.
The statistics paint a grim portrait of burden of disease: 1 in 4 cancer
cases and 1 in 6 cancer deaths globally could be attributed to breast
cancer, with 88% higher incidence in transitioned countries relative
to transitioning countries (Sung et al., 2021). The risk of a person
developing breast cancer depends on many factors like sex (women
account for >99.5%), age (>80% occur in postmenopausal women),
high-risk family history (upto 30% of cases), and genetic factors.
The interplay between weak susceptibility alleles and the other risk
factors is key to the etiology of the ‘cancer phenotype’ (Cassidy et al.,
2015; Hanahan, 2022). Genetic loci with predisposing mutations
include: BRCA1/ BRCA2 (autosomal dominant, 50%-85% life time
risk) (Risch et al., 2006), TP53 (Li-Fraumeni syndrome, 80%-90%
life time risk) (Allain, 2008), CDH1 (60% life time risk and primarily
lobular subtype), STK11 (Peutz-Jeghers syndrome, 50% risk), PTEN
(Cowden syndrome with 20%-50% risk (Lindor et al., 2008); Lynch
syndrome with 25% risk), PALB2 (partner and localiser to BRCA2,
age-dependent risk), ATM, BRIP1, CHEK2 (all about 20% risk)
and RAD51C/RAD51D (14%-20% risk). The modifiable lifestyle
risk factors include physical inactivity especially post-menopausal
obesity (100% additional risk), smoking (24% more risk), alcohol
(7% risk for every 10g/day), and combined Hormone Replacement
therapy (~20% further risk depending on length of use/stop)
(Manyonda et al., 2022). The prevalence of the risk factors varies by
country and region. The typical onset of breast cancer is 60-70 years
in western countries, but appears to be anticipated at 40-50 years in
countries like India (Bhattacharyya et al., 2020). Data maintained
at national registries suggest that the urbanization and growth of
cities, ‘modernized’ food habits (e.g., high consumption of ultra-
processed foods), and lifestyle changes have contributed to the
increased incidence of breast cancer in urban areas, whereas betel
quid and tobacco chewing habits have significantly contributed to
its incidence in rural areas (P = 0.003) (Malvia et al., 2017). These
cancers tend to be more aggressive with poorer prognosis (higher
grade/size, lymphovascular-invasion positive, triple negative,
HER2 positive, node positive, and medullary/metaplastic/micro-
papillary/pleomorphic sub-types). The frequent presentation of
breast cancer in its advanced and less treatable stages in traditional
societies could be traced partly to the inadequate social awareness
and extant taboos, leading to subpar survival outcomes. Such
conditions tend to compound existing gender inequalities, outdated
stereotypes, and burden of disease for whole families, and call for
remediation of the situation.

Due to the complexity associated with cancers, a composite
feature space is necessary to capture the transformation of cells
and subsequent disease progression. This may be balanced with
the curse of dimensionality that dominates machine learning.
AT models based on whole-genome or whole-exome sequencing
may be impractical and uninterpretable. McKinney etal. have
developed a mammogram-based AI model for breast cancer
screening rivalling radiologist readings, paving the way for AlI-based
decision support systems (McKinney et al., 2020). Convolutional
neural network (CNN) models have been developed for identifying
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breast cancer samples as well as cancer subtyping based on
7091 genes (Mostavi et al., 2020). CUP-AI-DX includes two
models: 1D inception CNN model for classifying cancers of
unknown primary based on 817 expression features; and (ii)
Random Forest model for breast cancer subtyping based on 5925
expression features (Zhao et al., 2020). Breast cancer subtyping
models include learning on PAM50 inferred labels (Bastien et al.,
2012) via either functional spectra of gene expression profiles
(Gao et al,, 2019) or deep convolution of RNAseq and CNV
profiles (Mohaiminul Islam et al., 2020). Significant strides have
been made towards mechanistic understanding and treatment
of breast cancer, which has the most number of FDA-approved
molecular panels aimed at early-stage actionable information
about the disease. These biomarker panels include OncotypeDx
based on TAILORx and RxPONDER studies (Zhang et al,
2022), EndoPredict and EndoPredict Plus (Almstedt et al., 2020),
MammaPrint (Soliman et al., 2020), Prosigna (based on PAM50 and
OPTIMA study) (Baskota et al., 2021), and Breast Cancer Index
(Bartlett et al., 2019). Decision aids like PREDICT, Nottingham
Prognostic Index (NPI) and Adjuvant Online based on IHC4
(ER/PR/HER2/Ki67) or IHC4+C (including clinical/pathological
features like age, tumour size, grade and nodal status) parameters
define the level of clinical risk for adjuvant chemotherapy without
relying on tumour profiling tests. The translation of AI models
into software-as-medical-devices holds promise for bridging health
disparities (Muthamilselvan et al., 2023).

The heterogeneity of breast cancer poses formidable challenges,
and individual cancer manifestations vary so much that the available
biomarker panels retain validity only in limited settings, thereby
leaving a large cohort indeterminate (Giiler, 2017). Changes in gene
expression and mutations modifying protein activities are etiological
molecular events driving the cancer phenotype (Brierley et al., 2016).
An integrated precision-medicine approach to early detection,
effective therapy and favourable prognosis is necessary. Techniques
from the field of machine learning could be highly effective
in discerning key features in complex datasets, including gene
expression datasets, and learning models that map these features
to crucial clinical outcomes related to the diagnosis, prognosis,
and treatment of cancers (Kourou et al., 2015). Unsupervised
learning techniques have been used to identify subtypes in breast
cancer based on gene expression (Horr and Buechler, 2021). The
molecular subtype of breast cancer could influence the choice
of adjuvant therapy (Johnson et al., 2021; Vaidya et al, 2018).
Among the histological subtypes, invasive lobular carcinoma is
considered indolent and demands a treatment regimen tailored to
the prognostic subtype (Fu et al., 2017). Here we have developed
a novel framework for identifying the markers of changes in
gene expression profiles across the stages and subtypes of breast
cancer, enabling means for differential diagnosis and personalized
medicine. These candidate features were utilized to create models
that address the multiple challenges in breast cancer heterogeneity:
(i) cancer or normal screening; (ii) non-metastatic or metastatic
discrimination; (iii) molecular subtyping; and (iv) histological
subtyping. Together these models could also enable the prognosis
of breast cancer (Fitzgibbons et al., 2000; Rakha et al., 2010). The
optimal models for each problem required only a handful of features
that could be quantified using experimental techniques such as qRT-
PCR. All the models were integrated into BC-Predict, a web-based
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unified interface for harnessing the models. BC-Predict is available
for academic research at: https://apalania.shinyapps.io/BC-Predict.
All the Supplementary Information for this study are available at:
https://doi.org/10.6084/m9.figshare.25282906.

2 Materials and methods

2.1 Problems related to the
characterization of breast cancer
heterogeneity

Four problems related to the delineation of individual breast
cancers with respect to the expression data of patient samples were
considered:

1. Is the patient sample ‘cancer’ or ‘normal’?

2. If cancer: predict ‘non-metastatic (stages I, II or III) or
‘metastatic’ (stage-IV cancer).

3. If cancer: predict the molecular subtype of the cancer.

4. If cancer: predict the histological subtype of the cancer.

A generalized workflow for the problems is depicted in Figure 1.

2.2 Dataset preprocessing

Preprocessing was done in a manner similar to Sarathi
(Sarathi 2019). The
source dataset for all problems modeled here was obtained
from the TCGA. Normalised BRCA expression data was
acquired portal 2016)
(gdac.broadinstitute.org_BRCA.Merge_rnaseqv2__illuminahiseq_

and Palaniappan and Palaniappan,

using the firebrowse (Summary,
rnaseqv2__unc_edu__Level 3_ RSEM_genes_normalized__data.
Level 3.2016012800.0.0. and RSEM
obtained. The patient barcode was matched with the clinical
data (gdac.broadinstitute.org_ BRCA.Merge_Clinical.Level
1.2016012800.0.0.  tar) to stage_

event.pathologic_stage variable values that encode the AJCC TNM

tar.gz), counts were

extract the patient.
staging (Giuliano et al., 2018). The sub-stages were then merged to
obtain the macro stage categories. Table 1 shows the distribution
of sample stages for the breast cancer samples according to the
AJCC staging system. It is noted that early-stage BC indicates
TNM stage-I or stage-II cancer. Stage-III BC (including T3NI,
T4, N2-3) represents loco-regionally advanced BC, whereas T3NO
represents a borderline diagnosis between stages II and IIL For the
purposes of our study, stages I, II, and III were combined into the
‘non-metastatic’ class.

The immunohistochemical (IHC) status of oestrogen receptor
(ER) and progesterone receptor (PgR), human epidermal growth
factor receptor 2 (HER2) oncogene, and Ki-67 (a marker of cell
proliferation) are used together to subtype breast tumors into Triple-
negative breast cancer (TNBC), HER2-positive, Luminal A and
Luminal B (Giuliano et al., 2018; Dai et al., 2015), as shown in
Table 2. Where reliable Ki-67 measurements are not available, an
alternative assessment of tumor proliferation such as tumor grade
could be used to distinguish between ‘Luminal A" and ‘Luminal B’
(which tends to be HER2 negative). Complete ER, PgR and HER2
THC metadata were available for 719 samples of the TCGA Breast
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Cancer dataset, and of these, no sample had information on the
Ki-67 labeling index nor on the tumor grade, precluding precise
differentiation of luminal subtypes of breast cancers into ‘Luminal
A or ‘Luminal B. The luminal subtypes A and B were perforce
lumped into one ‘Luminal’ type. The 719 samples were accordingly
annotated as 567 Luminal’ (generally Luminal A with Grade 1 or
2 and Luminal B with G3), 115 TNBC (generally Grade 3), and 37
HER?2 (generally Grade 3) based on the status of ER, PgR and HER2
extracted from the clinical file (Table 2).

The two most common histological subtypes of breast cancer
are infiltrating ductal carcinoma (IDC - no special type) and
infiltrating lobular carcinoma (ILC) (Weigelt et al., 2010). ILC
tends to be difficult to diagnose, with MR imaging required for
determining size and multifocality including contralateral breast
(mirror image), and preferential spread to gastrointestinal tract
and peritoneum (Winchester et al., 1998). The sample histological
subtype is encoded in the clinical metadata ‘patient.histological
type with the major values being, ‘infiltrating ductal carcinoma
(IDC)’ and ‘infiltrating lobular carcinoma (ILC); and minor values
including ‘mixed histology, ‘metaplastic carcinoma, ‘mucinous
carcinoma, ‘medullary carcinoma, and ‘other (specify).

Genes that had minimal variation in expression across the
samples (i.e., 0 < 1) were removed. Cancer samples which were
missing stage annotation details were removed. The expression
dataset was subjected to variance-stabilization using voom function
in 1imma (Law et al.,, 2014). Linear modeling was then performed.
The resulting dataset was split 80:20 into a training set and a holdout
testset stratified on the outcome variable of each problem. It is noted
that the training dataset for Problem #2 suffered an imbalance in
the distribution of the outcome classes (16 metastatic vs. 837 non-
metastatic samples), which prompted the application of SMOTE
correction (Chawla et al., 2002) (Synthetic Minority Oversampling
TEchnique; with arguments: perc. over-represented = 1,000% and
perc. under-represented = 300%). Data preprocessing and analysis
was done using R (www.r-project.org). The annotated pre-processed
final dataset is available as Supplementary File S1.

2.3 Construction of feature space

Feature spaces for each problem were constructed using only the
training dataset. Initially the differential expression of genes across
cancer stages relative to healthy samples was studied using linear
modelling with limma (Ritchie et al., 2015):

y=a+p X +B,X+ X5+ B, X, (6]

Where the independent variables are indicator variables of the
sample’s stage, the intercept « is the baseline expression estimated
from the controls, and f3; are the estimated stagewise log fold-change
(Ifc) coefficients relative to controls.

We then applied a two-level contrast protocol (Muthamilselvan
etal., 2023), viz. level-I: stage vs. control and level-II: inter-stages
contrast, to produce the following classes of features:

1. Stage-salient genes obtained from all possible pairwise
contrasts between the cancer stages using the following model:

¥ =PoXo+ B Xy + B X, + B X5 + B, X, (2
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FIGURE 1
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ML model development for Cancer vs. Normal binary classification. Data-driven optimization of a multi-phase workflow, including nested model
selection, is shown. Hypothesis space pruning is achieved via feature selection techniques, leading to a consensus gene-signature. Six different classes
of machine learning algorithms were considered, with hyperparameter optimization via k-fold cross-validation on the training dataset and model class
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TABLE 1 Stage-wise distribution of TCGA breast cancer samples based
on AJCC system, 2018 revision. Numeric suffix is used to indicate the
size of tumor (T), number of nodes (N), and presence of metastasis (M).

TCGA stage ‘ TNM classification Cases

1 TINOMO 90
1A T1aNOMO 85 181
1B T1bNOMO 6
2 T2NOMO 6
2A T2aNOMO 357 616
2B T2b (NO/N1)MO 253
3 T3NOMO 2
3A T3a (N1/N2)M0 155
249
3B T4(NO/N1/N2)M0 27
3C T (any)N3MO 65
4 T (any)N (any)M1 20 20
Control — 112
X 14
NA — 8

Where the controls themselves constitute one of the indicator
variables (X;), and the f; are coefficients estimated from samples of
the corresponding annotation only.

2. Monotonically expressed genes obtained from strictly
increasing or strictly decreasing mean expression across the
cancer stages.

In addition, expression contrasts specific to the problem under
consideration were used, namely:

1. contrast of non-metastatic vs. metastatic cancers using the
following model modified from Equation 2:

Y = o Xo + i Xy + 1y X, 3)

Where the y; are coefficients estimated from samples of the
corresponding annotation only.

2. three-way pairwise contrasts between the molecular subtypes;
viz. (i) Luminal vs. HER2+, (ii) Luminal vs. TNBC
and (iii) HER2+ vs. TNBC using the following model
modified from Equation 2:

y=00Xy+ 0, X, +6,X, + 05X, (4)

Where the §; are coefficients estimated from samples of the
corresponding annotation only.
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3. contrast of ductal vs. lobular histologies using the following
model modified from Equation 2:

y=9X, +9,X; +9,X, (5)

Where the 9; are coefficients estimated from samples of the
corresponding annotation only.

The above strategies yielded problem-specific chimeric feature
spaces that could span the informative dimensions in each case.

2.4 Building problem-specific classification
models

A composite feature space comprising the top-ranked genes
from the linear model, stage-salient genes, and genes from the
problem-specific contrast was subjected to the consensus of two
feature selection techniques: (i) Boruta, a wrapper algorithm
using Random Forest to select features based on a measure
of importance to the outcome variable of interest (Kursa and
Rudnicki, 2010); and (ii) Recursive Feature Elimination (RFE),
a method that uses backward selection passes to trim the space
of predictor variables. The workflow of the machine learning
model development in Figure 1 presented in the context of cancer
v/s normal was adapted for the non-metastatic v/s metastatic,
molecular subtype, and histological subtype classification problems.
The training dataset with the final set of features was loaded
onto models based on six different algorithms, including Random
Forest (ensemble bagging classifier that builds numerous decision
trees and ‘bags’ the majority vote), Support Vector Machine
(geometric method that finds the maximum margin separating
hyperplane in high-dimensional space), k-NN (based on distance-
based proximal classes), 1-layer and 2-layer Neural Networks, and
XGBoost (ensemble boosting classifier that builds a sequence of
classifiers iteratively ‘boosted’ on challenging instances).

2.5 Nested model selection

Subsequent to an 80:20 train-test split, algorithm-specific
hyperparameter configuration was optimized using 10-fold cross-
validation on the training dataset for each of the six algorithms
considered. Different algorithm classes were then compared based
on their outer-fold testset performance, to identify the optimal
algorithm class for each learning problem. The design of such a
nested model selection prevents information leakage between model
tuning and evaluation, and provides for a more reliable assessment
of model generalizability to unseen cohorts than merely cross-
validation. Evaluation metrics on the holdout testset as well as
external datasets (described below) included balanced accuracy, F1-
score, area under ROC (AUROC), Mathews’ correlation coefficient
(MCC), and Positive Predictive Value (PPV).

2.6 Validation

The overall best model for each problem was validated primarily
by performing inference on out-of-domain external datasets. Table 3
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TABLE 2 Molecular taxonomy of breast cancer. Luminal A is HER2 negative, whereas Luminal B could be either HER2 positive (accounting for 30% of
HER2 positive) or HER2 negative (majority of Luminal B).

ER status PgR status Ki-67 labelling index Intrinsic subtype
+ +
1 + + - Any Luminal B (HER2 positive)
- +
2 + - - n/a HER2+
Low (<14%) Luminal A
+ +
High Luminal B (HER2 negative)
Low (<14%) Luminal A
3 - + -
High Luminal B (HER2 negative)
Low (<14%) Luminal A
- +
High Luminal B (HER2 negative)
4 - - - n/a Triple negative breast cancer (TNBC)

shows the datasets used in the development and validation of the
ML models for the respective classification problems. In addition,
we sought to obtain concurrence for our models from multi-omic
signatures, as discussed below.

2.6.1 External validation
2.6.1.1 Normal vs. cancer

We validated model#1 on multiple independent external breast
cancer datasets:

a. BRCA-KR dataset retrieved from the ICGC DataPortal
(https://dcc.icgc.org/) using BRCA’ as the search keyword
(Hudson et al., 2010), containing 47 cancer samples and 3
control samples.

b. GTEx normal breast dataset (by querying for ‘Breast’ in the
“GTEX_phenotype primarysite”) (GTEx Consortium et al,
2013) with 218 control samples.

c. GSE18549, GSE211167, and METABRIC datasets.

2.6.1.2 Non-metastatic vs. metastatic
We validated model#2 on two different external breast

cancer datasets:

a. BRCA-KR dataset described above, with all 47 cancer samples
being non-metastatic cancers.

b. GSE18549 dataset of metastatic cancers (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE18549) (Barrett et al.,
2013), with 14 samples having Breast’ as the primary
tumor site.

2.6.1.3 Molecular subtyping

We validated model#3 on two different external breast
cancer datasets:

Frontiers in Bioinformatics

a. METABRIC a of breast

transcriptomics,

landmark cancer
(https://
www.cbioportal.org/study/summary?id=brca_metabric)

(Curtis et al.,, 2012). Breast cancer samples in METABRIC
were subtyped as Luminal, HER2, or TNBC based on the THC
status of ER, PgR and HER2 extracted from the METABRIC
clinical metadata. This yielded 1,415 Luminal, 127 HER?2,
and 299 TNBC METABRIC samples. Since METABRIC had

used microarray technology to measure gene expression, a

study

available on  cBioPortal

platform-specific bias might be induced. To mitigate this bias
and obtain data compatible with RNA-Seq technology, we
applied the Feature Specific Quantile Normalization (FSQN)
technique to the METABRIC data (Franks et al., 2018).

b. GEO Dataset GSE211167 (Martini et al., 2022), consisting
of only TNBC samples from 26 patients of African ancestry.
The dataset was log,-transformed prior to serving for model
inference.

2.6.14 Histological subtyping
We validated model#4 on an external breast cancer dataset from

cBioPortal with 96 IDC and 19 ILC samples from the Metastatic
Breast Cancer Project (https://www.cbioportal.org/study/summary?
id=brca_mbcproject_wagle_2017) (MBCP, 2025).

2.6.2 Late integration of multi-omics data
2.6.2.1 Integration of miRNA analysis

MiRNAs play a crucial role in the regulation of global mRNA
expression in both physiological and pathological processes,
including the invasion and metastasis of cancer. By exerting control
over the expression of target genes, miRNAs act as oncogenes,
tumor-suppressive genes, and modulators of distant metastasis in
breast cancer. To identify differentially expressed (DE) miRNAs,
we used the miRSeq dataset from the same TCGA BRCA cohort

frontiersin.org
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TABLE 3 Datasets used in the modelling of BRCA classification problems. In addition, GSE18549, GSE211167, and METABRIC datasets were also used for

external validation in ‘'normal vs. cancer’.

S.No Problem Dataset used Sample details ‘ Purpose
Training 90 Normal; 854 Cancer Model building and hyperparameter
tuning
TCGA
Testing 22 Normal; 212 Cancer Internal validation
1 Normal v/s cancer
ICGC (BRCA-KR) 3 Normal; 47 Cancer External validation
GTEx 218 Normal External validation
SMOTE- enhanced Training | 480 non-metastatic (downsampled Model building and hyperparameter
from 837); 176 metastatic optimization
TCGA (upsampled from 16)
2 Non-metastatic V/s Metastatic Testing 209 non-metastatic; 4 metastatic Internal validation
ICGC (BRCA-KR) 47 non-metastatic External validation
GSE18549 14 metastatic External Validation
Training 454 Luminal; 30 HER2; 92 TNBC Model building and hyperparameter
optimization
TCGA
Testing 113 Luminal; 7 HER2; 23 TNBC Internal validation
3 Molecular Subtype
METABRIC 1,415 Luminal; 127 HER2; 299 External validation
TNBC
GSE211167 26 TNBC External validation
Training 624 Ductal; 162 Lobular Model building and hyperparameter
optimization
) . TCGA
4 Histological subtype: Ductal v/s
Lobular Testing 156 Ductal; 40 Lobular Internal validation
The Metastatic Breast Cancer Project 96 Ductal; 19 Lobular External validation

(gdac.broadinstitute.org_ BRCA.Merge_mirnaseq__illuminahiseq_
mirnaseq__bcgsc_ca__Level _3__miR_isoform_expression__data.
Level 3.2016012800.0.0.tar.gz). Being a transcriptomics dataset,
the miRSeq dataset was treated akin to the mRNASeq dataset,
with cancer stage as indicator variable. DE stage-specific miRNAs
were revealed upon application of the two-level contrast (stage
vs. control level-I contrast and inter-stages level-II contrast).
For each identified stage-salient miRNA, the target genes were
predicted using multiMiR (Ru et al., 2014), which provides an
integration of 14 miRNA-mRNA interaction databases including
TargetScan (Ag et al, 2015), miRDB (Wang, 2008), miRanda
(Enright et al, 2003), and miRTarBase (Huang et al, 2022).
Of the predicted targets for each miRNA, the stage-salient
targets were investigated for differential miRNA expression-driven

genes.

2.6.2.2 |dentification of differential methylation-driven
genes (DMDGs)

Epigenetic processes such as methylation could contribute
to changes in gene expression and drive pathological processes.
To evaluate differentially methylated genes, we used the Level3-
processed 450k methylation dataset from the same TCGA BRCA
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cohort (gdac.broadinstitute.org_BRCA.Merge_methylation__
humanmethylation450__jhu_usc_edu__Level_3__within_bioassay
_data_set_function__data.aux.2016012800.0.0.tar.gz). The
correlation between methylation and expression of the stage-salient
genes was analyzed using R MethylMix (Cedoz et al., 2018), with the
preset threshold —0.3 and p-value <0.001. Differentially methylated
states were identified using significance from Wilcoxon rank-sum
testing (adj. p. value <0.05) with an additional effect size filter (>0.1).
Genes passing these marker filters were designated as differential
methylation-driven genes. Stage-salient differentially methylated
genes were identified using the consensus of three stage-informed
models, namely Averep, M-value and MethylMix as described
(Muthamilselvan et al., 2022).

2.7 Development of cascade classifier

A prediction pipeline that integrates the predictions from all
the models into one combined readout was designed. A schematic
for one such cascade model is shown in Figure 2. Based on
the decision at the shown fork, the new sample may be taken
forward for assessment of metastatic potential and molecular/
histological subtyping. The final readout for a sample from the
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FIGURE 2

Design of BC-Predict. A schematic of a cascade model for early-stage
breast cancer subtyping and prognosis is presented. If the sample is
predicted as ‘cancer’ in the first level, it is passed through three more
models in the second level that holistically characterize the cancer
sample toward personalized medicine.

cascade classifier would consolidate the inference from each model;
for e.g., ‘Metastatic triple-negative ductal cancer’. This formed the
basis for the development of BC-Predict.

3 Results

The TCGA BRCA dataset consisted of 1,212 samples, each
with the measurement of expression of 20532 genes. Post data
preprocessing, we obtained an annotated dataset of 1,178 samples
x 18880 genes (Supplementary File S1). An adj. p.value cut-off of
0.05 yielded 14838 DE genes in breast cancer samples. Tightening
the significance to adj. p-value < 1E-05 still yielded 10167 DE
genes, underscoring the persistence of genome instability in
the March of cancer (Hanahan, 2022) A volcano plot depicting
differentially expressed genes showed significant dispersion
(Figure 3a), meaning some genes were much more dysregulated
than others. We performed a principal components analysis with
the top ten genes from the linear modelling, and found that a
clear separation between the normal and cancer samples could
be obtained (Figure 3b). This provided some basis for considering
top-ranked genes from the linear modeling as candidate cancer-
specific features. Table 4 provides information on the top ten
genes of the linear modeling, including their regulation status.
Information on the top 200 such cancer-specific genes from the
linear modelling are provided in Supplementary File S2. Figure 4
shows violin-plot representations of expression distribution of
the top ranked genes of the linear model. Violin plots for
all the top 200 genes from the linear model are provided in
Supplementary File S3.

Applying the level-I expression filters (|lfc| > 2 and p-value cut-
off <0.001) yielded a total of 927 stage-specific genes (74 Stage-I, 238
Stage-1II, 90 Stage-I1I, and 525 Stage-IV specific DEGs, visualized as
an Upset plot (Lex et al., 2014) in Figure 3c). For the identification
of stage-salient genes two contrasts were applied with stringent
criteria and the DEGs identified with different comparisons. This
contrast has yielded 2 Stage I salient, 2 Stage II salient, 10 Stage
III salient and 20 Stage IV salient genes. Limiting to the top
ten stage-IV salient genes (by significance), we finally obtained
24 stage salient genes (Table 5). A heatmap visualization of the
stage-salient genes exhibited a systematic differential regulation
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relative to the controls (Figure 3d). Stage III 4 genes cluster along
with Stage I genes and DEPDCI1 Stage II with outward CST2.
Rest genes from stage III and stage IV form a cluster along with
COX7AL1 Stage II gene. Violin plots of expression distribution
across sample phenotypes for these genes could be found in
Supplementary File S4.

The GO and KEGG pathway analysis was performed for
the Stage salient genes to identify over-represented biological
processes among these candidate features (complete results in
Supplementary File S5; Supplementary File S6, respectively). Genes
that were monotonically expressed with cancer progression
were identified by observing the trend in mean expression
with increasing cancer stage. This yielded 2,246 significantly
monotonic genes (1,015 with increasing expression, and 1,231
with decreasing expression). The top 20 such genes with
their inferred regulation status are shown in Table 6. A stage-
specific gene is said to be contra-regulated when its mean
expression is “paradoxical” with cancer progression. There
are six patterns of “paradoxical” mean expression, studied in
Supplementary File S7. We identified 112 stage-specific genes
with such contra-regulation, including one stage-I salient gene
(CHRNAG®). Contra-regulated genes exhibit unstable expression
with cancer progression, and their anomalous behavior might
represent possible directions for experimental investigations
(Supplementary File S7). Stage-specific DEGs devoid of such contra-
regulation suggest a more general role as enhancers of cancer
progression.

Having completed the mining of signal features, we proceeded
to the problem of production of machine learning models. Six
model classes were optimized on the train data for each problem
and subsequently evaluated on the holdout test to identify
the best model class for that problem (Supplementary File S8).
A summary of the best overall model for each problem
and its validation on the external dataset(s) is presented in
Table 7.

3.1 Normal v/s cancer

The workflow for this learning problem is shown in Figure 1.
Stratified sampling of the TCGA BRCA dataset based on the class
‘cancer’ or ‘normal’ yielded a training dataset of 90 Normal and
854 Cancer samples, and a test dataset of 22 Normal and 212
Cancer samples. The 24 stage-salient genes from the contrasts shown
in Equation 2 (namely CHRNA6, MMP10, DEPDCI1, COX7Al,
KCNK15, MFSD4, CDHI19, CXCL5, AKR7A3, DEGS2, CST2,
LOC100124692, GDF5, FOXAI1, EGR3, FOS, FOSB, DUSPI,
FREM1, EGR1, HFM1, ABCA10, KLK5, KCNA1) were combined
with the top 10 linear modelling genes from Equation 1 (namely
NEK2, MMP11, PKMYT1, GPAM, CPA1l, COL10A1, MYOC,
KIF4A, CA4,LYVE]) to obtain 34 base features for feature selection.
Application of the RFE procedure identified ten features for model
development, including two stage-salient genes (FREM1, ABCA10)
and eight genes from the linear model (NEK2, MMP11, PKMYTI,
GPAM, CPA1, COL10A1, CA4, LYVEI1). Of the six ML models
trained, four models yielded >99% balanced accuracy on the
training set. Subsequent evaluation on holdout testset identified
only one model class with 100% accuracy, namely the neural
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network with one hidden layer model (Supplementary File S8).
The model was re-built using the full dataset and validated on
external datasets: (i) BRCA-KR, yielding a balanced accuracy
~94.00%; and (ii) GTEx, yielding ~100% accuracy (all correct
predictions). Together, the model yielded an overall balanced
accuracy ~97.42% on external validation (Table 7). The details
could be found in Supplementary File S9, along with the prediction
probabilities for all instances in both the external validation.
Prediction probability is a measure of the strength of evidence for
the predicted class, and based on the distribution of its values,
recommendations for evidence of the predicted class may be
generated. It was observed that correct predictions were supported
by very strong prediction probabilities (>0.9) relative to incorrect
predictions.
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3.2 Non-metastatic v/s metastatic

The workflow for this learning problem is a variation on
Figure 1, and available in Supplementary File S10. Stratified
sampling of the TCGA BRCA dataset based on the class ‘non-
metastatic’ or ‘metastatic’ yielded a training dataset of 837 non-
metastatic and 16 Metastatic samples, and a test dataset of 209
non-metastatic and 4 Metastatic samples. SMOTE balancing of the
training dataset yielded a dataset with 480 non-metastatic and 176
Metastatic samples. The contrast shown in Equation 3 between non-
metastatic and metastatic samples in the SMOTE-balanced dataset
produced two lists of genes, one sorted by log-fold change and the
other by significance (adj. p-value). The consensus of the top 50
genes from the two lists identified 15 features (namely SRMS, OXT,
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TABLE 4 Top ten genes of the linear model with their stagewise mean log-fold change with respect to control. FDR-corrected significance and inferred
regulation type are indicated.

Stage2 Stage3 Adj.P.Val Regulation status

lfc (B,) lfc (B3)
NEK2 434 483 4.65 4.82 1.37E-188 Up
MMP11 5.94 5.75 5.96 6.43 3.80E-173 Up
PKMYT1 442 483 473 4.90 1.60E-172 Up
GPAM -3.57 -3.68 -3.65 -3.85 9.39E-171 Down
CPA1 ~4.34 ~4.56 ~4.28 —4.21 6.39E-170 Down
COL10Al | 7.04 6.74 6.95 7.22 3.43E-169 Up
MYOC -6.06 -6.55 -6.34 -7.17 1.06E-166 Down
KIF4A 4.05 454 433 455 1.61E-164 Up
CA4 -6.63 -7.35 -6.91 -7.11 2.01E-162 Down
LYVEI -4.76 -5.19 ~4.90 -4.91 5.79E-159 Down

MMP27, LOC158696, C4orf26, CECR4, ANKRD55, GALNTL6,
KRTAP3-1, FAM69C, AFP, CCDC33, SLC5A5, CXorf48, RGS7), to
which were added the six top genes by significance missing in the
consensus (namely GIP, SSX5, LOC100101938, C9, ASZ1, COX8C).
Finally, these 21 genes were pooled with the 24 Stage-salient genes
discussed in Cancer V/s Normal classification problem, to obtain 45
base features for feature selection. Application of the Boruta protocol
yielded 14 features, while application of RFE procedure yielded just
five features. The five RFE features were a subset of the features
identified by Boruta, thus we obtained five consensus features for
model development, namely DEPDC1, FOSB, DUSP1, MMP27 and
ABCA10. Of the six different ML models trained, three models
yielded >99% balanced accuracy on the training set. Subsequent
evaluation on the holdout testset identified the neural network with
one hidden layer model as the best performing model class, with
82.24% balanced accuracy (Supplementary File S8). The model was
re-built using the full dataset and validated on the BRCA-KR and
GSE18549 datasets, yielding an overall balanced accuracy ~88.22%
on the external validation (Table 7). The details could be found in
Supplementary File S10, which includes the prediction probabilities
for all instances in the external validation. On inspection of the
distribution of prediction probabilities, correct predictions were
found to be supported by high values (>0.75) relative to incorrect
predictions.

3.3 Molecular subtype classification

The workflow for this learning problem is a variation on
Figure 1, and available in Supplementary File S11. Stratified
sampling of the TCGA BRCA dataset based on the molecular
subtype class (‘Luminal’ or “TNBC’ or ‘HER?’) yielded a training
dataset of 434 Luminal, 30 HER2 and 92 TNBC samples, and a test
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dataset of 113 Luminal, 7 HER2 and 23 TNBC samples. The three-
way pairwise contrasts shown in Equation 4 between the molecular
subtypes; viz. (i) Luminal vs. HER?2, (ii) Luminal vs. TNBC and (iii)
HER2 vs. TNBC; yielded subtype-specific genes, from which the
top ten genes of each subtype (by significance) were pooled together
to obtain 30 base features for feature selection (namely MLPH,
AGR3, CAl12, TBC1D9, AGR2, TFF3, SIDT1, FZD9, BCASI,
CXorf61, ERBB2, PGAP3, STARD3, Cl7orf37, GRB7, PSMD3,
PCSK6, PNMT, TCAP, LOC150622, GATA3, ANXA9, FLJ45983,
PRR15, FOXA1, DEGS2, SLC44A4, ZMYND10, KCNK15, NAT1).
Application of the Boruta protocol did not identify any redundant
feature, whereas application of RFE procedure yielded 16 features.
These 16 features were identified as the consensus features for
model development, namely GATA3, AGR3, CA12, TBCI1D9,
ERBB2, MLPH, KCNKI15, ANXA9, FLJ45983, GRB7, PGAP3,
STARD3, SLC44A4, PCSK6, FOXA1l and BCASL. Of the six
different ML models trained, the Random forest model provided
superlative performance on both the training and outerfold test
sets, with balanced accuracies of >99% and 91.43% respectively
(Supplementary File S8). The model was re-built using the full
dataset and was validated on the METABRIC dataset, yielding a
balanced accuracy ~88.79% (Table 7). Availability of the TNBC-only
dataset provided an opportunity to execute a second out-of-cohort
validation, yielding correct identification of 25 TNBC samples
out of the total 26 samples (96.15% accuracy). The details could
be found in the Supplementary File 11, including the prediction
probabilities for all instances in the METABRIC and TNBC
external validation datasets. On inspection of the distribution
of prediction probabilities, correct predictions were found to be
supported by high values (>0.7) relative to incorrect predictions.
We investigated the 16 features used in the RandomForest model
for feature importance based on mean decrease in Gini score in R
caret (Kuhn, 2008). The top five features contributing to the model
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performance were identified as GATA3, CA12, AGR3, TBC1D9, and
MLPH (Figure 5).

3.4 Histological subtype classification

Stratified sampling of the TCGA BRCA dataset based on the
histological subtype (‘IDC’ or ILC’) yielded a training dataset of 624
IDC and 162 ILC samples, and a test dataset of 156 IDC and 40 ILC
samples. The contrast shown in Equation 5 between the ductal and
lobular histologies was used to detect differentially expressed genes
between the two histologies, specifically applying a log-fold change
threshold, |lfc| >2, to binarize genes useful as features. This obtained
62 base features for feature selection. Application of the Boruta
protocol yielded 58 features, while application of the RFE procedure
yielded 24 features. The 24 RFE features were a subset of the Boruta
features, thus we obtained 24 consensus features features for model
development, namely ADCY5, ALDHI1L1, ANKRD43, Clorf64,

Frontiers in Bioinformatics

11

C7, CAPNS8, CCL14, CDH1, CIDEA, CTSG, DARC, F7, FEXYDI,
HPX, IGFN1, MMP1, PEBP4, PLCXD3, PROL1, SHROOM]I,
TFAP2B, TFF1, TNNT3, and WNK4. Of the six different ML
models trained, four models yielded >95% balanced accuracy on
the training set. Subsequent evaluation on the holdout testset
identified XGBoost as the best performing model class, with 84.94%
balanced accuracy (Supplementary File S8). To mitigate overfitting
to the larger IDC class at the expense of the ILC class, we sought
to combine the XGBoost model with the 1-layer neural network
model, producing a voting ensemble classifier with a slightly better
88.74% balanced accuracy on the holdout testset (Table 7). The
ensemble model re-built using the full dataset was validated on
the external dataset: brca_mbcproject_wagle_2017, encoding both
the histological subtypes of interest (IDC and ILC) as well as
other subtypes such as ‘mixed histology, ‘DCIS’ (ductal carcinoma
in situ), and ‘NOS. Predictions were accepted if the two models
of the ensemble agreed on the predicted class. If the models
disagreed on the predicted class, then the predictions were rejected
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TABLE 5 Trends in mean expression of stage-salient genes with cancer progression. The inferred regulation status in cancer is noted.

Stage Adj.PVal (from  Adj.PVal (from  Regulation
information contrast) control) status
CHRNA6 Stage T -1.67 | 335 | 285 | 293 | 221 2.25E-52 7.59E-51 Up
MMP10 Stage T 004 | 319 | 276 | 261 1.68 | 5.07E-23 1.66E-24 Up
DEPDC1 Stage IT 201 | 283 | 332 | 303 | 243 | 3.26E-92 1.39E-89 Up
COX7A1 Stage II 236 | -231 | -2.62 | -230 203 | 3.15E-72 4.39E-69 Down
KCNKI15 Stage I1T 199 | 240 | 185 | 259 | 172 | 824E-21 5.27E-20 Up
MFSD4 Stage ITI 156 | -206 @ -196 = -2.32 | -179 | 451E-41 2.88E-41 Down
CDH19 Stage I1T -313 | -260 | -258 @ -3.19 -261 | 331E-26 1.53E-24 Down
CXCL5 Stage ITI -203  -247 | -217 | -2.87 -283  5.12E-24 1.30E-22 Down
AKR7A3 Stage 11T 326 | 205 | 152 233 | 212 1.83E-13 2.55E-12 Up
DEGS2 Stage I1I 482 | 260 | 202 | 269 | 227  9.30E-22 1.68E-21 Up
CST2 Stage IIT -0.60 | 418 | 357 | 422 | 352 | 2.19E-48 8.75E-52 Up
LOC100124692 | Stage IIT -252 | -3.64 | -3.60 @ -4.13 -3.83 | 2.98E-46 8.24E-48 Down
GDF5 Stage 11T -126 | -208 | -231 @ -2.63 -224 | 1.67E-26 3.64E-26 Down
FOXAI1 Stage I1T 719 | 209 | 164 | 232 | 194 | 481E-13 1.30E-11 Up
EGR3 Stage IV 414 | -233 | 271 | -2.57 | -4.04 3.53E-18 1.46E-44 Down
FOS Stage IV 727 | -244 | 307 | -309 -419 | 3.40E-21 3.50E-62 Down
FOSB Stage IV 471 | -380 | -433 | -430 -5.66 | 9.16E-25 451E-76 Down
DUSP1 Stage IV 700 | -213 | -240 @ -223 | -3.13 | 25IE-19 1.81E-58 Down
FREM1 Stage IV 085 | -367 | -413 | -370 -5.09 | 1.29E-23 2.43E-77 Down
EGRI1 Stage IV 745 | -272 | -3.18 | -311 | -4.00 | 3.63E-23 2.23E-75 Down
HFM1 Stage IV -3.44 -2.02 -2.24 -2.23 -3.02 6.13E-18 1.43E-52 Down
ABCAI10 Stage IV ~028 | -438 | -480  -448 | -5.67 | 5.63E-33 3.89E-115 Down
KLK5 Stage IV 126 | -321 | -344 | -344 | -545 | 693E-20 2.41E-09 Down
KCNA1 Stage IV -169  -258 | -2.99 | -281 -3.93  3.08E-15 1.99E-45 Down

Bold values indicate coefficients with the largest absolute values, enabling insight into stage-specific expression.

as ambiguous. Such instances represent challenges to the ensemble
classifier whose resolution might not be simple. Omitting the
eleven such instances from the external dataset, we obtained correct
predictions on all 91 IDC samples as well seven (out of thirteen)
ILC samples, yielding an ensemble accuracy ~94.23% and balanced
accuracy ~76.92% (Table 7). Even with ensembling, generalization
errors persisted in learning the ILC class, with an imbalance in the
type-1I error between the two classes. The details could be found
in Supplementary File 12, including the prediction probabilities
for all instances in the external validation. On inspection of the
distribution of prediction probabilities, correct predictions were
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found to be supported by high values (>0.7) relative to incorrect
predictions. Histological subtyping from molecular features has
remained a refractory learning problem, and we have made our
models and code freely available for non-commercial use (www.
github.com/apalania/BC-Predict_Histological).

3.5 Validation with miRNA analysis

Stage-salient miRNA were identified using the two-level
contrasts of the miRNA expression data, and then their targets were

12 frontiersin.org


https://doi.org/10.3389/fbinf.2025.1644695
http://www.github.com/apalania/BCPredict_Histological
http://www.github.com/apalania/BCPredict_Histological
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Muthamilselvan et al.

10.3389/fbinf.2025.1644695

TABLE 6 Top 20 genes with significant monotonic patterns of expression. Intercept, coefficient and adj. p-values from the ordinal model are used.
Status indicates monotonic upregulation (UP) or monotonic downregulation (DOWN). The table is sorted by significance (adj.p-value). Adj. R?
goodness-of-fit of a stage-ordinal model of expression for each gene is provided.

Gene Intercept Coefficient Adj.P-value

FAMI3A 9.842826 —-0.62121 1.70E-64 0.2255 Down
GABRD 3.697762 0.889287 2.27E-64 0.2249 Up
KLHL31 6.778289 —-0.8667 2.33E-63 0.2217 Down
POCIA 6.587719 0.525973 4.14E-63 0.2209 Up
PAFAH1B3 8.753896 0.602506 1.23E-62 0.2193 Up
SORBS1 11.50753 —-0.83632 5.17E-62 0.2174 Down
NIPSNAP3B 6.082268 —-0.70387 1.27E-61 0.2161 Down
TMEM220 6.96875 -0.67023 7.56E-60 0.2102 Down
SPTBN1 13.42746 —0.45273 2.81E-59 0.2083 Down
SIK2 10.23114 —-0.52331 2.56E-58 0.2051 Down
RECQL4 6.916714 0.743136 1.59E-57 0.2025 Up
C7orf41 10.91012 —-0.61324 1.81E-57 0.2023 Down
RAGIAP1 9.736787 0.453142 5.56E-57 0.2001 Up
HSD17B6 4.70826 0.715399 6.98E-57 0.2004 Up
SLC35A2 9.380796 0.311207 7.48E-57 0.2002 Up
CCDCo64 6.871398 0.724435 3.72E-56 0.1979 Up
DMD 9.497599 —-0.92277 2.47E-55 0.1952 Down
RUSC1 9.565741 0.353172 1.24E-53 0.1897 Up
CXCL2 6.668874 -1.23033 4.45E-53 0.1877 Down
PRR19 4.794229 0.497467 1.87E-52 0.1857 Up

identified using the R multiMiR library (Supplementary File S13).
Based on these results, we determined the concordance between the
regulatory miRNAs and their target genes. Temporal concordance
in expression exists if the salience in miRNA expression is
at least as early as the salience in target gene expression. If
the expression pattern of miRNA is discordant with its target
gene, a paradoxical aberration with a protective function is
possible. Table 8 summarizes the validation of stage-salient gene
expression from the angle of miRNA expression. Concordance
between the mRNA and miRNA in the direction of expression as
well as the temporal dimension is achieved for 13 stage-salient genes:
MMP10, DEPDCI1, CDH19, FOXA1, DEGS2, CST2, AKR7A3,
EGRI1, EGR3, FOS, FOSB, FGF2, and HCN2. The key regulatory
miRNAs decoded by stage included 25 stage-salient miRNAs
(Supplementary File S13), appearing to regulate most of the stage-
salient genes. Stage-salient miRNA that were fully concordant
with target mRNAs included hsa-miR-182-5p, hsa-miR-210-3p,
hsa-miR10b-5p, hsa-miR-200a-5p, hsa-miR-96-5p, hsa-miR-21-5p,
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hsa-miR-133a-3p, hsa-miR-335-5p, hsa-miR-204-5p, and hsa-miR-
145-5p. Further, four of the stage-salient miRNAs regulated genes
that featured in the ML models, namely hsa-miR-210-3p, hsa-
miR10b-5p, hsa-miR-200a-5p, and hsa-miR-96-5p. Only five stage-
salient miRNAs displayed no overlap between their targets and
stage-salient genes, and conversely, eleven stage-salient genes were
predicted to be free of regulation by a stage-salient miRNA (namely
COX7A1, DACT2, KCNKI15, MFSD4, DSC3, KLK5, KRT15,
LOC100124692, ABCA10, MAPKS8IP2, and MASP1). The complete
and fully detailed analysis could be found in Supplementary
File S13.

3.6 Validation with methylation analysis

Aberrant methylation in the core/ proximal promoter regions
as well as enhancers could have profound regulatory effects
on gene expression. We obtained a total of 22 stage-salient
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TABLE 7 The best model class and its performance for each of the problems of interest: (i) normal v/s cancer using ten features, (ii) metastatic v/s
non-metastatic using five features, (iii) molecular subtyping using 16 features, and (iv) histological subtyping using 24 features. Nested model selection
was used to identify the best model class, with subsequent validation on external datasets. In the case of histological subtype, a voting ensemble of the
two models shown was used for the external validation. The RF model for molecular subtyping was externally validated on another 26 TNBC samples,
yielding 25 correct predictions. MCC and AUROC values of the best model in each case are scaled to the range [0,100].

S.No Model Train  Test External validation

Balanced Balanced acc. (%) Specificity Sensitivity | Precision (PPV)
acc. (%)

Normal v/s cancer

1 NN (1 layer) 99.82 100 97.42 95.74 99.09 95.74 94.84 97.42

Non-metastatic v/s Metastatic

2 NN (1 layer) 99.17 82.24 88.22 93.87 78.57 91.67 80.87 88.22

Molecular subtype

3 RF 99.99 91.43 88.79 93.11 84.46 93.63 84.06 90.23

Histological subtype

4 XGBoost 95.13
88.74 76.92 53.85 100 93.81 71.07 76.92
5 NN (1 layer) 96.97
stage for its stage-IV salience (minimization) in expression. It is
ortaz!  —— observed that the stage-IV salient hypermethylation of HCN2 was
CA12{ I at odds with its stage-IV salient overexpression.
AGRS3 1 — Mining the methylation patterns of all stage-salient genes for
TB’;::E: differential methylation-driven genes revealed five transcriptionally
I
ANxAo]  — predictive genes negatively correlated with gene expression, namely
o ERBE2{ — AKR7A3, COX7A1, DEGS2, EGR1, and FOXAL1 (Figure 6). Four
g Foxal{ mm— of these genes exhibited two-component mixtures of methylation
G FL4c0s3 ) — distribution, indicating a probable shift in methylation levels in
Koo - les relative to health COX7A1 showed th
JRNN p— cancer samples relative to healthy ones. showed three-
STARD3{ component mixtures of methylation distribution, indicating a
sLcadnd{ M reliance on methylation to achieve regulatory fine-tuning. Table 9
Boasty M summarizes the methylation patterns for these five genes, showing
PGAP3{ M . . . . . -
PeSKS the correlation size with expression and if the correlation is
7 e = = o concordant as well. In the epigenetic context, the methylation
Importance pattern of a gene could be deemed concordant with its expression
- if maximal methylation is observed ahead of minimal mRNA
Importance ranking of features used in developing the molecular expression. FOXA1 mRNA expression is at odds with both its
subtype model. The scores are normalized with respect to the epigenetic profiles (methylation and miRNA), suggesting that
top-scoring feature, GATA3, and presented in the sorted order. . . . .
epigenetic modulation was being used to restore FOXA1 aberrant

expression. Concordance in methylation is observed for AKR7A3,
DEGS2, EGR1, and COX7Al, providing strong support for
their stage-salience. The above genes except COX7A1 were also
DMGs from the consensus of Averep, Mvalue, and MethylMix  concordantly modulated by stage-salient miRNAs. Such findings
procedures: 1 stage-I salient DMG (VOPP1), 8 stage-II salient DMGs ~ lead to a belief in the existence of concert between the different
(HS3ST3B1, CPLX1, EGR1, GMDS, ITPKB, TGFB111, Céorf145,  layers of omics, adding ‘definiteness’ to gene expression on the path
SHC1), 10 stage-III salient DMGs (BTLA, TNFAIP2, PHYHIPL, to phenotypic states. Further investigations could shed light on
LYN, MAML2, Cl6orf62, GPRC5B, CAPN9, AIPL1, AGAP1), and the emergent hypotheses in the future. The mixture decomposition
4 stage-IV salient DMGs (CNP, TSPYL5, SLC7A5, HCN2). Salient ~ of methylation patterns of the remaining stage-salient genes is
methylation of a gene is an epigenetic mechanism to tune gene  provided in Supplementary File S14. It could be seen, for e.g.,
expression and would precede changes in its expression. In this  that the methylation of ABCAIO is positively correlated with its
respect, the stage-II salient methylation of EGRI possibly set the  expression, escaping clear interpretation.
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TABLE 8 Putative target stage-salient genes mapped with their regulatory stage-salient miRNA. Concordance in expression is noted if miRNA
overexpression is observed with target gene downregulation or vice-versa. Evaluation of temporal concordance is useful if concordance in expression
exists. If there is no concordance in expression, temporal concordance is not evaluated. Genes that display concordance with regulatory miRNA in the
direction of expression as well as temporal dimension are emphasized. Target stage-salient genes that represent features used in the ML models are
italicized. Upregulated miRNAs denote candidate oncomiRs, whereas downregulated miRNAs denote candidate TSmiRs.

Gene Regulatory miRNA
Expression Salience Concordance
Expression Temporal
1 CHRNAG6 Up Stage I hsa-miR-452-3p Yes No
hsa-miR-182-5p Yes Yes
2 MMP10 Up Stage I
hsa-miR-210-3p Yes No
hsa-miR-200b-3p Yes Yes
hsa-miR-210-3p Yes Yes
3 DEPDCI Up Stage II hsa-miR10b-5p Yes Yes
hsa-miR-200a-5p Yes Yes
hsa-miR-96-5p No —
hsa-miR10b-5p No —
4 CDH19 Down Stage I11 hsa-miR-182-5p No —
hsa-miR-335-5p No —
hsa-miR-21-5p Yes No
5 GDF5 Down Stage III hsa-miR-335-5p No —
hsa-miR-182-5p No —
hsa-miR-200a-3p Yes Yes
6 FOXAI Up Stage ITT
hsa-miR-141-3p No —
7 DEGS2 Up Stage ITI hsa-miR-200b-3p Yes Yes
hsa-miR-210-3p Yes Yes
8 CST2 Up Stage I11
hsa-miR-335-5p Yes No
9 AKR7A3 Up Stage I11 hsa-miR-210-3p Yes Yes
10 CXCL5 Down Stage III hsa-miR10b-5p No —
hsa-miR-21-5p Yes Yes
hsa-miR183-5p Yes Yes
hsa-miR-204-5p No —
hsa-miR-133a-3p No —
11 EGR1 Down Stage IV hsa-miR-452-5p No —
hsa-miR-224-5p No —
hsa-miR10b-5p No —
hsa-miR-210-3p No —
hsa-miR-182-5p No —

(Continued on the following page)
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TABLE 8 (Continued) Putative target stage-salient genes mapped with their regulatory stage-salient miRNA. Concordance in expression is noted if
miRNA overexpression is observed with target gene downregulation or vice-versa. Evaluation of temporal concordance is useful if concordance in
expression exists. If there is no concordance in expression, temporal concordance is not evaluated. Genes that display concordance with regulatory
miRNA in the direction of expression as well as temporal dimension are emphasized. Target stage-salient genes that represent features used in the ML
models are italicized. Upregulated miRNAs denote candidate oncomiRs, whereas downregulated miRNAs denote candidate TSmiRs.

Gene Regulatory miRNA
Expression Salience Concordance
Temporal
12 hsa-miR183-5p Yes Yes
hsa-miR-335-5p No —
EGR3 Down Stage IV
hsa-miR10b-5p No —
hsa-miR-182-5p No —
hsa-miR183-5p Yes Yes
hsa-miR-224-3p No —
13 FOSB Down Stage IV
hsa-miR-224-5p No —
hsa-miR-200b-3p No —
hsa-miR-335-5p No —
14 KLK7 Down Stage IV
hsa-miR-182-5p No —
hsa-miR10b-5p No —
15 DUSPI Down Stage IV hsa-miR-200b-3p No —
hsa-miR-200b-3p No —
hsa-miR-196a-5p Yes Yes
hsa-miR183-5p Yes Yes
hsa-miR-335-5p No —
17 FOS Down Stage IV
hsa-miR10b-5p No —
hsa-miR-139-5p No —
hsa-miR-182-5p No —
18 KCNA1 Down Stage IV hsa-miR-210-3p No —
hsa-miR-196a-5p Yes Yes
hsa-miR-96-5p Yes Yes
hsa-miR-145-5p No —
19 FGF2 Down Stage IV hsa-miR-133a-3p No —
hsa-miR10b-5p No —
hsa-miR-210-3p No —
hsa-miR-182-5p No —
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TABLE 8 (Continued) Putative target stage-salient genes mapped with their regulatory stage-salient miRNA. Concordance in expression is noted if
miRNA overexpression is observed with target gene downregulation or vice-versa. Evaluation of temporal concordance is useful if concordance in
expression exists. If there is no concordance in expression, temporal concordance is not evaluated. Genes that display concordance with regulatory
miRNA in the direction of expression as well as temporal dimension are emphasized. Target stage-salient genes that represent features used in the ML
models are italicized. Upregulated miRNAs denote candidate oncomiRs, whereas downregulated miRNAs denote candidate TSmiRs.

Gene Regulatory miRNA
Expression Salience Concordance
Expression Temporal
20 HCN2 Up Stage IV hsa-miR-133a-3p Yes Yes
21 KIT Down Stage IV hsa-miR-335-5p No —
22 FREM1 Down Stage IV hsa-miR-335-5p No —
23 HFM1 Down Stage IV hsa-miR-335-5p No —

Bold values indicate gene-miRNA combinations with double concordance, in the direction of expression as well as temporal dimension.

4 Discussion

External validation of the models on out-of-domain cohorts
suggested that they may be robust to distribution shifts in expression
profiles that characterize demographic changes. In a recent study,
we applied dimensionality reduction and unsupervised learning
to the space of nine expression features (viz. NEK2, PKMYT1,
MMP11, CPA1, COL10A1, HSD17B13, CA4, MYOC, LYVEI) and
addressed the ‘cancer’ vs. ‘normal’ binary classification, producing
BrcaDx (https://apalania.shinyapps.io/BrcaDx) (Muthamilselvan
and Palaniappan, 2023) with a balanced accuracy of 95.52% on the
BRCA-KR and GTEx. Here we have used a supervised learning
approach to the same problem (Figure 2), and derived ten features,
including ABCA10, GPAM, FREM1, and the first seven features
noted in the prior BrcaDx model. This has yielded a balanced
accuracy of 97.42% on the same external datasets, constituting a
significant improvement. Beyond the performance improvement,
it is noted that BrcaDx suffers from the relative opaqueness of
surrogate biomarker spaces (viz. principal components) in its
implementation, which tend to obscure interpretation. Other recent
advances for discriminating breast cancer from normal samples
include a supervised learning model of 20 biomarkers, which was
validated on only an internal test set with a balanced accuracy that
does not exceed 86% (Taghizadeh et al., 2022). BC-Predict and
BrcaDx are both reproducible and interestingly share no common
biomarkers with these earlier models.

4.1 Literature discussion

We searched Pubmed (www.pubmed.gov) using the keyword:
“breast cancer” AND “stage specific” AND “gene’, and found a
handful of known stage-specific genes. TIEG (or KLF10) is an
anti-metastasis/ tumor-suppressor gene, which inhibits invasive
breast cancer by blocking EGFR transcription in the EGFR
signalling pathway (W et al, 2012). Stage-specific expression
of KLF10 in breast cancer biopsies has been published, with
sustained downregulation leading to complete absence of expression
in invasive subtypes (Subramaniam et al, 1998). Here KLF10
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expression is found to be decreasing with stage relative to the
normals. y-Synuclein (SNCG) expression is strongly correlated with
the stages of breast cancer, showing little expression in normal or
benign samples and increasing expression with cancer stage, and
detectable only in a subset of patients (Wu et al., 2003). Here
we find increasing expression of SNCG in late-stage cancers, but
downregulated with respect to expression in normal samples, which
is a contrarian finding.

4.1.1 Top genes from linear models

Players in cell cycle regulation featured among the top genes
of the linear model, namely NEK2, PKYMT1, DEPDCI1, KIF4A
and CA4. Aberrations in cell cycle regulation facilitate sustained
proliferative signalling and evasion of the growth suppressor, which
are complementary hallmarks of cancers (Hanahan, 2022). The top
200 linear model genes were screened against the known cancer
driver genes in Cancer Gene Census, yielding four hits: BUBIB,
EBFI1, PPARG, and RECQL4. RECQL4 is a key DNA helicase, with
a vital role in the maintenance of genomic stability (Croteau et al.,
2012). It has been found to be mutated and often upregulated in
breast cancer (Luong et al., 2022), and its tumor-promoting activity
has been observed in sporadic breast cancers with aggressive tumor
behavior (Arora et al.,, 2016). Searching the top 200 MEGs against
the Cancer Gene Census yielded two other hits: EGFR and QKI.
EGEFR is the first antitumor target to be identified, and known to
be overexpressed in most of the TNBC and inflammatory breast
cancers (Masuda et al, 2012), but associated with paradoxical
function in metastatic cancer progression (Ali and Wendt, 2017).
Significant downregulation of QKI has been noted in breast cancer
relative to normal tissues, along with poor prognosis, which suggest
its tumor-suppressor role (Cao et al., 2021). Expression of SLUG
and QKI was correlated with epithelial to mesenchymal transition
(EMT), and showed promise for use in breast cancer prognosis
(Guetal, 2019). Intersection of the top 200 linear model genes with
the top 200 MEGs yielded 18 genes (including RECQL4), whereas
intersection with the top 200 of the second linear model yielded
32 genes. We found 17 genes in common to all the three sets,
including FAM13A, GABRD, and SORBSI. Supplementary File S15
presents the complete results. FAM13A is a hypoxia-induced gene
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FIGURE 6
Mixture model of methylation densities, and scatter of expression vs methylation for the respective cluster of each stage-salient differential
methylation-driven gene. (a) FOXA1 (b) AKR7A3 (c) COX7A1 (d) DEGS2 and (e) EGR1. Density plots include mixture components in orange, green, and
purple, two for each of FOXAL, AKR7A3, DEGS2, and EGR1, and three for COX7AL. Bayesian Information Criterion was used for estimating the number
of mixture components. Scatter plots revealed a consistent negative correlation between DNA methylation and gene expression, marked by different
colors for mixture components. Visualized using MethylMix.

in non-small lung cancer, increasing susceptibility to BC in a
population-based cohort (Wei et al., 2019). Genes coexpressed with
GABRD in colon cancer showed an enrichment for breast cancer
and HPV infection pathway (Liu and Fang, 2021), hinting at a
possible regulatory role for the monotonic expression of GABRD.
Downregulation of SORBSI in cancer samples was associated with
increased metastasis and poor survival outcomes (Song et al., 2017).
Stage-wise distribution of expression of representative consensus
genes is presented in Supplementary File S16.

The 34 stage-salient candidate biomarkers identified here were
cross-referenced with the Human Protein Atlas (Uhlen et al., 2017).
We found 11 genes (2 stage-III salient genes and 9 stage-IV salient
genes) annotated as ‘cancer related genes, of which two stage-IV
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salient markers, namely EGR3 and KRT15, were specifically noted
as prognostic markers of breast cancer (Supplementary File S17).

4.1.2 Early-stage salient genes

Supplementary File S18 shows the expression distribution of
early-stage salient genes in all the TCGA samples grouped by
stage. Notice the curved trend in expression signifying salience
of expression in an intermediate stage of cancer progression, not
the terminal stage. Nicotine in tobacco exerts its action through
nicotinic acetylcholine receptors, which initiate cell proliferation
(Singh et al,, 2011), according with the identification of CHRNA6
(neuronal nicotinic acetylcholine receptor) as stage-I salient here.
The downregulation of CHRNAG6 with cancer progression is
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TABLE 9 Summary of the stage-salient differential methylation-driven genes. Since the methylation of each gene was assayed at a variable number of
CpG probe locations, the methylation patterns at different probes for a given gene were clustered based on Pearson'’s correlation coefficient cut-off
(>0.7). Significant clusters were used to obtain values for: effect size of differential methylation across mixture components, significance of the
methylation pattern, coefficient of correlation between expression and methylation, and concordance. Sign of the DM effect signifies the type of
aberrant methylation (hyper/ hypo) across the mixture components.

Gene of CpG sites Significant DM effect  p-value Type of Correlation | Concordand
interest cluster size DM with
expression
Probes Clusters ID Probes

FOXA1 18 10 Cluster2 5 0.373 1.25E-98 Hyper —-0.66 No
AKR7A3 14 6 Cluster4 1 -0.321 9.89E-48 Hypo -0.49 Yes
COX7A1 4 2 Cluster2 3 0.413 3.36E-45 Hyper -0.48 Yes
DEGS2 15 13 Cluster12 | 1 -0.157 1.56E-25 Hypo -0.36 Yes
EGR1 13 11 Cluster4 2 0.185 1.21E-23 Hyper -0.35 Yes

supported by studies on nicotinic expression in non-small cell lung
cancer progression, where expression of CHRNAG6 was found higher
in non-smokers than smokers (Lam et al., 2007). MMP10 is a
member of the peptidase M10 family of matrix metalloproteinases,
and could set the stage for cancer progression by facilitating
tumor cell dissociation, augmenting migration/invasion capability,
promoting endothelial cell tube formation, and inducing the
expression of key angiogenic and metastatic factors (Zhang et al.,
2014). Recently, Piskor et al. proposed that MMP10 in combination
with MMP3 and CA-15 could be used as a biomarker panel for
early-stage BC through a non-invasive approach (Piskor et al.,
2020). Both these results accord with maximum expression of
MMP10 in the early stages of cancer, reaffirming the effectiveness
of our study design in identifying stage-salient markers. DEPDC1
is a novel cell cycle gene regulating apoptosis (Mi et al., 2015),
whose over-expression signifies cancer progression in BC and its
subtypes (Zhao et al., 2019; L et al., 2019). Here we have pinpointed
the stage-II salience of DEPDCI over-expression. COX7Al is
involved in mitochondrial metabolism and was identified as a tumor
suppressor in invasive breast carcinoma, due to aberrant promoter
hypermethylation (He et al., 2019). The stage-II salience of COX7A1
obtained in our studies supports its further exploration as a new
biomarker and therapeutic target.

4.1.3 Stage-lll salient genes

Supplementary File S18 includes the expression distribution
of stage-III salient genes in all the TCGA samples grouped by
stage. It is known that KCNK15 is overexpressed in BC (S et al.,
2013), specifically in Luminal A subtype, but downregulated
in TNBC subtype (Dookeran et al, 2017). MFSD4 (major
facilitator superfamily domain containing 4) has been identified
as a tumor suppressor of cell motility and invasiveness (by
influencing promoter methylation) and a biomarker of hepatic
metastasis in gastric cancer (Kanda et al., 2016), correctly identified
here as downregulated. CDH19 encodes a cell-cell adhesion
receptor cadherin, essential to maintenance of intercellular
connections, whose loss of function was observed in BC samples
(Tervasmaki et al., 2014). Aligning with this result, CDH19 is
seen here to be downregulated. CXCL5, a chemokine, was found
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to regulate bone colonization in metastatic BC via its functional
target CXCR2 (R et al,, 2019), and its downregulation here might
need further review. Oncogenic expression of AKR7A3 in the late
stages of BC is detrimental to the period of disease-free survival,
and it is interesting to note its stage-III salient upregulation here
(Vetal,2014). DEGS2 (delta (4)-desaturase sphingolipid 2) exhibits
oncogenic expression in response to increased levels of ceramide in
BC (Makoukji et al., 2015), which resonates with the findings here.
Growth differentiation factor-5 (GDF5) regulates TGFp-mediated
pro-angiogenic signaling (Margheri et al., 2012), and its significant
downregulation in the late stages here might set the stage for
metastatic cancer. Oncogenic expression of FOXA1l (Forkhead
box Al) enables widespread epigenetic reprogramming in ER
metastatic BC (Fu et al., 2019), concordant with its overexpression
here. Oncogenic expression of CST2 has been documented
to promote bone metastasis in breast cancer (Blanco et al,
2012), by upregulated
here.

borne out its stage-III  salience

4.14 Stage-lV salient genes

Supplementary File S18 includes the expression distribution of
stage-IV salient genes in all the TCGA samples grouped by stage.
A monotonic trend of downregulation culminating in a stage-IV
extremum is discernible. Suzuki et al. examined the role of EGR3
in BC and concluded that its overexpression in concert with the
expression of other genes is necessary to establish invasive and
metastatic BC (Suzuki et al., 2007), which is in contradiction to
the consistent downregulation seen here. FOS and FOSB showed
near-monotonic downregulation in mean expression here, which
might require further examination in the context of BC subtypes
(Lu et al,, 2005; Bamberger et al., 1999). DUSPI (dual specificity
phosphatase 1 or MAPK phosphatase 1) is a tumor-suppressor
in the MAPK pathway that mediates the dephosphorylation of
ERK1/2 (Chen et al, 2011), and its downregulation seen here
is likely to underpin sustained proliferative signalling. FREM1
has been identified as a tumor-suppressor, whose downregulation
enabled metabolic shift and tumor infiltration (Li et al., 2020),
a finding underlined by the monotonic downregulation seen
here. HFM1, helicase for meiosis 1, was reported to be altered
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in tumors relative to control samples (Taylor et al., 2008), and
seen to be a tumor-suppressor here. ABCA10 is a member of
the active transmembrane transport family, and was recently
implicated in the progression-free survival of epithelial ovarian
sarcoma (Seborova et al,, 2019), and appears to portray a tumor-
suppressor role in the context of our findings. KLK5, a serine
protease, is a known tumor-suppressor whose activation is a
promising anticancer therapy via repression of the mevalonate
pathway (Pampalakis et al., 2014). The downregulation of KCNA1
(a voltage-gated potassium channel subfamily member) has been
correlated with breast cancer aggressiveness (Lallet-Daher et al.,
2013), lending its stage-IV salience in our analysis. KRT15 is known
as cytokeratin and has recently been shown to be closely associated
with tumorigenesis. Overexpression of KRT15 (cytokeratin) was
seen in colorectal and squamous cell skin cancers, but its low
expression in BC (as seen here) has been significantly associated
with poor prognosis (Zhong et al., 2021). The remaining stage-IV
salient genes were found to be involved in tumor progression via
processes such as including inflammation, angiogenesis, and EMT
transition.

4.2 Improving histological subtyping

The distinction between IDC and ILC has previously frustrated
learning algorithms. An XGBoost model with 147 clinical,
histopathological, mammogram features, and sonographic features
has been reported with an internal testset accuracy of 0.84 on
the binary classification problem (Vy et al, 2022). An AutoML
deep-learning approach for identifying IDC samples alone from
whole slide images yielded 0.85 accuracy on an independent
dataset (Zeng and Zhang, 2020). Another study for classifying
IDCs as early-stage vs. late-stage yielded an AUROC of 0.47 on the
external validation (Roy et al., 2020). In this context, the external
validation of our model yields a significant improvement on the
state-of-the-art. However the limited sensitivity to ILC samples
(conversely, specificity to IDC samples) in the external dataset
presents an outstanding challenge in the histological classification
of breast cancer from molecular information. Some noteworthy
features from this model include: (i) CDH1 (E-cadherin), whose
germline mutations were strongly associated with lobular carcinoma
(Corso et al.,, 2018), was found to have a specific downregulated
expression signature in ILC samples; (ii) CCL14, which is known
to promote angiogenesis and metastasis in breast cancer (Li et al.,
2011), was found oncogenic in expression across both histological
subtypes. Further improvements to histological subtyping models
could come from:

i. stacking the classifiers: the ensemble of XGBoost and neural
network used herein showed that the classifiers disagree on
many instances preventing a consensus classification. In such
cases, improvements to the performance tradeoff could be
achieved by ‘weighting’ the contribution of the two constituent
models to the final prediction.

ii. using cross-modal features, including from early integration of

multi-omics and spatial dynamics at cellular resolution.
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4.3 Commercial gene panels for breast
cancer

Available genomic assays (commercial or otherwise) for
prognosticating breast-cancer adjuvant chemotherapy include the
following gene-signature panels:

1. Prosigna (50 genes from PAMS50 for intrinsic subtype

classification, 8 housekeeping genes used for

normalisation, 6 positive controls, and 8 negative controls)

signal

2. OncotypeDX (16 cancer related +5 reference gene panel),

. EndoPredict (3 proliferation-associated genes, 5 hormone
receptor-associated genes, 3 reference genes),

. MammaPrint (70 cancer-related genes; prognostic only)
(van de Vijver et al., 2002),

. Breast Cancer Index (exploring benefit of extension of adjuvant
hormonal therapy beyond 5 years based on a 1l-gene
signature),

. HER2DX (exploring benefit of neoadjuvant systemic therapy
in HER2+ BC based on a 4-gene signature) (Prat et al., 2022),
and

. Guardant 360 (Guardant, 2020) and Foundation One Test

2020)

circulating cell-free tumor DNA to profile 70+ biomarkers

(Foundation Medicine, (using liquid biopsies of

at progression).

Scanning the signatures in these genomic assays against the
ten features used in our ‘normal’ vs. ‘cancer’ model yielded: two
genes in common with Prosigna (FOXA1, MMP11), one gene with
OncotypeDX (MMP11), one gene with HER2DX (NEK2), and one
gene with Breast Cancer Index (NEK2). Scanning these signatures
against the 16 features used in our molecular subtyping model
yielded: four genes with Prosigna (ERBB2, FOXA1, GRB7, MLPH),
four genes with HER2DX (ERBB2, GRB7, STARD3, AGR3), two
with OncotypeDX (GRB7 and ERBB2), and two with Guardant360
(ERBB2, GATA3). Scanning these signatures against the 24 features
used for histological subtyping yielded: one gene with Guardant360
(CDH1). Scanning these signatures against the five features used in
the non-metastatic vs. metastatic model did not identify anything in
common. These results indicate that the models developed in this
work are novel and deserving of clinical validation. A summary of
the existing gene-signature diagnostic tests (with their indications
and outcomes) together with a comprehensive comparative study is
provided in Supplementary file S19.

4.4 BC-predict

To transition the results obtained from our studies, we developed
BC-Predict which serves the models developed in a cascade
inference engine and provides a comprehensive characterization
of the given sample (Figure 2). The BC-predict web-server is built
on Rshiny (Beeley, 2016) and deployed for academic research
at https://apalania.shinyapps.io/BC-Predict. All predictions are
accompanied by prediction probabilities to provide confidence
for the predicted class. Documentation and video tutorial for
the use of BC-Predict are also provided. BC-Predict generates a
unified readout that could nominally support medical decision-
making contingent to clinical validation and further refinement.
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An alternative modeling process that used a nested stratification
structure instead of sequential stratification was also investigated but
did not yield an improvement. Though the cancer vs. normal model
improves on the benchmark, iterative refinement and better datasets
could yield further performance improvements for all models. Below
we present a systematic enumeration of the limitations of our models
and suggested coping strategies:

1. The metastatic model does not distinguish among the stages
in pre-metastatic cancer. A refinement may be necessary to
discriminate between the early-stage cancers (stages I and II)
and stage-III cancers among the pre-metastatic cancers.

2. The molecular subtype model lumps ‘Luminal A’ and ‘Cuminal
B’ into the ‘Luminal’ class. Both luminal A and B are HER2-
and ER+, however the A subtype is PR+ and the most common
molecular subtype comprising 50%-60% of breast cancers
whereas the B subtype accounts for 15%-20%, mostly PR- and
with low levels of Ki-67. Thus Luminal B has distinctly better
prognosis than Luminal A. Increased data size and quality
could afford production of better models that differentiate
between these subtypes.

3. The ILC histological subtype tends to be radiologically and
clinically hard to detect, manifesting more as thickening with
occult mammogram rather than mass, hence research is urgent
to improve the detection of this class, as discussed above.

. The identified gene-signature panels could be enhanced with
the inclusion of reference gene normalization, for more robust
predictions.

5. In addition, all models would need to be fine-tuned for
distribution shifts possible in different populations, though
the identity of the biomarkers is likely invariant. Initiatives
akin to the Indian Cancer Genome Association (Dixit and
Sadanandam, 2021) could facilitate model monitoring and
adaptation.

Gene-signature methods remain the clinical standard for
both their effectiveness and utility, and works such as ours are
a step forward in resolving difficult challenges. Such diagnostic
models need to be clinically validated and approved for use
by national regulatory bodies such as the FDA (Food and
Drug Administration, USA), MHRA (Medicines and Healthcare
products Regulatory Agency, UK), EU MDR (European Union
Medical Device Regulation), NMPA (National Medical Products
Administration, China) and CDSCO (Central Drugs Standard
Control Organization, India). Models are complicated by cohort
selection bias; for e. g., breast cancer in Black population
presents in younger patients and more difficult to treat forms
(aggressive, grade-III, TNBC or HER2+) than in Hispanic
population, with poorer prognosis. Also, metastatic breast cancer is
rarely synchronous (more metachronous) in developed nations
as opposed to metastatic cancer on presentation in emerging
nations. In addition to these variations, Al-based diagnostic
modalities need to contend for the interplay of risk factors
that could enable or confound the predictions: pre-menopausal
vs. post-menopausal, node-positive or not, complete hormonal
profile and NPI score. Clinical validation of BC-Predict would
involve the synthesis and use of specific forward and reverse
primers for each model feature to perform gqRT-PCR on the
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isolated RNA of resected biopsy sample from a patient. Post-
quantification (normalized counts) and log, transformation, the
inference model may be served to yield a prediction. Prior to
such deployment, calibration of qRT-PCR may be necessary and
could involve reference genes as used in, say, NOVAprep-miR-
Cervix (Kniazeva et al., 2023).

In summary, we have developed performant de novo models
to characterise breast cancer heterogeneity agnostic of hypothesis.
The candidate stage-salient biomarkers could play a role in the
progression of breast cancer, whose varying manifestations underlie
differential response to treatment regimens. Developing models
from minimal feature spaces has several advantages, chief among
them being sensitivity to heterogeneous individual presentation,
and generalization to out-of-domain population. One example of
this in the present study is the performant external validation
of the Molecular Subtype model on the TNBC-only African-
enriched multiethnic international cohort (25/26 samples correctly
identified). It is noteworthy that TNBC is also the most common
molecular subtype in the Indian subcontinent, and has frustrated
drug discovery programs with few druggable targets. It may be
noted that the use of mere five features in the metastatic model
mitigates against the limited datasets available, and offers realistic
prospects for useful generalization in clinical diagnostics. Validation
analysis with miRNA strongly supported DEPDCI, FOSB and
DUSP1 as potential biomarkers for metastasis. More generally,
the candidate model features identified here could provide novel
hypotheses for chemotherapy and immunotherapy investigations.
We would like to acknowledge that the late-integration of multi-
omics has not consistently provided conclusive evidence for the
features used in the models, yielding possible directions for
future investigations. Our study overcomes certain limitations
of earlier models, namely reporting of balanced performance
metrics, availability for academic research, and inclusion of external
validation. The confidence returned by BC-Predict predictions
could be used to safeguard against weak and uncertain evidence,
addressing the hazard with AI/ML modelling (Yao et al., 2022). The
clinical translation of AI/ML models would be a step forward for
personalized medicine, necessitating adequate regulation to ensure
the benefits of AI for all (El Naqa et al., 2023; Hickman et al.,
2021). Validation and assurance of model quality could alleviate
the risks of distribution drift and cohort selection bias, and pave
the way for clinically effective decision support aids in precision
oncology centers. The realisation of software-as-medical-devices
promises to revolutionize the diagnosis, triage, and treatment
of cancers.

5 Conclusion

Assessment of low-risk genetic factors unmasks induced
vulnerabilities, and early-stage characterization of breast cancer
heterogeneity constitutes the premise for personalized and targeted
precision medicine. In this work, we have developed de novo models
for addressing key problems in breast cancer heterogeneity based
on public-domain expression datasets. Using custom protocols to
identify features of interest to each problem, we have trained,
optimised and externally validated the models. Our analysis has
yielded novel and stage-salient drivers of cancer progression,
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including two stage-I salient genes (CHRNA6, MMP10), two
stage-II salient genes (DEPDC1, COXAI), ten stage-IIT salient
genes (including AKR7A3, FOXA1, CXCL5 and GDF5) and 20
stage-IV salient genes (including FREM1 and HFM1). We have
developed solutions to four problems of interest in characterizing
breast cancer heterogeneity: (i) ‘cancer’ vs. ‘normal’ based on 10
features (2 stage salient genes and 8 top linear model genes)
with balanced accuracy ~97.42% on external validation; (ii) non-
metastatic vs. metastatic based on 5 features with balanced accuracy
~88.22% on external validation; (iii) molecular subtyping (namely
Luminal, HER2+, and TNBC) based on 16 features with balanced
accuracy ~88.79% on external validation; and (iv) histological
subtyping (IDC vs. ILC) based on 24 features with ensemble
accuracy ~94.23% on external validation. We have validated our
results in multiple modalities. Based on these outcomes, we have
developed an inference engine BC-Predict, which serves the best
models developed for each problem, upon an input instance of
expression data from a patient sample. BC-Predict is available
for academic and non-commercial purposes as an experimental
predictive aid for characterization of breast cancer heterogeneity
based on minimal expression information, and subject to refinement
with new knowledge. In conclusion, we have identified various novel
candidate biomarkers of heterogeneous breast cancers that have
been embedded into one integrated and validated cascade model
that could pave the path to expediting personalized differential
diagnosis and early-stage cure.
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