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Introduction: Accurately predicting drug-target interactions (DTIs) is crucial for 
accelerating drug discovery and repurposing. Despite recent advances in deep 
learning-based methods, challenges remain in effectively capturing the complex 
relationships between drugs and targets while incorporating prior biological 
knowledge.
Methods: We introduce a novel framework that combines graph neural 
networks with knowledge integration for DTI prediction. Our approach learns 
representations from molecular structures and protein sequences through 
a customized graph-based message passing scheme. We integrate domain 
knowledge from biomedical ontologies and databases using a knowledge-
based regularization strategy to infuse biological context into the learned 
representations.
Results: We evaluated our model on multiple benchmark datasets, achieving an 
average AUC of 0.98 and an average AUPR of 0.89, surpassing existing state-
of-the-art methods by a considerable margin. Visualization of learned attention 
weights identified salient molecular substructures and protein motifs driving the 
predicted interactions, demonstrating model interpretability.
Discussion: We validated the practical utility by predicting novel DTIs for FDA-
approved drugs and experimentally confirming a high proportion of predictions. 
Our framework offers a powerful and interpretable solution for DTI prediction 
with the potential to substantially accelerate the identification of new drug 
candidates and therapeutic targets.

KEYWORDS

computational drug screening, Systems pharmacology, drug-target prediction, 
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 1 Introduction

The discovery and development of new drugs is a lengthy, complex, and expensive 
process. It typically takes 10–15 years and costs over $2.6 billion to bring a new drug 
to market (Zhang Z. et al., 2022). A key bottleneck in the drug discovery pipeline is 
identifying the molecular targets that are responsible for the desired therapeutic effects 
and unwanted side effects of drug candidates (Pan et al., 2023). These targets are usually 
proteins, such as enzymes, receptors, or ion channels, that play critical roles in disease 
pathways. Drugs exert their actions by binding to these targets and modulating their
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functions (Zhao et al., 2023). Therefore, understanding the 
interactions between drugs and their targets, known as drug-
target interactions (DTIs), is crucial for rational drug design and 
repurposing.

Traditionally, DTIs were discovered through experimental 
methods such as in vitro binding assays, which are time-consuming, 
labor-intensive, and low-throughput (Kim and Bolton, 2024). 
With the advent of high-throughput screening technologies, such 
as genomics, proteomics, and chemogenomics, it has become 
possible to test large numbers of compounds against multiple 
targets simultaneously (Mahfuz et al., 2022). However, even these 
approaches can only cover a small fraction of the vast chemical and 
biological space. For example, there are over 108 million compounds 
in the PubChem database (Kim, 2021) and an estimated 200,000 
proteins encoded by the human genome (Suruliandi et al., 2024), 
resulting in over 1013 possible drug-target pairs. Experimentally 
testing all these combinations is infeasible. Moreover, many 
compounds may have off-target effects that are difficult to detect 
using current experimental methods (Afolabi et al., 2022).

To address these challenges, computational methods have 
emerged as a promising approach for predicting DTIs on a 
large scale. These methods aim to prioritize drug-target pairs for 
experimental validation based on various types of data, such as 
chemical structures, protein sequences, and interaction networks 
(Soleymani et al., 2022). Early computational approaches relied 
on docking simulations, which predict the binding mode and 
affinity of a drug-target complex based on its three-dimensional 
structure (Soleymani et al., 2023; Staszak et al., 2022). However, 
docking is computationally expensive and requires high-resolution 
structures of both the drug and the target, which are not always 
available. More recently, machine learning-based methods have 
gained popularity due to their ability to learn complex patterns 
from large datasets without requiring explicit feature engineering 
(Wang X. et al., 2022; Yin et al., 2024).

One of the most successful machine learning-based methods for 
DTI prediction is matrix factorization (MF). MF models represent 
drugs and targets as low-dimensional vectors (latent factors) and 
predict their interactions based on the inner product of these 
vectors (Meng et al., 2021). MF models have achieved state-of-
the-art performance on several benchmark datasets (Tian et al., 
2022). However, MF models have several limitations. First, they treat 
drugs and targets as distinct entities and ignore their structural and 
evolutionary relationships. Second, they cannot handle new drugs 
or targets that are not present in the training data (the cold-start 
problem). Third, they do not provide any biological interpretation 
of the latent factors.

To overcome these limitations, recent studies have proposed to 
integrate multiple types of data, such as chemical structures, protein 
sequences, and interaction networks, into a unified framework for 
DTI prediction. These methods are known as multi-modal or multi-
view learning (Zhou et al., 2021). One promising approach is to 
use graph representation learning, which learns low-dimensional 
embeddings of drugs and targets from their graph-structured 
data (Shao et al., 2022). Graphs provide a natural and flexible 
representation of the relationships between drugs, targets, and 
their interactions. For example, drugs can be represented as nodes 
in a chemical similarity network, targets can be represented as 
nodes in a protein-protein interaction (PPI) network, and DTIs 

can be represented as edges between these nodes (Zhang P. et al., 
2022). Graph representation learning methods, such as graph 
convolutional networks (GCNs) (Sang and Li, 2024; Wang et al., 
2025a) and graph attention networks (GATs) (Zhai et al., 2023), can 
learn informative embeddings of drugs and targets by aggregating 
information from their local neighborhoods in the graph.

Several studies have applied graph representation learning 
to DTI prediction and demonstrated superior performance over 
traditional methods. For example, Ren et al. (2023) proposed a 
multi-modal deep learning framework that integrates chemical 
structures, protein sequences, and PPI networks using GCNs 
and achieved an AUC of 0.96 on the DrugBank dataset. 
Feng et al. (Zixuan et al., 2024) developed a graph-based model that 
learns drug and target embeddings from multiple heterogeneous 
networks, including drug-drug, target-target, and drug-target 
networks, and obtained an AUC of 0.98 on the KEGG dataset. These 
studies highlight the potential of graph representation learning for 
improving the accuracy and robustness of DTI prediction.

However, existing graph-based methods still face several 
challenges. First, they rely on predefined graph structures, such 
as chemical similarity networks or PPI networks, which may 
not capture all the relevant information for DTI prediction. 
Second, they do not explicitly model the uncertainty or noise 
in the graph edges, which may lead to over-smoothing and 
loss of discriminative power (Peng et al., 2024). Third, they do 
not incorporate prior biological knowledge, such as functional 
annotations or pathway information, which may provide valuable 
guidance for learning more meaningful and interpretable 
embeddings.

To address these challenges, we propose a novel framework for 
DTI prediction that combines graph representation learning with 
knowledge integration in Figure 1. Our framework, called Hetero-
KGraphDTI, has three key components: 

1. Graph construction: We construct a heterogeneous graph 
that integrates multiple types of data, including chemical 
structures, protein sequences, and interaction networks. We 
use a data-driven approach to learn the graph structure and 
edge weights based on the similarity and relevance of the 
features. This allows us to capture more comprehensive and 
adaptive relationships between drugs and targets.

2. Graph representation learning: We develop a graph 
convolutional encoder that learns low-dimensional embeddings 
of drugs and targets from the heterogeneous graph. The encoder 
uses a multi-layer message passing scheme that aggregates 
information from different types of edges and nodes. We also 
introduce a graph attention mechanism that learns to assign 
importance weights to different edges based on their relevance 
to the prediction task. This enables the encoder to focus on the 
most informative parts of the graph and reduce noise.

3. Knowledge integration: We incorporate prior biological 
knowledge into the graph representation learning 
process by using knowledge graphs, such as Gene 
Ontology (GO) (Aleksander et al., 2023) and DrugBank, as 
additional sources of information. We develop a knowledge-
aware regularization framework that encourages the learned 
embeddings to be consistent with the ontological and 
pharmacological relationships defined in the knowledge 
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FIGURE 1
Overview of the overall framework structure of the model.

graphs. This helps to improve the biological plausibility and 
interpretability of the predictions.

We evaluate our Hetero-KGraphDTI framework on several 
benchmark datasets and demonstrate significant improvements 
over state-of-the-art methods in terms of both accuracy and 
efficiency. We also conduct extensive ablation studies to analyze 
the contributions of different components and hyperparameters. 
Furthermore, we apply our framework to predict novel DTIs for a 
set of FDA-approved drugs and validate the top predictions through 
literature evidence and experimental assays.

In summary, our Hetero-KGraphDTI framework represents a 
powerful and flexible approach for DTI prediction that leverages 
the strengths of graph representation learning and knowledge 
integration. By learning informative and interpretable embeddings 
of drugs and targets from heterogeneous graphs and knowledge 
graphs, our framework can accurately predict novel DTIs and 
provide insights into their biological basis. We believe that our 
framework has the potential to accelerate drug discovery and 
repurposing, and ultimately contribute to the development of safer 
and more effective therapies. 

2 Methods

In this section, we describe the methodology of our 
Hetero-KGraphDTI framework in detail. We first introduce 

the notations and problem formulation. Then, we present the 
three key components of our framework: graph construction, 
graph representation learning, and knowledge integration. 
Finally, we describe the model optimization and inference
procedures. 

2.1 Notations and problem formulation

Let D = {d1,d2,…,dm} denote a set of m drugs, T = {t1, t2,…, tn}
denote a set of n targets, and Y ∈ ℝm×n denote the drug-target 
interaction matrix, where yij = 1 if drug di interacts with target tj, 
and yij = 0 otherwise. The goal of drug-target interaction prediction 
is to learn a function f:D×T→ℝ that predicts the interaction score 
between a drug-target pair.

In addition to the interaction matrix, we also have multiple types 
of drug and target features, such as chemical structures, protein 
sequences, and interaction networks. We represent these features as 
a heterogeneous graph G = (V,E), where V = D∪T is the set of nodes 
(drugs and targets), and E = {E1,E2,…,Ek} is the set of edges of k
different types. Each edge type corresponds to a specific type of drug-
drug, target-target, or drug-target relationship, such as chemical 
similarity, sequence similarity, or known interactions. We denote 
the feature matrix of drugs as XD ∈ ℝm×d and the feature matrix of 
targets as XT ∈ ℝn×t, where d and t are the feature dimensions of 
drugs and targets, respectively. 

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1649337
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Yao et al. 10.3389/fbinf.2025.1649337

2.2 Enhanced negative sampling strategy

Recognizing the positive-unlabeled (PU) learning nature of the 
DTI prediction problem, we implement a sophisticated negative 
sampling framework that addresses the fundamental challenge 
that missing drug-target interactions do not necessarily represent 
true negatives. Our approach incorporates three complementary 
strategies to generate reliable negative samples while accounting for 
the inherent uncertainty in unlabeled data.

Reliable Negative Sampling We employ a dissimilarity-based 
reliable negative sampling strategy that leverages both chemical and 
biological spaces to identify highly confident negative pairs. For each 
drug di and target tj, we compute a reliability score rij based on 
dissimilarity metrics:

rij = α ⋅ChemDissim(di,Nd(tj)) + β ⋅ SeqDissim(tj,Nt(di)), (1)

where Nd(tj) represents the set of drugs known to interact with target 
tj, Nt(di) represents the set of targets known to interact with drug 
di, and α,β are weighting parameters. The chemical dissimilarity 
ChemDissim(di,Nd(tj)) is computed as:

ChemDissim(di,Nd(tj)) = 1− max
dk∈Nd(tj)

Tanimoto(FP(di),FP(dk)), (2)

 where FP(d) denotes the molecular fingerprint of drug d. Similarly, 
sequence dissimilarity is calculated using Smith-Waterman 
alignment scores:

SeqDissim(tj,Nt(di)) = 1− max
tl∈Nt(di)

SW(S(tj),S(tl))
SWmax

, (3)

where S(t) represents the amino acid sequence of target t and SWmax
is the maximum possible alignment score.

Importance Weighting Framework To account for the 
uncertainty inherent in unlabeled pairs, we implement an 
importance weighting scheme that assigns different confidence 
levels to negative samples. The weight wij for each negative sample 
(di, tj) is computed as:

wij =
exp (γ ⋅ rij)

∑
(dk,tl)∈N

exp (γ ⋅ rkl)
, (4)

where N  is the set of negative samples and γ is a temperature 
parameter controlling the sharpness of the weighting distribution. 
This weighting scheme ensures that highly reliable negative samples 
receive greater importance during training, while uncertain samples 
contribute less to the loss function. The modified loss function 
incorporating importance weighting becomes:

Lweighted = − ∑
(i,j)∈P

log σ(ŷij) − ∑
(i,j)∈N

wij log (1− σ(ŷij)), (5)

where P  represents positive samples, σ is the sigmoid function, and 
ŷij is the predicted interaction score.

Iterative Negative Sample Refinement We implement an iterative 
refinement procedure that updates negative samples based on 
evolving model confidence throughout training. At regular intervals 
(every 50 epochs), we re-evaluate the confidence scores of all 
unlabeled pairs and adjust our negative sample set accordingly:

N (t+1) = {(di, tj):(di, tj) ∈ U and ŷ(t)ij < θneg and rij > θrel}, (6)

where U  represents the set of unlabeled pairs, ŷ(t)ij  is the predicted 
score at iteration t, θneg is the negative prediction threshold, and θrel
is the reliability threshold. 

2.3 Graph construction

The first step of our Hetero-KGraphDTI framework is to 
construct a heterogeneous graph that integrates multiple types 
of drug and target features. Instead of using predefined graph 
structures, such as chemical similarity networks or protein-protein 
interaction networks, we propose a data-driven approach to learn 
the graph structure and edge weights based on the similarity and 
relevance of the features.

For each type of drug-drug or target-target relationship, we 
compute a similarity matrix Sk ∈ ℝm×m (for drugs) or Sk ∈ ℝn×n (for 
targets) based on a specific similarity measure, such as Tanimoto 
coefficient for chemical structures or Smith-Waterman score for 
protein sequences. We then apply a thresholding function to the 
similarity matrix to obtain a binary adjacency matrix Ak, where ak

ij =
1 if the similarity between node i and node j is above a certain 
threshold, and ak

ij = 0 otherwise (Wang et al., 2025b). The threshold 
is determined by cross-validation to maximize the prediction 
performance on a validation set.

For each type of drug-target relationship, we directly use the 
interaction matrix Y as the adjacency matrix, i.e., Ak = Y. To capture 
the uncertainty and noise in the interactions, we also compute a 
confidence matrix C ∈ ℝm×n, where cij represents the confidence 
score of the interaction between drug i and target j. The confidence 
score can be derived from various sources, such as the number of 
supporting evidence, the reliability of the experimental assays, or the 
consistency across different databases.

After obtaining the adjacency matrices for all edge types, we 
construct a heterogeneous graph G by combining them into a unified 
adjacency matrix Ā ∈ ℝ(m+n)×(m+n):

Ā = [

[

ADD ADT

ATD ATT
]

]

where ADD ∈ ℝm×m and ATT ∈ ℝn×n are the adjacency matrices for 
drug-drug and target-target edges, respectively, and ADT ∈ ℝm×n and 
ATD ∈ ℝn×m are the adjacency matrices for drug-target edges in both 
directions. Each submatrix ADD, ATT, ADT, and ATD is computed by 
aggregating the adjacency matrices of the corresponding edge types:

ADD =
kDD

∑
k=1

λk

ADD
k ATT =

kTT

∑
k=1

μk

ATT
k ADT =

kDT

∑
k=1

ηk

ADT
k ATD = (ADT)T

 where kDD, kTT, and kDT are the numbers of edge types for drug-
drug, target-target, and drug-target relationships, respectively, and 
λk, μk, and ηk are the weighting coefficients for each edge type. 
The weighting coefficients are learned by optimizing the prediction 
performance on a validation set. 
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2.4 Graph representation learning

The second step of our Hetero-KGraphDTI framework is to 
learn low-dimensional embeddings of drugs and targets from the 
heterogeneous graph G. We develop a graph convolutional encoder 
that takes the graph structure Ā, the drug features XD, and the target 
features XT as inputs, and outputs the drug embeddings ZD ∈ ℝm×h

and the target embeddings ZT ∈ ℝ
n×h, where h is the embedding 

dimension.
The graph convolutional encoder consists of multiple layers 

of graph convolution operations, which aggregate the information 
from the neighboring nodes and edges to update the node 
embeddings. Specifically, in the l-th layer, the drug embeddings Z(l)D
and the target embeddings Z(l)T  are computed as:

Z(l)D = σ(ĀDDZ(l−1)D W(l)DD + ĀDTZ(l−1)T W(l)DT +B(l)D )

Z(l)T = σ(ĀTTZ(l−1)T W(l)TT + ĀTDZ(l−1)D W(l)TD +B(l)T )

where ĀDD, ĀTT, ĀDT, and ĀTD are the normalized adjacency 
matrices for drug-drug, target-target, and drug-target edges, 
respectively, W(l)DD, W(l)TT, W(l)DT, and W(l)TD are the weight matrices for 
each type of edges, B(l)D  and B(l)T  are the bias vectors, and σ is the 
activation function (e.g., ReLU). The normalized adjacency matrices 
are computed by applying a softmax function to the rows of the 
adjacency matrices:

̄aDD
ij =

exp (aDD
ij )

∑
j′

exp (aDD
ij′ )

̄aTT
ij =

exp (aTT
ij )

∑
j′

exp (aTT
ij′ )

̄aDT
ij =

exp (aDT
ij )

∑
j′

exp (aDT
ij′ )

̄aTD
ij =

exp (aTD
ij )

∑
j′

exp (aTD
ij′ )

The softmax normalization ensures that the weights of the 
edges are proportional to their importance and sum up to one for 
each node, which helps to prevent the oversmoothing problem and 
maintain the discriminative power of the embeddings.

To further improve the expressiveness of the embeddings, 
we introduce a graph attention mechanism that learns to assign 
importance weights to different edges based on their relevance to 
the prediction task. The attention weights are computed by applying 
a multi-layer perceptron (MLP) to the concatenated embeddings of 
the two nodes connected by an edge:

αDD
ij =MLPDD([z(l−1)Di

‖z(l−1)Dj
])

αTT
ij =MLPTT([z(l−1)Ti

‖z(l−1)Tj
])

αDT
ij =MLPDT([z(l−1)Di

‖z(l−1)Tj
])

αTD
ij =MLPTD([z(l−1)Ti

‖z(l−1)Dj
])

where αDD
ij , αTT

ij , αDT
ij , and αTD

ij  are the attention weights for the edges 
between drug i and drug j, target i and target j, drug i and target j, 
and target i and drug j, respectively, and ‖ denotes the concatenation 

operation. The attention weights are then used to modulate the 
adjacency matrices in the graph convolution operations:

Z(l)D = σ((ĀDD ⊙ αDD)Z(l−1)D W(l)DD + (Ā
DT ⊙ αDT)Z(l−1)T W(l)DT +B(l)D )

Z(l)T = σ((ĀTT ⊙ αTT)Z(l−1)T W(l)TT + (Ā
TD ⊙ αTD)Z(l−1)D W(l)TD +B(l)T )

where ⊙ denotes the element-wise multiplication operation. The 
attention mechanism allows the encoder to focus on the most 
informative edges and reduce the noise in the graph structure.

The graph convolutional encoder is trained by minimizing the 
reconstruction loss between the predicted embeddings and the 
original features:

Lrec =
m

∑
i=1
‖xDi
−MLPD(zDi

)‖2 +
n

∑
j=1
‖xTj
−MLPT(zTj

)‖2

where xDi
 and xTj

 are the feature vectors of drug i and target 
j, respectively, and MLPD and MLPT are the decoders that map 
the embeddings back to the feature space. The reconstruction loss 
ensures that the embeddings capture the salient information in the 
original features and are able to generalize to unseen data. 

2.5 Knowledge integration

The third step of our Hetero-KGraphDTI framework is 
to incorporate prior biological knowledge into the graph 
representation learning process. We use knowledge graphs, such 
as Gene Ontology (GO) and DrugBank, as additional sources of 
information to guide the learning of the embeddings and improve 
their biological plausibility and interpretability.

We represent a knowledge graph as a set of triples K = {(h, r, t)}, 
where h and t are the head and tail entities, respectively, and r is the 
relation between them. For example, in the GO knowledge graph, 
the entities are biological concepts (e.g., genes, proteins, pathways) 
and the relations are ontological relationships (e.g., “is_a”, “part_
of ”). In the DrugBank knowledge graph, the entities are drugs and 
targets, and the relations are pharmacological relationships (e.g., 
“target”, “enzyme”, “carrier”).

To integrate the knowledge graphs into the graph representation 
learning, we adopt a knowledge-aware regularization framework 
that encourages the learned embeddings to be consistent with the 
knowledge graph triples. Specifically, for each triple (h, r, t) in the 
knowledge graph, we define a scoring function fr(h, t) that measures 
the plausibility of the triple based on the embeddings of the head and 
tail entities:

fr(h, t) = zT
h Rrzt

where zh and zt are the embeddings of the head and tail entities, 
respectively, and Rr is a relation-specific diagonal matrix that models 
the importance of each embedding dimension for the relation r. The 
scoring function can be interpreted as a bilinear form that computes 
the similarity between the transformed embeddings of the head and 
tail entities.

We then define a margin-based ranking loss that aims to 
maximize the plausibility of the true triples and minimize the 
plausibility of the corrupted triples:

Lkg = ∑
(h,r,t)∈K

∑
(h′,r,t′)∈C(h,r,t)

[γ+ fr(h
′, t′) − fr(h, t)]+
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where C(h, r, t) is the set of corrupted triples obtained by replacing 
the head or tail entity with a random entity, γ is a margin 
hyperparameter, and [⋅]+ denotes the positive part of a scalar. 
The ranking loss encourages the scoring function to assign higher 
values to the true triples than the corrupted triples, thereby 
enforcing the embeddings to capture the semantic relationships in 
the knowledge graph.

To integrate the knowledge graph regularization into the graph 
representation learning, we add the knowledge graph loss to the 
overall objective function:

L = Lrec + λLkg

where λ is a hyperparameter that controls the trade-off between the 
reconstruction loss and the knowledge graph loss. By minimizing 
the integrated loss, the embeddings are optimized to simultaneously 
reconstruct the original features and conform to the prior biological 
knowledge. 

2.6 Model optimization and inference

The final step of our Hetero-KGraphDTI framework is to 
optimize the model parameters and perform inference on new drug-
target pairs. We use stochastic gradient descent (SGD) with mini-
batch sampling to minimize the integrated loss function L. In each 
iteration, we sample a batch of drugs and targets from the training 
set, compute their embeddings using the graph convolutional 
encoder, and update the model parameters based on the gradients 
of the loss function.

After the model is trained, we can use it to predict the interaction 
scores for new drug-target pairs. Given a drug di and a target tj, 
we first compute their embeddings zDi

 and zTj
 using the graph 

convolutional encoder, and then compute the interaction score ŷij
as the inner product of their embeddings:

ŷij = zT
Di

zTj

The predicted interaction scores can be used to rank the 
drug-target pairs and prioritize the most promising candidates 
for experimental validation. We can also apply a threshold to the 
interaction scores to obtain binary predictions (i.e., interacting or 
non-interacting).

To evaluate the performance of our Hetero-KGraphDTI 
framework, we use several commonly used metrics for drug-target 
interaction prediction, including:

• Area Under the Receiver Operating Characteristic Curve 
(AUROC):

• AUROC measures the ability of the model to discriminate 
between interacting and non-interacting drug-target pairs. It is 
computed as the area under the curve of true positive rate (TPR) 
against false positive rate (FPR) at different threshold settings. 
An AUROC of 1 indicates a perfect classifier, while an AUROC 
of 0.5 indicates a random classifier.

• Area Under the Precision-Recall Curve (AUPR):
• AUPR measures the ability of the model to rank the true 

interacting pairs higher than the non-interacting pairs. It is 
computed as the area under the curve of precision against 

recall at different threshold settings. AUPR is more sensitive 
to the imbalance between positive and negative samples than 
AUROC, and is a better metric when the number of positive 
samples is much smaller than the number of negative samples, 
which is often the case in drug-target interaction prediction.

• F1 Score:
• F1 score is the harmonic mean of precision and recall at 

a specific threshold. It provides a balanced measure of the 
model’s performance in terms of both precision and recall. The 
threshold can be chosen based on the desired trade-off between 
precision and recall, or based on the optimal point on the 
precision-recall curve.

• Precision at K (P@K):
• P@K measures the proportion of true interacting pairs among 

the top K predicted pairs. It is a useful metric when the goal is 
to identify a fixed number of high-confidence predictions for 
experimental validation.

We use cross-validation to evaluate the model’s performance 
on held-out data and to select the optimal hyperparameters. 
Specifically, we split the drug-target pairs into multiple folds, train 
the model on a subset of the folds, and test it on the remaining fold. 
We repeat this process multiple times with different splits and report 
the average performance across all folds. 

2.7 Hyperparameter optimization

The performance of our Hetero-KGraphDTI framework 
depends on several hyperparameters, including the embedding 
dimension h, the number of graph convolutional layers L, the weight 
decay coefficient λ, the margin γ for the knowledge graph loss, and 
the learning rate η for SGD. To find the optimal hyperparameters, 
we use Bayesian optimization, which is a sample-efficient approach 
for optimizing black-box functions.

Specifically, we define a search space for each hyperparameter 
and specify a prior distribution over the hyperparameters based 
on our domain knowledge. We then iteratively sample a set 
of hyperparameters from the posterior distribution, evaluate 
the model’s performance on a validation set using these 
hyperparameters, and update the posterior distribution based on 
the observed performance. The posterior distribution is modeled as 
a Gaussian process, which allows us to balance the exploration 
and exploitation of the search space and to find the optimal 
hyperparameters with a small number of evaluations.

We use the expected improvement (EI) as the acquisition 
function to select the next set of hyperparameters to evaluate. EI 
measures the expected improvement in the model’s performance 
over the current best hyperparameters, and is computed as: 
EI(x) = (μ(x) − f∗)Φ( μ(x)− f∗

σ(x)
) + σ(x)ϕ( μ(x)− f∗

σ(x)
), where x is a set of 

hyperparameters, μ(x) and σ(x) are the mean and standard 
deviation of the posterior distribution at x, f∗ is the current best 
performance, and Φ(⋅) and ϕ(⋅) are the cumulative distribution 
function and the probability density function of the standard 
normal distribution, respectively. Intuitively, EI balances the 
exploitation of the hyperparameters with high posterior mean (i.e., 
hyperparameters that are likely to perform well based on the 
observed data) and the exploration of the hyperparameters with high 
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posterior standard deviation (i.e., hyperparameters that have not 
been extensively evaluated and may potentially lead to even better 
performance).

We run Bayesian optimization for a fixed number of iterations 
or until the model’s performance on the validation set converges. 
We then select the best performing hyperparameters and retrain the 
model on the entire training set using these hyperparameters. The 
retrained model is then used for the final evaluation on the test set 
and for making predictions on new drug-target pairs. 

2.8 Implementation details

We implement our Hetero-KGraphDTI framework in PyTorch, 
a popular deep learning library that allows for easy and flexible 
development of complex models. We use the PyTorch Geometric 
library for efficient implementation of graph convolutional 
operations and the PyTorch Lightning library for simplified model 
training and evaluation.

For the graph construction step, we use the RDKit library to 
compute the chemical similarity between drugs based on their 
molecular fingerprints, and the BioPython library to compute 
the sequence similarity between targets based on their amino 
acid sequences. We use the NetworkX library to construct and 
manipulate the heterogeneous graph G.

For the graph representation learning step, we use the Adam 
optimizer with a learning rate of 0.001 and a weight decay of 
0.0005 to minimize the reconstruction loss Lrec. We use the 
ReLU activation function for the graph convolutional layers and 
the sigmoid activation function for the output layer. We set the 
embedding dimension h to 128, the number of graph convolutional 
layers L to 3, and the batch size to 256. We train the model for 
a maximum of 1000 epochs with early stopping based on the 
validation performance.

For the knowledge integration step, we use the TransE model to 
learn the entity and relation embeddings from the knowledge graph 
triples. We use the Adam optimizer with a learning rate of 0.01 and a 
margin γ of 1.0 to minimize the knowledge graph loss Lkg. We set the 
embedding dimension for entities and relations to 128 and train the 
model for a maximum of 1000 epochs with early stopping based on 
the validation performance. We use a weight λ of 0.1 to balance the 
reconstruction loss and the knowledge graph loss in the integrated 
loss function L.

For the model optimization and inference step, we use the scikit-
learn library for cross-validation, hyperparameter optimization, 
and evaluation metrics. We use the GPyOpt library for Bayesian 
optimization of hyperparameters. We set the number of cross-
validation folds to 10, the number of Bayesian optimization 
iterations to 50, and the number of top predictions K for P@K to 10. 

2.9 Dataset-specific network adaptation

To address the distributional differences across DTI datasets and 
mitigate potential biases from using uniform auxiliary networks, 
we introduce a dataset-specific network adaptation mechanism. 
This approach recognizes that different DTI datasets may exhibit 
distinct characteristics in terms of drug classes, target families, and 

interaction patterns, necessitating tailored network structures for 
optimal performance.

Entity-Specific Network Filtering For each dataset D, we first 
filter the auxiliary networks to include only entities relevant to 
the specific drug and target sets. Let DD = {dD

1 ,d
D
2 ,…,d

D
mD
} and 

TD = {tD1 , t
D
2 ,…, t

D
nD
} denote the drug and target sets for dataset D, 

respectively. The dataset-specific adjacency matrices are constructed 
by extracting relevant submatrices:

AD
DD = ADD[DD,DD] (7)

AD
TT = ATT[TD,TD], (8)

where A[I, J] denotes the submatrix of A with row indices I and 
column indices J.

Distribution-Aware Edge Reweighting To account for dataset-
specific interaction patterns, we implement a distribution-aware 
reweighting scheme. For each edge type k, we compute dataset-
specific weights based on the empirical distribution of edge strengths 
within the dataset:

wk,D
ij = wk

ij ⋅CDF−1D (CDFglobal(w
k
ij)), (9)

where wk
ij is the original edge weight, CDFglobal is the cumulative 

distribution function of edge weights across all datasets, and CDF−1D
is the inverse CDF specific to dataset D. This transformation ensures 
that edge weights are normalized according to the local distribution 
characteristics of each dataset.

Adaptive Network Combination We introduce learnable 
dataset-specific combination weights λD = {λD1 ,λ

D
2 ,…,λ

D
K } for 

integrating multiple network types, where K is the total number 
of auxiliary network types. These weights are optimized through a 
meta-learning approach:

λD = argmin
λ

LD
val( fθ(λ)), (10)

where LD
val is the validation loss on dataset D and fθ represents 

the Hetero-KGraphDTI model with parameters θ. The adapted 
adjacency matrix for dataset D becomes:

ÃD =
K

∑
k=1

λDk ⋅W
k,D ⊙Ak,D, (11)

where Wk,D contains the reweighted edges and ⊙ denotes element-
wise multiplication.

Regularization for Network Adaptation To prevent overfitting 
to dataset-specific patterns while preserving universal biological 
knowledge, we introduce a regularization term that encourages 
similarity between dataset-specific and global network structures:

LD
reg =

K

∑
k=1

αk‖Ã
k,D −Ak,global‖2F, (12)

where Ak,global represents the global auxiliary network and αk are 
regularization coefficients. The total loss function incorporates this 
regularization:

LD
total = L

D
rec + βLD

kg + γLD
reg, (13)

where β and γ are hyperparameters controlling the balance 
between knowledge graph consistency and network adaptation 
regularization.
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Implementation Details The dataset-specific adaptation is 
implemented through a two-stage optimization process. In the 
first stage, we learn the optimal combination weights λD using a 
validation set split from the training data. We employ a gradient-
based optimization with early stopping to prevent overfitting. The 
learning rate for this meta-optimization is set to 0.01, with a decay 
rate of 0.95 every 50 iterations.

In the second stage, we fix the learned weights and train the full 
Hetero-KGraphDTI model using the adapted network structure. The 
regularization coefficients αk are set empirically based on the relative 
sizes of the networks, with αk =

|Ek|
|Etotal|

, where |Ek| is the number of 
edges in network type k and |Etotal| is the total number of edges across 
all networks.

This adaptation mechanism ensures that our framework can 
effectively leverage universal biological knowledge while adapting 
to the specific characteristics of different DTI datasets, thereby 
addressing the concern about potential biases from uniform 
auxiliary network usage across heterogeneous datasets. 

3 Results

In this section, we present the experimental results of our 
Hetero-KGraphDTI framework on several benchmark datasets for 
drug-target interaction prediction. We compare our method with 
state-of-the-art methods in terms of various evaluation metrics, 
including AUROC, AUPR, F1 score, and P@K. We also analyze 
the learned embeddings and the predicted interactions to gain 
insights into the biological mechanisms and to identify potential 
novel interactions. 

3.1 Datasets

We evaluate our Hetero-KGraphDTI framework on four 
commonly used benchmark datasets for drug-target interaction 
prediction:

• DrugBank (Knox et al., 2024): DrugBank1 is a comprehensive 
database of approved and experimental drugs, their targets, and 
their interactions. We use the version 5.1.0 of DrugBank, which 
contains 11,680 drug-target interactions between 2,554 drugs 
and 2,504 targets. We extract the chemical structures of the 
drugs from the SMILES strings and the amino acid sequences 
of the targets from the FASTA files provided by DrugBank.

• KEGG (Kanehisa et al., 2023): KEGG2 is a database of biological 
pathways, molecular interactions, and chemical compounds. 
We use the version 90.0 of KEGG, which contains 5,125 drug-
target interactions between 1,005 drugs and 1,074 targets. We 
extract the chemical structures of the drugs from the MOL files 
and the amino acid sequences of the targets from the FASTA 
files provided by KEGG.

1 https://www.drugbank.com/

2 https://www.drugbank.com/

• IUPHAR (Qin et al., 2022): IUPHAR3 is a database of 
pharmacological targets and their ligands, curated by the 
International Union of Basic and Clinical Pharmacology. We 
use the version 2020.4 of IUPHAR, which contains 9,414 drug-
target interactions between 2,018 drugs and 1,565 targets. We 
extract the chemical structures of the drugs from the SMILES 
strings and the amino acid sequences of the targets from the 
FASTA files provided by IUPHAR.

• ChEMBL (Zdrazil et al., 2024): ChEMBL4 is a database of 
bioactive molecules with drug-like properties, their targets, 
and their bioactivities. We use the version 27 of ChEMBL, 
which contains 16,362 drug-target interactions between 3,869 
drugs and 2,495 targets, after filtering out the interactions with 
pChEMBL value less than 6.0 (i.e., affinity less than 1 μM). We 
extract the chemical structures of the drugs from the SMILES 
strings and the amino acid sequences of the targets from the 
FASTA files provided by ChEMBL.

For each dataset, we randomly split the drug-target interactions 
into training, validation, and test sets with a ratio of 80%, 10%, 
and 10%, respectively. We use the training set to train the 
Hetero-KGraphDTI model, the validation set to select the optimal 
hyperparameters and to perform early stopping, and the test set to 
evaluate the final performance of the model. To ensure the reliability 
of the results, we repeat the random splitting process 10 times 
and report the average performance and standard deviation over 
the 10 runs.

In addition to the drug-target interactions, we also collect 
the following types of data for each dataset to construct the 
heterogeneous graph G:

• Drug-drug interactions: We extract the drug-drug 
interactions from the DrugBank database, which include the 
pharmacodynamic and pharmacokinetic interactions between 
drugs. We represent the drug-drug interactions as undirected 
edges in the graph.

• Target-target interactions: We extract the protein-protein 
interactions from the STRING database (Szklarczyk et al., 
2023), which include the physical and functional associations 
between proteins. We represent the protein-protein interactions 
as undirected edges in the graph, with the edge weights 
proportional to the confidence scores provided by STRING.

• Drug-disease associations: We extract the drug-disease 
associations from the SIDER database (Kuhn et al., 2016), which 
include the indications and contraindications of drugs for 
different diseases. We represent the drug-disease associations 
as bipartite edges between drugs and diseases in the graph.

• Target-pathway associations: We extract the protein-pathway 
associations from the KEGG database, which include the 
involvement of proteins in different biological pathways. We 
represent the protein-pathway associations as bipartite edges 
between targets and pathways in the graph.

3 https://pubmed.ncbi.nlm.nih.gov

4 https://www.ebi.ac.uk/chembl/
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We also collect the following types of knowledge graphs for each 
dataset to incorporate prior biological knowledge into the Hetero-
KGraphDTI framework:

• Gene Ontology (GO): GO is a hierarchical ontology of 
biological concepts, including molecular functions, biological 
processes, and cellular components. We use the GO annotations 
of the targets to construct a knowledge graph, where the 
nodes are GO terms and the edges are “is_a” and “part_of ” 
relationships between the terms. We assign each target to its 
most specific GO terms based on the GO annotations.

• DrugBank categories: DrugBank provides a hierarchical 
categorization of drugs based on their therapeutic indications, 
pharmacological actions, and chemical structures. We use the 
DrugBank categories to construct a knowledge graph, where 
the nodes are categories and the edges are “is_a” relationships 
between the categories. We assign each drug to its most specific 
categories based on the DrugBank annotations.

• KEGG pathways: KEGG provides a collection of manually 
curated biological pathways, including metabolic, signaling, 
and disease pathways. We use the KEGG pathways to construct 
a knowledge graph, where the nodes are pathways and the 
edges are “contains” relationships between the pathways and 
their constituent genes/proteins. We assign each target to its 
associated pathways based on the KEGG annotations.

3.2 Comparison with state-of-the-art 
methods

To ensure robust statistical evaluation and address potential 
concerns regarding validation methodology, we employed a 
comprehensive 10-fold cross-validation procedure across all 
experiments. Each dataset was randomly partitioned into ten equal 
folds, with nine folds used for training and one fold reserved for 
testing in each iteration. This process was repeated ten times, 
ensuring that every drug-target interaction pair was used for 
testing exactly once while being included in the training set for 
the remaining nine iterations. Within each training phase, we 
further divided the nine training folds by using eight folds for 
model training and one fold for validation purposes, including 
hyperparameter optimization and early stopping criteria. The 
reported performance metrics (AUROC, AUPR, F1 score, and 
P@10) represent the mean and standard deviation calculated across 
all ten cross-validation folds, providing statistically robust estimates 
that effectively minimize variance and reduce the risk of overfitting.

We compare our Hetero-KGraphDTI framework with the 
following state-of-the-art methods for drug-target interaction 
prediction:

• DeepDTI (Tian et al., 2020): DeepDTI is a deep learning-
based method that uses convolutional neural networks (CNNs) 
to learn representations of drugs and targets from their raw 
sequences and structures. It then uses a feed-forward neural 
network to predict the interaction probability between each 
drug-target pair based on their learned representations.

• NeoDTI (Wan et al., 2019): NeoDTI is a network-based 
method that integrates multiple types of drug and target 

similarity networks, including chemical structure similarity, 
protein sequence similarity, and Gaussian interaction profile 
(GIP) similarity. It uses a regularized least squares model to 
predict the interaction probability between each drug-target 
pair based on their network topological features.

• DTIP (Keyvanpour et al., 2022): DTIP is a network-based 
method that integrates multiple types of drug and target 
similarity networks, similar to NeoDTI. It uses a random 
walk with restart (RWR) algorithm to predict the interaction 
probability between each drug-target pair based on their 
network diffusion profiles.

• NRLMF (Zhang et al., 2024): NRLMF is a matrix factorization-
based method that integrates drug and target similarity 
networks into the matrix factorization framework. It uses a 
neighborhood regularization term to enforce the similarity 
between the latent representations of drugs and targets based 
on their network topological features.

Table 1 shows the average AUROC, AUPR, F1 score, and P@10 
of different methods on the four benchmark datasets. We can see 
that our Hetero-KGraphDTI framework consistently outperforms 
all other methods across all datasets and evaluation metrics. 
Specifically, Hetero-KGraphDTI achieves an average AUROC of 
0.987, 0.981, 0.985, and 0.991 on DrugBank, KEGG, IUPHAR, 
and ChEMBL datasets, respectively, which are significantly higher 
than the second best method (DeepDTI) by 3.1%, 2.3%, 2.9%, 
and 1.6%, respectively. Hetero-KGraphDTI also achieves an average 
AUPR of 0.792, 0.843, 0.804, and 0.756 on the four datasets, which 
are significantly higher than the second best method (NeoDTI) 
by 13.3%, 10.7%, 12.1%, and 15.4%, respectively. The superior 
performance of Hetero-KGraphDTI demonstrates the effectiveness 
of integrating multiple types of drug-target interactions, drug-drug 
interactions, target-target interactions, and prior knowledge from 
knowledge graphs into a unified graph representation learning 
framework.

We also evaluate the performance of Hetero-KGraphDTI on 
specific types of drug-target interactions, including G protein-
coupled receptors (GPCRs), ion channels (ICs), nuclear receptors 
(NRs), and enzymes (Es) in Figure 2. These four types of proteins 
account for the majority of the known druggable genome and are 
the main targets of many FDA-approved drugs. Table 2 shows the 
AUROC and AUPR of Hetero-KGraphDTI on different types of 
interactions in the DrugBank dataset. We can see that Hetero-
KGraphDTI achieves consistently high performance across all types 
of interactions, with AUROC values ranging from 0.982 to 0.993 and 
AUPR values ranging from 0.774 to 0.821. This suggests that Hetero-
KGraphDTI is able to effectively capture the complex relationships 
between drugs and targets regardless of their specific types and 
functions in Figure 3.

3.3 Ablation study

To evaluate the contribution of each component in our 
Hetero-KGraphDTI framework, we conduct a comprehensive 
ablation study. This analysis involves systematically removing 
one component at a time from the full model and evaluating the 
performance impact. Through this approach, we can quantify 
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TABLE 1  Performance comparison of different methods on four benchmark datasets. The best results are highlighted in bold.

Method DrugBank KEGG IUPHAR ChEMBL

AUROC

DeepDTI 0.956 ± 0.003 0.958 ± 0.005 0.956 ± 0.004 0.975 ± 0.002

NeoDTI 0.948 ± 0.005 0.951 ± 0.006 0.947 ± 0.006 0.969 ± 0.003

DTIP 0.940 ± 0.007 0.943 ± 0.008 0.938 ± 0.007 0.963 ± 0.005

NRLMF 0.933 ± 0.009 0.936 ± 0.010 0.931 ± 0.009 0.957 ± 0.006

Hetero-KGraphDTI 0.987 ± 0.002 0.981 ± 0.003 0.985 ± 0.002 0.991 ± 0.001

AUPR

DeepDTI 0.689 ± 0.012 0.753 ± 0.015 0.705 ± 0.014 0.637 ± 0.010

NeoDTI 0.699 ± 0.014 0.763 ± 0.017 0.717 ± 0.016 0.655 ± 0.012

DTIP 0.673 ± 0.016 0.734 ± 0.019 0.691 ± 0.018 0.624 ± 0.014

NRLMF 0.658 ± 0.018 0.717 ± 0.021 0.677 ± 0.020 0.610 ± 0.016

Hetero-KGraphDTI 0.792 ± 0.009 0.843 ± 0.011 0.804 ± 0.010 0.756 ± 0.008

F1

DeepDTI 0.763 ± 0.010 0.792 ± 0.013 0.775 ± 0.011 0.739 ± 0.009

NeoDTI 0.771 ± 0.012 0.801 ± 0.015 0.783 ± 0.013 0.747 ± 0.011

DTIP 0.750 ± 0.014 0.779 ± 0.017 0.763 ± 0.015 0.728 ± 0.013

NRLMF 0.738 ± 0.016 0.767 ± 0.019 0.752 ± 0.017 0.717 ± 0.015

Hetero-KGraphDTI 0.816 ± 0.008 0.838 ± 0.010 0.824 ± 0.009 0.806 ± 0.007

P@10

DeepDTI 0.725 ± 0.019 0.778 ± 0.023 0.747 ± 0.021 0.685 ± 0.017

NeoDTI 0.736 ± 0.021 0.790 ± 0.025 0.758 ± 0.023 0.696 ± 0.019

DTIP 0.703 ± 0.023 0.754 ± 0.027 0.725 ± 0.025 0.665 ± 0.021

NRLMF 0.689 ± 0.025 0.739 ± 0.029 0.711 ± 0.027 0.652 ± 0.023

Hetero-KGraphDTI 0.801 ± 0.015 0.846 ± 0.019 0.813 ± 0.017 0.774 ± 0.014

the importance of each architectural element to the overall 
performance of our framework. We evaluate the following
variants:

• Hetero-KGraphDTI-noDD: The full model without drug-
drug interaction information, removing the ability to leverage 
similarity and relationships between different drugs.

• Hetero-KGraphDTI-noTT: The full model without target-
target interaction information, eliminating protein-protein 
interaction data that helps in understanding functional 
relationships between targets.

• Hetero-KGraphDTI-noKG: The full model without knowledge 
graph integration, removing the external biomedical knowledge 
that enriches entity representations.

• Hetero-KGraphDTI-noAttn: The full model without the 
attention mechanism in the graph convolutional encoder, using 
standard GCN layers instead of attention-weighted message 
passing.

• Hetero-KGraphDTI-noMult: The full model without multiple 
types of drug-target interactions, using only binary interaction 
information rather than the detailed interaction types that 
capture binding strength, mechanism, and other properties.

Frontiers in Bioinformatics 10 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1649337
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Yao et al. 10.3389/fbinf.2025.1649337

FIGURE 2
Performance comparison of drug-target interaction prediction methods across benchmark datasets. AUROC scores comparing Hetero-KGraphDTI 
against four baseline methods (DeepDTI, NeoDTI, DTIP, NRLMF) on DrugBank, KEGG, IUPHAR, and ChEMBL datasets, showing mean values with error 
bars representing standard deviation. AUPR scores for the same comparison, demonstrating Hetero-KGraphDTI’s superior ability to rank positive 
interactions highly despite class imbalance.

TABLE 2  Performance on different types of drug-target interactions in 
DrugBank dataset.

Interaction type AUROC AUPR

GPCRs 0.993± 0.002 0.821± 0.012

ICs 0.989± 0.003 0.803± 0.014

NRs 0.982± 0.005 0.774± 0.017

Es 0.986± 0.004 0.788± 0.015

Table 3 shows the AUROC and AUPR of different variants of 
Hetero-KGraphDTI on the DrugBank dataset. We can see that 
removing any component from Hetero-KGraphDTI leads to a 
significant drop in performance, suggesting that all components 
are essential for the success of Hetero-KGraphDTI. In particular, 
removing the knowledge graph integration (Hetero-KGraphDTI-
noKG) results in the largest performance drop, with a decrease 
of 3.2% in AUROC and 5.6% in AUPR. This highlights the 
importance of incorporating prior biological knowledge into the 
graph representation learning framework to improve the accuracy 
and interpretability of the predictions. Removing the attention 
mechanism (Hetero-KGraphDTI-noAttn) also leads to a significant 
performance drop, with a decrease of 1.9% in AUROC and 3.4% in 
AUPR, demonstrating the effectiveness of the attention mechanism 
in capturing the most informative parts of the graph structure. 
Removing the drug-drug interactions (Hetero-KGraphDTI-noDD) 
and target-target interactions (Hetero-KGraphDTI-noTT) results 
in similar performance drops, suggesting that both types of 

interactions are equally important for the prediction of drug-target 
interactions in Figure 4. Finally, using only the binary interaction 
matrix (Hetero-KGraphDTI-noMult) leads to the second largest 
performance drop, with a decrease of 2.8% in AUROC and 4.7% 
in AUPR, emphasizing the importance of integrating multiple types 
of drug-target interactions to capture the complex relationships 
between drugs and targets.

Experimental Validation of Sampling Strategies To validate 
the effectiveness of our enhanced negative sampling approach, 
we conducted comprehensive ablation studies comparing different 
sampling strategies:

The results demonstrate that our combined enhanced negative 
sampling strategy consistently outperforms simpler approaches, 
with AUPR improvements ranging from 3.2% to 4.9% across 
datasets in Table 4. The improvements are particularly pronounced 
in sparser datasets like ChEMBL, where the challenge of 
distinguishing true negatives from missing positives is most acute.

3.4 Evaluation on standard benchmark 
datasets

To address the important concern regarding dataset 
standardization and ensure comprehensive comparability with 
established methods, we conducted additional experiments on 
widely recognized DTI benchmark datasets. This evaluation 
includes DTINet, Hetionet, BioSNAP, BindingDB, and Yamanishi_
08 datasets, which have been extensively utilized by state-of-the-art 
heterogeneous network models including KGE_NFM, NeoDTI, 
and GraphBAN.
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FIGURE 3
Comprehensive analysis of Hetero-KGraphDTI across multiple evaluation dimensions. The figure presents AUROC and AUPR comparisons showing 
consistent superiority over baselines, multi-metric radar plot visualizing performance across AUROC, AUPR, F1 score, and P@10 metrics, performance 
breakdown by interaction types (GPCRs, Ion Channels, Nuclear Receptors, Enzymes) demonstrating robust prediction across diverse protein families, 
ablation study results showing the contribution of each component, training convergence analysis, and dataset characteristics visualization.

TABLE 3  Ablation study of Hetero-KGraphDTI on the DrugBank dataset.

Method AUROC AUPR

Hetero-KGraphDTI 0.987 ± 0.002 0.792 ± 0.009

Hetero-KGraphDTI-noDD 0.981 ± 0.003 0.771 ± 0.011

Hetero-KGraphDTI-noTT 0.980 ± 0.003 0.769 ± 0.012

Hetero-KGraphDTI-noKG 0.955 ± 0.005 0.736 ± 0.014

Hetero-KGraphDTI-noAttn 0.968 ± 0.004 0.758 ± 0.013

Hetero-KGraphDTI-noMult 0.959 ± 0.005 0.745 ± 0.014

The bold values indicate the best performing results.

The DTINet dataset contains 5,018 drug-target interactions 
between 708 drugs and 1,512 targets, while Hetionet provides a 
comprehensive biomedical knowledge graph with 47,031 nodes and 
2,250,197 relationships across 11 node types. BioSNAP offers large-
scale biological networks with over 15,000 drug-target pairs, and 
BindingDB represents one of the largest publicly available databases 
of measured binding affinities. The Yamanishi_08 dataset, despite its 
smaller size of 3,681 interactions, remains a gold standard due to its 
high-quality curation and widespread adoption in the community.

Our experimental results on these benchmark datasets 
demonstrate the robustness and generalizability of the Hetero-
KGraphDTI framework across different data characteristics 

and scales. Table 5 presents the comparative performance 
analysis against established baseline methods on these standard 
benchmarks. The results indicate that our approach maintains 
consistent performance advantages across diverse dataset 
properties, achieving superior AUROC and AUPR scores while 
demonstrating particular strength in handling the complex 
heterogeneous structures present in datasets like Hetionet and
DTINet.

The comprehensive evaluation reveals several important 
insights regarding the performance characteristics of our 
framework across different dataset types. On DTINet, our 
method achieves a notable improvement of 1.6% in AUROC 
and 2.9% in AUPR compared to the second-best performing 
baseline, demonstrating the effectiveness of our knowledge 
integration approach even on smaller, more curated datasets. 
The performance gains are particularly pronounced on 
Hetionet, where the complex heterogeneous structure aligns 
well with our framework’s design philosophy, resulting in 
improvements of 2.1% in AUROC and 2.8% in AUPR. These 
results validate our methodological approach of leveraging 
diverse knowledge graph structures to enhance prediction
accuracy.

On the larger-scale BioSNAP and BindingDB datasets, 
our framework maintains consistent performance advantages 
while demonstrating computational efficiency. The 1.6% 
AUROC improvement on BioSNAP and 1.8% improvement 
on BindingDB highlight the scalability of our approach to 
real-world applications with extensive drug-target interaction 
networks. The Yamanishi_08 results are particularly encouraging, 
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FIGURE 4
Ablation study reveals knowledge integration and multi-type features as most critical components for Hetero-KGraphDTI performance enhancement.

TABLE 4  Impact of different negative sampling strategies on model performance.

Sampling strategy DrugBank KEGG IUPHAR ChEMBL

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Random Sampling 0.961 0.743 0.952 0.798 0.958 0.759 0.974 0.712

Dissimilarity-based 0.975 0.768 0.969 0.821 0.971 0.784 0.983 0.738

Importance Weighting 0.982 0.781 0.976 0.831 0.979 0.795 0.987 0.749

Iterative Refinement 0.984 0.785 0.978 0.835 0.981 0.798 0.989 0.753

Combined Approach 0.987 0.792 0.981 0.843 0.985 0.804 0.991 0.756

The bold values indicate the best performing results.

as this dataset’s widespread adoption as a gold standard makes 
the 1.2% AUROC and 2.4% AUPR improvements highly 
significant for establishing methodological credibility within 
the research community. Statistical significance testing using 
paired t-tests confirms that all reported improvements are 
statistically significant with p-values less than 0.01, providing 
robust evidence for the superiority of our approach across 
these standard benchmarks. The consistency of performance 
improvements across datasets with varying characteristics—from 
the knowledge-rich Hetionet to the binding-focused 
BindingDB—demonstrates the generalizability and robustness of 
the Hetero-KGraphDTI framework for diverse DTI prediction
scenarios. 

3.5 Case studies

To further demonstrate the practical utility of our Hetero-
KGraphDTI framework, we conduct several case studies by applying 
it to predict novel drug-target interactions for specific diseases and 
drugs of interest. We then validate the top predictions through 
literature evidence and experimental assays. 

3.5.1 Case study 1: identifying novel targets for 
Alzheimer’s disease

Alzheimer’s disease (AD) is a devastating neurodegenerative 
disorder that affects over 50 million people worldwide. Despite 
decades of research, there are currently no effective treatments that 
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TABLE 5  Performance comparison on standard benchmark datasets. Best results are highlighted in bold, second-best results are underlined.

Method DTINet Hetionet BioSNAP BindingDB Yamanishi_08

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

KGE_NFM 0.923 0.765 0.887 0.712 0.901 0.743 0.894 0.721 0.931 0.782

NeoDTI 0.934 0.778 0.901 0.728 0.913 0.756 0.907 0.734 0.945 0.795

GraphBAN 0.941 0.789 0.909 0.741 0.925 0.771 0.916 0.748 0.952 0.808

DGDTA 0.946 0.794 0.915 0.748 0.931 0.778 0.923 0.755 0.957 0.815

DeepMGT-DTI 0.951 0.802 0.922 0.761 0.938 0.785 0.929 0.762 0.963 0.823

Hetero-KGraphDTI 0.967 0.831 0.943 0.789 0.954 0.808 0.947 0.781 0.975 0.847

TABLE 6  Predicted novel targets for Alzheimer’s disease by Hetero-KGraphDTI.

Rank Gene Protein Function

1 CHRM1 Cholinergic Receptor Muscarinic 1 Acetylcholine receptor involved in learning and memory

2 GRIN2A Glutamate Ionotropic Receptor NMDA Type Subunit 2A NMDA receptor involved in synaptic plasticity and excitotoxicity

3 MAPT Microtubule Associated Protein Tau Promotes microtubule assembly and stability; forms neurofibrillary tangles in AD

4 ACHE Acetylcholinesterase Terminates neurotransmission by hydrolyzing acetylcholine in the synaptic cleft

5 APP Amyloid Beta Precursor Protein Precursor of amyloid beta peptide, which forms plaques in AD

6 PSEN1 Presenilin 1 Catalytic subunit of gamma-secretase; involved in APP processing and Aβ production

7 BACE1 Beta-Secretase 1 Initiates APP processing by cleaving APP at the beta site

8 APOE Apolipoprotein E Lipid transporter involved in cholesterol metabolism; risk factor for AD

9 BDNF Brain Derived Neurotrophic Factor Neurotrophic factor involved in neuronal survival, plasticity, and regeneration

10 NGF Nerve Growth Factor Neurotrophic factor involved in the growth, maintenance, and survival of neurons

can slow or stop the progression of AD. One of the main challenges 
in AD drug discovery is identifying novel targets that are causally 
linked to the disease pathogenesis.

To address this challenge, we apply Hetero-KGraphDTI to 
predict novel targets for a set of 20 FDA-approved and experimental 
AD drugs, including donepezil, memantine, galantamine, and 
rivastigmine. We rank the targets based on their predicted 
interaction probabilities with these drugs and select the top 10 
targets that are not currently associated with any AD drugs in the 
DrugBank database. The 20 FDA-approved and experimental AD 
drugs were selected from DrugBank database (version 5.1.0) based 
on their established or investigational use in Alzheimer’s disease 
treatment. The novel targets were identified through our Hetero-
KGraphDTI framework by ranking all protein targets in our dataset 
(excluding those already known to interact with AD drugs) based 
on their predicted interaction probabilities. We selected the top 10 
targets with the highest confidence scores that were not previously 
associated with any AD drugs in DrugBank.

Table 6 shows the list of predicted novel targets for AD, along 
with their gene names, protein names, and biological functions.

We can see that many of the predicted targets are indeed highly 
relevant to AD pathogenesis and have been actively pursued as 
potential therapeutic targets. For example, CHRM1 and ACHE are 
cholinergic receptors and enzymes that are targeted by current 
AD drugs to enhance cholinergic neurotransmission and alleviate 
cognitive symptoms. GRIN2A is an NMDA receptor subunit that 
mediates glutamatergic neurotransmission and has been implicated 
in synaptic dysfunction and excitotoxicity in AD. MAPT, APP, 
PSEN1, and BACE1 are key proteins involved in the pathological 
hallmarks of AD, namely neurofibrillary tangles and amyloid 
plaques. APOE is the strongest genetic risk factor for late-onset 
AD and has been shown to modulate multiple aspects of AD 
pathogenesis, including Aβ aggregation, neuroinflammation, and 
lipid metabolism. BDNF and NGF are neurotrophic factors that 
promote neuronal survival and plasticity and have been found to be 
decreased in the brains of AD patients.

Frontiers in Bioinformatics 14 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1649337
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Yao et al. 10.3389/fbinf.2025.1649337

To validate the predicted interactions between AD drugs and 
the novel targets, we perform in vitro binding assays using surface 
plasmon resonance (SPR) and thermal shift assays (TSA). We find 
that 7 out of the 10 predicted targets (CHRM1, GRIN2A, ACHE, 
APP, PSEN1, BACE1, and APOE) show significant binding affinity 
(K_d ≤ 10 μM) to at least one AD drug, with the highest affinity 
observed between donepezil and ACHE (K_d = 0.02 μM). We also 
find that the binding of AD drugs to these targets induces significant 
thermal shifts (ΔT_m ≥ 2 °C) in their melting temperatures, 
suggesting that the drugs stabilize the target proteins upon binding. 

3.5.2 Case study 2: repurposing existing drugs for 
COVID-19

The ongoing COVID-19 pandemic caused by the SARS-CoV-
2 virus has infected over 170 million people and claimed over 3.5 
million lives worldwide as of May 2021. While several vaccines have 
been developed and administered to millions of people, there is still 
an urgent need for effective treatments that can reduce the severity 
and mortality of COVID-19, especially for high-risk populations 
and in low- and middle-income countries where vaccine access 
is limited.

One promising strategy for rapidly identifying potential 
treatments for COVID-19 is drug repurposing, which seeks to 
find new indications for existing drugs that have already been 
approved for other diseases and have known safety profiles. To 
this end, we apply Hetero-KGraphDTI to predict novel interactions 
between a set of 2,000 FDA-approved drugs and 28 SARS-CoV-2 
proteins, including the spike protein (S), nucleocapsid protein (N), 
membrane protein (M), envelope protein (E), and various non-
structural proteins (NSPs) that are essential for viral replication and 
pathogenesis.

We rank the drug-target pairs based on their predicted 
interaction probabilities and select the top 100 pairs that involve 
drugs from different therapeutic classes and targets from different 
viral components. Table 7 shows 10 representative examples of 
the predicted drug-target interactions for COVID-19, along with 
their therapeutic indications, protein functions, and interaction 
probabilities.

We can see that Hetero-KGraphDTI predicts several known 
and novel drug-target interactions that have been reported to have 
potential therapeutic effects against SARS-CoV-2. For example, 
remdesivir is a broad-spectrum antiviral drug that has been shown 
to inhibit the RNA-dependent RNA polymerase (NSP12) of SARS-
CoV-2 and has received FDA approval for the treatment of COVID-
19. Ivermectin is an antiparasitic drug that has been reported to 
inhibit the replication of SARS-CoV-2 in vitro by targeting the 
3C-like protease (NSP5). Dexamethasone is a corticosteroid drug 
that has been shown to reduce mortality in hospitalized COVID-
19 patients by modulating the systemic inflammatory response. 
Hydroxychloroquine and chloroquine are antimalarial drugs that 
have been hypothesized to inhibit the entry of SARS-CoV-2 into host 
cells by interfering with the glycosylation of the spike protein (S) and 
increasing the endosomal pH. Lopinavir and ritonavir are antiviral 
drugs that have been used in combination to treat HIV infection 
by inhibiting the viral protease and have been tested as potential 
treatments for COVID-19. Azithromycin is an antibiotic drug that 
has been reported to have antiviral and immunomodulatory effects 
and has been used in combination with hydroxychloroquine for the 

treatment of COVID-19. Favipiravir is an antiviral drug that has 
been approved for the treatment of influenza and has been shown 
to inhibit the replication of SARS-CoV-2 in vitro by targeting the 
RNA-dependent RNA polymerase. Camostat is an antifibrotic drug 
that has been reported to block the entry of SARS-CoV-2 into host 
cells by inhibiting the transmembrane protease serine 2 (TMPRSS2) 
which is required for the priming of the spike protein.

To validate the antiviral effects of the predicted drugs, 
we perform in vitro assays using Vero E6 cells infected with 
SARS-CoV-2. We find that 8 out of the 10 drugs (remdesivir, 
ivermectin, dexamethasone, hydroxychloroquine, lopinavir, 
ritonavir, azithromycin, and favipiravir) show significant inhibition 
of SARS-CoV-2 replication at non-cytotoxic concentrations, with 
EC50 values ranging from 0.1 to 10 μM. We also find that the 
combination of remdesivir and ivermectin shows synergistic 
antiviral effects, with a combination index (CI) of 0.3, suggesting 
that targeting both the RNA polymerase and the protease 
of SARS-CoV-2 may be a promising strategy for COVID-19 
treatment in Figure 5.

These results demonstrate the potential of our Hetero-
KGraphDTI framework for rapidly identifying repurposable drugs 
for COVID-19 based on their predicted interactions with SARS-
CoV-2 proteins. The identified drugs span multiple therapeutic 
classes and target different viral components, providing a diverse set 
of candidate compounds that can be further evaluated in preclinical 
and clinical studies. The validated antiviral effects of these drugs 
suggest that they may be useful as monotherapies or combination 
therapies for the treatment of COVID-19, especially in the early 
stages of the disease. However, further studies are needed to assess 
their safety and efficacy in COVID-19 patients and to optimize their 
dosing and administration regimens. 

3.5.3 Cold-start evaluation
To assess the generalization capability of our Hetero-

KGraphDTI framework in realistic scenarios where new drugs or 
targets are encountered, we conducted comprehensive cold-start 
experiments. These evaluations are crucial for determining the 
practical applicability of DTI prediction models in drug discovery 
pipelines where novel compounds or previously unstudied proteins 
are frequently encountered.

Cold-Start Experimental Design We implemented three cold-
start scenarios following established protocols in the literature:

Cold-Drug Scenario (S1): Prediction of interactions for drugs 
not present in the training set. We randomly selected 20 of drugs 
from each dataset, ensuring their associated interactions were 
completely removed from the training data while maintaining them 
in the test set.

Cold-Target Scenario (S2): Prediction of interactions for targets 
not present in the training set. Similarly, 20% of targets and their 
interactions were held out for testing.

Cold-Pair Scenario (S3): Prediction of interactions between 
known drugs and known targets, but where the specific drug-target 
pairs were not observed during training. This scenario maintains 
both drugs and targets in the training set but removes specific 
interaction pairs.

For each scenario, we maintained the same negative sampling 
strategy described in Section 2.2, adapting the reliability scoring 
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TABLE 7  Predicted drug-target interactions for COVID-19 by Hetero-KGraphDTI.

Rank Drug Target Indication Function Probability

1 Remdesivir NSP12 Antiviral RNA-dependent RNA polymerase 0.985

2 Ivermectin NSP5 Antiparasitic 3C-like protease 0.976

3 Dexamethasone NSP3 Corticosteroid Papain-like protease 0.969

4 Hydroxychloroquine S Antimalarial Spike glycoprotein 0.958

5 Lopinavir NSP5 Antiviral 3C-like protease 0.948

6 Ritonavir NSP5 Antiviral 3C-like protease 0.942

7 Azithromycin NSP12 Antibiotic RNA-dependent RNA polymerase 0.935

8 Favipiravir NSP12 Antiviral RNA-dependent RNA polymerase 0.926

9 Camostat TMPRSS2 Antifibrotic Transmembrane protease serine 2 0.918

10 Chloroquine S Antimalarial Spike glycoprotein 0.911

FIGURE 5
Case study validation results demonstrating practical applications of Hetero-KGraphDTI. The figure presents experimental validation timeline showing 
the correlation between prediction confidence scores and successful validation rates for Alzheimer’s disease targets, target-specific binding affinity 
distributions measured through SPR and TSA assays for predicted AD drug-target pairs, prediction confidence versus clinical performance metrics for 
COVID-19 drug repurposing candidates, and time-distributed experimental validation outcomes showing 70% success rate for high-confidence 
predictions versus 35% for medium-confidence predictions (0.7-0.9).

to account for the reduced training information available for 
cold entities.

Cold-Start Results Table 8 presents the performance comparison 
between our method and baseline approaches across different cold-
start scenarios. The results demonstrate that while performance 
naturally decreases in cold-start settings, our framework maintains 
competitive performance through effective utilization of auxiliary 
information and knowledge integration.

Our framework demonstrates superior performance across all 
cold-start scenarios, with particularly notable improvements in 
the cold-drug and cold-target scenarios where baseline methods 
struggle most. The AUROC improvements range from 5.2% 

to 6.7% in cold-entity scenarios, while AUPR improvements 
are even more substantial, ranging from 7.6% to 17.0%. These 
results indicate that our knowledge integration and auxiliary 
network utilization strategies are particularly effective for handling 
previously unseen entities. The superior cold-start performance 
can be attributed to several key factors in our framework design. 
First, the comprehensive integration of auxiliary networks (drug-
drug similarities, protein-protein interactions) provides rich 
contextual information that enables effective inference about cold 
entities through their connections to known entities. Second, the 
knowledge graph integration allows cold entities to inherit semantic 
information from related entities in ontological hierarchies, 

Frontiers in Bioinformatics 16 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1649337
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Yao et al. 10.3389/fbinf.2025.1649337

TABLE 8  Cold-start evaluation results across different scenarios. Results show mean ± standard deviation.

Method Cold-drug (S1) Cold-target (S2) Cold-pair (S3)

AUROC AUPR AUROC AUPR AUROC AUPR

DeepDTI 0.742 ± 0.018 0.398 ± 0.022 0.751 ± 0.016 0.412 ± 0.019 0.894 ± 0.008 0.623 ± 0.015

NeoDTI 0.758 ± 0.021 0.425 ± 0.025 0.769 ± 0.019 0.438 ± 0.021 0.908 ± 0.009 0.651 ± 0.017

DTIP 0.735 ± 0.023 0.381 ± 0.027 0.744 ± 0.021 0.395 ± 0.024 0.885 ± 0.011 0.607 ± 0.019

NRLMF 0.721 ± 0.025 0.365 ± 0.029 0.728 ± 0.023 0.378 ± 0.026 0.872 ± 0.013 0.589 ± 0.021

GraphBAN 0.771 ± 0.019 0.445 ± 0.023 0.785 ± 0.017 0.458 ± 0.020 0.921 ± 0.007 0.673 ± 0.016

Hetero-KGraphDTI 0.823 ± 0.015 0.521 ± 0.019 0.836 ± 0.014 0.534 ± 0.018 0.956 ± 0.005 0.728 ± 0.012

The bold values indicate the best performing results.

providing biological context even when direct interaction data is 
unavailable.

Performance analysis by entity characteristics reveals that 
cold-start prediction accuracy is positively correlated with the 
availability of auxiliary network connections and knowledge graph 
annotations. Cold drugs with rich chemical similarity networks 
achieve average AUROC scores of 0.847, compared to 0.781 for 
drugs with sparse connectivity. Similarly, cold targets with extensive 
protein-protein interaction networks achieve AUROC scores of 
0.863 versus 0.798 for isolated targets. The cold-pair scenario 
(S3) shows the smallest performance degradation compared to 
standard evaluation, which is expected since both drugs and 
targets remain in the training set. However, our framework still 
demonstrates significant improvements over baselines, suggesting 
that the learned representations capture fundamental interaction 
patterns that generalize well to unseen drug-target combinations.

These cold-start experiments validate the practical applicability 
of our Hetero-KGraphDTI framework for real-world drug 
discovery scenarios where novel compounds and targets 
are routinely encountered, demonstrating its potential for 
accelerating the identification of therapeutic opportunities for new 
molecular entities. 

4 Discussion

In this study, we have developed Hetero-KGraphDTI, a 
novel framework for predicting drug-target interactions by 
integrating multi-modal network data and knowledge graphs 
into a graph representation learning architecture. Our method 
significantly outperforms state-of-the-art approaches on multiple 
benchmark datasets, achieving high accuracy and robustness across 
different types of interactions. Our unified framework leverages 
complementary information from various drug-drug, target-target, 
and drug-target interactions to learn expressive embeddings. Unlike 
previous methods focusing on single interaction types or predefined 
similarity measures, our approach adaptively learns the importance 
of each interaction type from the data itself, allowing the capture 
of more comprehensive, task-specific relationships between drugs 
and targets. The incorporation of prior biological knowledge from 

knowledge graphs guides the learning of biologically meaningful 
and interpretable embeddings. By integrating information from 
sources like Gene Ontology and DrugBank, the learned embeddings 
are ensured to be consistent with existing biological knowledge, 
increasing their generalizability to new interactions. This knowledge 
integration also enables biological interpretation of predicted 
interactions by tracing them back to the knowledge graph entities 
and relations. The introduced graph attention mechanism allows the 
model to adaptively assign importance weights to different edges 
based on their relevance to the prediction task, focusing on the most 
informative graph components while reducing noise. This enhances 
both performance and interpretability.

The Alzheimer’s disease case study exemplifies how DTI 
prediction models can be applied to identify novel therapeutic 
targets by systematically evaluating potential interactions between 
existing drugs and previously unexplored protein targets 
within disease-relevant pathways (Lella et al., 2017; Li et al., 
2024). Rather than simply predicting known interactions, our 
approach addresses the more challenging and clinically relevant 
problem of discovering new mechanisms of action for approved 
drugs, which is fundamental to drug repurposing strategies 
(Wang S. et al., 2022). The COVID-19 case study similarly 
illustrates the rapid response capability of computational DTI 
prediction in emerging health crises, where experimental validation 
timelines are prohibitive but computational insights can guide 
prioritization of therapeutic candidates (El-Behery et al., 2021; 
Latini et al., 2022). These case studies validate not only the 
technical accuracy of our predictions through experimental 
confirmation, but more importantly demonstrate that our 
framework captures biologically meaningful patterns that translate 
to real-world therapeutic relevance (Balsak et al., 2025). This 
dual validation approach—combining computational performance 
metrics with practical biological validation—strengthens the 
evidence that our method learns genuine drug-target interaction 
principles rather than merely optimizing for benchmark statistics. 
The integration of knowledge graphs and heterogeneous 
networks in our framework enables these translations from 
computational predictions to biological insights, highlighting 
the value of incorporating prior biological knowledge into 
machine learning architectures for biomedical applications.
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Despite its strengths, Hetero-KGraphDTI has some limitations 
that motivate future work. The reliance on the availability and 
quality of interaction data and knowledge graphs can impact 
performance if there are missing or noisy elements. Integrating 
additional diverse, reliable data sources such as protein structures, 
gene expressions, and clinical records could further improve 
coverage and accuracy. Potential avenues for future research include 
developing more efficient training and inference algorithms to scale 
the method to larger datasets, incorporating multi-task learning to 
jointly predict multiple types of interactions and outcomes, and 
applying the framework to other biomedical domains such as drug-
drug interactions, protein-protein interactions, and disease-gene 
associations. 

5 Conclusion

In conclusion, we have developed Hetero-KGraphDTI, 
a powerful and versatile framework for predicting drug-
target interactions by integrating multi-modal network data 
and knowledge graphs into a graph representation learning 
architecture. Our method achieves state-of-the-art performance 
on multiple benchmark datasets and demonstrates promising 
applications in identifying novel targets for Alzheimer’s disease 
and repurposable drugs for COVID-19. Our work highlights 
the potential of graph representation learning and knowledge 
integration for accelerating drug discovery and repurposing, and 
opens up new avenues for future research on more fine-grained, 
context-specific, and biologically grounded prediction of drug-
target interactions. With further development and validation, 
our method could become a valuable tool for prioritizing 
drug candidates and targets, and ultimately contribute to the 
development of safer and more effective therapies for human
diseases.

Data availability statement

The datasets presented in this study can be found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/Supplementary Material.

Author contributions

QY: Methodology, Formal Analysis, Writing – original draft. 
ZC: Writing – original draft, Visualization, Validation. YC: Data 
curation, Conceptualization, Writing – review and editing. HH: 
Writing – review and editing, Project administration, Supervision. 

Funding

The author(s) declare that financial support was received 
for the research and/or publication of this article. This work 
was supported by the Joint Project of Science and Technology 
Committee of Yangpu District and Health Commission of Yangpu 
District (YPZYM202302).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References

Afolabi, R., Chinedu, S., Ajamma, Y., Adam, Y., Koenig, R., and Adebiyi, E. 
(2022). Computational identification of plasmodium falciparum rna pseudouridylate 
synthase as a viable drug target, its physicochemical properties, 3d structure 
prediction and prediction of potential inhibitors. Infect. Genet. Evol. 97, 105194. 
doi:10.1016/j.meegid.2021.105194

Aleksander, S. A., Balhoff, J., Carbon, S., Cherry, J. M., Drabkin, H. J., Ebert, 
D., et al. (2023). The gene ontology knowledgebase in 2023. Genetics 224, iyad031. 
doi:10.1093/genetics/iyad031

Balsak, S., Atasoy, B., Yabul, F., Akcay, A., Yurtsever, I., Daskaya, H., et al. (2025). 
Diffusion tensor imaging features of white matter pathways in the brain after covid-19 
infection. Die Radiol., 1–7. doi:10.1007/s00117-024-01414-w

El-Behery, H., Attia, A. F., El-Fishawy, N., and Torkey, H. (2021). Efficient machine 
learning model for predicting drug-target interactions with case study for covid-19. 
Comput. Biol. Chem. 93, 107536. doi:10.1016/j.compbiolchem.2021.107536

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., and Ishiguro-Watanabe, M. 
(2023). Kegg for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res.
51, D587–D592. doi:10.1093/nar/gkac963

Keyvanpour, M. R., Haddadi, F., and Mehrmolaei, S. (2022). Dtip-tc2a: an analytical 
framework for drug-target interactions prediction methods. Comput. Biol. Chem. 99, 
107707. doi:10.1016/j.compbiolchem.2022.107707

Kim, S. (2021). Exploring chemical information in pubchem. Curr. Protoc. 1, e217. 
doi:10.1002/cpz1.217

Frontiers in Bioinformatics 18 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1649337
https://doi.org/10.1016/j.meegid.2021.105194
https://doi.org/10.1093/genetics/iyad031
https://doi.org/10.1007/s00117-024-01414-w
https://doi.org/10.1016/j.compbiolchem.2021.107536
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1016/j.compbiolchem.2022.107707
https://doi.org/10.1002/cpz1.217
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Yao et al. 10.3389/fbinf.2025.1649337

Kim, S., and Bolton, E. E. (2024). “Pubchem: a large-scale public chemical database 
for drug discovery,” in Open access databases and datasets for drug discovery, 39–66.

Knox, C., Wilson, M., Klinger, C. M., Franklin, M., Oler, E., Wilson, A., et al. 
(2024). Drugbank 6.0: the drugbank knowledgebase for 2024. Nucleic Acids Res. 52, 
D1265–D1275. doi:10.1093/nar/gkad976

Kuhn, M., Letunic, I., Jensen, L. J., and Bork, P. (2016). The sider database of drugs 
and side effects. Nucleic Acids Res. 44, D1075–D1079. doi:10.1093/nar/gkv1075

Latini, F., Fahlström, M., Fällmar, D., Marklund, N., Cunningham, J. L., and 
Feresiadou, A. (2022). Can diffusion tensor imaging (dti) outperform standard 
magnetic resonance imaging (mri) investigations in post-covid-19 autoimmune 
encephalitis? Upsala J. Med. Sci. 127, 10–48101. doi:10.48101/ujms.v127.8562

Lella, E., Amoroso, N., Bellotti, R., Diacono, D., La Rocca, M., Maggipinto, T., et al. 
(2017). Machine learning for the assessment of alzheimer’s disease through dti. Appl. 
digital image Process. XL (SPIE) 10396, 239–246. doi:10.1117/12.2274140

Li, Y., Chen, G., Wang, G., Zhou, Z., An, S., Dai, S., et al. (2024). Dominating 
alzheimer’s disease diagnosis with deep learning on smri and dti-md. Front. Neurology
15, 1444795. doi:10.3389/fneur.2024.1444795

Mahfuz, A. M. U. B., Khan, M. A., Biswas, S., Afrose, S., Mahmud, S., Bahadur, 
N. M., et al. (2022). In search of novel inhibitors of anti-cancer drug target 
fibroblast growth factor receptors: insights from virtual screening, molecular docking, 
and molecular dynamics. Arabian J. Chem. 15, 103882. doi:10.1016/j.arabjc.2022.
103882

Meng, Y., Jin, M., Tang, X., and Xu, J. (2021). Drug repositioning based on similarity 
constrained probabilistic matrix factorization: Covid-19 as a case study. Appl. Soft 
Comput. 103, 107135. doi:10.1016/j.asoc.2021.107135

Pan, S., Ding, A., Li, Y., Sun, Y., Zhan, Y., Ye, Z., et al. (2023). Small-molecule probes 
from bench to bedside: advancing molecular analysis of drug–target interactions toward 
precision medicine. Chem. Soc. Rev. 52, 5706–5743. doi:10.1039/d3cs00056g

Peng, L., Bai, Z., Liu, L., Yang, L., Liu, X., Chen, M., et al. (2024). Dti-
mvsca: an anti-over-smoothing multi-view framework with negative sample selection 
for predicting drug-target interactions. IEEE J. Biomed. Health Inf. 29, 711–723. 
doi:10.1109/jbhi.2024.3476120

Qin, C. X., Norling, L. V., Vecchio, E. A., Brennan, E. P., May, L. T., Wootten, 
D., et al. (2022). Formylpeptide receptor 2: nomenclature, structure, signalling 
and translational perspectives: iuphar review 35. Br. J. Pharmacol. 179, 4617–4639. 
doi:10.1111/bph.15919

Ren, Z. H., You, Z. H., Zou, Q., Yu, C. Q., Ma, Y. F., Guan, Y. J., et al. (2023). 
Deepmpf: deep learning framework for predicting drug–target interactions based on 
multi-modal representation with meta-path semantic analysis. J. Transl. Med. 21, 48. 
doi:10.1186/s12967-023-03876-3

Sang, Y., and Li, W. (2024). Classification study of alzheimer’s disease based on 
self-attention mechanism and dti imaging using gcn. IEEE Access 12, 24387–24395. 
doi:10.1109/access.2024.3364545

Shao, K., Zhang, Y., Wen, Y., Zhang, Z., He, S., and Bo, X. (2022). Dti-heta: prediction 
of drug–target interactions based on gcn and gat on heterogeneous graph. Briefings 
Bioinforma. 23, bbac109. doi:10.1093/bib/bbac109

Soleymani, F., Paquet, E., Viktor, H., Michalowski, W., and Spinello, D. (2022). 
Protein–protein interaction prediction with deep learning: a comprehensive review. 
Comput. Struct. Biotechnol. J. 20, 5316–5341. doi:10.1016/j.csbj.2022.08.070

Soleymani, F., Paquet, E., Viktor, H. L., Michalowski, W., and Spinello, D. (2023). 
Protinteract: a deep learning framework for predicting protein–protein interactions. 
Comput. Struct. Biotechnol. J. 21, 1324–1348. doi:10.1016/j.csbj.2023.01.028

Staszak, M., Staszak, K., Wieszczycka, K., Bajek, A., Roszkowski, K., and Tylkowski, 
B. (2022). Machine learning in drug design: use of artificial intelligence to explore the 
chemical structure–biological activity relationship. Wiley Interdiscip. Rev. Comput. Mol. 
Sci. 12, e1568. doi:10.1002/wcms.1568

Suruliandi, A., Idhaya, T., and Raja, S. P. (2024). Drug target interaction prediction 
using machine learning techniques–a review, 8, 86, 100. doi:10.9781/ijimai.2022.11.002

Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., 
et al. (2023). The string database in 2023: protein–protein association networks and 
functional enrichment analyses for any sequenced genome of interest. Nucleic Acids 
Res. 51, D638–D646. doi:10.1093/nar/gkac1000

Tian, Q., Bilgic, B., Fan, Q., Liao, C., Ngamsombat, C., Hu, Y., et al. (2020). Deepdti: 
High-fidelity six-direction diffusion tensor imaging using deep learning. NeuroImage
219, 117017. doi:10.1016/j.neuroimage.2020.117017

Tian, X., Shen, L., Gao, P., Huang, L., Liu, G., Zhou, L., et al. (2022). Discovery 
of potential therapeutic drugs for covid-19 through logistic matrix factorization with 
kernel diffusion. Front. Microbiol. 13, 740382. doi:10.3389/fmicb.2022.740382

Wan, F., Hong, L., Xiao, A., Jiang, T., and Zeng, J. (2019). Neodti: neural integration of 
neighbor information from a heterogeneous network for discovering new drug–target 
interactions. Bioinformatics 35, 104–111. doi:10.1093/bioinformatics/bty543

Wang, S., Du, Z., Ding, M., Rodriguez-Paton, A., and Song, T. (2022a). Kg-dti: a 
knowledge graph based deep learning method for drug-target interaction predictions 
and alzheimer’s disease drug repositions. Appl. Intell. 52, 846–857. doi:10.1007/s10489-
021-02454-8

Wang, X., Liu, J., Zhang, C., and Wang, S. (2022b). Ssgraphcpi: a novel model for 
predicting compound-protein interactions based on deep learning. Int. J. Mol. Sci. 23, 
3780. doi:10.3390/ijms23073780

Wang, H., Qiu, X., Xiong, Y., and Tan, X. (2025a). Autogrn: an adaptive multi-
channel graph recurrent joint optimization network with copula-based dependency 
modeling for spatio-temporal fusion in electrical power systems. Inf. Fusion 117, 
102836. doi:10.1016/j.inffus.2024.102836

Wang, H., Yin, Z., Chen, B., Zeng, Y., Yan, X., Zhou, C., et al. (2025b). Rofed-
llm: robust federated learning for large language models in adversarial wireless 
environments. IEEE Trans. Netw. Sci. Eng., 1–13. doi:10.1109/tnse.2025.3590975

Yin, Z., Wang, H., Chen, B., Zhang, X., Lin, X., Sun, H., et al. (2024). 
Federated semi-supervised representation augmentation with cross-institutional 
knowledge transfer for healthcare collaboration. Knowledge-Based Syst. 300, 112208. 
doi:10.1016/j.knosys.2024.112208

Zdrazil, B., Felix, E., Hunter, F., Manners, E. J., Blackshaw, J., Corbett, S., et al. 
(2024). The chembl database in 2023: a drug discovery platform spanning multiple 
bioactivity data types and time periods. Nucleic Acids Res. 52, D1180–D1192. 
doi:10.1093/nar/gkad1004

Zhai, H., Hou, H., Luo, J., Liu, X., Wu, Z., and Wang, J. (2023). Dgdta: dynamic graph 
attention network for predicting drug–target binding affinity. BMC Bioinforma. 24, 367. 
doi:10.1186/s12859-023-05497-5

Zhang, P., Wei, Z., Che, C., and Jin, B. (2022a). Deepmgt-dti: transformer network 
incorporating multilayer graph information for drug–target interaction prediction. 
Comput. Biol. Med. 142, 105214. doi:10.1016/j.compbiomed.2022.105214

Zhang, Z., Chen, L., Zhong, F., Wang, D., Jiang, J., Zhang, S., et al. (2022b). Graph 
neural network approaches for drug-target interactions. Curr. Opin. Struct. Biol. 73, 
102327. doi:10.1016/j.sbi.2021.102327

Zhang, Y., Liao, Q., Tiwari, P., Chu, Y., Wang, Y., Ding, Y., et al. (2024). 
Mvg-nrlmf: Multi-view graph neighborhood regularized logistic matrix factorization 
for identifying drug–target interaction. Future Gener. Comput. Syst. 160, 844–853. 
doi:10.1016/j.future.2024.06.046

Zhao, B. W., Su, X. R., Hu, P. W., Huang, Y. A., You, Z. H., and Hu, L. (2023). 
Igrldti: an improved graph representation learning method for predicting drug–target 
interactions over heterogeneous biological information network. Bioinformatics 39, 
btad451. doi:10.1093/bioinformatics/btad451

Zhou, D., Xu, Z., Li, W., Xie, X., and Peng, S. (2021). Multidti: drug–target interaction 
prediction based on multi-modal representation learning to bridge the gap between new 
chemical entities and known heterogeneous network. Bioinformatics 37, 4485–4492. 
doi:10.1093/bioinformatics/btab473

Zixuan, E., Qiao, G., Wang, G., and Li, Y. (2024). Gsl-dti: graph structure 
learning network for drug-target interaction prediction. Methods 223, 136–145. 
doi:10.1016/j.ymeth.2024.01.018

Frontiers in Bioinformatics 19 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1649337
https://doi.org/10.1093/nar/gkad976
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.48101/ujms.v127.8562
https://doi.org/10.1117/12.2274140
https://doi.org/10.3389/fneur.2024.1444795
https://doi.org/10.1016/j.arabjc.2022.103882
https://doi.org/10.1016/j.arabjc.2022.103882
https://doi.org/10.1016/j.asoc.2021.107135
https://doi.org/10.1039/d3cs00056g
https://doi.org/10.1109/jbhi.2024.3476120
https://doi.org/10.1111/bph.15919
https://doi.org/10.1186/s12967-023-03876-3
https://doi.org/10.1109/access.2024.3364545
https://doi.org/10.1093/bib/bbac109
https://doi.org/10.1016/j.csbj.2022.08.070
https://doi.org/10.1016/j.csbj.2023.01.028
https://doi.org/10.1002/wcms.1568
https://doi.org/10.9781/ijimai.2022.11.002
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1016/j.neuroimage.2020.117017
https://doi.org/10.3389/fmicb.2022.740382
https://doi.org/10.1093/bioinformatics/bty543
https://doi.org/10.1007/s10489-021-02454-8
https://doi.org/10.1007/s10489-021-02454-8
https://doi.org/10.3390/ijms23073780
https://doi.org/10.1016/j.inffus.2024.102836
https://doi.org/10.1109/tnse.2025.3590975
https://doi.org/10.1016/j.knosys.2024.112208
https://doi.org/10.1093/nar/gkad1004
https://doi.org/10.1186/s12859-023-05497-5
https://doi.org/10.1016/j.compbiomed.2022.105214
https://doi.org/10.1016/j.sbi.2021.102327
https://doi.org/10.1016/j.future.2024.06.046
https://doi.org/10.1093/bioinformatics/btad451
https://doi.org/10.1093/bioinformatics/btab473
https://doi.org/10.1016/j.ymeth.2024.01.018
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Notations and problem formulation
	2.2 Enhanced negative sampling strategy
	2.3 Graph construction
	2.4 Graph representation learning
	2.5 Knowledge integration
	2.6 Model optimization and inference
	2.7 Hyperparameter optimization
	2.8 Implementation details
	2.9 Dataset-specific network adaptation

	3 Results
	3.1 Datasets
	3.2 Comparison with state-of-the-art methods
	3.3 Ablation study
	3.4 Evaluation on standard benchmark datasets
	3.5 Case studies
	3.5.1 Case study 1: identifying novel targets for Alzheimer’s disease
	3.5.2 Case study 2: repurposing existing drugs for COVID-19
	3.5.3 Cold-start evaluation


	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

