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Introduction: The complexity of COVID-19 requires approaches that extend 
beyond symptom-based descriptors. Multi-omic data, combining clinical, 
proteomic, and metabolomic information, offer a more detailed view of disease 
mechanisms and biomarker discovery.
Methods: As part of a large-scale Quebec initiative, we collected extensive 
datasets from COVID-19 positive and negative patient samples. Using a multi-
view machine learning framework with ensemble methods, we integrated 
thousands of features across clinical, proteomic, and metabolomic domains 
to classify COVID-19 status. We further applied a novel feature relevance 
methodology to identify condensed signatures.
Results: Our models achieved a balanced accuracy of 89% ± 5% despite the 
high-dimensional nature of the data. Feature selection yielded 12- and 50-
feature signatures that improved classification accuracy by at least 3% compared 
to the full feature set. These signatures were both accurate and interpretable.
Discussion: This work demonstrates that multi-omic integration, combined 
with advanced machine learning, enables the extraction of robust COVID-19 
signatures from complex datasets. The condensed biomarker sets provide a 
practical path toward improved diagnosis and precision medicine, representing 
a significant advancement in COVID-19 biomarker discovery.
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 1 Introduction

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), has led to the widespread deployment of diagnostic 
strategies, including reverse transcription-polymerase chain reaction (RT-PCR), antigen 
detection, and clinical symptom-based assessments. Clinically, the disease manifests with 
a heterogeneous spectrum of symptoms that can broadly be classified into three categories: 
infectious, respiratory, and neurological (Huang et al., 2020).

While RT-PCR detects viral RNA and antigen assays evaluate the humoral 
immune response, these tools alone do not capture the full complexity of the 
disease. COVID-19 has been associated with diverse systemic manifestations, 
including respiratory failure, coagulopathies, and inflammatory syndromes,
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some of which correlate with severe clinical outcomes and mortality 
risk (Iba et al., 2020; Lipman et al., 2022).

This phenotypic variability likely reflects a multifactorial 
disruption of underlying molecular and metabolic pathways. 
The resulting complexity underscores the need for 
integrative approaches to better understand host-pathogen 
interactions and to refine diagnostic and prognostic
strategies.

Omics sciences, as key components of systems biology, offer 
powerful tools to address this challenge (Richard et al., 2022). 
By enabling high-throughput analysis of biological molecules such 
as genes, proteins, and metabolites, omics technologies provide a 
comprehensive view of the host response and disease progression. 
These approaches allow for the exploration of complex, multilayered 
mechanisms that underlie the clinical heterogeneity observed in 
COVID-19. However, omics approaches generate large amount 
of high-dimensional data, requiring advanced data analytics and 
machine learning methods to uncover meaningful biological
insights.

The research dedicated to understanding COVID-19 has been 
extensive. Indeed, several studies have explored the application 
of machine learning to omics data in the context of COVID-
19. However, many of these studies rely on a relatively limited 
number of biological markers, typically between 32 and a few 
hundred (Gong et al., 2022; Richard et al., 2022), which may not 
provide sufficient coverage for the discovery of novel biomarkers or 
for a comprehensive understanding of the underlying molecular 
mechanisms. From a computational perspective, most existing 
works employ single-model approaches (Liu et al., 2023) and 
do not systematically address class imbalance issues, which can 
impact model robustness and generalizability (Overmyer et al., 
2020). In this paper, we aim to contribute to this body of 
knowledge by leveraging machine learning techniques to process 
the substantial amount of data collected during the pandemic. 
Our primary goal is to employ interpretable machine learning 
methodologies to identify a multi-omic signature for COVID-
19 using data from a large cohort of patients. Machine learning 
models excel in uncovering complex multivariate relationships 
among features, unlike conventional statistical methods such 
as P-Value analysis, which typically focus on univariate
correlations.

In addition to automated machine learning techniques, 
we integrated bioinformatics to analyze the proteomic and 
metabolomic data returned by the algorithms. We utilized the 
BQC19 database, a provincial initiative in Quebec designed to 
compile and analyze multiomic information to provide better 
insight into the COVID-19 pandemic. This study focuses specifically 
on proteomics and metabolomics data to ensure a substantial 
patient impact.

We present our machine learning pipeline for extracting 
signatures, offering both a high-level overview and detailed 
information about the models that form the foundation of our 
analysis. Our findings aim to improve the understanding of 
COVID-19 through advanced machine learning and bioinformatic 
approaches, ultimately forming better diagnostic and therapeutic 
strategies. 

2 Materials and methods

2.1 Dataset

The data used in this paper was extracted from the Quebec 
COVID-19 biobank database1 (Tremblay et al., 2021), which 
provided data from 1400 COVID-19 positive and negative 
patients. In the original database, blood samples were processed 
to extract numerous -omic data, including genomic, proteomic, 
metabolomics, or transcriptomic. In our case, we chose to focus 
on metabolomic and proteomic data to run our workflow on 
biological information close to the targeted phenotype. Of all 
the available patient samples, we focused on patients who were 
hospitalized, either for COVID-19-related symptoms or for any 
other reason (scheduled interventions, consultations, among many 
other indications). These patients were sampled multiple times 
during their hospital stay, from which we only consider the first 
sampling. From this subgroup of patients, we extracted the subset 
that was available both in metabolomics and proteomics to enable 
multi-view approaches without the challenge of missing data. We 
only included original infections in the cohort and we focused on 
patients that were either positive for COVID-19 or negative but 
still presenting symptoms to ensure that our algorithms focused on 
COVID-19-specific biomarkers and not on the presence or absence 
of symptoms. Finally we selected patients that were sampled within 
0–50 days following symptom onset. We thus obtained a cohort of 
478 individuals, with 84% of COVID-19 positive patients and 16% of 
symptomatic controls, described by Table 1. Interestingly, this table 
shows that some symptoms, such as fever, output significant p-values 
to detect COVID-19-positive patients. However, we see in Section 3 
that even if symptomatology provides some information, it was not 
up to the standard set by our method.

For each patient, 5,400 targeted metabolites were tested. The data 
acquisition method is detailed in the work of Tremblay et al. (2021), 
including the handling of batch effects and data normalization. As 
our main goal was to identify biomarkers, we focused on the subset 
of 896 metabolites that were identified by either a KEGG (Kanehisa 
and Goto, 2000) or an HMDB (Wishart et al., 2007) index to ensure 
our ability to track their associated metabolic pathways without any 
ambiguity. In Supplementary Material, we provide experiments run 
on the 5,400 available metabolites, quantifying the loss in accuracy 
induced by this metabolite filtering. Moreover, from the 7,200 tested 
proteins, we used the 5,284 identified proteins available in the dataset 
and discarded the un-identified ones. Therefore, our approaches relied 
on two dataset, a metabolomic one of size 478 × 896 and a proteomic 
one of size 478 × 5284, with no missing data. We provide the code that 
retraces the pre-processing pipeline in the GitHub repository. 

2.2 Extracting signatures form multi-omic 
data

The main goal of our study was to extract a small subset of 
features, a signature, strongly associated with the phenotype from 
the multi-omic data provided by BQC-19. To select the best features 

1 https://www.bqc19.ca/
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TABLE 1  Baseline characteristics. The p-value column indicates the result of a statistical test between the values of the variable and the variable 
COVID status.

Grouped by status COVID

Missing Overall Positive Control P-value

n 478 375 103

Sex:, n (%)
M

0
238 (49.8) 182 (48.5) 56 (54.4)

0.348
F 240 (50.2) 193 (51.5) 47 (45.6)

Age at arrival:, mean (SD) 0 66.0 (18.1) 66.4 (17.8) 64.6 (19.1) 0.389

Hospitalized or Outpatient? n (%) Hosp 0 478 (100.0) 375 (100.0) 103 (100.0) 1.000

BMI:, mean (SD) 215 28.9 (6.5) 28.9 (6.2) 28.9 (7.4) 0.967

Days btwn sympt. and blood draw, mean 
(SD)

14 9.6 (8.4) 9.8 (7.8) 9.1 (10.5) 0.533

Obesity ? n (%)
No

1
432 (90.6) 337 (90.1) 95 (92.2)

0.643
Yes 45 (9.4) 37 (9.9) 8 (7.8)

Asymptomatic? n (%)
No

0
454 (95.0) 363 (96.8) 91 (88.3)

0.001
Yes 24 (5.0) 12 (3.2) 12 (11.7)

Shortness of breath (Dyspnea) ? n (%)
No

175
27 (8.9) 16 (6.6) 11 (17.7)

0.013
Yes 276 (91.1) 225 (93.4) 51 (82.3)

Fever ( > 38.0 Celcius) ? n (%)
No

197
40 (14.2) 19 (7.8) 21 (55.3)

<0.001
Yes 241 (85.8) 224 (92.2) 17 (44.7)

Muscle aches (Myalgia) ? n (%)
No

354
69 (55.6) 46 (47.9) 23 (82.1)

0.003
Yes 55 (44.4) 50 (52.1) 5 (17.9)

Loss of taste/lost of smell ? n (%)
No

375
79 (76.7) 55 (69.6) 24 (100.0)

0.005
Yes 24 (23.3) 24 (30.4) 0 (0)

for the COVID-19 signature, we trained interpretable machine 
learning algorithms to differentiate COVID-19 positive and negative 
patients from which we extracted and ranked the most important
features.

Additionally, to compare our approach to state-of-the-art 
analysis, we performed a statistical study on all the available features 
both in metabolomics and proteomics. It implied constructing 
a volcano plot, showing differences in average values of data 
features between the positive and negative folds. The volcano plot 
reports the fold change (ratio between the two average values 
in folds) in the x-axis and the p-value of a statistical T-test 
that shows the significance of differences between the average 
values in the two folds on the y-axis. We used this statistical 
analysis to build a subset of features that were significant both 
in terms of fold change (a ratio lower than 0.5 or higher than 
2) and p-value (p-value < 0.05/6180). Bonferroni correction is 
applied to the threshold on the p-value (standard threshold of 0.05 

divided by the number of variables tested. This selection process 
yielded a subset of 10 features, which we refer to as the Volcano 
signature. This subset serves as a comparative baseline for evaluating 
the efficacy of our machine learning-based feature selection
approach. 

2.2.1 Interpretable classifiers
When applying machine learning to sensitive tasks such as 

health-related problems, it is highly recommended to use models 
that are understandable by non-machine learning experts (Rudin, 
2019). Machine learning is a vast field in which models vary 
from tremendously complex deep neural networks (Nielsen, 2015) 
to straightforward logic-based Set Covering Machines (Marchand 
and Shawe-Taylor, 2003). Our study focused on algorithms that 
present one characteristic: natively outputting an importance score 
for each feature. Indeed, understanding the models outputted by 
more complex classifiers is a research field in itself (Arrieta et al., 
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FIGURE 1
Feature relevance extraction: Models from various families are fitted to the data, each providing a balanced accuracy (BA) score reflecting its 
performance and a feature importance score indicating the contribution of each feature. Feature relevance is the weighted average of feature 
importance across all models, where weights are determined by each model’s balanced accuracy.

2020), but in our case, we use only classifiers that output inherently 
interpretable models as Explainable AI methods are commonly less 
precise than native feature importances (Wang et al., 2024).

In this work, we are interested in two outputs for each classifier: 
first, the quality of their model, measured by its classification 
accuracy. Secondly, the importance score they assign to each 
feature of the dataset, which indicates the significance of that 
feature in the decision-making process, denoted feature importance. 
It is important to note that our work does not assume these 
models are sufficiently reliable to autonomously classify COVID-
19 patients. Instead, they serve as a tool to extract significant 
features from the dataset. This set of features is then validated 
through bioinformatics analysis, as described in Section 2.5, and 
could contribute to a better understanding of long COVID-19
symptomatology. 

2.2.2 Feature relevance
One notable contribution of this study is the aggregation 

of classifier outputs to compute a single score for each feature, 
quantifying its general utility for the COVID-19 classification task. 
Therefore, we introduced the concept of feature relevancecomputed 
as the average feature importance across classifiers, weighted by 
each classifier’s quality. This relevance score reflects a consensus 
among classifiers, with each classifier “voting” based on the 
feature’s importance in its model, weighted by the model’s overall 
performance, as illustrated in Figure 1. Moreover, a feature deemed 
important in low-accuracy classifiers is less relevant than one 
moderately important in high-accuracy models. It is similar to 
the method proposed in Fisher et al. (2019), diverging in the fact 
that we built a majority vote taking into account all the available 
classifiers where Fisher et al. (2019) sets an accuracy threshold under 
which the classifiers are not considered. In Definition 1, we provide 
a mathematical formulation for the relevance.

DEFINITION 1 (Feature relevance). Considering a benchmark, 
comprised of C classifiers h1,…,hc,…,hC. Each one outputting a 
classification score sc, and a feature importance score Fc,j for each 
feature j of the dataset, we define the relevance of a feature rj as 
the average of the feature importance weighted by the score of each 

classifier as in Equation 1.

rj =
C

∑
c=1

n(sc) × Fc,j, (1)

with n(sk) the normalized score computed, for a higher-is-better 
scoring method as in Equation 2

n(sc) =
{
{
{

0 if sc < r,
sc − r
m− r

otherwise,
(2)

with r the score of the random guessing classifier and m the 
maximum score. 

2.2.3 Applicative challenges
The dataset in this study is significantly imbalanced, with 

375 COVID-19 positive patients and 103 controls. To address 
this, we employed the balanced accuracy metric (Brodersen et al., 
2010), which averages the accuracy of each class, ensuring a 
model predicting all patients as positive only achieves 50% 
balanced accuracy.

Additionally, we applied an imbalance bagging (IB) wrapper 
(Lemaître et al., 2017) to compatible classifiers. This sampling 
strategy was selected for its ability to reduce variance and improve 
robustness when used with tree-based classifiers, as well as to avoid 
introducing synthetic or unrealistic observations that could distort 
the original data distribution. This method runs 10 classifiers on 
re-balanced subsets of the dataset, where the number of COVID-
19-positive samples matches the number of control samples. Each 
IB classifier aggregates the votes from these 10 sub-classifiers. An 
example using a decision tree is shown in Figure 2.

The dataset offers multi-omic data for signature extraction 
but poses a challenge with its “fat” structure, where the 
number of features (6,180) far exceeds the number of 
samples (487) (Romero et al., 2017). This contrasts with “big” data, 
where the samples outnumber features. Learning on fat data is a 
challenge frequently encountered when applying machine learning 
to biological datasets. To address this, we used sparse classifiers with 
built-in dimension reduction and conducted experiments across 10 
train/test splits to enhance robustness, a process we term train/test 
bootstrapping. 

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1645785
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Bauvin et al. 10.3389/fbinf.2025.1645785

FIGURE 2
Imbalance bagging for a decision tree: Random sub-sampling creates 10 balanced datasets. Each dataset trains a classifier, and the final decision is the 
aggregate vote of these classifiers, denoted IB Decision Tree.

FIGURE 3
Study workflow. (a) Signature extraction process. (b) ML workflow.

2.3 Full experimental protocol

In this section, we detail our protocol, summarized in 
Figure 3. We first separated the data into two views with no 
missing data: metabolomics and proteomics. In addition, we 
trained our approaches on their concatenation (Snoek et al., 
2005), denoted the multi-omic view. On each of those 
versions of the dataset, we run our process to extract a 
metabolomic, proteomic and multi-omic signature, as presented in
Figure 3a.

The machine learning workflow represented in Figure 3b 
consists of splitting the dataset 10 times in a training (80%) and a 
testing (20%) set, maintaining the original class ratio. On each split, 
we trained a pool of classifiers described in depth in Section 2.4. We 

optimized hyper-parameters via random search combined with 5-
fold cross-validation. Finally, we evaluate their balanced accuracy on 
the testing set and we combine the feature importance scores of each 
train/test split.

All the machine learning experiments were run 
on SuMMIT (Bauvin et al., 2022), facilitating comparisons between 
mono- and multi-omic classifiers. 

2.4 In-depth machine learning algorithms

2.4.1 Interpretable classifiers pool
To provide feature relevance for each classifier, we focused on 

interpretable classifiers. Ensemble methods were primarily used due 
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to their capability on -omic data and inherent interpretability when 
using straightforward sub-classifiers.

Among ensemble methods, we focused on sparse approaches, 
such as the Set Covering Machine (SCM) (Marchand and 
Shawe-Taylor, 2003; Drouin et al., 2016), which builds a 
logical combinations of binary rules. We then included 
Decision Tree (DT) (Breiman et al., 1984), a well-known 
method used for its interpretability, despite a higher risk of
overfitting.

For more complex decision functions, Adaboost (Freund and 
Schapire, 1997) and Gradient Boosting (Friedman, 2001) were 
included. They perfectly fit our study, as, with our parameters, they 
rely on single-feature sub-classifiers that are linearly combined. 
We also used SamBA (Bauvin et al., 2023), which integrates 
both the advantages of boosting and similarity-based decisions 
for precise and sparse functions. Random Forest (Breiman, 
2001) and RandomSCM (Godon et al., 2022) were utilized 
despite their generally dense decision functions, owing to 
the feature relevance calculation’s capability to manage dense
classifiers.

We also included kernel methods, known for their versatility 
with complex tasks (Hofmann et al., 2008). Traditional kernel 
methods (e.g., SVM-RBF) often lack interpretability due to complex 
decision functions. We addressed this with SPKM (Huusari et al., 
2021), which introduces primal and dual sparsity, making 
kernel-based models interpretable by relying on sparse
elements. 

2.4.2 Additional state-of-the-art classifiers
For performance analysis of extracted signatures, less 

interpretable algorithms were included. Lasso (Tibshirani, 1996) 
was added to assess the linear separability of patients. k-Nearest 
Neighbors (KNN) (Fix and Hodges, 1989) and Support Vector 
Machine with Radial Basis Function kernel (SVM-RBF) (Boser et al., 
1992) served as indicators of the signal-to-noise ratio in the 
signatures. Note that SVM-RBF’s sensitivity to imbalance led to 
the inclusion of its IB variant. Post-extraction, these algorithms 
provided insights into the biological processes underlying the 
signatures. 

2.5 Pathway enrichment analysis, 
visualization, and interpretation

2.5.1 Proteomics mono-view signature
We interpreted the proteomics mono-view signature using 

a two-step approach. First, we performed pathway enrichment 
analysis (PEA) using the ConsensusPathDB (CPDB) web tool to 
identify key regulatory mechanisms and signaling pathways of 
SARS-CoV-2. CPDB integrates data from 32 public resources, 
including KEGG, Reactome, and WikiPathways. We used an over-
representation statistical method to identify enriched biological 
functions in the list of significant proteins, with a p-value cutoff 
of 0.01 and false discovery rate (FDR) correction. A custom 
proteome reference background was uploaded to reduce false 
positives. Second, we conducted a pathway topology-based analysis 
using NetworkAnalyst software to highlight physical and functional 
interactions among genes and proteins. We used the InnateDB 

database to retrieve binary interactions and visualized high-
confidence relationships as a network. Functional pathway analysis 
was performed on seed proteins, and the top Gene Ontology 
Biological Process (GO:BP) terms and biochemical pathways were 
selected for visualization in Cytoscape. This approach combines 
over-representation analysis with network-based analysis to provide 
a comprehensive interpretation of the proteomics signature. 

2.5.2 Metabolomic mono-view signature
The interpretation of the metabolomic mono-view signature 

relied on pathway over-representation analysis (ORA) to study 
the inflammatory immune response and metabolic perturbations 
in SARS-CoV-2 patients. We standardized the list of significant 
metabolite identifiers using the Metabolite ID Conversion tool 
in MetaboAnalyst 5.0 and built a custom metabolome reference 
background. ORA and pathway topology (PT) analyses were 
performed on the metabolic mono-view signature (Top17) 
and a broader signature (Top50) using the MetPA module in 
MetaboAnalyst 5.0. Default parameters were used, including the 
KEGG human pathway library, hypergeometric test for ORA, 
and relative betweenness centrality for PT, with FDR correction 
to minimize false positives. The STITCH web tool was used to 
explore interactions between proteins and metabolites, providing 
insights into molecular and cellular functional relationships. 
STITCH links chemical space to gene-protein space through 
physical and functional interactions stored in the STRING 
database. The STITCH web tool was used to explore interactions 
between proteins and metabolites, providing insights into 
molecular and cellular functional relationships. STITCH links 
chemical space to gene-protein space through physical and 
functional interactions stored in the STRING database. A network 
association for the broader mono-view signature (Top50) was 
performed to maximize metabolite-metabolite interactions (min 
interaction score of 0.4 and up to 20 first-order interactors) 
and retrieving biochemical reactions from the STRING database 
and PubChem text mining. Functional enrichments of GO 
biological processes and KEGG pathways were performed and 
imported into Cytoscape for interpretation of the metabolomic
signature. 

3 Results

3.1 Classifier performance on full 
description

The first stage of this study is to evaluate the classifiers 
on the full dataset, analyzing their scores on metabolomic, 
proteomic and multi-omic data. In Figure 4a, we provide a bar 
plot representing the mean balanced accuracies (BA) for each 
classifier on each representation of the data. In Figure 4b, we 
report the BA of the IB derivatives of the classifiers that were 
sensitive to imbalance. In this experiment, the scores range from 
87% BA for the IB version of Adaboost on proteomics to 50%
BA for the SVM-RBF on multi-omics and proteomics. From 
these figures, we can infer that for the task at hand, proteomics 
provides more information on the COVID-19 status of the patients 
than metabolomics. However, metabolomics is still informative 
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FIGURE 4
Performance of the algorithms on the full description. The majority of the approaches are over 70% balanced accuracy. (a) Basic algorithms scores on 
the full description of the samples. Each view is represented by a coloured bar. The best performing algorithm is SamBA on the multi-omic data. (b)
Scores for the algorithms for which we added the imbalanced bagging wrapper presented in Section 2.2.3. The best performing algorithm is Adaboost 
on the multi-omic dataset.

as a classifier relying uniquely on it outputs 79% balanced
accuracy.

3.2 Signature extraction

Relying on these encouraging results, we computed the feature 
relevance for each descriptor of both the -omics, and obtained three 
graphs, presented in Figures 5a–c, one for each -omic and one for 
the multi-omics. In these graphs, we plotted the relevance of each 
feature, as introduced in Section 2.2.2. We highlight the features 
included in the signatures in blue, and the other ones in orange. 
Therefore, 

• for metabolomics, we set the relevance threshold to 6.5∗ 10−4,
• for proteomics to 9∗ 10−4,
• for multi-omics to 1.51∗ 10−3.

This provides us with a 17 feature signature for metabolomics, 
19 for proteomics and 29 for multi-omics. The list of bio-markers 

included in our signatures is provided in Tables 2–4. In addition 
to those relevance-based signatures, our study uses one additional 
subset of features: the significant features outputted by the volcano 
plot shown in Figure 5d, denoted the Volcano signature.

3.3 Performance scores on signatures

Relying on those subsets of features, we analyze them by re-
training the pool of classifiers on each subset. In Figure 6, for the 
sake of clarity, we only present the score of the best algorithm on each 
subset of features. In Supplementary Material, we provide the matrix 
that gathers the accuracy of all the classifiers on all the signatures.

Figure 6 shows that the best scores are obtained on the 
multi-omic signature, despite the fact that it consists of only 
29 features among the 6,180 available ones. This result confirms 
that the proposed multi-omic signature is relevant to separate 
symptomatic patients between COVID-19 and controls. Another 
interesting result is the low accuracy scores of the volcano signature. 
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FIGURE 5
(a–c) show the relevance ranking for the features in metabolomics, proteomics and multi-omic, respectively. The blue features represent the 
signatures. In Supplementary Material 1.2, we report all the features ranked by relevance for multi-omics, highlighting the small size of the signatures 
compared to the full descriptions. (d) Shows the volcano plot with one point being a feature represented by its fold change (x) and p-value (y). All the 
features that are in the top right and left corners are selected as part of the Volcano signature. (a) Metabolomics. (b) Proteomics. (c) Multi-omic. (d)
Volcano plot.

Indeed, machine learning presents the huge advantage of including 
interactions between features in its models, which is not the case 
with univariate statistical analyses such as volcano plots or p-
Values (Costanzo et al., 2022). Therefore, even if the Volcano plot 
extracts a 21-feature signature, its accuracy is never greater than 
84%. In the following section, we investigate the pathways linked 
to each of the extracted features to further ensure that the machine 
learning study yielded meaningful features. 

3.4 Pathway enrichment analysis and 
network-based analysis

3.4.1 Proteomic mono-view signature
A machine learning-based proteomic analysis identified 19 

differentially expressed proteins (DEPs) in COVID-19 positive 
patients compared to negative ones. The most predictive biomarkers 
were MX1, ISG15, LAG3, IFIT3, and TNXB. Pathway enrichment 

analysis revealed that these DEPs were significantly associated with 
SARS-CoV-2 innate immunity evasion and cell-specific immune 
response pathways. Notably, interferon-related pathways, such 
as ISG15 antiviral mechanism and interferon signaling, were 
highly enriched. Proteins MX1, ISG15, CXCL10, and DDX58 
were the most frequently mapped in COVID-19-related pathways. 
Functional interactions among these biomarkers will be further 
evaluated through protein network analysis. Additionally, some 
pathways were linked to other viral infections like influenza A 
and hepatitis C, indicating a broader disturbance in the innate 
immune response. Proteins such as EPHB2, APCS, and F11 
were associated with disease severity, including coagulopathies 
and lung damage. A protein-protein interaction network analysis 
highlighted ISG15 as a key protein, interacting with MX1, IFIT3, 
and DDX58. These proteins were enriched in interferon-related 
pathways and immune responses to viruses. The analysis also 
identified interferon regulatory factors (IRF-1, IRF-4, IRF-7) and 
STAT1 as major mediators of the cellular response to interferons. 
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TABLE 2  Proteomics signature.

Feature Relevance

MX1 2.16e−02

ISG15 1.78e−02

LAG3 4.98e−03

IFIT3 3.76e−03

TNXB 2.29e−03

C1QTNF1 1.34e−03

CXCL10 1.32e−03

EPHB2 1.32e−03

SCGB3A1 1.07e−03

F11 1.07e−03

LUM 1.05e−03

SDCBP 1.04e−03

PRDM1 1.02e−03

KRT7 9.96e−04

INSR 9.93e−04

DDX58 9.92e−04

APCS 9.78e−04

NMI 9.74e−04

HRASLS2 9.31e−04

Overall, the proteomic signature is highly correlated with interferon 
signaling following viral infection (Menachery and Gralinski, 2021; 
Buchrieser et al., 2020; Lin et al., 2021; Rajah et al., 2021). 

3.4.2 Metabolomic mono-view signature
Metabolomics identified 12 differentially expressed metabolites 

and 5 lipids that segregate SARS-CoV-2 patients, highlighting 
the role of lipid metabolism in inflammatory and immune 
responses. Ribothymidine showed the most significant variation, 
previously reported as a COVID-19 biomarker. Azithromycin, a 
broad-spectrum antibiotic, was upregulated in COVID-19 positive 
patients, potentially due to its administration during the pandemic. 
Pathway analysis did not reveal significant enrichment in the KEGG 
database, but top biomarkers were associated with pyrimidine 
metabolism. Key metabolites included ureidopropionic acid, α-
ketobutyric acid, and L-malic acid, which were mapped across 
multiple interconnected pathways. Network analysis identified five 
main sub-clusters of metabolites, with L-Kynurenine (KYN) as a 
key metabolite in the tryptophan and kynurenine cluster. Enzymes 
involved in the KYN pathway, such as indoleamine 2,3-dioxygenase 
(IDO5) and kynurenine aminotransferase (AADAT and CCBL26), 

TABLE 3  Metabolomics signature.

Feature Relevance

Ribothymidine 1.58e−02

Ureidopropionic acid 2.70e−03

PC(34:4) 2.59e−03

N-Acetylputrescine 2.55e−03

PC(P-16:0/16:1 (9Z)) 2.02e−03

Cytosine 1.76e−03

Salicyluric acid 1.14e−03

2-Ketobutyric acid 1.10e−03

Succinimide 1.03e−03

Alpha-Ketooctanoic acid 9.56e−04

Malic acid 8.87e−04

PC(18:2 (9Z,12Z)/18:2 (9Z,12Z)) 7.74e−04

Cer(d18:1/16:0) 7.70e−04

Azithromycin 7.26e−04

Oleamide 7.07e−04

Kynurenine 7.00e−04

2-Furoylglycine 6.73e−04

were also identified. Polyamine metabolites were found to favor 
coronavirus replication, and spermidine was highlighted in the 
polyamine sub-cluster. The metabolization of niacinamide to 1-
methyl nicotinamide, important for the innate immune response, 
was also noted. Overall, the metabolomic signature is associated 
with amino acids, carbohydrates, nucleotides, and lipids, with 
significant enrichments in nicotinate, nicotinamide, beta-alanine, 
arginine, proline, and tryptophan metabolisms. 

4 Discussion

COVID-19 emerged as a global health crisis in early 2020, 
characterized by complex pathophysiology, diverse clinical 
manifestations, and the persistence of symptoms in a subset of 
patients, known as long COVID. The aim of this study was to gain 
deeper insight into the intricate molecular mechanisms involved in 
the disease.

Characterizing the biological response to COVID-19 remains 
a major challenge. This study underscores the added value of 
exploring multiple omic layers to obtain a more comprehensive 
view of the underlying pathophysiology. Despite leveraging a 
relatively large cohort from the BQC-19 dataset, the sample size 
remains limited when compared to the complexity of biological 
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TABLE 4  Multi-omic signature.

Omic Feature Relevance

P MX1 5.27e−02

P ISG15 4.50e−02

P IFIT3 1.07e−02

P LAG3 1.04e−02

M Ribothymidine 8.54e−03

P TNXB 5.51e−03

P CXCL10 4.21e−03

P F11 3.29e−03

P EPHB2 3.15e−03

P KRT7 3.01e−03

P APCS 2.68e−03

P ADPGK 2.45e−03

P LGALS9 2.23e−03

P C1GALT1C1 2.21e−03

P BGLAP 1.98e−03

P C1QTNF1 1.84e−03

P INSR 1.81e−03

M LysoPE (20:4 (5Z,8Z,11Z,14Z)/0:0) 1.74e−03

P DDX58 1.65e−03

P LUM 1.65e−03

P STAT1 1.64e−03

P PREP 1.64e−03

P ADSL 1.63e−03

P HRASLS2 1.62e−03

M (4-ethenyl-2-methoxyphenyl)oxidanesulfonic 
acid

1.62e−03

P IL1R1 1.59e−03

P HEXB 1.58e−03

P MUCL1 1.57e−03

M Methyllysine 1.56e−03

systems and the depth of omics-level interactions. Additionally, 
the limited overlap between patients with full multi-omics profiles 
precluded the use of robust, interpretable multi-omic machine 
learning models.

This study focuses on extracting signatures relying on machine 
learning approaches. Such methods present the huge advantage 
of taking into consideration both linear and non-linear relations 
between the data and the outcome. By combining multiple 
algorithms, we mathematically approach the problem from different 
perspectives, enabling the identification of diverse and potentially 
complementary signal patterns (capture of both linear and non-
linear relationships). Indeed, machine learning algorithms are able 
to find very complex patterns in the data, compared to classical 
statistical analysis (Costanzo et al., 2022). This advantage comes with 
a potentially much higher computational cost. However, we only 
used approaches that were compatible with very high-dimensional 
data to reduce the computational needs of our pipeline. In addition, 
machine learning models, by their very nature, set hypotheses based 
on the shape of the patterns they try to learn. To overcome this, 
we aggregated a large collection of classifiers thanks to our feature 
relevance score.

The reduced signature retrained on a smaller subset of features 
proved particularly robust, as it helped minimize noise from weakly 
informative variables and improve generalization.

Finally, in Section 3.2, we propose signatures that are solely 
based on the relevance of the features, setting thresholds that 
take into account breaking points in the relevance rankings. To 
complete such a method, an ablation study (Cohen and Howe, 
1988) or another more advanced explainability method could be 
complementary to our interpretable approach. This collaboration 
between interpretability and explainability could allow us to 
optimize the number of features in each signature without relying 
on an arbitrary threshold.

Although initially designed as an exploratory and mechanistic 
approach, the results and models developed in this study could pave 
the way for novel biomarkers or diagnostic signatures that go beyond 
the binary outcomes provided by antigen or PCR tests, thereby 
enabling more precise therapeutic strategies based on the involved 
metabolic axis (Yamga et al., 2023) However, this approach poses 
several challenges, particularly the need for rigorous, multi-center, 
prospective validation, as well as careful selection of the variables 
to be included in the clinical score, while accounting for analytical 
constraints.

Several of the top-ranked markers identified in our results 
are highly consistent with the known pathophysiology of COVID-
19, notably involving viral infection responses and immune 
hyperactivation, which are often responsible for severe symptoms 
or even death. The presence of multiple interferon-stimulated genes 
such as MX1, ISG15, and IFIT3 reflects a robust antiviral response, 
while proteins like CXCL10, LAG3, and STAT1 further support the 
role of immune dysregulation and hyperinflammation in COVID-
19 progression. The presence of coagulation factor XI (F11) is 
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FIGURE 6
This figure shows the score of the best performing algorithm for each signature on each view. The full description encapsulates all the features 
available, and the symptomatology baseline, represented as a dashed line, shows a classifier’s performance relying only on symptomatology data, 
as shown in Table 1.

also notable, potentially reduced in COVID-19 cases, echoing its 
implication in hemorrhagic and thrombotic complications observed 
in severe disease. Markers such as C1QTNF1 and APCS additionally 
point to disturbances in vascular and complement pathways, 
which are frequently associated with endothelial damage and 
systemic inflammation. Additionally, the detection of azithromycin 
among the discriminating features likely reflects its widespread 
therapeutic use in COVID-19 patients, though it is not a biologically 
meaningful marker per se, as it is not directly linked to underlying 
pathophysiological mechanisms.

Taken together, our findings emphasize the interplay of immune 
and inflammatory responses, coagulation and vascular dysfunction, 
and metabolic disturbances, all of which align with the known 
molecular and clinical features of COVID-19.

Interestingly, a greater proportion of proteomic markers 
emerged in the multi-omic signature, corroborating the superior 
predictive performance observed with proteomics-based models. 
This suggests that the proteomic layer captures more informative 
biological signals in the context of COVID-19, likely reflecting 
the protein-driven nature of immune activation and inflammatory 
cascades during infection.

Nonetheless, the metabolomic signature contributes distinct 
and complementary insights, highlighting alterations in lipid 
metabolism (e.g., phosphatidylcholines, ceramides), amino acid 
catabolism (e.g., kynurenine, N-acetylputrescine), and energy 
pathways (e.g., malic acid, 2-ketobutyric acid). These findings 
reflect broader metabolic adaptations and stress responses that 
are not fully captured at the proteomic level. By integrating both 
omics layers, the multi-omic model offers a more comprehensive 
and mechanistic view of the host response, bridging upstream 
immune signaling and downstream metabolic consequences. This 
systems-level perspective may help explain the heterogeneity 
of clinical outcomes in COVID-19 and could contribute to 

the development of more nuanced diagnostic or prognostic
tools.

In addition, our current study only relies on correlation relation, 
which could be improved by working with causal approaches once 
they are up to the standards of our pipeline (Godon et al., 2023). 
In addition, this work is one of the first steps in the discovery of a 
signature for long COVID-19.

This study has limitations. It was conducted on a single 
patient cohort with both metabolomic and proteomic data 
available. An interesting extension would be to test mono-
omic signatures on patients with data from only one omics 
type. However, the imbalance in case-control numbers would 
require specific methodological adjustments. Moreover, the control 
group’s heterogeneity may introduce bias—especially in relation 
to symptom onset kinetics and associated molecular signatures. 
Still, given the urgency and complexity of COVID-19 during the 
pandemic, our design enabled the identification of relevant omic 
signatures in line with existing literature and prevailing biological
hypotheses.

Lastly, this study represents an early step toward identifying 
molecular signatures associated with long COVID. Future 
efforts involving larger, longitudinal, and multi-omic cohorts 
will be essential to fully characterize long-term post-infection 
consequences.
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