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Introduction: The complexity of COVID-19 requires approaches that extend
beyond symptom-based descriptors. Multi-omic data, combining clinical,
proteomic, and metabolomic information, offer a more detailed view of disease
mechanisms and biomarker discovery.

Methods: As part of a large-scale Quebec initiative, we collected extensive
datasets from COVID-19 positive and negative patient samples. Using a multi-
view machine learning framework with ensemble methods, we integrated
thousands of features across clinical, proteomic, and metabolomic domains
to classify COVID-19 status. We further applied a novel feature relevance
methodology to identify condensed signatures.

Results: Our models achieved a balanced accuracy of 89% + 5% despite the
high-dimensional nature of the data. Feature selection yielded 12- and 50-
feature signatures that improved classification accuracy by at least 3% compared
to the full feature set. These signatures were both accurate and interpretable.
Discussion: This work demonstrates that multi-omic integration, combined
with advanced machine learning, enables the extraction of robust COVID-19
signatures from complex datasets. The condensed biomarker sets provide a
practical path toward improved diagnosis and precision medicine, representing
a significant advancement in COVID-19 biomarker discovery.

KEYWORDS

machine learning, multi-omics, biomarker, COVID-19, metabolomics, proteomics,
signature

1 Introduction

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has led to the widespread deployment of diagnostic
strategies, including reverse transcription-polymerase chain reaction (RT-PCR), antigen
detection, and clinical symptom-based assessments. Clinically, the disease manifests with
a heterogeneous spectrum of symptoms that can broadly be classified into three categories:
infectious, respiratory, and neurological (Huang et al., 2020).

While RT-PCR detects viral RNA and antigen assays evaluate the humoral
immune response, these tools alone do not capture the full complexity of the
disease. COVID-19 has been associated with diverse systemic manifestations,
including respiratory failure, coagulopathies, and inflammatory syndromes,
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some of which correlate with severe clinical outcomes and mortality
risk (Iba et al., 2020; Lipman et al., 2022).

This phenotypic variability likely reflects a multifactorial
disruption of underlying molecular and metabolic pathways.
The the
integrative approaches to better understand host-pathogen

resulting  complexity  underscores need for

interactions and to refine diagnostic and prognostic
strategies.

Omics sciences, as key components of systems biology, offer
powerful tools to address this challenge (Richard et al., 2022).
By enabling high-throughput analysis of biological molecules such
as genes, proteins, and metabolites, omics technologies provide a
comprehensive view of the host response and disease progression.
These approaches allow for the exploration of complex, multilayered
mechanisms that underlie the clinical heterogeneity observed in
COVID-19. However, omics approaches generate large amount
of high-dimensional data, requiring advanced data analytics and
machine learning methods to uncover meaningful biological
insights.

The research dedicated to understanding COVID-19 has been
extensive. Indeed, several studies have explored the application
of machine learning to omics data in the context of COVID-
19. However, many of these studies rely on a relatively limited
number of biological markers, typically between 32 and a few
hundred (Gong et al., 2022; Richard et al., 2022), which may not
provide sufficient coverage for the discovery of novel biomarkers or
for a comprehensive understanding of the underlying molecular
mechanisms. From a computational perspective, most existing
works employ single-model approaches (Liu et al, 2023) and
do not systematically address class imbalance issues, which can
impact model robustness and generalizability (Overmyer et al.,
2020). In this paper, we aim to contribute to this body of
knowledge by leveraging machine learning techniques to process
the substantial amount of data collected during the pandemic.
Our primary goal is to employ interpretable machine learning
methodologies to identify a multi-omic signature for COVID-
19 using data from a large cohort of patients. Machine learning
models excel in uncovering complex multivariate relationships
among features, unlike conventional statistical methods such
as P-Value analysis, which typically focus on univariate
correlations.

In addition to automated machine learning techniques,
we integrated bioinformatics to analyze the proteomic and
metabolomic data returned by the algorithms. We utilized the
BQC19 database, a provincial initiative in Quebec designed to
compile and analyze multiomic information to provide better
insight into the COVID-19 pandemic. This study focuses specifically
on proteomics and metabolomics data to ensure a substantial
patient impact.

We present our machine learning pipeline for extracting
signatures, offering both a high-level overview and detailed
information about the models that form the foundation of our
analysis. Our findings aim to improve the understanding of
COVID-19 through advanced machine learning and bioinformatic
approaches, ultimately forming better diagnostic and therapeutic

strategies.

Frontiers in Bioinformatics

02

10.3389/fbinf.2025.1645785

2 Materials and methods

2.1 Dataset

The data used in this paper was extracted from the Quebec
COVID-19 biobank database! (Tremblay et al, 2021), which
provided data from 1400 COVID-19 positive and negative
patients. In the original database, blood samples were processed
to extract numerous -omic data, including genomic, proteomic,
metabolomics, or transcriptomic. In our case, we chose to focus
on metabolomic and proteomic data to run our workflow on
biological information close to the targeted phenotype. Of all
the available patient samples, we focused on patients who were
hospitalized, either for COVID-19-related symptoms or for any
other reason (scheduled interventions, consultations, among many
other indications). These patients were sampled multiple times
during their hospital stay, from which we only consider the first
sampling. From this subgroup of patients, we extracted the subset
that was available both in metabolomics and proteomics to enable
multi-view approaches without the challenge of missing data. We
only included original infections in the cohort and we focused on
patients that were either positive for COVID-19 or negative but
still presenting symptoms to ensure that our algorithms focused on
COVID-19-specific biomarkers and not on the presence or absence
of symptoms. Finally we selected patients that were sampled within
0-50 days following symptom onset. We thus obtained a cohort of
478 individuals, with 84% of COVID-19 positive patients and 16% of
symptomatic controls, described by Table 1. Interestingly, this table
shows that some symptoms, such as fever, output significant p-values
to detect COVID-19-positive patients. However, we see in Section 3
that even if symptomatology provides some information, it was not
up to the standard set by our method.

For each patient, 5,400 targeted metabolites were tested. The data
acquisition method is detailed in the work of Tremblay et al. (2021),
including the handling of batch effects and data normalization. As
our main goal was to identify biomarkers, we focused on the subset
of 896 metabolites that were identified by either a KEGG (Kanehisa
and Goto, 2000) or an HMDB (Wishart et al., 2007) index to ensure
our ability to track their associated metabolic pathways without any
ambiguity. In Supplementary Material, we provide experiments run
on the 5,400 available metabolites, quantifying the loss in accuracy
induced by this metabolite filtering. Moreover, from the 7,200 tested
proteins, we used the 5,284 identified proteins available in the dataset
and discarded the un-identified ones. Therefore, our approaches relied
on two dataset, a metabolomic one of size 478 x 896 and a proteomic
one of size 478 x 5284, with no missing data. We provide the code that
retraces the pre-processing pipeline in the GitHub repository.

2.2 Extracting signatures form multi-omic
data

The main goal of our study was to extract a small subset of
features, a signature, strongly associated with the phenotype from
the multi-omic data provided by BQC-19. To select the best features

1 https://www.bqgcl9.ca/
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TABLE 1 Baseline characteristics. The p-value column indicates the result of a statistical test between the values of the variable and the variable

COVID status.

Grouped by status COVID

Missing Overall Positive Control P-value
478 375 103
M 238 (49.8) 182 (48.5) 56 (54.4)
Sex:, n (%) 0 0.348
F 240 (50.2) 193 (51.5) 47 (45.6)
Age at arrival:, mean (SD) 0 66.0 (18.1) 66.4 (17.8) 64.6 (19.1) 0.389
Hospitalized or Outpatient? n (%) Hosp 0 478 (100.0) 375 (100.0) 103 (100.0) 1.000
BMLI;, mean (SD) 215 28.9 (6.5) 28.9 (6.2) 28.9 (7.4) 0.967
Days btwn sympt. and blood draw, mean 14 9.6 (8.4) 9.8(7.8) 9.1 (10.5) 0.533
(SD)
No 432 (90.6) 337 (90.1) 95 (92.2)
Obesity ? n (%) 1 0.643
Yes 45 (9.4) 37(9.9) 8(7.8)
No 454 (95.0) 363 (96.8) 91 (88.3)
Asymptomatic? n (%) 0 0.001
Yes 24 (5.0) 12 (3.2) 12 (11.7)
No 27 (8.9) 16 (6.6) 11(17.7)
Shortness of breath (Dyspnea) ? n (%) 175 0.013
Yes 276 (91.1) 225(93.4) 51(82.3)
No 40 (14.2) 19 (7.8) 21 (55.3)
Fever ( > 38.0 Celcius) ? n (%) 197 <0.001
Yes 241 (85.8) 224 (92.2) 17 (44.7)
No 69 (55.6) 46 (47.9) 23(82.1)
Muscle aches (Myalgia) ? n (%) 354 0.003
Yes 55 (44.4) 50 (52.1) 5(17.9)
No 79 (76.7) 55 (69.6) 24 (100.0)
Loss of taste/lost of smell ? n (%) 375 0.005
Yes 24 (23.3) 24 (30.4) 0(0)

for the COVID-19 signature, we trained interpretable machine
learning algorithms to differentiate COVID-19 positive and negative
patients from which we extracted and ranked the most important
features.

Additionally, to compare our approach to state-of-the-art
analysis, we performed a statistical study on all the available features
both in metabolomics and proteomics. It implied constructing
a volcano plot, showing differences in average values of data
features between the positive and negative folds. The volcano plot
reports the fold change (ratio between the two average values
in folds) in the x-axis and the p-value of a statistical T-test
that shows the significance of differences between the average
values in the two folds on the y-axis. We used this statistical
analysis to build a subset of features that were significant both
in terms of fold change (a ratio lower than 0.5 or higher than
2) and p-value (p-value < 0.05/6180). Bonferroni correction is
applied to the threshold on the p-value (standard threshold of 0.05

Frontiers in Bioinformatics

03

divided by the number of variables tested. This selection process
yielded a subset of 10 features, which we refer to as the Volcano
signature. This subset serves as a comparative baseline for evaluating
the efficacy of our machine learning-based feature selection
approach.

2.2.1 Interpretable classifiers

When applying machine learning to sensitive tasks such as
health-related problems, it is highly recommended to use models
that are understandable by non-machine learning experts (Rudin,
2019). Machine learning is a vast field in which models vary
from tremendously complex deep neural networks (Nielsen, 2015)
to straightforward logic-based Set Covering Machines (Marchand
and Shawe-Taylor, 2003). Our study focused on algorithms that
present one characteristic: natively outputting an importance score
for each feature. Indeed, understanding the models outputted by
more complex classifiers is a research field in itself (Arrieta et al.,

frontiersin.org
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Classifier 1 Classifier 2 Classifier C-1 Classifier C
(SCM) (Adaboost) (Decision Tree) (Random Forest)
Feat. Importances BA Feat. Importances| | BA Feat. Importances BA
/
FIGURE 1

Feature relevance extraction: Models from various families are fitted to the data, each providing a balanced accuracy (BA) score reflecting its
performance and a feature importance score indicating the contribution of each feature. Feature relevance is the weighted average of feature
importance across all models, where weights are determined by each model's balanced accuracy.

2020), but in our case, we use only classifiers that output inherently
interpretable models as Explainable AI methods are commonly less
precise than native feature importances (Wang et al., 2024).

In this work, we are interested in two outputs for each classifier:
first, the quality of their model, measured by its classification
accuracy. Secondly, the importance score they assign to each
feature of the dataset, which indicates the significance of that
feature in the decision-making process, denoted feature importance.
It is important to note that our work does not assume these
models are sufficiently reliable to autonomously classify COVID-
19 patients. Instead, they serve as a tool to extract significant
features from the dataset. This set of features is then validated
through bioinformatics analysis, as described in Section 2.5, and
could contribute to a better understanding of long COVID-19
symptomatology.

2.2.2 Feature relevance

One notable contribution of this study is the aggregation
of classifier outputs to compute a single score for each feature,
quantifying its general utility for the COVID-19 classification task.
Therefore, we introduced the concept of feature relevancecomputed
as the average feature importance across classifiers, weighted by
each classifier’s quality. This relevance score reflects a consensus
among classifiers, with each classifier “voting” based on the
feature’s importance in its model, weighted by the model’s overall
performance, as illustrated in Figure 1. Moreover, a feature deemed
important in low-accuracy classifiers is less relevant than one
moderately important in high-accuracy models. It is similar to
the method proposed in Fisher et al. (2019), diverging in the fact
that we built a majority vote taking into account all the available
classifiers where Fisher et al. (2019) sets an accuracy threshold under
which the classifiers are not considered. In Definition 1, we provide
a mathematical formulation for the relevance.

DEFINITION 1 (Feature relevance). Considering a benchmark,
comprised of C classifiers hy,...,h,,...,ho. Each one outputting a
classification score s, and a feature importance score F; for each
feature j of the dataset, we define the relevance of a feature r; as
the average of the feature importance weighted by the score of each
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classifier as in Equation 1.
C

GZZ”(SC)XFc,p (1)

c=1
with n(s;) the normalized score computed, for a higher-is-better
scoring method as in Equation 2

0 ifs, <,
ns) = %7 otherwise @
m—r ’

with 7 the score of the random guessing classifier and m the
maximum score.

2.2.3 Applicative challenges

The dataset in this study is significantly imbalanced, with
375 COVID-19 positive patients and 103 controls. To address
this, we employed the balanced accuracy metric (Brodersen et al.,
2010), which averages the accuracy of each class, ensuring a
model predicting all patients as positive only achieves 50%
balanced accuracy.

Additionally, we applied an imbalance bagging (IB) wrapper
(Lemaitre et al., 2017) to compatible classifiers. This sampling
strategy was selected for its ability to reduce variance and improve
robustness when used with tree-based classifiers, as well as to avoid
introducing synthetic or unrealistic observations that could distort
the original data distribution. This method runs 10 classifiers on
re-balanced subsets of the dataset, where the number of COVID-
19-positive samples matches the number of control samples. Each
IB classifier aggregates the votes from these 10 sub-classifiers. An
example using a decision tree is shown in Figure 2.

The dataset offers multi-omic data for signature extraction
but poses a challenge with its “fat” structure, where the
number of features (6,180) far exceeds the number of
samples (487) (Romero et al., 2017). This contrasts with “big” data,
where the samples outnumber features. Learning on fat data is a
challenge frequently encountered when applying machine learning
to biological datasets. To address this, we used sparse classifiers with
built-in dimension reduction and conducted experiments across 10
train/test splits to enhance robustness, a process we term train/test
bootstrapping.
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Imbalance bagging for a decision tree: Random sub-sampling creates 10 balanced datasets. Each dataset trains a classifier, and the final decision is the

aggregate vote of these classifiers, denoted IB Decision Tree.

Metabolomics

Proteomics
Data

Data

Extract known
Meatbolites

Common patients
sampled on day one

[Repeated 10 times to ensure stability |

Knonw
Metabolomics
Common Data

Proteomics
Common Data

Mono-View
Interpretable
Machine Learning

Multi-View
Interpretable
Machine Learning

Metabolomics ~ Proteomics
Mono-omic Mono-omic
Signature Signature

Multi-omic
Signature

Metabolomics | Proteomics
Multi-omic Multi-omic
Signature Signature

FIGURE 3
Study workflow. (a) Signature extraction process. (b) ML workflow.

2.3 Full experimental protocol

In this section, we detail our protocol, summarized in
Figure 3. We first separated the data into two views with no
missing data: metabolomics and proteomics. In addition, we
trained our approaches on their concatenation (Snoek et al,
2005),
versions of the dataset, we run our process to extract a

denoted the multi-omic view. On each of those
metabolomic, proteomic and multi-omic signature, as presented in
Figure 3a.

The machine learning workflow represented in Figure 3b
consists of splitting the dataset 10 times in a training (80%) and a
testing (20%) set, maintaining the original class ratio. On each split,
we trained a pool of classifiers described in depth in Section 2.4. We
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optimized hyper-parameters via random search combined with 5-
fold cross-validation. Finally, we evaluate their balanced accuracy on
the testing set and we combine the feature importance scores of each
train/test split.
All  the
on SUMMIT (Bauvin et al., 2022), facilitating comparisons between

machine learning experiments were run

mono- and multi-omic classifiers.

2.4 In-depth machine learning algorithms
2.4.1 Interpretable classifiers pool

To provide feature relevance for each classifier, we focused on
interpretable classifiers. Ensemble methods were primarily used due
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to their capability on -omic data and inherent interpretability when
using straightforward sub-classifiers.

Among ensemble methods, we focused on sparse approaches,
such as the Set Covering Machine (SCM) (Marchand and
Shawe-Taylor, 2003; Drouin et al, 2016), which builds a
logical combinations We then included
Decision Tree (DT) 1984), a well-known
method used for its interpretability, despite a higher risk of

of binary rules.
(Breiman et al,

overfitting.

For more complex decision functions, Adaboost (Freund and
Schapire, 1997) and Gradient Boosting (Friedman, 2001) were
included. They perfectly fit our study, as, with our parameters, they
rely on single-feature sub-classifiers that are linearly combined.
We also used SamBA (Bauvin et al, 2023), which integrates
both the advantages of boosting and similarity-based decisions
for precise and sparse functions. Random Forest (Breiman,
2001) and RandomSCM (Godon et al, 2022) were utilized
despite their generally dense decision functions, owing to
the feature relevance calculation’s capability to manage dense
classifiers.

We also included kernel methods, known for their versatility
with complex tasks (Hofmann et al, 2008). Traditional kernel
methods (e.g., SVM-RBF) often lack interpretability due to complex
decision functions. We addressed this with SPKM (Huusari et al.,
2021), which introduces primal and dual sparsity, making
kernel-based models interpretable by

relying on sparse

elements.

2.4.2 Additional state-of-the-art classifiers

For performance analysis of extracted signatures, less
interpretable algorithms were included. Lasso (Tibshirani, 1996)
was added to assess the linear separability of patients. k-Nearest
Neighbors (KNN) (Fix and Hodges, 1989) and Support Vector
Machine with Radial Basis Function kernel (SVM-RBF) (Boser et al.,
1992) served as indicators of the signal-to-noise ratio in the
signatures. Note that SVM-RBF’s sensitivity to imbalance led to
the inclusion of its IB variant. Post-extraction, these algorithms
provided insights into the biological processes underlying the
signatures.

2.5 Pathway enrichment analysis,
visualization, and interpretation

2.5.1 Proteomics mono-view signature

We interpreted the proteomics mono-view signature using
a two-step approach. First, we performed pathway enrichment
analysis (PEA) using the ConsensusPathDB (CPDB) web tool to
identify key regulatory mechanisms and signaling pathways of
SARS-CoV-2. CPDB integrates data from 32 public resources,
including KEGG, Reactome, and WikiPathways. We used an over-
representation statistical method to identify enriched biological
functions in the list of significant proteins, with a p-value cutoff
of 0.01 and false discovery rate (FDR) correction. A custom
proteome reference background was uploaded to reduce false
positives. Second, we conducted a pathway topology-based analysis
using NetworkAnalyst software to highlight physical and functional
interactions among genes and proteins. We used the InnateDB
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database to retrieve binary interactions and visualized high-
confidence relationships as a network. Functional pathway analysis
was performed on seed proteins, and the top Gene Ontology
Biological Process (GO:BP) terms and biochemical pathways were
selected for visualization in Cytoscape. This approach combines
over-representation analysis with network-based analysis to provide
a comprehensive interpretation of the proteomics signature.

2.5.2 Metabolomic mono-view signature

The interpretation of the metabolomic mono-view signature
relied on pathway over-representation analysis (ORA) to study
the inflammatory immune response and metabolic perturbations
in SARS-CoV-2 patients. We standardized the list of significant
metabolite identifiers using the Metabolite ID Conversion tool
in MetaboAnalyst 5.0 and built a custom metabolome reference
background. ORA and pathway topology (PT) analyses were
performed on the metabolic mono-view signature (Topl7)
and a broader signature (Top50) using the MetPA module in
MetaboAnalyst 5.0. Default parameters were used, including the
KEGG human pathway library, hypergeometric test for ORA,
and relative betweenness centrality for PT, with FDR correction
to minimize false positives. The STITCH web tool was used to
explore interactions between proteins and metabolites, providing
insights into molecular and cellular functional relationships.
STITCH links chemical space to gene-protein space through
physical and functional interactions stored in the STRING
database. The STITCH web tool was used to explore interactions
between proteins and metabolites, providing insights into
molecular and cellular functional relationships. STITCH links
chemical space to gene-protein space through physical and
functional interactions stored in the STRING database. A network
association for the broader mono-view signature (Top50) was
performed to maximize metabolite-metabolite interactions (min
interaction score of 0.4 and up to 20 first-order interactors)
and retrieving biochemical reactions from the STRING database
and PubChem text mining. Functional enrichments of GO
biological processes and KEGG pathways were performed and
imported into Cytoscape for interpretation of the metabolomic
signature.

3 Results

3.1 Classifier performance on full
description

The first stage of this study is to evaluate the classifiers
on the full dataset, analyzing their scores on metabolomic,
proteomic and multi-omic data. In Figure 4a, we provide a bar
plot representing the mean balanced accuracies (BA) for each
classifier on each representation of the data. In Figure 4b, we
report the BA of the IB derivatives of the classifiers that were
sensitive to imbalance. In this experiment, the scores range from
87% BA for the IB version of Adaboost on proteomics to 50%
BA for the SVM-RBF on multi-omics and proteomics. From
these figures, we can infer that for the task at hand, proteomics
provides more information on the COVID-19 status of the patients
than metabolomics. However, metabolomics is still informative
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FIGURE 4
Performance of the algorithms on the full description. The majority of the approaches are over 70% balanced accuracy. (a) Basic algorithms scores on
the full description of the samples. Each view is represented by a coloured bar. The best performing algorithm is SamBA on the multi-omic data. (b)
Scores for the algorithms for which we added the imbalanced bagging wrapper presented in Section 2.2.3. The best performing algorithm is Adaboost
on the multi-omic dataset.

as a classifier relying uniquely on it outputs 79% balanced
accuracy.

3.2 Signature extraction

Relying on these encouraging results, we computed the feature
relevance for each descriptor of both the -omics, and obtained three
graphs, presented in Figures 5a—c, one for each -omic and one for
the multi-omics. In these graphs, we plotted the relevance of each
feature, as introduced in Section 2.2.2. We highlight the features
included in the signatures in blue, and the other ones in orange.
Therefore,

o for metabolomics, we set the relevance threshold to 6.5 = 1074,
o for proteomics to 9 % 107%,
o for multi-omics to 1.51 % 107>,

This provides us with a 17 feature signature for metabolomics,
19 for proteomics and 29 for multi-omics. The list of bio-markers
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included in our signatures is provided in Tables 2-4. In addition
to those relevance-based signatures, our study uses one additional
subset of features: the significant features outputted by the volcano
plot shown in Figure 5d, denoted the Volcano signature.

3.3 Performance scores on signatures

Relying on those subsets of features, we analyze them by re-
training the pool of classifiers on each subset. In Figure 6, for the
sake of clarity, we only present the score of the best algorithm on each
subset of features. In Supplementary Material, we provide the matrix
that gathers the accuracy of all the classifiers on all the signatures.

Figure 6 shows that the best scores are obtained on the
multi-omic signature, despite the fact that it consists of only
29 features among the 6,180 available ones. This result confirms
that the proposed multi-omic signature is relevant to separate
symptomatic patients between COVID-19 and controls. Another
interesting result is the low accuracy scores of the volcano signature.

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1645785
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Bauvin et al. 10.3389/fbinf.2025.1645785
a b
2 . 1
- Signature _ Signature
<5}
o
S 0.0 " Tue o B True
n False & 0.0%
oo b oD False
o o 6
— 4 —_— 5
~ -
g g 4
s 2 = 3
e T 2
> >
20.00% %
9 0.00
& Minnsnnss.. = Iinnn:.
; iilne i
c d
— g Slgnature Rest of the features @ Signature
<5} 5
1 1
~ 4 HE True —~20 ] ]
8 3 [<P) 1 1
o 2 False = | ;
=) @ 15 ! ¥
—_
\/0.0§ ? 1 1
(D] ‘1 1
o 6 N Q",]_O 1 1
=R P 1 1
g 4 = .1 1
> 3 Y J - T - PORNIR S S8 T 20 R
(5} 1 1
= 2 ) 1 ]
& Likintinnonis D s
1 1
0.001 ““ ““ i 0 . ;
- -2 -1 0 1 2
Features log, (fold change)
FIGURE 5
(a—c) show the relevance ranking for the features in metabolomics, proteomics and multi-omic, respectively. The blue features represent the
signatures. In Supplementary Material 1.2, we report all the features ranked by relevance for multi-omics, highlighting the small size of the signatures
compared to the full descriptions. (d) Shows the volcano plot with one point being a feature represented by its fold change (x) and p-value (y). All the
features that are in the top right and left corners are selected as part of the Volcano signature. (a) Metabolomics. (b) Proteomics. (c) Multi-omic. (d)
Volcano plot.

Indeed, machine learning presents the huge advantage of including
interactions between features in its models, which is not the case
with univariate statistical analyses such as volcano plots or p-
Values (Costanzo et al., 2022). Therefore, even if the Volcano plot
extracts a 21-feature signature, its accuracy is never greater than
84%. In the following section, we investigate the pathways linked
to each of the extracted features to further ensure that the machine
learning study yielded meaningful features.

3.4 Pathway enrichment analysis and
network-based analysis

3.4.1 Proteomic mono-view signature

A machine learning-based proteomic analysis identified 19
differentially expressed proteins (DEPs) in COVID-19 positive
patients compared to negative ones. The most predictive biomarkers
were MX1, ISG15, LAG3, IFIT3, and TNXB. Pathway enrichment
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analysis revealed that these DEPs were significantly associated with
SARS-CoV-2 innate immunity evasion and cell-specific immune
response pathways. Notably, interferon-related pathways, such
as ISGI5 antiviral mechanism and interferon signaling, were
highly enriched. Proteins MXI1, ISG15, CXCL10, and DDX58
were the most frequently mapped in COVID-19-related pathways.
Functional interactions among these biomarkers will be further
evaluated through protein network analysis. Additionally, some
pathways were linked to other viral infections like influenza A
and hepatitis C, indicating a broader disturbance in the innate
immune response. Proteins such as EPHB2, APCS, and F11
were associated with disease severity, including coagulopathies
and lung damage. A protein-protein interaction network analysis
highlighted ISG15 as a key protein, interacting with MX1, IFIT3,
and DDX58. These proteins were enriched in interferon-related
pathways and immune responses to viruses. The analysis also
identified interferon regulatory factors (IRF-1, IRF-4, IRF-7) and
STAT1 as major mediators of the cellular response to interferons.
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TABLE 2 Proteomics signature.

10.3389/fbinf.2025.1645785

TABLE 3 Metabolomics signature.

Feature Relevance Feature Relevance

Overall, the proteomic signature is highly correlated with interferon
signaling following viral infection (Menachery and Gralinski, 2021;
Buchrieser et al., 2020; Lin et al., 2021; Rajah et al., 2021).

3.4.2 Metabolomic mono-view signature
Metabolomics identified 12 differentially expressed metabolites
and 5 lipids that segregate SARS-CoV-2 patients, highlighting
the role of lipid metabolism in inflammatory and immune
responses. Ribothymidine showed the most significant variation,
previously reported as a COVID-19 biomarker. Azithromycin, a
broad-spectrum antibiotic, was upregulated in COVID-19 positive
patients, potentially due to its administration during the pandemic.
Pathway analysis did not reveal significant enrichment in the KEGG
database, but top biomarkers were associated with pyrimidine
metabolism. Key metabolites included ureidopropionic acid, a-
ketobutyric acid, and L-malic acid, which were mapped across
multiple interconnected pathways. Network analysis identified five
main sub-clusters of metabolites, with L-Kynurenine (KYN) as a
key metabolite in the tryptophan and kynurenine cluster. Enzymes
involved in the KYN pathway, such as indoleamine 2,3-dioxygenase
(IDOS5) and kynurenine aminotransferase (AADAT and CCBL26),
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MX1 2.16¢™ Ribothymidine 1.58¢7%
ISG15 1.78¢™? Ureidopropionic acid 2.70e™%
LAG3 4.98¢7° PC(34:4) 2.59¢7%
IFIT3 3.76¢™% N-Acetylputrescine 2.55¢%
TNXB 2.29¢7% PC(P-16:0/16:1 (9Z)) 2.02¢7%
CIQTNF1 1.34¢™% Cytosine 1.76e™%
CXCL10 1.32¢7% Salicyluric acid 1.14e7%
EPHB2 1.32¢7% 2-Ketobutyric acid 1.10e7%
SCGB3A1 1.07¢7% Succinimide 1.03¢7%
F11 1.07¢7% Alpha-Ketooctanoic acid 9.56¢™%
LUM 1.05¢% Malic acid 8.87¢7%
SDCBP 1.04¢™? PC(18:2 (9Z,127)/18:2 (9Z,12Z)) 7.74¢
PRDM1 1.02¢7% Cer(d18:1/16:0) 7.70e”"
KRT7 9.96¢™ Azithromycin 7.26e”%
INSR 9.93¢™ Oleamide 7.07¢"
DDX58 9.92¢7 Kynurenine 7.00e™%
APCS 9.78¢™% 2-Furoylglycine 6.73¢”
NMI 9.74¢™%

HRASLS2 9.31¢

09

were also identified. Polyamine metabolites were found to favor
coronavirus replication, and spermidine was highlighted in the
polyamine sub-cluster. The metabolization of niacinamide to 1-
methyl nicotinamide, important for the innate immune response,
was also noted. Overall, the metabolomic signature is associated
with amino acids, carbohydrates, nucleotides, and lipids, with
significant enrichments in nicotinate, nicotinamide, beta-alanine,
arginine, proline, and tryptophan metabolisms.

4 Discussion

COVID-19 emerged as a global health crisis in early 2020,
characterized by complex pathophysiology, diverse clinical
manifestations, and the persistence of symptoms in a subset of
patients, known as long COVID. The aim of this study was to gain
deeper insight into the intricate molecular mechanisms involved in
the disease.

Characterizing the biological response to COVID-19 remains
a major challenge. This study underscores the added value of
exploring multiple omic layers to obtain a more comprehensive
view of the underlying pathophysiology. Despite leveraging a
relatively large cohort from the BQC-19 dataset, the sample size
remains limited when compared to the complexity of biological
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TABLE 4 Multi-omic signature.

Omic | Feature Relevance

p MX1 5.27¢7?
p ISG15 4.50¢™%
p IFIT3 1.07¢7%
p LAG3 1047
M Ribothymidine 8.54¢™"
P TNXB 5.51e %
p CXCL10 4217
p F11 3.29¢7%
p EPHB2 3.15¢™%
p KRT7 3.01e™
p APCS 2.68¢7%
p ADPGK 2.45¢7%
p LGALS9 223¢7%
p C1GALTIC1 2217
p BGLAP 1.98¢7%
p C1QTNF1 1.84e7 %
p INSR 1.81e%
M LysoPE (20:4 (5Z,8Z,11Z,147)/0:0) 1.74¢7%
p DDX58 1.65¢%
p LUM 1.65¢ %
p STAT1 1.64e7%
p PREP 1.64¢7 %
p ADSL 1.63¢7%
p HRASLS2 1.62¢7%
M (4-ethenyl-2-methoxyphenyl)oxidanesulfonic 1.62¢ %
acid
p ILIR1 1.59¢7%
p HEXB 1.58¢7%
p MUCL1L 1.57¢%
M Methyllysine 1.56e”%
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systems and the depth of omics-level interactions. Additionally,
the limited overlap between patients with full multi-omics profiles
precluded the use of robust, interpretable multi-omic machine
learning models.

This study focuses on extracting signatures relying on machine
learning approaches. Such methods present the huge advantage
of taking into consideration both linear and non-linear relations
between the data and the outcome. By combining multiple
algorithms, we mathematically approach the problem from different
perspectives, enabling the identification of diverse and potentially
complementary signal patterns (capture of both linear and non-
linear relationships). Indeed, machine learning algorithms are able
to find very complex patterns in the data, compared to classical
statistical analysis (Costanzo et al., 2022). This advantage comes with
a potentially much higher computational cost. However, we only
used approaches that were compatible with very high-dimensional
data to reduce the computational needs of our pipeline. In addition,
machine learning models, by their very nature, set hypotheses based
on the shape of the patterns they try to learn. To overcome this,
we aggregated a large collection of classifiers thanks to our feature
relevance score.

The reduced signature retrained on a smaller subset of features
proved particularly robust, as it helped minimize noise from weakly
informative variables and improve generalization.

Finally, in Section 3.2, we propose signatures that are solely
based on the relevance of the features, setting thresholds that
take into account breaking points in the relevance rankings. To
complete such a method, an ablation study (Cohen and Howe,
1988) or another more advanced explainability method could be
complementary to our interpretable approach. This collaboration
between interpretability and explainability could allow us to
optimize the number of features in each signature without relying
on an arbitrary threshold.

Although initially designed as an exploratory and mechanistic
approach, the results and models developed in this study could pave
the way for novel biomarkers or diagnostic signatures that go beyond
the binary outcomes provided by antigen or PCR tests, thereby
enabling more precise therapeutic strategies based on the involved
metabolic axis (Yamga et al., 2023) However, this approach poses
several challenges, particularly the need for rigorous, multi-center,
prospective validation, as well as careful selection of the variables
to be included in the clinical score, while accounting for analytical
constraints.

Several of the top-ranked markers identified in our results
are highly consistent with the known pathophysiology of COVID-
19, notably involving viral infection responses and immune
hyperactivation, which are often responsible for severe symptoms
or even death. The presence of multiple interferon-stimulated genes
such as MX1, ISG15, and IFIT3 reflects a robust antiviral response,
while proteins like CXCL10, LAG3, and STAT1 further support the
role of immune dysregulation and hyperinflammation in COVID-
19 progression. The presence of coagulation factor XI (F11) is
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as shown in Table 1.

This figure shows the score of the best performing algorithm for each signature on each view. The full description encapsulates all the features
available, and the symptomatology baseline, represented as a dashed line, shows a classifier's performance relying only on symptomatology data,

also notable, potentially reduced in COVID-19 cases, echoing its
implication in hemorrhagic and thrombotic complications observed
in severe disease. Markers such as CIQTNF1 and APCS additionally
point to disturbances in vascular and complement pathways,
which are frequently associated with endothelial damage and
systemic inflammation. Additionally, the detection of azithromycin
among the discriminating features likely reflects its widespread
therapeutic use in COVID-19 patients, though it is not a biologically
meaningful marker per se, as it is not directly linked to underlying
pathophysiological mechanisms.

Taken together, our findings emphasize the interplay of immune
and inflammatory responses, coagulation and vascular dysfunction,
and metabolic disturbances, all of which align with the known
molecular and clinical features of COVID-19.

Interestingly, a greater proportion of proteomic markers
emerged in the multi-omic signature, corroborating the superior
predictive performance observed with proteomics-based models.
This suggests that the proteomic layer captures more informative
biological signals in the context of COVID-19, likely reflecting
the protein-driven nature of immune activation and inflammatory
cascades during infection.

Nonetheless, the metabolomic signature contributes distinct
and complementary insights, highlighting alterations in lipid
metabolism (e.g., phosphatidylcholines, ceramides), amino acid
catabolism (e.g., kynurenine, N-acetylputrescine), and energy
pathways (e.g., malic acid, 2-ketobutyric acid). These findings
reflect broader metabolic adaptations and stress responses that
are not fully captured at the proteomic level. By integrating both
omics layers, the multi-omic model offers a more comprehensive
and mechanistic view of the host response, bridging upstream
immune signaling and downstream metabolic consequences. This
systems-level perspective may help explain the heterogeneity
of clinical outcomes in COVID-19 and could contribute to
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the development of more nuanced diagnostic or prognostic
tools.

In addition, our current study only relies on correlation relation,
which could be improved by working with causal approaches once
they are up to the standards of our pipeline (Godon et al., 2023).
In addition, this work is one of the first steps in the discovery of a
signature for long COVID-19.

This study has limitations. It was conducted on a single
patient cohort with both metabolomic and proteomic data
available. An interesting extension would be to test mono-
omic signatures on patients with data from only one omics
type. However, the imbalance in case-control numbers would
require specific methodological adjustments. Moreover, the control
groups heterogeneity may introduce bias—especially in relation
to symptom onset kinetics and associated molecular signatures.
Still, given the urgency and complexity of COVID-19 during the
pandemic, our design enabled the identification of relevant omic
signatures in line with existing literature and prevailing biological
hypotheses.

Lastly, this study represents an early step toward identifying
molecular signatures associated with long COVID. Future
efforts involving larger, longitudinal, and multi-omic cohorts
will be essential to fully characterize long-term post-infection
consequences.
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