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Introduction: Accurately predicting drug-target interactions (DTIs) is crucial for
accelerating drug discovery and repurposing. Despite recent advances in deep
learning-based methods, challenges remain in effectively capturing the complex
relationships between drugs and targets while incorporating prior biological
knowledge.

Methods: We introduce a novel framework that combines graph neural
networks with knowledge integration for DTI prediction. Our approach learns
representations from molecular structures and protein sequences through
a customized graph-based message passing scheme. We integrate domain
knowledge from biomedical ontologies and databases using a knowledge-
based reqgularization strategy to infuse biological context into the learned
representations.

Results: We evaluated our model on multiple benchmark datasets, achieving an
average AUC of 0.98 and an average AUPR of 0.89, surpassing existing state-
of-the-art methods by a considerable margin. Visualization of learned attention
weights identified salient molecular substructures and protein motifs driving the
predicted interactions, demonstrating model interpretability.

Discussion: We validated the practical utility by predicting novel DTls for FDA-
approved drugs and experimentally confirming a high proportion of predictions.
Our framework offers a powerful and interpretable solution for DTI prediction
with the potential to substantially accelerate the identification of new drug
candidates and therapeutic targets.

computational drug screening, Systems pharmacology, drug-target prediction,
representation learning, drug discovery

1 Introduction

The discovery and development of new drugs is a lengthy, complex, and expensive
process. It typically takes 10-15 years and costs over $2.6 billion to bring a new drug
to market (Zhang Z. et al,, 2022). A key bottleneck in the drug discovery pipeline is
identifying the molecular targets that are responsible for the desired therapeutic effects
and unwanted side effects of drug candidates (Pan et al., 2023). These targets are usually
proteins, such as enzymes, receptors, or ion channels, that play critical roles in disease
pathways. Drugs exert their actions by binding to these targets and modulating their
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functions (Zhao et al, 2023). Therefore, understanding the
interactions between drugs and their targets, known as drug-
target interactions (DTIs), is crucial for rational drug design and
repurposing.

Traditionally, DTIs were discovered through experimental
methods such as in vitro binding assays, which are time-consuming,
labor-intensive, and low-throughput (Kim and Bolton, 2024).
With the advent of high-throughput screening technologies, such
as genomics, proteomics, and chemogenomics, it has become
possible to test large numbers of compounds against multiple
targets simultaneously (Mahfuz et al., 2022). However, even these
approaches can only cover a small fraction of the vast chemical and
biological space. For example, there are over 108 million compounds
in the PubChem database (Kim, 2021) and an estimated 200,000
proteins encoded by the human genome (Suruliandi et al., 2024),
resulting in over 1013 possible drug-target pairs. Experimentally
testing all these combinations is infeasible. Moreover, many
compounds may have off-target effects that are difficult to detect
using current experimental methods (Afolabi et al., 2022).

To address these challenges, computational methods have
emerged as a promising approach for predicting DTIs on a
large scale. These methods aim to prioritize drug-target pairs for
experimental validation based on various types of data, such as
chemical structures, protein sequences, and interaction networks
(Soleymani et al., 2022). Early computational approaches relied
on docking simulations, which predict the binding mode and
affinity of a drug-target complex based on its three-dimensional
structure (Soleymani et al., 2023; Staszak et al., 2022). However,
docking is computationally expensive and requires high-resolution
structures of both the drug and the target, which are not always
available. More recently, machine learning-based methods have
gained popularity due to their ability to learn complex patterns
from large datasets without requiring explicit feature engineering
(Wang X. et al.,, 2022; Yin et al., 2024).

One of the most successful machine learning-based methods for
DTI prediction is matrix factorization (MF). MF models represent
drugs and targets as low-dimensional vectors (latent factors) and
predict their interactions based on the inner product of these
vectors (Meng et al., 2021). MF models have achieved state-of-
the-art performance on several benchmark datasets (Tian et al.,
2022). However, MF models have several limitations. First, they treat
drugs and targets as distinct entities and ignore their structural and
evolutionary relationships. Second, they cannot handle new drugs
or targets that are not present in the training data (the cold-start
problem). Third, they do not provide any biological interpretation
of the latent factors.

To overcome these limitations, recent studies have proposed to
integrate multiple types of data, such as chemical structures, protein
sequences, and interaction networks, into a unified framework for
DTI prediction. These methods are known as multi-modal or multi-
view learning (Zhou et al.,, 2021). One promising approach is to
use graph representation learning, which learns low-dimensional
embeddings of drugs and targets from their graph-structured
data (Shao et al, 2022). Graphs provide a natural and flexible
representation of the relationships between drugs, targets, and
their interactions. For example, drugs can be represented as nodes
in a chemical similarity network, targets can be represented as
nodes in a protein-protein interaction (PPI) network, and DTIs
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can be represented as edges between these nodes (Zhang P. et al.,
2022). Graph representation learning methods, such as graph
convolutional networks (GCNs) (Sang and Li, 2024; Wang et al.,
2025a) and graph attention networks (GATs) (Zhai et al., 2023), can
learn informative embeddings of drugs and targets by aggregating
information from their local neighborhoods in the graph.

Several studies have applied graph representation learning
to DTI prediction and demonstrated superior performance over
traditional methods. For example, Ren et al. (2023) proposed a
multi-modal deep learning framework that integrates chemical
structures, protein sequences, and PPI networks using GCNs
and achieved an AUC of 096 on the DrugBank dataset.
Feng et al. (Zixuan et al., 2024) developed a graph-based model that
learns drug and target embeddings from multiple heterogeneous
networks, including drug-drug, target-target, and drug-target
networks, and obtained an AUC of 0.98 on the KEGG dataset. These
studies highlight the potential of graph representation learning for
improving the accuracy and robustness of DTI prediction.

However, existing graph-based methods still face several
challenges. First, they rely on predefined graph structures, such
as chemical similarity networks or PPI networks, which may
not capture all the relevant information for DTI prediction.
Second, they do not explicitly model the uncertainty or noise
in the graph edges, which may lead to over-smoothing and
loss of discriminative power (Peng et al., 2024). Third, they do
not incorporate prior biological knowledge, such as functional
annotations or pathway information, which may provide valuable
guidance for learning more meaningful and interpretable
embeddings.

To address these challenges, we propose a novel framework for
DTT prediction that combines graph representation learning with
knowledge integration in Figure 1. Our framework, called Hetero-
KGraphDTI, has three key components:

1. Graph construction: We construct a heterogeneous graph
that integrates multiple types of data, including chemical
structures, protein sequences, and interaction networks. We
use a data-driven approach to learn the graph structure and
edge weights based on the similarity and relevance of the
features. This allows us to capture more comprehensive and
adaptive relationships between drugs and targets.

. Graph develop a graph
convolutional encoder that learns low-dimensional embeddings

representation learning: We
of drugs and targets from the heterogeneous graph. The encoder
uses a multi-layer message passing scheme that aggregates
information from different types of edges and nodes. We also
introduce a graph attention mechanism that learns to assign
importance weights to different edges based on their relevance
to the prediction task. This enables the encoder to focus on the
most informative parts of the graph and reduce noise.

3. Knowledge integration: We incorporate prior biological

the

process by wusing knowledge graphs, such as Gene

Ontology (GO) (Aleksander et al., 2023) and DrugBank, as

additional sources of information. We develop a knowledge-

knowledge into graph representation learning

aware regularization framework that encourages the learned
embeddings to be consistent with the ontological and
pharmacological relationships defined in the knowledge
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FIGURE 1
Overview of the overall framework structure of the model.

graphs. This helps to improve the biological plausibility and
interpretability of the predictions.

We evaluate our Hetero-KGraphDTI framework on several
benchmark datasets and demonstrate significant improvements
over state-of-the-art methods in terms of both accuracy and
efficiency. We also conduct extensive ablation studies to analyze
the contributions of different components and hyperparameters.
Furthermore, we apply our framework to predict novel DTTs for a
set of FDA-approved drugs and validate the top predictions through
literature evidence and experimental assays.

In summary, our Hetero-KGraphDTI framework represents a
powerful and flexible approach for DTI prediction that leverages
the strengths of graph representation learning and knowledge
integration. By learning informative and interpretable embeddings
of drugs and targets from heterogeneous graphs and knowledge
graphs, our framework can accurately predict novel DTIs and
provide insights into their biological basis. We believe that our
framework has the potential to accelerate drug discovery and
repurposing, and ultimately contribute to the development of safer
and more effective therapies.

2 Methods

In this section, we describe the methodology of our

Hetero-KGraphDTI framework in detail. We first introduce
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the notations and problem formulation. Then, we present the
three key components of our framework: graph construction,
graph representation learning, and knowledge integration.
Finally, we describe the model optimization and inference

procedures.

2.1 Notations and problem formulation

Let D={d,,d,,... ta}
denote a set of n targets, and Y € R™" denote the drug-target

,d,,} denote a set of m drugs, T = {t,1,, ...,

interaction matrix, where y;; = 1 if drug d; interacts with target t,
and y;; = 0 otherwise. The goal of drug-target interaction prediction
is to learn a function f:D x T — R that predicts the interaction score
between a drug-target pair.

In addition to the interaction matrix, we also have multiple types
of drug and target features, such as chemical structures, protein
sequences, and interaction networks. We represent these features as
aheterogeneous graph G = (V, E), where V= DU T'is the set of nodes
(drugs and targets), and E = {E,,E,, ..., E;} is the set of edges of k
different types. Each edge type corresponds to a specific type of drug-
drug, target-target, or drug-target relationship, such as chemical
similarity, sequence similarity, or known interactions. We denote
the feature matrix of drugs as X, € R"*“ and the feature matrix of
targets as X € R™ where d and t are the feature dimensions of
drugs and targets, respectively.
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2.2 Enhanced negative sampling strategy

Recognizing the positive-unlabeled (PU) learning nature of the
DTI prediction problem, we implement a sophisticated negative
sampling framework that addresses the fundamental challenge
that missing drug-target interactions do not necessarily represent
true negatives. Our approach incorporates three complementary
strategies to generate reliable negative samples while accounting for
the inherent uncertainty in unlabeled data.

Reliable Negative Sampling We employ a dissimilarity-based
reliable negative sampling strategy that leverages both chemical and
biological spaces to identify highly confident negative pairs. For each
drug d; and target #;, we compute a reliability score r; based on
dissimilarity metrics:

rj=a ChemDissim(di,Nd(tj)) +- Squissim(tj,/\/,(di)), (1)

where NV,(t;) represents the set of drugs known to interact with target
t;, Ni(d;) represents the set of targets known to interact with drug
d;, and a, 3 are weighting parameters. The chemical dissimilarity
ChemDissim(d;, V, d(tj)) is computed as:

ChemDissim(d;, Ny(t)) =1~ max Tanimoto(FP(d;), FP(dy)), 2)

dreNy(t)

where FP(d) denotes the molecular fingerprint of drug d. Similarly,
sequence dissimilarity is calculated using Smith-Waterman
alignment scores:

. SW(S(t), (1))
SeqDissim(t;, N,(d))) = 1 - max —
1 (]

max

where S(t) represents the amino acid sequence of target tand SW ..
is the maximum possible alignment score.

Importance Weighting Framework To account for the
uncertainty inherent in unlabeled pairs, we implement an
importance weighting scheme that assigns different confidence
levels to negative samples. The weight w;; for each negative sample
(dy1;) is computed as:

exp(y-ry)
ij = >
Z(dk)tl)gN exp (y- 1)

where N is the set of negative samples and y is a temperature

(4)

w

parameter controlling the sharpness of the weighting distribution.
This weighting scheme ensures that highly reliable negative samples
receive greater importance during training, while uncertain samples
contribute less to the loss function. The modified loss function
incorporating importance weighting becomes:

Loeighea == ), loga(y)— Y wylog(1-0(5)),  (5)
(ij)eP (ij)eN
where P represents positive samples, ¢ is the sigmoid function, and
Jj; 1s the predicted interaction score.

Iterative Negative Sample Refinement We implement an iterative
refinement procedure that updates negative samples based on
evolving model confidence throughout training. At regular intervals
(every 50 epochs), we re-evaluate the confidence scores of all
unlabeled pairs and adjust our negative sample set accordingly:

NED = {(d, ):(d, 1)) € Uand§) < O, gandr; > O}, (6)
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where U represents the set of unlabeled pairs, j/l(.jt) is the predicted
score at iteration , 6, is the negative prediction threshold, and 0,
is the reliability threshold.

2.3 Graph construction

The first step of our Hetero-KGraphDTI framework is to
construct a heterogeneous graph that integrates multiple types
of drug and target features. Instead of using predefined graph
structures, such as chemical similarity networks or protein-protein
interaction networks, we propose a data-driven approach to learn
the graph structure and edge weights based on the similarity and
relevance of the features.

For each type of drug-drug or target-target relationship, we
compute a similarity matrix S¢ € R™" (for drugs) or $¥ € R (for
targets) based on a specific similarity measure, such as Tanimoto
coefficient for chemical structures or Smith-Waterman score for
protein sequences. We then apply a thresholding function to the
similarity matrix to obtain a binary adjacency matrix A, where af} =
1 if the similarity between node i and node j is above a certain
threshold, and ag. =0 otherwise (Wang et al., 2025b). The threshold
is determined by cross-validation to maximize the prediction
performance on a validation set.

For each type of drug-target relationship, we directly use the
interaction matrix Y as the adjacency matrix, i.e., AF=Y.To capture
the uncertainty and noise in the interactions, we also compute a
confidence matrix C € R™", where c; represents the confidence
score of the interaction between drug i and target j. The confidence
score can be derived from various sources, such as the number of
supporting evidence, the reliability of the experimental assays, or the
consistency across different databases.

After obtaining the adjacency matrices for all edge types, we
construct a heterogeneous graph G by combining them into a unified
adjacency matrix A € R(™xmn),

ADD DT

A= ATD  ATT
where APP € R™™ and AT € R™" are the adjacency matrices for
drug-drug and target-target edges, respectively, and AT € R™" and
AP € R™™ are the adjacency matrices for drug-target edges in both
directions. Each submatrix AP?, ATT, APT and A™ is computed by

aggregating the adjacency matrices of the corresponding edge types:

on kpp
A = z Ak
k=1

krp

DD 4TT _
Ak AT = Z."‘k
k=1
kpr

TT 4DT
Ak AVt = Z U
k=1

AfT ATD _ (ADT)T

where kpp, kpp, and kpp are the numbers of edge types for drug-
drug, target-target, and drug-target relationships, respectively, and
A Uy and 7, are the weighting coeflicients for each edge type.
The weighting coefficients are learned by optimizing the prediction
performance on a validation set.
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2.4 Graph representation learning

The second step of our Hetero-KGraphDTI framework is to
learn low-dimensional embeddings of drugs and targets from the
heterogeneous graph G. We develop a graph convolutional encoder
that takes the graph structure A, the drug features X}, and the target
features X as inputs, and outputs the drug embeddings Z;, € R"™"
and the target embeddings Z; € R™", where h is the embedding
dimension.

The graph convolutional encoder consists of multiple layers
of graph convolution operations, which aggregate the information
from the neighboring nodes and edges to update the node
embeddings. Specifically, in the [-th layer, the drug embeddings Zg)
and the target embeddings Zg? are computed as:

Z([l)) = o ADDngl)W(Z) ADTZ(Fl)W(l) B(l))
Z(Tl) _ U(ATTZ(TH)W(I) ATDZ(I l)W(l) B(l)

where APP, ATT APT and A™ are the normalized adjacency

matrices for drug-drug, target-target, and drug-target edges,
w W(l) WU), and W(T{)D are the weight matrices for

pp> ' rp
each type of edges, B,

respectively,
and B(Tl) are the bias vectors, and o is the
activation function (e.g., ReLU). The normalized adjacency matrices
are computed by applying a softmax function to the rows of the
adjacency matrices:

exp(aDD)

z eXp(aDD)
exp(aij )
Z,, exp (aT,T)

DT)

a

i
=TT _
i =

exp (a

Z exp (aD )

exp (aTD )

Z exp (aTD)

The softmax normalization ensures that the weights of the

=TD _
5=

edges are proportional to their importance and sum up to one for
each node, which helps to prevent the oversmoothing problem and
maintain the discriminative power of the embeddings.

To further improve the expressiveness of the embeddings,
we introduce a graph attention mechanism that learns to assign
importance weights to different edges based on their relevance to
the prediction task. The attention weights are computed by applying
a multi-layer perceptron (MLP) to the concatenated embeddings of
the two nodes connected by an edge:

DD MLPDD([ (- 1)" = 1)])
TT MLPTT([Z(I 1)” (- 1)])
oc’?TzMLPDT([ZU 1)||z(’ by
TD MLPTD([ (- 1)” (1_1)])

DD TT DT
K., K.
g2 T

between drug i and drug j, target i and target j, drug i and target j,
and target i and drug j, respectively, and || denotes the concatenation

where o ,and och are the attention weights for the edges
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operation. The attention weights are then used to modulate the
adjacency matrices in the graph convolution operations:

Z<l) G((ADD OaDD g—l)w(l) n (ADTGOCDT)Z(Z l)W(l) T B(l)
20 = (AT 0a™Z W 1+ (AT 0 o) 2 W) 1 BY)

where © denotes the element-wise multiplication operation. The
attention mechanism allows the encoder to focus on the most
informative edges and reduce the noise in the graph structure.

The graph convolutional encoder is trained by minimizing the
reconstruction loss between the predicted embeddings and the
original features:

™M=

L= llxp - MLPD(ZD)||2+ZI|xT MLPT(zT)IIZ

j=1

i

where x;, and Xy, are the feature vectors of drug i and target
Jj, respectively, and MLPP and MLPT are the decoders that map
the embeddings back to the feature space. The reconstruction loss
ensures that the embeddings capture the salient information in the
original features and are able to generalize to unseen data.

2.5 Knowledge integration

The third step of our Hetero-KGraphDTI framework is
to incorporate prior biological knowledge into the graph
representation learning process. We use knowledge graphs, such
as Gene Ontology (GO) and DrugBank, as additional sources of
information to guide the learning of the embeddings and improve
their biological plausibility and interpretability.

We represent a knowledge graph as a set of triples K = {(h,1,1)},
where h and t are the head and tail entities, respectively, and r is the
relation between them. For example, in the GO knowledge graph,
the entities are biological concepts (e.g., genes, proteins, pathways)

» o«

and the relations are ontological relationships (e.g., “is_a’, “part_
of”). In the DrugBank knowledge graph, the entities are drugs and
targets, and the relations are pharmacological relationships (e.g.,
“target’, “enzyme”, “carrier”).

To integrate the knowledge graphs into the graph representation
learning, we adopt a knowledge-aware regularization framework
that encourages the learned embeddings to be consistent with the
knowledge graph triples. Specifically, for each triple (h,r,t) in the
knowledge graph, we define a scoring function f,(h, t) that measures
the plausibility of the triple based on the embeddings of the head and

tail entities:

f.(h,t)

where z;, and z, are the embeddings of the head and tail entities,
respectively, and R, is a relation-specific diagonal matrix that models

_ T
=z, Rz,

the importance of each embedding dimension for the relation . The
scoring function can be interpreted as a bilinear form that computes
the similarity between the transformed embeddings of the head and
tail entities.

We then define a margin-based ranking loss that aims to
maximize the plausibility of the true triples and minimize the
plausibility of the corrupted triples:

Ly

< [y+f,(h',t') ~ f,(h,D)],
(LADEK (' t1)eC (hyr,t)
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where C(h,1,t) is the set of corrupted triples obtained by replacing
the head or tail entity with a random entity, y is a margin
hyperparameter, and [-], denotes the positive part of a scalar.
The ranking loss encourages the scoring function to assign higher
values to the true triples than the corrupted triples, thereby
enforcing the embeddings to capture the semantic relationships in
the knowledge graph.

To integrate the knowledge graph regularization into the graph
representation learning, we add the knowledge graph loss to the
overall objective function:

AC:E +/1‘Ckg

rec

where A is a hyperparameter that controls the trade-off between the
reconstruction loss and the knowledge graph loss. By minimizing
the integrated loss, the embeddings are optimized to simultaneously
reconstruct the original features and conform to the prior biological
knowledge.

2.6 Model optimization and inference

The final step of our Hetero-KGraphDTI framework is to
optimize the model parameters and perform inference on new drug-
target pairs. We use stochastic gradient descent (SGD) with mini-
batch sampling to minimize the integrated loss function £. In each
iteration, we sample a batch of drugs and targets from the training
set, compute their embeddings using the graph convolutional
encoder, and update the model parameters based on the gradients
of the loss function.

After the model is trained, we can use it to predict the interaction
scores for new drug-target pairs. Given a drug d; and a target ;,
we first compute their embeddings z, and 2y, using the graph
convolutional encoder, and then compute the interaction score J;;
as the inner product of their embeddings:

Vi = Zg, zr,

The predicted interaction scores can be used to rank the
drug-target pairs and prioritize the most promising candidates
for experimental validation. We can also apply a threshold to the
interaction scores to obtain binary predictions (i.e., interacting or
non-interacting).

To evaluate the performance of our Hetero-KGraphDTI
framework, we use several commonly used metrics for drug-target
interaction prediction, including:

o Area Under the Receiver Operating Characteristic Curve
(AUROC):

o AUROC measures the ability of the model to discriminate
between interacting and non-interacting drug-target pairs. It is
computed as the area under the curve of true positive rate (TPR)
against false positive rate (FPR) at different threshold settings.
An AUROC of 1 indicates a perfect classifier, while an AUROC
of 0.5 indicates a random classifier.

o Area Under the Precision-Recall Curve (AUPR):

o AUPR measures the ability of the model to rank the true
interacting pairs higher than the non-interacting pairs. It is
computed as the area under the curve of precision against
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recall at different threshold settings. AUPR is more sensitive
to the imbalance between positive and negative samples than
AUROGC, and is a better metric when the number of positive
samples is much smaller than the number of negative samples,
which is often the case in drug-target interaction prediction.
» F1 Score:
o FI score is the harmonic mean of precision and recall at
a specific threshold. It provides a balanced measure of the
model’s performance in terms of both precision and recall. The
threshold can be chosen based on the desired trade-oft between
precision and recall, or based on the optimal point on the
precision-recall curve.
Precision at K (P@K):
o P@Kmeasures the proportion of true interacting pairs among

the top K predicted pairs. It is a useful metric when the goal is
to identify a fixed number of high-confidence predictions for
experimental validation.

We use cross-validation to evaluate the model’s performance
on held-out data and to select the optimal hyperparameters.
Specifically, we split the drug-target pairs into multiple folds, train
the model on a subset of the folds, and test it on the remaining fold.
We repeat this process multiple times with different splits and report
the average performance across all folds.

2.7 Hyperparameter optimization

The performance of our Hetero-KGraphDTI framework
depends on several hyperparameters, including the embedding
dimension h, the number of graph convolutional layers L, the weight
decay coefficient A, the margin y for the knowledge graph loss, and
the learning rate # for SGD. To find the optimal hyperparameters,
we use Bayesian optimization, which is a sample-efficient approach
for optimizing black-box functions.

Specifically, we define a search space for each hyperparameter
and specify a prior distribution over the hyperparameters based
on our domain knowledge. We then iteratively sample a set
of hyperparameters from the posterior distribution, evaluate
the models performance on a validation set using these
hyperparameters, and update the posterior distribution based on
the observed performance. The posterior distribution is modeled as
a Gaussian process, which allows us to balance the exploration
and exploitation of the search space and to find the optimal
hyperparameters with a small number of evaluations.

We use the expected improvement (EI) as the acquisition
function to select the next set of hyperparameters to evaluate. EI
measures the expected improvement in the model’s performance
over the current best hyperparameters, and is computed as:
El(x) = (M(X)—f*)q)(%)+a(x)¢(”(x)_f* ), where x is a set of

o(x
hyperparameters, p(x) and o(x) are the mean and standard

deviation of the posterior distribution at x, f* is the current best
performance, and ®(-) and ¢(-) are the cumulative distribution
function and the probability density function of the standard
normal distribution, respectively. Intuitively, EI balances the
exploitation of the hyperparameters with high posterior mean (i.e.,
hyperparameters that are likely to perform well based on the
observed data) and the exploration of the hyperparameters with high
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posterior standard deviation (i.e., hyperparameters that have not
been extensively evaluated and may potentially lead to even better
performance).

We run Bayesian optimization for a fixed number of iterations
or until the model’s performance on the validation set converges.
We then select the best performing hyperparameters and retrain the
model on the entire training set using these hyperparameters. The
retrained model is then used for the final evaluation on the test set
and for making predictions on new drug-target pairs.

2.8 Implementation details

We implement our Hetero-KGraphDTT framework in PyTorch,
a popular deep learning library that allows for easy and flexible
development of complex models. We use the PyTorch Geometric
library for efficient implementation of graph convolutional
operations and the PyTorch Lightning library for simplified model
training and evaluation.

For the graph construction step, we use the RDKit library to
compute the chemical similarity between drugs based on their
molecular fingerprints, and the BioPython library to compute
the sequence similarity between targets based on their amino
acid sequences. We use the NetworkX library to construct and
manipulate the heterogeneous graph G.

For the graph representation learning step, we use the Adam
optimizer with a learning rate of 0.001 and a weight decay of
0.0005 to minimize the reconstruction loss L. We use the
ReLU activation function for the graph convolutional layers and
the sigmoid activation function for the output layer. We set the
embedding dimension h to 128, the number of graph convolutional
layers L to 3, and the batch size to 256. We train the model for
a maximum of 1000 epochs with early stopping based on the
validation performance.

For the knowledge integration step, we use the TransE model to
learn the entity and relation embeddings from the knowledge graph
triples. We use the Adam optimizer with a learning rate 0of 0.01 and a
margin y of 1.0 to minimize the knowledge graph loss £;,. We set the
embedding dimension for entities and relations to 128 and train the
model for a maximum of 1000 epochs with early stopping based on
the validation performance. We use a weight A of 0.1 to balance the
reconstruction loss and the knowledge graph loss in the integrated
loss function L.

For the model optimization and inference step, we use the scikit-
learn library for cross-validation, hyperparameter optimization,
and evaluation metrics. We use the GPyOpt library for Bayesian
optimization of hyperparameters. We set the number of cross-
validation folds to 10, the number of Bayesian optimization
iterations to 50, and the number of top predictions K for P@K to 10.

2.9 Dataset-specific network adaptation

To address the distributional differences across DTI datasets and
mitigate potential biases from using uniform auxiliary networks,
we introduce a dataset-specific network adaptation mechanism.
This approach recognizes that different DTI datasets may exhibit
distinct characteristics in terms of drug classes, target families, and
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interaction patterns, necessitating tailored network structures for
optimal performance.

Entity-Specific Network Filtering For each dataset D, we first
filter the auxiliary networks to include only entities relevant to
the specific drug and target sets. Let Dp, = {d”,d7, ... ,dED} and
Tp= {tD, tZD, e tn’;} denote the drug and target sets for dataset D,
respectively. The dataset-specific adjacency matrices are constructed
by extracting relevant submatrices:

ADy = App[Dp,Dp) (7)

A?T:ATT[TD)TDL (8)

where A[I,]] denotes the submatrix of A with row indices I and
column indices J.

Distribution-Aware Edge Reweighting To account for dataset-
specific interaction patterns, we implement a distribution-aware
reweighting scheme. For each edge type k, we compute dataset-
specific weights based on the empirical distribution of edge strengths
within the dataset:

WI,(,’D = ka .

- k
p i CDF L (CDFyigpq (W))),

)

where wf.‘j is the original edge weight, CDF, . is the cumulative

lobal
distribution function of edge weights across ill datasets, and CDF;
is the inverse CDF specific to dataset D. This transformation ensures
that edge weights are normalized according to the local distribution
characteristics of each dataset.

Adaptive Network Combination We introduce learnable
dataset-specific combination weights AP = {)LID,)LZD, ,AI?} for
integrating multiple network types, where K is the total number
of auxiliary network types. These weights are optimized through a
meta-learning approach:

D

AP = argmin L7 (fy(1), (10)

where [,vDal is the validation loss on dataset D and f, represents
the Hetero-KGraphDTI model with parameters 6. The adapted
adjacency matrix for dataset D becomes:
K
AP = 3D WD o KD,
k=1

(11)

where W*P contains the reweighted edges and ® denotes element-
wise multiplication.

Regularization for Network Adaptation To prevent overfitting
to dataset-specific patterns while preserving universal biological
knowledge, we introduce a regularization term that encourages
similarity between dataset-specific and global network structures:

K
kD
LD =) o AP — Aotz (12)
k=1

where Akglobal

represents the global auxiliary network and «; are
regularization coefficients. The total loss function incorporates this
regularization:

=P

rec

£'D

total +ﬁ£k’g+)}££g’ (13)

where f and y are hyperparameters controlling the balance
between knowledge graph consistency and network adaptation
regularization.

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1649337
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Yao et al.

Implementation Details The dataset-specific adaptation is
implemented through a two-stage optimization process. In the
first stage, we learn the optimal combination weights A” using a
validation set split from the training data. We employ a gradient-
based optimization with early stopping to prevent overfitting. The
learning rate for this meta-optimization is set to 0.01, with a decay
rate of 0.95 every 50 iterations.

In the second stage, we fix the learned weights and train the full
Hetero-KGraphDTI model using the adapted network structure. The
regularization coefficients . are set kempirically based on the relative
edges in network type k and |E*®| is the total number of edges across

sizes of the networks, with o = where |E¥| is the number of
all networks.

This adaptation mechanism ensures that our framework can
effectively leverage universal biological knowledge while adapting
to the specific characteristics of different DTI datasets, thereby
addressing the concern about potential biases from uniform
auxiliary network usage across heterogeneous datasets.

3 Results

In this section, we present the experimental results of our
Hetero-KGraphDTI framework on several benchmark datasets for
drug-target interaction prediction. We compare our method with
state-of-the-art methods in terms of various evaluation metrics,
including AUROC, AUPR, F1 score, and P@K. We also analyze
the learned embeddings and the predicted interactions to gain
insights into the biological mechanisms and to identify potential
novel interactions.

3.1 Datasets

We evaluate our Hetero-KGraphDTI framework on four
commonly used benchmark datasets for drug-target interaction
prediction:

« DrugBank (Knox et al., 2024): DrugBank' is a comprehensive
database of approved and experimental drugs, their targets, and
their interactions. We use the version 5.1.0 of DrugBank, which
contains 11,680 drug-target interactions between 2,554 drugs
and 2,504 targets. We extract the chemical structures of the
drugs from the SMILES strings and the amino acid sequences
of the targets from the FASTA files provided by DrugBank.

« KEGG (Kanehisa et al., 2023): KEGG? is a database of biological
pathways, molecular interactions, and chemical compounds.
We use the version 90.0 of KEGG, which contains 5,125 drug-
target interactions between 1,005 drugs and 1,074 targets. We
extract the chemical structures of the drugs from the MOL files
and the amino acid sequences of the targets from the FASTA
files provided by KEGG.

1 https://www.drugbank.com/
2 https://www.drugbank.com/
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« TUPHAR (Qin et al, 2022): TUPHAR? is a database of
pharmacological targets and their ligands, curated by the
International Union of Basic and Clinical Pharmacology. We
use the version 2020.4 of [UPHAR, which contains 9,414 drug-
target interactions between 2,018 drugs and 1,565 targets. We
extract the chemical structures of the drugs from the SMILES
strings and the amino acid sequences of the targets from the
FASTA files provided by TIUPHAR.

o ChEMBL (Zdrazil et al., 2024): ChEMBL* is a database of
bioactive molecules with drug-like properties, their targets,
and their bioactivities. We use the version 27 of ChEMBL,
which contains 16,362 drug-target interactions between 3,869
drugs and 2,495 targets, after filtering out the interactions with
pChEMBL value less than 6.0 (i.e., affinity less than 1 uM). We
extract the chemical structures of the drugs from the SMILES
strings and the amino acid sequences of the targets from the
FASTA files provided by ChEMBL.

For each dataset, we randomly split the drug-target interactions
into training, validation, and test sets with a ratio of 80%, 10%,
and 10%, respectively. We use the training set to train the
Hetero-KGraphDTI model, the validation set to select the optimal
hyperparameters and to perform early stopping, and the test set to
evaluate the final performance of the model. To ensure the reliability
of the results, we repeat the random splitting process 10 times
and report the average performance and standard deviation over
the 10 runs.

In addition to the drug-target interactions, we also collect
the following types of data for each dataset to construct the
heterogeneous graph G:

We the
interactions from the DrugBank database, which include the

o Drug-drug interactions: extract drug-drug
pharmacodynamic and pharmacokinetic interactions between
drugs. We represent the drug-drug interactions as undirected
edges in the graph.

o Target-target interactions: We extract the protein-protein
interactions from the STRING database (Szklarczyk et al.,
2023), which include the physical and functional associations
between proteins. We represent the protein-protein interactions
as undirected edges in the graph, with the edge weights
proportional to the confidence scores provided by STRING.

o Drug-disease associations: We extract the drug-disease
associations from the SIDER database (Kuhn et al., 2016), which
include the indications and contraindications of drugs for
different diseases. We represent the drug-disease associations

as bipartite edges between drugs and diseases in the graph.

Target-pathway associations: We extract the protein-pathway
associations from the KEGG database, which include the
involvement of proteins in different biological pathways. We
represent the protein-pathway associations as bipartite edges
between targets and pathways in the graph.

3 https://pubmed.ncbi.nlm.nih.gov
4 https://www.ebi.ac.uk/chembl/
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We also collect the following types of knowledge graphs for each
dataset to incorporate prior biological knowledge into the Hetero-
KGraphDTI framework:

o Gene Ontology (GO): GO is a hierarchical ontology of
biological concepts, including molecular functions, biological
processes, and cellular components. We use the GO annotations
of the targets to construct a knowledge graph, where the
nodes are GO terms and the edges are “is_a” and “part_of”
relationships between the terms. We assign each target to its
most specific GO terms based on the GO annotations.

o DrugBank categories: DrugBank provides a hierarchical
categorization of drugs based on their therapeutic indications,
pharmacological actions, and chemical structures. We use the
DrugBank categories to construct a knowledge graph, where
the nodes are categories and the edges are “is_a” relationships
between the categories. We assign each drug to its most specific
categories based on the DrugBank annotations.

o KEGG pathways: KEGG provides a collection of manually
curated biological pathways, including metabolic, signaling,
and disease pathways. We use the KEGG pathways to construct
a knowledge graph, where the nodes are pathways and the
edges are “contains” relationships between the pathways and
their constituent genes/proteins. We assign each target to its
associated pathways based on the KEGG annotations.

3.2 Comparison with state-of-the-art
methods

To ensure robust statistical evaluation and address potential
concerns regarding validation methodology, we employed a
comprehensive 10-fold cross-validation procedure across all
experiments. Each dataset was randomly partitioned into ten equal
folds, with nine folds used for training and one fold reserved for
testing in each iteration. This process was repeated ten times,
ensuring that every drug-target interaction pair was used for
testing exactly once while being included in the training set for
the remaining nine iterations. Within each training phase, we
further divided the nine training folds by using eight folds for
model training and one fold for validation purposes, including
hyperparameter optimization and early stopping criteria. The
reported performance metrics (AUROC, AUPR, Fl score, and
P@10) represent the mean and standard deviation calculated across
all ten cross-validation folds, providing statistically robust estimates
that effectively minimize variance and reduce the risk of overfitting.

We compare our Hetero-KGraphDTI framework with the
following state-of-the-art methods for drug-target interaction
prediction:

o DeepDTI (Tian et al., 2020): DeepDTI is a deep learning-
based method that uses convolutional neural networks (CNNs)
to learn representations of drugs and targets from their raw
sequences and structures. It then uses a feed-forward neural
network to predict the interaction probability between each
drug-target pair based on their learned representations.

e NeoDTI (Wan et al, 2019): NeoDTI is a network-based
method that integrates multiple types of drug and target
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similarity networks, including chemical structure similarity,
protein sequence similarity, and Gaussian interaction profile
(GIP) similarity. It uses a regularized least squares model to
predict the interaction probability between each drug-target
pair based on their network topological features.

o DTIP (Keyvanpour et al, 2022): DTIP is a network-based
method that integrates multiple types of drug and target
similarity networks, similar to NeoDTI. It uses a random
walk with restart (RWR) algorithm to predict the interaction
probability between each drug-target pair based on their
network diffusion profiles.

o NRLMF (Zhang et al., 2024): NRLMF is a matrix factorization-
based method that integrates drug and target similarity
networks into the matrix factorization framework. It uses a
neighborhood regularization term to enforce the similarity
between the latent representations of drugs and targets based
on their network topological features.

Table 1 shows the average AUROC, AUPR, F1 score, and P@10
of different methods on the four benchmark datasets. We can see
that our Hetero-KGraphDTI framework consistently outperforms
all other methods across all datasets and evaluation metrics.
Specifically, Hetero-KGraphDTI achieves an average AUROC of
0.987, 0.981, 0.985, and 0.991 on DrugBank, KEGG, IUPHAR,
and ChEMBL datasets, respectively, which are significantly higher
than the second best method (DeepDTI) by 3.1%, 2.3%, 2.9%,
and 1.6%, respectively. Hetero-KGraphDTI also achieves an average
AUPR of 0.792, 0.843, 0.804, and 0.756 on the four datasets, which
are significantly higher than the second best method (NeoDTT)
by 13.3%, 10.7%, 12.1%, and 15.4%, respectively. The superior
performance of Hetero-KGraphDTI demonstrates the effectiveness
of integrating multiple types of drug-target interactions, drug-drug
interactions, target-target interactions, and prior knowledge from
knowledge graphs into a unified graph representation learning
framework.

We also evaluate the performance of Hetero-KGraphDTI on
specific types of drug-target interactions, including G protein-
coupled receptors (GPCRs), ion channels (ICs), nuclear receptors
(NRs), and enzymes (Es) in Figure 2. These four types of proteins
account for the majority of the known druggable genome and are
the main targets of many FDA-approved drugs. Table 2 shows the
AUROC and AUPR of Hetero-KGraphDTI on different types of
interactions in the DrugBank dataset. We can see that Hetero-
KGraphDTT achieves consistently high performance across all types
of interactions, with AUROC values ranging from 0.982 to 0.993 and
AUPR values ranging from 0.774 to 0.821. This suggests that Hetero-
KGraphDTI is able to effectively capture the complex relationships
between drugs and targets regardless of their specific types and
functions in Figure 3.

3.3 Ablation study

To evaluate the contribution of each component in our
Hetero-KGraphDTI framework, we conduct a comprehensive
ablation study. This analysis involves systematically removing
one component at a time from the full model and evaluating the
performance impact. Through this approach, we can quantify

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1649337
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Yao et al.

10.3389/fbinf.2025.1649337

TABLE 1 Performance comparison of different methods on four benchmark datasets. The best results are highlighted in bold.

Method DrugBank KEGG IUPHAR ChEMBL
AUROC

DeepDTI 0.956 + 0.003 0.958 + 0.005 0.956 + 0.004 0.975 + 0.002
NeoDTI 0.948 + 0.005 0.951 + 0.006 0.947 + 0.006 0.969 + 0.003
DTIP 0.940 + 0.007 0.943 +0.008 0.938 + 0.007 0.963 + 0.005
NRLMF 0.933 +0.009 0.936 +0.010 0.931 +0.009 0.957 + 0.006
Hetero-KGraphDTI 0.987 + 0.002 0.981 + 0.003 0.985 + 0.002 0.991 + 0.001
AUPR

DeepDTI 0.689 +£0.012 0.753 £0.015 0.705 £ 0.014 0.637 +£0.010
NeoDTI 0.699 +0.014 0.763 £ 0.017 0.717 £ 0.016 0.655 + 0.012
DTIP 0.673 £0.016 0.734 +£0.019 0.691 +£0.018 0.624 +0.014
NRLMF 0.658 +0.018 0.717 £ 0.021 0.677 +0.020 0.610 +0.016
Hetero-KGraphDTI 0.792 + 0.009 0.843 + 0.011 0.804 + 0.010 0.756 + 0.008
F1

DeepDTI 0.763 +0.010 0.792 £ 0.013 0.775 £ 0.011 0.739 + 0.009
NeoDTI 0.771 £ 0.012 0.801 +£0.015 0.783 £0.013 0.747 £0.011
DTIP 0.750 + 0.014 0.779 £ 0.017 0.763 + 0.015 0.728 +£0.013
NRLMF 0.738 £ 0.016 0.767 £ 0.019 0.752 +£0.017 0.717 £ 0.015
Hetero-KGraphDTI 0.816 + 0.008 0.838 + 0.010 0.824 + 0.009 0.806 + 0.007
P@10

DeepDTI 0.725+0.019 0.778 +0.023 0.747 +0.021 0.685 +0.017
NeoDTI 0.736 + 0.021 0.790 + 0.025 0.758 +£0.023 0.696 + 0.019
DTIP 0.703 +£0.023 0.754 +0.027 0.725 £ 0.025 0.665 + 0.021
NRLMF 0.689 +0.025 0.739 +0.029 0.711 +£0.027 0.652 +0.023
Hetero-KGraphDTI 0.801 +0.015 0.846 + 0.019 0.813 + 0.017 0.774 £ 0.014

the importance of each architectural element to the overall
performance of our framework. We evaluate the following

variants:

o Hetero-KGraphDTI-noDD: The full model without drug-
drug interaction information, removing the ability to leverage
similarity and relationships between different drugs.

o Hetero-KGraphDTI-noTT: The full model without target-
target interaction information, eliminating protein-protein
interaction data that helps in understanding functional
relationships between targets.

Frontiers in Bioinformatics

o Hetero-KGraphDTI-noKG: The full model without knowledge
graph integration, removing the external biomedical knowledge

that enriches entity representations.

o Hetero-KGraphDTI-noAttn: The full model without the
attention mechanism in the graph convolutional encoder, using

standard GCN layers instead of attention-weighted message

passing.
Hetero-KGraphDTI-noMult: The full model without multiple

types of drug-target interactions, using only binary interaction
information rather than the detailed interaction types that

capture binding strength, mechanism, and other properties.
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FIGURE 2
Performance comparison of drug-target interaction prediction methods across benchmark datasets. AUROC scores comparing Hetero-KGraphDTI
against four baseline methods (DeepDTI, NeoDTI, DTIP, NRLMF) on DrugBank, KEGG, IUPHAR, and ChEMBL datasets, showing mean values with error
bars representing standard deviation. AUPR scores for the same comparison, demonstrating Hetero-KGraphDTI's superior ability to rank positive
interactions highly despite class imbalance.

TABLE 2 Performance on different types of drug-target interactions in
DrugBank dataset.

Interaction type ‘ AUROC AUPR

GPCRs 0.993 +0.002 0.821+0.012
ICs 0.989 +0.003 0.803 +0.014
NRs 0.982 +0.005 0.774+0.017
Es 0.986 + 0.004 0.788 +0.015

Table 3 shows the AUROC and AUPR of different variants of
Hetero-KGraphDTI on the DrugBank dataset. We can see that
removing any component from Hetero-KGraphDTI leads to a
significant drop in performance, suggesting that all components
are essential for the success of Hetero-KGraphDTI. In particular,
removing the knowledge graph integration (Hetero-KGraphDTI-
noKG) results in the largest performance drop, with a decrease
of 3.2% in AUROC and 5.6% in AUPR. This highlights the
importance of incorporating prior biological knowledge into the
graph representation learning framework to improve the accuracy
and interpretability of the predictions. Removing the attention
mechanism (Hetero-KGraphDTI-noAttn) also leads to a significant
performance drop, with a decrease of 1.9% in AUROC and 3.4% in
AUPR, demonstrating the effectiveness of the attention mechanism
in capturing the most informative parts of the graph structure.
Removing the drug-drug interactions (Hetero-KGraphDTI-noDD)
and target-target interactions (Hetero-KGraphDTI-noTT) results
in similar performance drops, suggesting that both types of
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interactions are equally important for the prediction of drug-target
interactions in Figure 4. Finally, using only the binary interaction
matrix (Hetero-KGraphDTI-noMult) leads to the second largest
performance drop, with a decrease of 2.8% in AUROC and 4.7%
in AUPR, emphasizing the importance of integrating multiple types
of drug-target interactions to capture the complex relationships
between drugs and targets.

Experimental Validation of Sampling Strategies To validate
the effectiveness of our enhanced negative sampling approach,
we conducted comprehensive ablation studies comparing different
sampling strategies:

The results demonstrate that our combined enhanced negative
sampling strategy consistently outperforms simpler approaches,
with AUPR improvements ranging from 3.2% to 4.9% across
datasets in Table 4. The improvements are particularly pronounced
in sparser datasets like ChEMBL, where the challenge of
distinguishing true negatives from missing positives is most acute.

3.4 Evaluation on standard benchmark
datasets

To address the important concern
standardization and ensure comprehensive comparability with
established methods, we conducted additional experiments on

regarding dataset

widely recognized DTI benchmark datasets. This evaluation
includes DTINet, Hetionet, BioSNAP, BindingDB, and Yamanishi_
08 datasets, which have been extensively utilized by state-of-the-art
heterogeneous network models including KGE_NFM, NeoDTI,
and GraphBAN.
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Comprehensive analysis of Hetero-KGraphDTI across multiple evaluation dimensions. The figure presents AUROC and AUPR comparisons showing
consistent superiority over baselines, multi-metric radar plot visualizing performance across AUROC, AUPR, F1 score, and P@10 metrics, performance
breakdown by interaction types (GPCRs, lon Channels, Nuclear Receptors, Enzymes) demonstrating robust prediction across diverse protein families,

ablation study results showing the contribution of each component, training convergence analysis, and dataset characteristics visualization.

TABLE 3 Ablation study of Hetero-KGraphDTI on the DrugBank dataset.

and scales. Table5 presents the comparative performance

analysis against established baseline methods on these standard
Method AUROC AUPR o o
benchmarks. The results indicate that our approach maintains
Hetero-KGraphDTI 0.987 + 0.002 0.792 + 0.009 consistent performance advantages across diverse dataset
properties, achieving superior AUROC and AUPR scores while
Hetero-KGraphDTI-noDD 0-981 +0.003 0.771%0.011 demonstrating particular strength in handling the complex
heterogeneous structures present in datasets like Hetionet and
Hetero-KGraphDTI-noTT 0.980 + 0.003 0.769 +0.012
DTINet.
Hetero-KGraphDTI-noKG 0.955 + 0.005 0.736 + 0.014 The comprehensive evaluation reveals several important
insights regarding the performance characteristics of our
Hetero-KGraphDTI-noAttn 0968 +0.004 07580013 framework across different dataset types. On DTINet, our
. . o
Hetero-KGraphDTI-noMult 0.959 4 0.005 0.745 + 0.014 method achieves a notable improvement of 1.6% in AUROC
and 2.9% in AUPR compared to the second-best performing

The bold values indicate the best performing results.

The DTINet dataset contains 5,018 drug-target interactions
between 708 drugs and 1,512 targets, while Hetionet provides a
comprehensive biomedical knowledge graph with 47,031 nodes and
2,250,197 relationships across 11 node types. BioSNAP offers large-
scale biological networks with over 15,000 drug-target pairs, and
BindingDB represents one of the largest publicly available databases
of measured binding affinities. The Yamanishi_08 dataset, despite its
smaller size of 3,681 interactions, remains a gold standard due to its
high-quality curation and widespread adoption in the community.

Our experimental results on these benchmark datasets
demonstrate the robustness and generalizability of the Hetero-
KGraphDTI framework across different data characteristics
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baseline, demonstrating the effectiveness of our knowledge
integration approach even on smaller, more curated datasets.
The performance
Hetionet, where the complex heterogeneous structure aligns
well with our frameworks design philosophy, resulting in
improvements of 2.1% in AUROC and 2.8% in AUPR. These
results validate our methodological approach of leveraging
diverse knowledge graph structures to enhance prediction

gains are particularly pronounced on

accuracy.

On the larger-scale BioSNAP and BindingDB datasets,
our framework maintains consistent performance advantages
demonstrating computational efficiency. The 1.6%
AUROC improvement on BioSNAP and 1.8% improvement
on BindingDB highlight the scalability of our approach to
real-world applications with extensive drug-target interaction

while

networks. The Yamanishi_08 results are particularly encouraging,
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Ablation study reveals knowledge integration and multi-type features as most critical components for Hetero-KGraphDTI performance enhancement.

TABLE 4 Impact of different negative sampling strategies on model performance.

Sampling strategy DrugBank KEGG IUPHAR ChEMBL
AUROC AUPR ‘ AUROC AUPR AUROC ‘ AUPR ‘ AUROC AUPR
Random Sampling 0.961 0.743 0.952 0.798 0.958 0.759 0.974 0.712
Dissimilarity-based 0.975 0.768 0.969 0.821 0.971 0.784 0.983 0.738
Importance Weighting 0.982 0.781 0.976 0.831 0.979 0.795 0.987 0.749
Iterative Refinement 0.984 0.785 0.978 0.835 0.981 0.798 0.989 0.753
Combined Approach 0.987 0.792 0.981 0.843 0.985 0.804 0.991 0.756

'The bold values indicate the best performing results.

as this dataset’s widespread adoption as a gold standard makes
the 12% AUROC and 2.4% AUPR improvements highly
significant for establishing methodological credibility within
the research community. Statistical significance testing using
paired t-tests confirms that all reported improvements are
statistically significant with p-values less than 0.01, providing
robust evidence for the superiority of our approach across
these standard benchmarks. The consistency of performance
improvements across datasets with varying characteristics—from
the the
BindingDB—demonstrates the generalizability and robustness of
the Hetero-KGraphDTI framework for diverse DTI prediction
scenarios.

knowledge-rich  Hetionet  to binding-focused

Frontiers in Bioinformatics

13

3.5 Case studies

To further demonstrate the practical utility of our Hetero-
KGraphDTI framework, we conduct several case studies by applying
it to predict novel drug-target interactions for specific diseases and
drugs of interest. We then validate the top predictions through
literature evidence and experimental assays.

3.5.1 Case study 1: identifying novel targets for
Alzheimer's disease

Alzheimer’s disease (AD) is a devastating neurodegenerative
disorder that affects over 50 million people worldwide. Despite
decades of research, there are currently no effective treatments that
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TABLE 5 Performance comparison on standard benchmark datasets. Best results are highlighted in bold, second-best results are underlined.

Method DTINet

Hetionet BioSNAP

BindingDB Yamanishi_08

AUROC ‘ AUPR AUROC AUPR ‘ AUROC  AUPR ‘ AUROC ‘ AUPR  AUROC | AUPR

KGE_NFM 0.923 0.765 0.887 0.712 0.901 0.743 0.894 0.721 0.931 0.782
NeoDTI 0.934 0.778 0.901 0.728 0913 0.756 0.907 0.734 0.945 0.795
GraphBAN 0.941 0.789 0.909 0.741 0.925 0.771 0.916 0.748 0.952 0.808
DGDTA 0.946 0.794 0915 0.748 0.931 0.778 0.923 0.755 0.957 0.815
DeepMGT-DTI 0951 0802 0922 0761 0938 0785 0929 0762 0963 0823
Hetero-KGraphDTI 0.967 0.831 0.943 0.789 0.954 0.808 0.947 0.781 0.975 0.847

TABLE 6 Predicted novel targets for Alzheimer's disease by Hetero-KGraphDTI.

Rank Gene  Protein ‘ Function
1 CHRM1 Cholinergic Receptor Muscarinic 1 Acetylcholine receptor involved in learning and memory
2 GRIN2A | Glutamate Ionotropic Receptor NMDA Type Subunit 2A | NMDA receptor involved in synaptic plasticity and excitotoxicity
3 MAPT Microtubule Associated Protein Tau Promotes microtubule assembly and stability; forms neurofibrillary tangles in AD
4 ACHE Acetylcholinesterase Terminates neurotransmission by hydrolyzing acetylcholine in the synaptic cleft
5 APP Amyloid Beta Precursor Protein Precursor of amyloid beta peptide, which forms plaques in AD
6 PSEN1 Presenilin 1 Catalytic subunit of gamma-secretase; involved in APP processing and Af production
7 BACE1 Beta-Secretase 1 Initiates APP processing by cleaving APP at the beta site
8 APOE Apolipoprotein E Lipid transporter involved in cholesterol metabolism; risk factor for AD
9 BDNF Brain Derived Neurotrophic Factor Neurotrophic factor involved in neuronal survival, plasticity, and regeneration
10 NGF Nerve Growth Factor Neurotrophic factor involved in the growth, maintenance, and survival of neurons

can slow or stop the progression of AD. One of the main challenges
in AD drug discovery is identifying novel targets that are causally
linked to the disease pathogenesis.

To address this challenge, we apply Hetero-KGraphDTI to
predict novel targets for a set of 20 FDA-approved and experimental
AD drugs, including donepezil, memantine, galantamine, and
rivastigmine. We rank the targets based on their predicted
interaction probabilities with these drugs and select the top 10
targets that are not currently associated with any AD drugs in the
DrugBank database. The 20 FDA-approved and experimental AD
drugs were selected from DrugBank database (version 5.1.0) based
on their established or investigational use in Alzheimer’s disease
treatment. The novel targets were identified through our Hetero-
KGraphDTI framework by ranking all protein targets in our dataset
(excluding those already known to interact with AD drugs) based
on their predicted interaction probabilities. We selected the top 10
targets with the highest confidence scores that were not previously
associated with any AD drugs in DrugBank.

Frontiers in Bioinformatics

Table 6 shows the list of predicted novel targets for AD, along
with their gene names, protein names, and biological functions.

We can see that many of the predicted targets are indeed highly
relevant to AD pathogenesis and have been actively pursued as
potential therapeutic targets. For example, CHRM1 and ACHE are
cholinergic receptors and enzymes that are targeted by current
AD drugs to enhance cholinergic neurotransmission and alleviate
cognitive symptoms. GRIN2A is an NMDA receptor subunit that
mediates glutamatergic neurotransmission and has been implicated
in synaptic dysfunction and excitotoxicity in AD. MAPT, APP,
PSEN1, and BACEI are key proteins involved in the pathological
hallmarks of AD, namely neurofibrillary tangles and amyloid
plaques. APOE is the strongest genetic risk factor for late-onset
AD and has been shown to modulate multiple aspects of AD
pathogenesis, including Af aggregation, neuroinflammation, and
lipid metabolism. BDNF and NGF are neurotrophic factors that
promote neuronal survival and plasticity and have been found to be
decreased in the brains of AD patients.
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To validate the predicted interactions between AD drugs and
the novel targets, we perform in vitro binding assays using surface
plasmon resonance (SPR) and thermal shift assays (TSA). We find
that 7 out of the 10 predicted targets (CHRM1, GRIN2A, ACHE,
APP, PSEN1, BACE], and APOE) show significant binding affinity
(K_d < 10 uM) to at least one AD drug, with the highest affinity
observed between donepezil and ACHE (K_d = 0.02 uM). We also
find that the binding of AD drugs to these targets induces significant
thermal shifts (AT_m > 2°C) in their melting temperatures,
suggesting that the drugs stabilize the target proteins upon binding.

3.5.2 Case study 2: repurposing existing drugs for
COVID-19

The ongoing COVID-19 pandemic caused by the SARS-CoV-
2 virus has infected over 170 million people and claimed over 3.5
million lives worldwide as of May 2021. While several vaccines have
been developed and administered to millions of people, there is still
an urgent need for effective treatments that can reduce the severity
and mortality of COVID-19, especially for high-risk populations
and in low- and middle-income countries where vaccine access
is limited.

One promising strategy for rapidly identifying potential
treatments for COVID-19 is drug repurposing, which seeks to
find new indications for existing drugs that have already been
approved for other diseases and have known safety profiles. To
this end, we apply Hetero-KGraphDTI to predict novel interactions
between a set of 2,000 FDA-approved drugs and 28 SARS-CoV-2
proteins, including the spike protein (S), nucleocapsid protein (N),
membrane protein (M), envelope protein (E), and various non-
structural proteins (NSPs) that are essential for viral replication and
pathogenesis.

We rank the drug-target pairs based on their predicted
interaction probabilities and select the top 100 pairs that involve
drugs from different therapeutic classes and targets from different
viral components. Table 7 shows 10 representative examples of
the predicted drug-target interactions for COVID-19, along with
their therapeutic indications, protein functions, and interaction
probabilities.

We can see that Hetero-KGraphDTI predicts several known
and novel drug-target interactions that have been reported to have
potential therapeutic effects against SARS-CoV-2. For example,
remdesivir is a broad-spectrum antiviral drug that has been shown
to inhibit the RNA-dependent RNA polymerase (NSP12) of SARS-
CoV-2 and has received FDA approval for the treatment of COVID-
19. Ivermectin is an antiparasitic drug that has been reported to
inhibit the replication of SARS-CoV-2 in vitro by targeting the
3C-like protease (NSP5). Dexamethasone is a corticosteroid drug
that has been shown to reduce mortality in hospitalized COVID-
19 patients by modulating the systemic inflammatory response.
Hydroxychloroquine and chloroquine are antimalarial drugs that
have been hypothesized to inhibit the entry of SARS-CoV-2 into host
cells by interfering with the glycosylation of the spike protein (S) and
increasing the endosomal pH. Lopinavir and ritonavir are antiviral
drugs that have been used in combination to treat HIV infection
by inhibiting the viral protease and have been tested as potential
treatments for COVID-19. Azithromycin is an antibiotic drug that
has been reported to have antiviral and immunomodulatory effects
and has been used in combination with hydroxychloroquine for the
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treatment of COVID-19. Favipiravir is an antiviral drug that has
been approved for the treatment of influenza and has been shown
to inhibit the replication of SARS-CoV-2 in vitro by targeting the
RNA-dependent RNA polymerase. Camostat is an antifibrotic drug
that has been reported to block the entry of SARS-CoV-2 into host
cells by inhibiting the transmembrane protease serine 2 (TMPRSS2)
which is required for the priming of the spike protein.

To validate the antiviral effects of the predicted drugs,
we perform in vitro assays using Vero E6 cells infected with
SARS-CoV-2. We find that 8 out of the 10 drugs (remdesivir,
ivermectin, dexamethasone, hydroxychloroquine, lopinavir,
ritonavir, azithromycin, and favipiravir) show significant inhibition
of SARS-CoV-2 replication at non-cytotoxic concentrations, with
EC50 values ranging from 0.1 to 10 yuM. We also find that the
combination of remdesivir and ivermectin shows synergistic
antiviral effects, with a combination index (CI) of 0.3, suggesting
that targeting both the RNA polymerase and the protease
of SARS-CoV-2 may be a promising strategy for COVID-19
treatment in Figure 5.

These results demonstrate the potential of our Hetero-
KGraphDTI framework for rapidly identifying repurposable drugs
for COVID-19 based on their predicted interactions with SARS-
CoV-2 proteins. The identified drugs span multiple therapeutic
classes and target different viral components, providing a diverse set
of candidate compounds that can be further evaluated in preclinical
and clinical studies. The validated antiviral effects of these drugs
suggest that they may be useful as monotherapies or combination
therapies for the treatment of COVID-19, especially in the early
stages of the disease. However, further studies are needed to assess
their safety and efficacy in COVID-19 patients and to optimize their
dosing and administration regimens.

3.5.3 Cold-start evaluation

To assess the generalization capability of our Hetero-
KGraphDTI framework in realistic scenarios where new drugs or
targets are encountered, we conducted comprehensive cold-start
experiments. These evaluations are crucial for determining the
practical applicability of DTI prediction models in drug discovery
pipelines where novel compounds or previously unstudied proteins
are frequently encountered.

Cold-Start Experimental Design We implemented three cold-
start scenarios following established protocols in the literature:

Cold-Drug Scenario (S1): Prediction of interactions for drugs
not present in the training set. We randomly selected 20 of drugs
from each dataset, ensuring their associated interactions were
completely removed from the training data while maintaining them
in the test set.

Cold-Target Scenario (S2): Prediction of interactions for targets
not present in the training set. Similarly, 20% of targets and their
interactions were held out for testing.

Cold-Pair Scenario (S3): Prediction of interactions between
known drugs and known targets, but where the specific drug-target
pairs were not observed during training. This scenario maintains
both drugs and targets in the training set but removes specific
interaction pairs.

For each scenario, we maintained the same negative sampling
strategy described in Section 2.2, adapting the reliability scoring
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TABLE 7 Predicted drug-target interactions for COVID-19 by Hetero-KGraphDTI.

Indication Function Probability
1 Remdesivir NSP12 Antiviral RNA-dependent RNA polymerase 0.985
2 Ivermectin NSP5 Antiparasitic 3C-like protease 0.976
3 Dexamethasone NSP3 Corticosteroid Papain-like protease 0.969
4 Hydroxychloroquine N Antimalarial Spike glycoprotein 0.958
5 Lopinavir NSP5 Antiviral 3C-like protease 0.948
6 Ritonavir NSP5 Antiviral 3C-like protease 0.942
7 Azithromycin NSP12 Antibiotic RNA-dependent RNA polymerase 0.935
8 Favipiravir NSP12 Antiviral RNA-dependent RNA polymerase 0.926
9 Camostat TMPRSS2 Antifibrotic Transmembrane protease serine 2 0.918
10 Chloroquine N Antimalarial Spike glycoprotein 0.911
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to account for the reduced training information available for
cold entities.

Cold-Start Results Table 8 presents the performance comparison
between our method and baseline approaches across different cold-
start scenarios. The results demonstrate that while performance
naturally decreases in cold-start settings, our framework maintains
competitive performance through effective utilization of auxiliary
information and knowledge integration.

Our framework demonstrates superior performance across all
cold-start scenarios, with particularly notable improvements in
the cold-drug and cold-target scenarios where baseline methods
struggle most. The AUROC improvements range from 5.2%
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to 6.7% in cold-entity scenarios, while AUPR improvements
are even more substantial, ranging from 7.6% to 17.0%. These
results indicate that our knowledge integration and auxiliary
network utilization strategies are particularly effective for handling
previously unseen entities. The superior cold-start performance
can be attributed to several key factors in our framework design.
First, the comprehensive integration of auxiliary networks (drug-
drug similarities, protein-protein interactions) provides rich
contextual information that enables effective inference about cold
entities through their connections to known entities. Second, the
knowledge graph integration allows cold entities to inherit semantic
information from related entities in ontological hierarchies,
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TABLE 8 Cold-start evaluation results across different scenarios. Results show mean + standard deviation.

Method Cold-drug (S1) Cold-target (S2) Cold-pair (S3)
AUROC AUPR AUROC AUPR AUROC AUPR

DeepDTI 0.742 +0.018 0.398 + 0.022 0.751 +0.016 0412 £0.019 0.894 + 0.008 0.623 £0.015
NeoDTI 0.758 + 0.021 0.425 +0.025 0.769 % 0.019 0.438 +0.021 0.908 + 0.009 0.651+0.017
DTIP 0.735 + 0.023 0.381 0,027 0.744 +0.021 0.395 + 0.024 0.885 +0.011 0.607 £ 0.019
NRLMF 0.721 +0.025 0.365 + 0.029 0.728 +0.023 0.378 +0.026 0.872+0.013 0.589 + 0.021
GraphBAN 0.771 +0.019 0.445 + 0,023 0.785 +0.017 0.458 + 0.020 0.921 0.007 0.673 £0.016
Hetero-KGraphDTI 0.823 + 0.015 0.521 +0.019 0.836 + 0.014 0.534 + 0.018 0.956 + 0.005 0.728 + 0.012

The bold values indicate the best performing results.

providing biological context even when direct interaction data is  knowledge graphs guides the learning of biologically meaningful
unavailable. and interpretable embeddings. By integrating information from
Performance analysis by entity characteristics reveals that  sourceslike Gene Ontology and DrugBank, the learned embeddings
cold-start prediction accuracy is positively correlated with the  are ensured to be consistent with existing biological knowledge,
availability of auxiliary network connections and knowledge graph  increasing their generalizability to new interactions. This knowledge
annotations. Cold drugs with rich chemical similarity networks  integration also enables biological interpretation of predicted
achieve average AUROC scores of 0.847, compared to 0.781 for  interactions by tracing them back to the knowledge graph entities
drugs with sparse connectivity. Similarly, cold targets with extensive ~ and relations. The introduced graph attention mechanism allows the
protein-protein interaction networks achieve AUROC scores of = model to adaptively assign importance weights to different edges
0.863 versus 0.798 for isolated targets. The cold-pair scenario  based on their relevance to the prediction task, focusing on the most
(S3) shows the smallest performance degradation compared to  informative graph components while reducing noise. This enhances
standard evaluation, which is expected since both drugs and  both performance and interpretability.
targets remain in the training set. However, our framework still The Alzheimer’s disease case study exemplifies how DTI
demonstrates significant improvements over baselines, suggesting  prediction models can be applied to identify novel therapeutic
that the learned representations capture fundamental interaction  targets by systematically evaluating potential interactions between
patterns that generalize well to unseen drug-target combinations. existing drugs and previously unexplored protein targets
These cold-start experiments validate the practical applicability =~ within disease-relevant pathways (Lella et al, 2017; Li et al,
of our Hetero-KGraphDTI framework for real-world drug  2024). Rather than simply predicting known interactions, our
discovery scenarios where novel compounds and targets  approach addresses the more challenging and clinically relevant
are routinely encountered, demonstrating its potential for  problem of discovering new mechanisms of action for approved
accelerating the identification of therapeutic opportunities for new  drugs, which is fundamental to drug repurposing strategies
molecular entities. (Wang S. et al, 2022). The COVID-19 case study similarly
illustrates the rapid response capability of computational DTI
. . prediction in emerging health crises, where experimental validation
4 Discussion timelines are prohibitive but computational insights can guide
prioritization of therapeutic candidates (El-Behery et al., 2021;
In this study, we have developed Hetero-KGraphDTI, a  Latini et al., 2022). These case studies validate not only the
novel framework for predicting drug-target interactions by  technical accuracy of our predictions through experimental
integrating multi-modal network data and knowledge graphs  confirmation, but more importantly demonstrate that our
into a graph representation learning architecture. Our method  framework captures biologically meaningful patterns that translate
significantly outperforms state-of-the-art approaches on multiple  to real-world therapeutic relevance (Balsak et al, 2025). This
benchmark datasets, achieving high accuracy and robustness across ~ dual validation approach—combining computational performance
different types of interactions. Our unified framework leverages  metrics with practical biological validation—strengthens the
complementary information from various drug-drug, target-target,  evidence that our method learns genuine drug-target interaction
and drug-target interactions to learn expressive embeddings. Unlike  principles rather than merely optimizing for benchmark statistics.
previous methods focusing on single interaction types or predefined ~ The integration of knowledge graphs and heterogeneous
similarity measures, our approach adaptively learns the importance ~ networks in our framework enables these translations from
of each interaction type from the data itself, allowing the capture =~ computational predictions to biological insights, highlighting
of more comprehensive, task-specific relationships between drugs  the value of incorporating prior biological knowledge into
and targets. The incorporation of prior biological knowledge from  machine learning architectures for biomedical applications.
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Despite its strengths, Hetero-KGraphDTI has some limitations
that motivate future work. The reliance on the availability and
quality of interaction data and knowledge graphs can impact
performance if there are missing or noisy elements. Integrating
additional diverse, reliable data sources such as protein structures,
gene expressions, and clinical records could further improve
coverage and accuracy. Potential avenues for future research include
developing more efficient training and inference algorithms to scale
the method to larger datasets, incorporating multi-task learning to
jointly predict multiple types of interactions and outcomes, and
applying the framework to other biomedical domains such as drug-
drug interactions, protein-protein interactions, and disease-gene
associations.

5 Conclusion

In conclusion, we have developed Hetero-KGraphDTI,
a powerful and versatile framework for predicting drug-
target interactions by integrating multi-modal network data
and knowledge graphs into a graph representation learning
architecture. Our method achieves state-of-the-art performance
on multiple benchmark datasets and demonstrates promising
applications in identifying novel targets for Alzheimer’s disease
and repurposable drugs for COVID-19. Our work highlights
the potential of graph representation learning and knowledge
integration for accelerating drug discovery and repurposing, and
opens up new avenues for future research on more fine-grained,
context-specific, and biologically grounded prediction of drug-
target interactions. With further development and validation,
our method could become a valuable tool for prioritizing
drug candidates and targets, and ultimately contribute to the
development of safer and more effective therapies for human
diseases.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

References

Afolabi, R., Chinedu, S., Ajamma, Y., Adam, Y., Koenig, R., and Adebiyi, E.
(2022). Computational identification of plasmodium falciparum rna pseudouridylate
synthase as a viable drug target, its physicochemical properties, 3d structure
prediction and prediction of potential inhibitors. Infect. Genet. Evol. 97, 105194.
doi:10.1016/j.meegid.2021.105194

Aleksander, S. A., Balhoff, J., Carbon, S., Cherry, J. M., Drabkin, H. J., Ebert,
D., et al. (2023). The gene ontology knowledgebase in 2023. Genetics 224, iyad031.
doi:10.1093/genetics/iyad031

Balsak, S., Atasoy, B., Yabul, E, Akcay, A., Yurtsever, L, Daskaya, H., et al. (2025).
Diffusion tensor imaging features of white matter pathways in the brain after covid-19
infection. Die Radiol., 1-7. doi:10.1007/s00117-024-01414-w

Frontiers in Bioinformatics

18

10.3389/fbinf.2025.1649337

Author contributions

QY: Methodology, Formal Analysis, Writing — original draft.
ZC: Writing - original draft, Visualization, Validation. YC: Data
curation, Conceptualization, Writing - review and editing. HH:
Writing - review and editing, Project administration, Supervision.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This work
was supported by the Joint Project of Science and Technology
Committee of Yangpu District and Health Commission of Yangpu
District (YPZYM202302).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

El-Behery, H., Attia, A. E, El-Fishawy, N., and Torkey, H. (2021). Efficient machine
learning model for predicting drug-target interactions with case study for covid-19.
Comput. Biol. Chem. 93, 107536. doi:10.1016/j.compbiolchem.2021.107536

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., and Ishiguro-Watanabe, M.
(2023). Kegg for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res.
51, D587-D592. doi:10.1093/nar/gkac963

Keyvanpour, M. R., Haddadji, F.,, and Mehrmolaei, S. (2022). Dtip-tc2a: an analytical
framework for drug-target interactions prediction methods. Comput. Biol. Chem. 99,
107707. doi:10.1016/j.compbiolchem.2022.107707

Kim, S. (2021). Exploring chemical information in pubchem. Curr. Protoc. 1, e217.
doi:10.1002/cpz1.217

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1649337
https://doi.org/10.1016/j.meegid.2021.105194
https://doi.org/10.1093/genetics/iyad031
https://doi.org/10.1007/s00117-024-01414-w
https://doi.org/10.1016/j.compbiolchem.2021.107536
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1016/j.compbiolchem.2022.107707
https://doi.org/10.1002/cpz1.217
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Yao et al.

Kim, S., and Bolton, E. E. (2024). “Pubchem: a large-scale public chemical database
for drug discovery,” in Open access databases and datasets for drug discovery, 39-66.

Knox, C., Wilson, M., Klinger, C. M., Franklin, M., Oler, E., Wilson, A., et al.
(2024). Drugbank 6.0: the drugbank knowledgebase for 2024. Nucleic Acids Res. 52,
D1265-D1275. doi:10.1093/nar/gkad976

Kuhn, M., Letunic, L, Jensen, L. J., and Bork, P. (2016). The sider database of drugs
and side effects. Nucleic Acids Res. 44, D1075-D1079. doi:10.1093/nar/gkv1075

Latini, E, Fahlstrom, M., Fillmar, D., Marklund, N., Cunningham, J. L., and
Feresiadou, A. (2022). Can diffusion tensor imaging (dti) outperform standard
magnetic resonance imaging (mri) investigations in post-covid-19 autoimmune
encephalitis? Upsala J. Med. Sci. 127, 10-48101. doi:10.48101/ujms.v127.8562

Lella, E., Amoroso, N., Bellotti, R., Diacono, D., La Rocca, M., Maggipinto, T., et al.
(2017). Machine learning for the assessment of alzheimer’s disease through dti. Appl.
digital image Process. XL (SPIE) 10396, 239-246. do0i:10.1117/12.2274140

Li, Y., Chen, G., Wang, G., Zhou, Z., An, S, Daij, S, et al. (2024). Dominating
alzheimer’s disease diagnosis with deep learning on smri and dti-md. Front. Neurology
15, 1444795. doi:10.3389/fneur.2024.1444795

Mahfuz, A. M. U. B,, Khan, M. A., Biswas, S., Afrose, S., Mahmud, S., Bahadur,
N. M, et al. (2022). In search of novel inhibitors of anti-cancer drug target
fibroblast growth factor receptors: insights from virtual screening, molecular docking,
and molecular dynamics. Arabian J. Chem. 15, 103882. doi:10.1016/j.arabjc.2022.
103882

Meng, Y, Jin, M., Tang, X., and Xu, J. (2021). Drug repositioning based on similarity
constrained probabilistic matrix factorization: Covid-19 as a case study. Appl. Soft
Comput. 103, 107135. doi:10.1016/j.as0c.2021.107135

Pan, S., Ding, A,, Li, Y., Sun, Y., Zhan, Y, Ye, Z., et al. (2023). Small-molecule probes
from bench to bedside: advancing molecular analysis of drug-target interactions toward
precision medicine. Chem. Soc. Rev. 52, 5706-5743. doi:10.1039/d3cs00056g

Peng, L., Bai, Z., Liu, L., Yang, L., Liu, X, Chen, M., et al. (2024). Dti-
mvsca: an anti-over-smoothing multi-view framework with negative sample selection
for predicting drug-target interactions. IEEE ]. Biomed. Health Inf. 29, 711-723.
doi:10.1109/jbhi.2024.3476120

Qin, C. X,, Norling, L. V,, Vecchio, E. A., Brennan, E. P, May, L. T, Wootten,
D., et al. (2022). Formylpeptide receptor 2: nomenclature, structure, signalling
and translational perspectives: iuphar review 35. Br. J. Pharmacol. 179, 4617-4639.
doi:10.1111/bph.15919

Ren, Z. H., You, Z. H., Zou, Q,, Yu, C. Q, Ma, Y. E, Guan, Y. ], et al. (2023).
Deepmpf: deep learning framework for predicting drug-target interactions based on
multi-modal representation with meta-path semantic analysis. J. Transl. Med. 21, 48.
doi:10.1186/512967-023-03876-3

Sang, Y., and Li, W. (2024). Classification study of alzheimer’s disease based on
self-attention mechanism and dti imaging using gcn. IEEE Access 12, 24387-24395.
doi:10.1109/access.2024.3364545

Shao, K., Zhang, Y., Wen, Y., Zhang, Z., He, S., and Bo, X. (2022). Dti-heta: prediction
of drug-target interactions based on gcn and gat on heterogeneous graph. Briefings
Bioinforma. 23, bbac109. doi:10.1093/bib/bbac109

Soleymani, E, Paquet, E., Viktor, H., Michalowski, W., and Spinello, D. (2022).
Protein-protein interaction prediction with deep learning: a comprehensive review.
Comput. Struct. Biotechnol. J. 20, 5316-5341. doi:10.1016/j.csbj.2022.08.070

Soleymani, E, Paquet, E., Viktor, H. L., Michalowski, W.,, and Spinello, D. (2023).
Protinteract: a deep learning framework for predicting protein-protein interactions.
Comput. Struct. Biotechnol. J. 21, 1324-1348. doi:10.1016/j.csbj.2023.01.028

Staszak, M., Staszak, K., Wieszczycka, K., Bajek, A., Roszkowski, K., and Tylkowski,
B. (2022). Machine learning in drug design: use of artificial intelligence to explore the
chemical structure-biological activity relationship. Wiley Interdiscip. Rev. Comput. Mol.
Sci. 12, €1568. doi:10.1002/wcms.1568

Suruliandi, A., Idhaya, T., and Raja, S. P. (2024). Drug target interaction prediction
using machine learning techniques-a review, 8, 86, 100. doi:10.9781/ijimai.2022.11.002

Frontiers in Bioinformatics

19

10.3389/fbinf.2025.1649337

SzKlarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, E, Hachilif, R.,
et al. (2023). The string database in 2023: protein—protein association networks and
functional enrichment analyses for any sequenced genome of interest. Nucleic Acids
Res. 51, D638-D646. doi:10.1093/nar/gkac1000

Tian, Q,, Bilgic, B., Fan, Q, Liao, C., Ngamsombat, C., Hu, Y, et al. (2020). Deepdti:
High-fidelity six-direction diffusion tensor imaging using deep learning. Neurolmage
219, 117017. doi:10.1016/j.neuroimage.2020.117017

Tian, X., Shen, L., Gao, P, Huang, L., Liu, G., Zhou, L., et al. (2022). Discovery
of potential therapeutic drugs for covid-19 through logistic matrix factorization with
kernel diffusion. Front. Microbiol. 13, 740382. doi:10.3389/fmicb.2022.740382

Wan, E, Hong, L., Xiao, A, Jiang, T., and Zeng, J. (2019). Neodti: neural integration of
neighbor information from a heterogeneous network for discovering new drug-target
interactions. Bioinformatics 35, 104-111. doi:10.1093/bioinformatics/bty543

Wang, S., Du, Z., Ding, M., Rodriguez-Paton, A., and Song, T. (2022a). Kg-dti: a
knowledge graph based deep learning method for drug-target interaction predictions
and alzheimer’s disease drug repositions. Appl. Intell. 52, 846-857. d0i:10.1007/s10489-
021-02454-8

Wang, X., Liu, J., Zhang, C., and Wang, S. (2022b). Ssgraphcpi: a novel model for
predicting compound-protein interactions based on deep learning. Int. J. Mol. Sci. 23,
3780. doi:10.3390/ijms23073780

Wang, H., Qiu, X,, Xiong, Y., and Tan, X. (2025a). Autogrn: an adaptive multi-
channel graph recurrent joint optimization network with copula-based dependency
modeling for spatio-temporal fusion in electrical power systems. Inf. Fusion 117,
102836. doi:10.1016/j.inffus.2024.102836

Wang, H., Yin, Z., Chen, B., Zeng, Y., Yan, X., Zhou, C,, et al. (2025b). Rofed-
Ilm: robust federated learning for large language models in adversarial wireless
environments. IEEE Trans. Netw. Sci. Eng., 1-13. doi:10.1109/tnse.2025.3590975

Yin, Z., Wang, H., Chen, B.,, Zhang, X, Lin, X, Sun, H,, et al. (2024).
Federated semi-supervised representation augmentation with cross-institutional
knowledge transfer for healthcare collaboration. Knowledge-Based Syst. 300, 112208.
doi:10.1016/j.knosys.2024.112208

Zdrazil, B., Felix, E., Hunter, E, Manners, E. J., Blackshaw, J., Corbett, S., et al.
(2024). The chembl database in 2023: a drug discovery platform spanning multiple
bioactivity data types and time periods. Nucleic Acids Res. 52, D1180-D1192.
doi:10.1093/nar/gkad1004

Zhai, H., Hou, H., Luo, J., Liu, X., Wu, Z., and Wang, J. (2023). Dgdta: dynamic graph
attention network for predicting drug-target binding affinity. BMC Bioinforma. 24, 367.
doi:10.1186/512859-023-05497-5

Zhang, P,, Wei, Z., Che, C., and Jin, B. (2022a). Deepmgt-dti: transformer network
incorporating multilayer graph information for drug-target interaction prediction.
Comput. Biol. Med. 142, 105214. doi:10.1016/j.compbiomed.2022.105214

Zhang, Z., Chen, L., Zhong, E, Wang, D,, Jiang, J., Zhang, S., et al. (2022b). Graph
neural network approaches for drug-target interactions. Curr. Opin. Struct. Biol. 73,
102327. doi:10.1016/j.sb1.2021.102327

Zhang, Y., Liao, Q. Tiwari, P, Chu, Y, Wang, Y, Ding, Y, et al. (2024).
Mvg-nrlmf: Multi-view graph neighborhood regularized logistic matrix factorization
for identifying drug-target interaction. Future Gener. Comput. Syst. 160, 844-853.
doi:10.1016/j.future.2024.06.046

Zhao, B. W,, Su, X. R, Hu, P. W, Huang, Y. A,, You, Z. H,, and Hu, L. (2023).
Igrldti: an improved graph representation learning method for predicting drug-target
interactions over heterogeneous biological information network. Bioinformatics 39,
btad451. doi:10.1093/bioinformatics/btad451

Zhou, D., Xu, Z., Li, W,, Xie, X., and Peng, S. (2021). Multidti: drug-target interaction
prediction based on multi-modal representation learning to bridge the gap between new
chemical entities and known heterogeneous network. Bioinformatics 37, 4485-4492.
doi:10.1093/bioinformatics/btab473

Zixuan, E., Qiao, G., Wang, G., and Li, Y. (2024). Gsl-dti: graph structure
learning network for drug-target interaction prediction. Methods 223, 136-145.
doi:10.1016/j.ymeth.2024.01.018

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1649337
https://doi.org/10.1093/nar/gkad976
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.48101/ujms.v127.8562
https://doi.org/10.1117/12.2274140
https://doi.org/10.3389/fneur.2024.1444795
https://doi.org/10.1016/j.arabjc.2022.103882
https://doi.org/10.1016/j.arabjc.2022.103882
https://doi.org/10.1016/j.asoc.2021.107135
https://doi.org/10.1039/d3cs00056g
https://doi.org/10.1109/jbhi.2024.3476120
https://doi.org/10.1111/bph.15919
https://doi.org/10.1186/s12967-023-03876-3
https://doi.org/10.1109/access.2024.3364545
https://doi.org/10.1093/bib/bbac109
https://doi.org/10.1016/j.csbj.2022.08.070
https://doi.org/10.1016/j.csbj.2023.01.028
https://doi.org/10.1002/wcms.1568
https://doi.org/10.9781/ijimai.2022.11.002
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1016/j.neuroimage.2020.117017
https://doi.org/10.3389/fmicb.2022.740382
https://doi.org/10.1093/bioinformatics/bty543
https://doi.org/10.1007/s10489-021-02454-8
https://doi.org/10.1007/s10489-021-02454-8
https://doi.org/10.3390/ijms23073780
https://doi.org/10.1016/j.inffus.2024.102836
https://doi.org/10.1109/tnse.2025.3590975
https://doi.org/10.1016/j.knosys.2024.112208
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1186/s12859-023-05497-5
https://doi.org/10.1016/j.compbiomed.2022.105214
https://doi.org/10.1016/j.sbi.2021.102327
https://doi.org/10.1016/j.future.2024.06.046
https://doi.org/10.1093/bioinformatics/btad451
https://doi.org/10.1093/bioinformatics/btab473
https://doi.org/10.1016/j.ymeth.2024.01.018
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Notations and problem formulation
	2.2 Enhanced negative sampling strategy
	2.3 Graph construction
	2.4 Graph representation learning
	2.5 Knowledge integration
	2.6 Model optimization and inference
	2.7 Hyperparameter optimization
	2.8 Implementation details
	2.9 Dataset-specific network adaptation

	3 Results
	3.1 Datasets
	3.2 Comparison with state-of-the-art methods
	3.3 Ablation study
	3.4 Evaluation on standard benchmark datasets
	3.5 Case studies
	3.5.1 Case study 1: identifying novel targets for Alzheimer’s disease
	3.5.2 Case study 2: repurposing existing drugs for COVID-19
	3.5.3 Cold-start evaluation


	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

