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Introduction: i-Motifs (iMs) are cytosine-rich, four-strandedDNA structureswith
emerging roles in gene regulation and genome stability. Despite their biological
relevance, genome-wide prediction of iM-forming sequences remains limited
by low specificity and high false-positive rates, leading to considerable
experimental burden.

Method: To address this, we developed a refined computational approach that
prioritizes high-confidence iM candidates using a Position-Specific Similarity
Matrix (PSSM) derived frommultiple sequence alignments. The human reference
genome (hg38) was scanned using a custom regular expression targeting
cytosine-rich motifs, followed by scoring each sequence with the PSSM.
Statistical significance was assessed via permutation testing, one-sided t-tests,
Benjamini-Hochberg correction, and Z-scores.

Results: This pipeline identified 37,075 candidate sequences (15–46 nucleotides)
with strong iM-forming potential. Validation against experimentally confirmed
iMs and known G-quadruplexes (G4s) demonstrated significant differences in
alignment scores and sequence similarity, confirming structural specificity. A
random forest classifier trained on nucleotide features further supported the
distinctiveness of the candidates, achieving a high classification performance.

Conclusion: This work presents a scalable and statistically robust method to
enrich for biologically relevant iM sequences, providing a valuable resource for
future experimental validation and the rational design of ligands targeting iMs to
modulate gene expression in contexts such as cancer.

KEYWORDS

i-Motif, multiple sequence alignment, position-specific similarity matrix, prioritization,
random forest

1 Introduction

DNA, the molecular blueprint of life, primarily exists in the canonical double
helix of the B form (Travers and Muskhelishvili, 2015). However, beyond this classical
structure, DNA is capable of adopting a variety of non-canonical conformations, including
triplexes, cruciforms, G-quadruplexes (G4s), and i-motifs (iMs) (Abou Assi et al., 2018).
Among these, iMs are four-stranded structures formed in cytosine-rich sequences,
stabilized by hemi-protonated cytosine-cytosine (C:C+) base pairs (Luo et al., 2023).
These structures are different from the more widely studied G4s, which are formed
by guanine-rich sequences, and have recently gained attention due to their potential
role in fundamental biological processes (Ban et al., 2024; Sen and Gilbert, 1988).
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First identified in the early 1990s, iMs are known to form under
mildly acidic conditions, a property that suggests their involvement
in cellular environments with low pH, such as the nucleus or
specific subcellular compartments (Kikuta et al., 2015). iMs are
not merely theoretical; they have indeed been observed in vivo,
where they are found in critical regions of the genome, including
the promoter regions of oncogenes and in telomeric DNA, both
of which are crucial for gene regulation and chromosomal stability
(Peña Martinez et al., 2024). These structures can act as molecular
switches, modulating gene expression by transitioning between
stable and dynamic conformations. The ability of iMs to influence
gene transcription makes them attractive targets for therapeutic
intervention, particularly in cancer and other diseases linked to gene
dysregulation (Deep et al., 2025).

Despite their promising biological roles, much remains
unknown about iMs, particularly regarding their formation
dynamics and recognition by proteins and small molecules.
Identifying iM-forming sequences within the genome is a crucial
step in advancing this research field. However, predicting which
sequences are capable of adopting the iM conformation remains
challenging, as current methods for genome-wide screening of iM
candidates are still limited (Yu et al., 2024; Sengupta et al., 2024).
A significant limitation of existing approaches is the generation of
extensive candidate lists, which often lack sufficient specificity and
can result in a high degree of computational and experimental
burden. This gap in knowledge underlines the need for more
refined methods to identify and prioritize potential iM-forming
sequences. A focused list of high-confidence candidates would
enable researchers to concentrate on the most biologically relevant
sequences, facilitating a deeper understanding of their structural,
functional, and therapeutic implications, and supporting the
development of small molecules or ligands that can target these
structures to modulate gene expression (Debnath et al., 2019).

To address this gap in existingmethods, we propose an approach
based on a Position-Specific Similarity Matrix (PSSM) derived from
multiple sequence alignment to identify iM candidates.

2 Materials and methods

To identify and analyse potential DNA regions capable of
forming iMs in the human genome, the employed method
followed a systematic four-step approach. It integrated genome-wide
scanning, sequence scoring, pattern refinement, and validation,
ensuring comprehensive identification and analysis of iM-forming
candidates (Figure 1). All the program codes used in this study
were implemented in R (4.2.0), providing a flexible and efficient
framework for data processing and analysis.

2.1 Identification of candidates

The initial step of the methodology involved the scanning of the
hg38 human genome reference (Li R. Y. et al., 2023). This reference
genome was examined by both forward and reverse strands,
ensuring the coverage of all genomic regions. The scanning process
was performed using a custom-designed regular expression (regex)
pattern to detect sequences that are likely to adopt iM structures.The

regex pattern specifically searched for stretches of three consecutive
cytosines (C), flanked by a variable sequence of 1–12 bases,
denoted as “N” to represent any nucleotide (adenine, thymine,
cytosine, or guanine). The used full pattern was (C3N1-12)3C3,
which targeted genomic regions where four stretches of three
cytosines were present. These sequences were highly indicative
of potential iM formation due to their characteristic cytosine-
rich structure (Abou Assi et al., 2018). This scanning process
resulted in the identification of potential iM-candidates across the
entire genome.

The next step involved evaluating the likelihood that these
sequences would form stable iMs. This was accomplished by
constructing a Position-Specific Similarity Matrix (PSSM) using
multiple sequence alignment (MSA). To ensure the most accurate
and reliable alignment, three different MSA algorithms were
assessed: ClustalW (Larkin et al., 2007), ClustalOmega (Sievers et al.,
2011), and DECIPHER (Wright, 2015). The optimal algorithm was
selected through an empirical comparison based on three main
criteria: the number of high-scoring iM candidates preserved after
alignment, the minimization of gaps within the core motif region,
and the consistency of alignment performance across both DNA
strands. Once identified the optimal MSA algorithm, it was applied
independently to each chromosome and strand to capture potential
strand-specific variations in iM formation. Additionally, the three
nucleotides flanking the candidate sequence on both sides were
included in the alignment. The rationale behind applying MSA is
that sequence conservation can act as a proxy for structural and
functional relevance: motifs that are positionally conserved across
multiple loci are more likely to reflect biologically stable iMs, as
opposed to randomly occurring sequences. In this way, MSA helps
reduce noise and highlight core features that may drive iM stability.

Nucleotide frequencies for each position in the alignment were
then computed. For each position, the frequency of occurrence of
each nucleotide (A, T, C, G) was calculated by determining the
proportion of each present nucleotide relative to the total number
of sequences in the alignment. These frequencies were then used
to compute logarithmic scores, which represent the ratio between
the observed frequency of each nucleotide at a given position and
the expected frequency under a uniform distribution, where each
nucleotide has an equal probability of appearing.

The PSSM was then built by incorporating the log-transformed
scores for each nucleotide at every position in the alignment. This
resulted in a quantitative score for each sequence, reflecting its
occurrence frequency and, by extension, its potential to form stable
iM structures.

More in detail, the score for each identified sequence was
determined by summing the individual scores for each position, as
derived from the PSSM:

S = ∑
i|Si>0

Si

where Si is the score for position i according to the PSSM. In
cases where the score at a particular position was negative, it was
disregarded to avoid penalizing longer sequence matches that may
exhibit lower scores at specific positions. Moreover, no gap penalties
were applied to prevent biasing shorter matches during the scoring
process. Scores were not normalized by sequence length, as this
would have artificially favored shorter motifs. Instead, by summing
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FIGURE 1
Overview of the computational pipeline for identifying potential i-motif (iM) sequences in the human genome. The genome was scanned on both
strands using a custom regex to detect cytosine-rich motifs. Candidates were aligned per chromosome and strand using a multiple sequence
alignment (MSA) method. A Position-Specific Similarity Matrix (PSSM) was constructed from the alignments to score and prioritize sequences.
Validation was performed by comparing top candidates to experimentally confirmed iMs and G-quadruplexes, supported by statistical analyses and
machine learning classification.

only positive position-specific scores, we avoided penalizing longer
sequences while maintaining a fair comparison across motifs of
varying lengths.

To assess the significance of the observed scores, we performed
a 1,000-times random permutation of the sequence order,
recalculating the score for each permuted sequence. This procedure
allowed for the generation of a distribution of scores under the
null hypothesis that the sequences are randomly distributed.
Subsequently, a one-tailed t-test was performed to compare the
observed scores with the distribution of randomly generated scores,
which produced p-values for each sequence. The t-statistic for
this test was computed by comparing the difference between the
observed score and the mean of the randomly generated scores,
adjusted for the standard deviation and the number of permutations.

In addition, for the analysis of multiple comparisons, the
Benjamini-Hochberg (BH) procedure was accurately applied to
adjust the p-values, thereby controlling the false discovery rate.
Additionally, to quantify the deviation of the observed scores from
the expected randomdistribution, the Z-score for each sequencewas
calculated. This Z-score provided a standardized measure of how
much the observed score deviates from the mean of the random
permutations, offering insight into the robustness of each sequence
potential to form stable iM structures.

Finally, the sequences with higher scores were identified as
having a larger probability of forming stable iMs, while those
with lower scores were considered less likely to adopt this
conformation. Therefore, the top 5% of the results, ranked by
Z-score, were retained and considered as suitable candidates.
Then, these sequences were annotated using the GenomicRanges
library to add genomic information, such as the gene symbol and
the gene type. For each candidate sequence, direct overlaps with
gene bodies were first identified based on the Gencode v38 gene
annotation. Sequences without direct overlap were annotated with
their nearest gene, including the genomic distance to that gene, to
ensure comprehensive genomic assignment. Each sequencewas thus
labeled as either “correct” (within gene body) or “nearest” (closest
gene) to reflect annotation confidence. To further investigate the

biological context of the predicted iM-forming sequences, genes
were classified into three categories: immune-related, housekeeping,
and other. Housekeeping genes were obtained from the curated list
in the Molecular Signatures Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb/cards/HOUNKPE_HOUSEKEEPING_
GENES) (Hounkpe et al., 2021). Immune-related genes
were collected by integrating multiple sources, including
InnateDB (https://www.innatedb.com/annotatedGenes.do?type=
innatedb) (Breuer et al., 2013), and MSigDB “IMMUNE_SYSTEM_
PROCESS” and INNATE_IMMUNE_SYSTEM signatures
(https://www.gsea-msigdb.org/gsea/msigdb/cards/HOUNKPE_
HOUSEKEEPING_GENES and https://www.gsea-msigdb.org/
gsea/msigdb/human/geneset/REACTOME_INNATE_IMMUNE_
SYSTEM.html). All gene symbols were unified and deduplicated
before downstream analyses. Gene class annotations were then
assigned to each candidate based on overlap with these curated gene
sets. To assess whether the predicted iM-forming sequences were
significantly enriched in immune-related or housekeeping genes, a
contingency table was constructed summarizing the presence and
absence of each gene category within the candidate set and the
background genome. A Fisher’s exact test was then performed to
evaluate the statistical significance of gene category enrichment.

2.2 Validation of candidates

To validate the list of iM-candidates, a subset of 285 sequences
with high Z-scores was randomly selected. The iM formation of
these sequences were confirmed by previous works (GSE227616),
with data obtained from custom-designed microarrays aimed
at studying DNA sequences capable of forming iM structures
(Yazdani et al., 2023). In addition, 285 experimentally validated
G4s detected on the hg38 reference genome were considered as
negative controls (Neupane et al., 2023).

To compare the two groups, the alignment score of G4s was
computed according to the PSSM, considering all the possible
alignments by shifting all the bases across every possible position.
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Thus, a Wilcoxon rank sum test with continuity correction was
performed to investigate the difference between the two groups.

Subsequently, to compare the similarity between iM-candidates
andG4s, both the Levenshtein and Jaccard distances were calculated
(Berger et al., 2021; Baharav et al., 2020). Here, the set of positive
controls was expanded by including all sequences in the list of
candidates confirmed by the GSE227616 dataset. The Levenshtein
distance measured the minimum number of single-character edits
required to transform one sequence into another. The Jaccard
similarity was computed by comparing shared k-mers (with k = 3)
between sequences. These measures allowed the evaluation of the
similarity between the iM-candidates and both the positive (iM) and
negative (G4) sequences.

In addition, with the aim to strengthen the validation, a
random forest model was trained using features derived from the
nucleotide composition of the sequences to classify the sequences
into positive or negative (Chen and Ishwaran, 2012). The dataset
consisted of both experimentally validated iM-forming sequences
(positive samples) and G4 sequences (negative samples), along with
additional randomly generated negative sequences.

The randomly generated negative sequences were designed to
avoid forming iMs by excluding sequences containing the “CCC”
triplet. A total of 1,000 such sequences were generated with lengths
ranging from 15 to 50 nucleotides, ensuring that they could not form
iMs. These sequences were then combined with the existing dataset
of validated iM and G4 sequences, resulting in a balanced dataset
for training.

For each sequence, the nucleotide frequencies (C, G, A, T), and
the sequence length were considered as features. The nucleotide
frequencies were obtained by counting the occurrences of each
nucleotide within the sequence, while the sequence length was
simply the total number of nucleotides in each sequence. These
features were used as inputs for the random forest model. The
dataset was split into training (70%) and testing (30%) subsets. The
model was evaluated using the test set, and performance metrics,
including accuracy, precision, recall, and the area under the curve
(AUC) for a receiver operating characteristic (ROC) analysis were
calculated.

To optimize the model performance, a hyperparameter tuning
was performed using 10-fold cross-validation and a grid search over
the number of variables considered at each split (mtry). The best
hyperparameters were selected, and the model was retrained using
the optimal settings.

A confusion matrix was used to evaluate the final model
performance, and the ROC curve was plotted to assess the model
capability to discriminate between positive and negative classes. The
final model was used to make predictions on a separate test dataset,
which consisted of previously unseen sequences inside the final list
of candidates.

3 Results

3.1 Identification of candidates

To begin with, the regex matching across the hg38 reference
genome retrieved 742,510 sequences, whereof 370,558 on the
forward strand, and 371,952 on the reverse strand. Figure 2 shows

the number of matches for each chromosome, separated by strand.
Chr1 and Chr2 exhibited the highest number of matches, while
Chr13, Chr18, Chr21, and ChrY displayed a comparatively lower
frequency of matches. Furthermore, the number of matches was
almost equally distributed between the forward and reverse strands.
The lengths of the matches ranged from 15 to 48 bases, with
a mean of 32, a median of 33, and a standard deviation of 7.
The distribution of the match lengths was similar across all the
chromosomes (Figure 3).

Secondly, the best MSA algorithm was evaluated to be used with
DNA sequences of different lengths. ClustalW and DECIPHER
produced more symmetrical alignments with fewer gaps in
the alignment of a subset of 10,857 matches (Chr 21) without
distinguishing between strand orientation or sequence length,
while ClustalOmega introduced more gaps and had alignments
extending up to 200 positions (Supplementary Figure S1). When
forward and reverse strands were separated, the DECIPHER
performance became less symmetrical, indicating a larger
sensitivity to strand orientation compared to ClustalW, which
maintained a more consistent performance across both strands
(Supplementary Figure S2). Additionally, ClustalW introduced
fewer gaps than bothClustalOmega andDECIPHER, independently
on the sequence length or quantity (Supplementary Figure S3).
Consequently, ClustalW was rigorously employed to align all the
sequences divided by strand and chromosome. In addition, to check
for conserved motives before or after the iM, the alignment took
into account also the three nucleotides before and after each match.

Subsequently, the PSSM was computed for each
alignment. Figure 4 presents the maximum PSSM score for
each position within the alignment, categorized by strand and
chromosome. The scores were rescaled as percentages, with
100% representing a fully conserved region. Notably, the central
positions of the alignment exhibited the highest consensus,
whereas the flanking positions showed a lower conservation.
Conserved regions were marked by consecutive red dots. This
per-chromosome and strand-specific breakdown reflects the fact
that the multiple sequence alignments (MSAs) and corresponding
PSSMs were constructed independently for each chromosome
and strand. Reporting the scores at this resolution allows us to
assess alignment quality and conservation patterns within the exact
context in which scoring was performed, ensuring methodological
transparency and avoiding biases introduced by global
aggregation.

Next, each sequence was scored to quantify the extent of
conservation. The majority of sequences exhibited high scores
(Figure 5). To evaluate the statistical significance of the observed
scores, we performed a random permutation of the sequence order
1,000 times, recalculating the scores for each shuffled sequence.
After verifying the normality of the random distributions, a one-
sided t-test was performed to compare the observed scores with
the distribution of randomly generated scores, producing p-values
for each sequence. Next, the BH correction was applied, yielding
that 99.9% of the sequences had scores significantly higher than
the random distribution, suggesting that the great majority were
different from random expectations (Supplementary Figure S4a).
Additionally, the Z-score was calculated for each sequence to further
assess the significance of the observed scores. The distribution
of Z-scores is shown in Supplementary Figure S4b, providing an
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FIGURE 2
Number of matches divided by chromosome and strand.

FIGURE 3
Distribution of match length divided by chromosomes.

overview of the relative deviation of each sequence from themean of
the random distributions. Sequences with higher Z-scores indicate
stronger evidence of being distinct from the random distribution.

Finally, a threshold was applied by selecting only those
sequences with an adjusted p-value below 0.05. Moreover, to control
the False Discovery Rate (FDR) more rigorously, the selection was
further refined by retaining only the top 5% of the results, ranked
by Z-score. After applying the cutoff, a total of 37,075 sequences

were selected, with 19,396 originating from the forward strand and
17,679 from the reverse strand (Figure 6; Supplementary Table S1).
The distribution of matches differed between the two strands,
with lengths ranging from 15 to 46 nucleotides and an average
of 24. Noticeably, the match length distribution varied across
chromosomes (Figure 7).

Among these, 17,347 sequences were annotated as “correct,”
indicating direct overlap with gene bodies, while the remaining
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FIGURE 4
Maximum score of the PSSM based on strand and chromosome. Red: 100% of consensus.

FIGURE 5
Distribution of scores for all the identified sequences.

sequences were annotated as “nearest,” corresponding to assignment
to the closest gene based on genomic distance. Among the
sequences annotated as “correct,” the genomic distribution was
as follows: 14,240 (82.1%) were located within introns, 1,249
(7.2%) in promoter regions, 1,134 (6.5%) in exons, 541 (3.1%)
in 3′UTRs, 181 (1.0%) in 5′UTRs, and 2 sequences (<0.1%) in
distal intergenic regions (Figure 8). A Kruskal-Wallis test excluding
distal intergenic sequences (n = 2) showed no significant differences
in alignment scores among these genic regions (p = 0.36),
indicating comparable score distributions across introns, promoters,
exons, and UTRs.

To further explore the biological relevance of the predicted
iM-forming sequences, enrichment in immune-related and

housekeeping genes was evaluated. A contingency table comparing
the occurrence of immune and housekeeping genes within the
candidate set versus the background genome was constructed,
and a Fisher’s exact test was performed. The test revealed a
highly significant enrichment of immune-related genes among the
predicted candidates (p < 2.2e-16), with an estimated odds ratio of
48.6 (95% confidence interval: 31.6–78.3), indicating that immune
genes were substantially overrepresented in the iM candidate list
compared to housekeeping genes.

3.2 Validation of candidates

To evaluate the iM-candidates, data from theGSE227616 dataset
were comparedwith the identified candidates. Among the sequences
present in the dataset and experimentally validated more than once,
only 1,685 could be uniquely mapped and identified using a gene
symbol, allowing a direct comparison with the list of iM-candidates.
Notably, 1,286 of the identified candidates were also present in the
dataset, further supporting their relevance.

A list of 285 sequences with high Z-scores was selected and
was compared to a set of 285 experimentally validated G4s, which
served as negative controls. The alignment scores for the second
groupwere calculated using the PSSMs, considering all possible base
shifts at each position. A Wilcoxon rank sum test with continuity
correction was performed to assess the statistical difference between
the two groups, yielding a W statistic of 81,225 and a p-value of 2.2 ·
10−16 (Supplementary Figure S5). These results indicate that the two
groups were significantly different.

To evaluate the sequence-level similarity, Levenshtein distances
were computed between iM candidates and both positive (including
1,286 sequences validated in the GSE227616 dataset) and negative
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FIGURE 6
Number of sequences divided by chromosome and strand after the cutoff. Note that chr21 and chrY are no longer present.

FIGURE 7
Distribution of sequence length divided by chromosomes after the cutoff. Note that chr21 and chrY are no longer present.

control sets (Supplementary Figure S6). All candidates were more
similar to the positive set than to the negative one, resulting in their
classification as iM-like. A Wilcoxon rank-sum test confirmed a
highly significant difference in similarity distributions (W=763,587,
p < 2.2 · 10−16), indicating a strong shift toward the iM profile.

To further assess the iM-like nature of the candidate sequences,
we computed k-mer-based Jaccard similarity scores (k = 3)

between each candidate and both positive and negative control
sets. Each candidate was assigned the maximum similarity score
obtained against sequences in each control group. A ROC analysis
was then performed to determine the optimal discrimination
threshold, yielding an AUC of 1.0 and an optimal Jaccard
similarity cutoff of 0.5. Using this threshold, sequences were
classified as “positive” if they exhibited greater similarity to
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FIGURE 8
Distribution of confidently annotated i-motif candidate sequences across genic regions. Bar plot showing the number of high-confidence iM-forming
sequences located in specific genomic regions, based on gene annotation. The majority of sequences were found within introns (82.1%), followed by
promoter regions (7.2%), exons (6.5%), 3′untranslated regions (3.1%), and 5′UTRs (1.0%). Only two sequences were located in distal intergenic regions.
These findings suggest a strong enrichment of iM-forming sequences in intragenic and regulatory regions.

the positive set than to the negative controls. Notably, all
candidate sequences exceeded the threshold and were classified as
positive, reinforcing their strong resemblance to known iM-forming
sequences. The distribution of similarity scores further supported
this distinction, with a clear shift toward higher similarity with the
positive group (Supplementary Figure S7).

An additional negative control group consisting of 1,000
randomly generated DNA sequences lacking cytosine triplets
was included to further assess the iM-like characteristics of the
candidate sequences. These sequences, together with validated iM-
forming (positive) and G4-forming (negative) sequences, were
used to train a Random Forest classifier based on nucleotide
frequencies and sequence length. After 10-fold cross-validation
and hyperparameter tuning (optimal mtry = 3), the final model
achieved an accuracy of 99.32%, sensitivity of 99.10%, specificity of
99.60%, and balanced accuracy of 99.35% on an independent test
set. The area under the ROC curve was 0.9998, indicating near-
perfect discrimination between iM-forming and non-iM-forming
sequences (Figure 9). The feature importance analysis identified
cytosine frequency as the most informative variable, followed
by guanine content and sequence length. When applied to the
candidate sequences, themodel classified 99.77%of themas positive,
further supporting their strong similarity to validated iM-forming
sequences and their clear separation from both biological and
artificial negative controls (Supplementary Figure S8).

4 Discussion

In this study, a computational approach was developed to
identify a list of potential iM-forming sequences across the human
genome.Themethod leveraged a Position-Specific SimilarityMatrix

(PSSM) derived from multiple sequence alignment (MSA) to
systematically detect genomic regions with a high propensity
to adopt iM structures. The approach incorporated stringent
statistical validation, including random permutation tests and Z-
score calculations, ensuring that the observed patterns were not due
to randomchance. Furthermore, the analysis considered strand- and
chromosome-specific variations, providing a comprehensive view of
iM formation across different genomic contexts.The results revealed
a significant enrichment of iM-forming sequences, reinforcing
their potential biological relevance and suggesting a non-random
genomic distribution.

The initial genome-wide search in the human reference genome
(hg38) using a regex pattern matching identified a total of
742,510 candidate sequences, which were almost evenly distributed
between the forward and reverse strands. This demonstrated the
widespread presence of potential iM-forming regions across the
genome, consistent with recent literature (Martella et al., 2022).
To refine the dataset, a statistical filtering process was applied
using adjusted p-values and Z-scores. Following the Benjamini-
Hochberg (BH) correction for multiple comparisons, 99.9% of the
sequences were found to be statistically significant, indicating a
high probability of forming stable iM structures. These results
validated the robustness of the method and confirmed a non-
random distribution. As a result, a set of 37,075 high-confidence
sequences (5% of candidate sequences) was selected according to
their Z-score. These sequences ranged in length from 15 to 46
nucleotides, with a mean length of 24 nucleotides. The match
length distribution varied across chromosomes, suggesting that
iM formation may strongly depend on the chromosomal context.
Accordingly, iM-forming sequences may act as boosters of genomic
instability (Duardo et al., 2023). It is worth noting that chromosomes
21 and Y did not contain any candidates on either the forward
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FIGURE 9
Performance of the Random Forest classifier distinguishing iM-forming from non-iM-forming sequences. (A) Confusion matrix showing the classifier
predictions on the independent test set. The model achieved a high classification accuracy with minimal false positives and false negatives. (B) Receiver
Operating Characteristic (ROC) curve for the same test set. The area under the curve (AUC = 0.9998) indicates near-perfect discriminative power
between positive and negative classes.

or the reverse strand. The distribution also varied with the strand
direction, consistent with iM- and G4-forming sequences being
complementary (Tao et al., 2024).

Furthermore, a comparison between the identified iM-
candidates and a set of experimentally validated G4 sequences
revealed a significant difference in their alignment scores, as
confirmed by the Wilcoxon rank sum test. This finding supports
the hypothesis that iMs and G4s are structurally independent
entities with distinct sequence characteristics and alignment profiles
(Chu et al., 2019). Recent reports have shown that iM structures
are frequently found near G4-forming regions, highly transcribed
genes, and genes expressed during the G0/G1 phase, emphasizing
their non-random distribution and role in genomic organization
(Peña Martinez et al., 2024). The clear separation between the
two groups suggests that the approach successfully used here
identified iM-specific sequences, distinct from those that form
G4 structures. To further validate the identified iM-candidates,
they were compared to known iM-forming sequences listed in
the Gene Expression Omnibus database (GSE227616). Among the
sequences in the dataset, 1,286 of the identified iM-candidates were
present (76.3% of the list of experimentally validated and uniquely
identified iMs), providing additional evidence for the reliability of
the method. As a non-exhaustive example, the iM in the HRAS
oncogene was included in the list of candidates: it is known to form
a double-hairpin structure and to play a crucial role in regulating
HRAS gene expression, a key player in cell proliferation pathways
and cancer progression (Li K. S. et al., 2023). In addition, the iM
structures upstream of the apoptosis regulator BCL2 gene were
retrieved (Kendrick et al., 2014).

Moreover, the list of 1,286 verified iMs was further employed
as a positive control to validate the remaining 35,789 candidates.
Sequence-level similarity was evaluated using the Levenshtein
distances between the 35,789 iM candidates and both positive
and negative control (the 285 G4s) sets. All candidate sequences
exhibited lower distances, and thus greater similarity, to the positive

set compared to the negative controls. This consistent trend led
to their preliminary classification as iM-like. Statistical validation
using a Wilcoxon rank-sum test confirmed a highly significant
difference in the distributions of similarity scores, highlighting a
marked shift toward the iM sequence profile. In addition, a k-
mer-based Jaccard similarity analysis (k = 3) was performed. Each
candidate sequence was compared to both positive and negative
control groups, and the highest similarity score within each group
was retained. Again, all candidates were classified as positive,
having higher similarity to the validated iM-forming sequences
than to the negative controls. The complete overlap of candidate
sequences with the iM profile, and their clear distinction from
G4-forming sequences, underscores the structural specificity of the
identified motifs. This observation supports the notion that i-motif
structures represent a distinct class of non-canonical DNA elements,
potentially associated with unique regulatory functions that are not
redundant with those of G-quadruplexes. The mutual exclusivity
observed in sequence similarity reinforces the idea that iMs and G4s
are not functionally redundant but rather operate in complementary
but distinct genomic contexts.

To further assess the biological relevance of the candidate
iM sequences, we applied a machine learning approach trained
on validated iM-forming sequences, G4s, and randomly-
generated DNA controls lacking cytosine-rich motifs. The classifier
consistently distinguished iM-like sequences from both biological
and “synthetic” negatives, reinforcing the idea that the candidates
are not only structurally consistent with iMs, but also occupy a
unique compositional and functional space within the genome.
The strong predictive power of cytosine content, which emerged
as the dominant feature in the model, aligns with the well-
established sequence dependency of i-motif formation (Zhou et al.,
2013; Abou Assi et al., 2018; Guédin et al., 2010). These results
further support the classification of iMs as a distinct class of
regulatory elements with specialized, non-overlapping roles relative
to G-quadruplexes (Abou Assi et al., 2018; Guédin et al., 2010).
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While G4s may facilitate transcriptional pausing or recruitment
of transcription factors (Hänsel-Hertsch et al., 2016; Siddiqui-
Jain et al., 2002), iMs couldmediate repression or dynamic structural
transitions in DNA during replication or repair (Zhou et al.,
2013; Abou Assi et al., 2018; Kang et al., 2014). Their non-
overlapping sequence preferences and structural constraints
(Abou Assi et al., 2018; Guédin et al., 2010; Kang et al., 2014)
suggest a complementary, layered regulation of genomic processes,
potentially with tissue-specific or disease-relevant implications
(Roxo and Pasternak, 2025). Consistent with this, enrichment
analysis revealed a significant overrepresentation of immune-
related genes among the predicted iM-forming sequences compared
to housekeeping genes, suggesting a potential link between iM
formation and immune system regulation. In line with this
hypothesis, we observed that a large majority of high confidence
iM candidates mapped to non-coding regulatory regions within
genes. Specifically, over 82% of the confidently annotated iMs
were located in intronic regions, followed by promoter regions
(7.2%), exons (6.5%), and untranslated regions (4.1%). Only a
negligible fraction (<0.01%) were found in distal intergenic areas.
This enrichment near or within gene loci reinforces the proposed
role of iMs in transcriptional and co-transcriptional regulation. It
also supports the notion that iMs do not occur randomly in the
genome but rather tend to cluster in regions where dynamic DNA
structures can influence gene activity. Differential formation of iMs
has been reported in certain cancer types and neurodegenerative
disorders (Roxo and Pasternak, 2025; Wu et al., 2025), supporting
their potential as biomarkers or therapeutic targets in precision
medicine (Brown and Kendrick, 2021).The resulting list of potential
iM-forming regions now offers a valuable resource for future
experimental validation. Despite the growing interest in iMs, very
few computational tools are currently available for their genome-
wide prediction. Among these, iM-Seeker represents an important
contribution, offering a flexible graph-based framework for motif
detection and a machine learning strategy trained on experimental
data. Its design allows users to explore a wide landscape of potential
iM-forming sequences and assign folding probabilities and stability
scores. Our approach is complementary in scope: while iM-Seeker
emphasizes broad detection and flexible modeling, our method
focuses on sequence conservation and statistical rigor to prioritize
a compact and high-confidence set of candidates. Notably, our final
list overlaps entirely with iM-Seeker’s predictions but constitutes
only about 9.67% of its total output, thus offering a more selective
entry point for experimental follow-up. These candidates could be
experimentally tested in vitro and in vivo to confirm their ability to
form iM structures, particularly in the context of gene regulation,
where such structures may play critical roles in modulating gene
expression (Zanin et al., 2023).

These findings are consistent with the increasing literature
highlighting the significance of iMs in key genomic regions, such
as the promoter regions of oncogenes and telomeric DNA, where
iMs may play pivotal roles in regulating chromosomal stability
and gene expression. For instance, natural i-motif structures are
predominantly found in the promoter regions of various oncogenes,
suggesting their involvement in gene regulation and their potential
as therapeutic targets in cancer therapy (Luo et al., 2023).
Their transcriptional regulatory roles in these regions make them
promising therapeutic targets for disrupting oncogenic signaling.

Recent discoveries, including the identification of a specific i-
motif antibody, are driving advancements in this field (Brown and
Kendrick, 2021).

Overall, these findings underscore the utility and robustness
of the proposed computational framework in generating a high-
confidence set of iM-forming sequence candidates. By integrating
motif-based detection with alignment-informed scoring and
rigorous statistical validation, the method offers a scalable and
biologically meaningful strategy for genome-wide iM prediction.
This set of candidates serves as a valuable resource for guiding
experimental studies aimed at investigating the structural and
functional roles of i-motifs.

Future work will focus on validating these sequences in relevant
cellular systems, with particular attention to their involvement
in transcriptional regulation, replication dynamics, and genome
stability. To this end, several complementary experimental
approaches could be employed to validate iM formation and
function. Biophysical methods such as circular dichroism (CD)
spectroscopy, UV absorbance melting, and nuclear magnetic
resonance (NMR) spectroscopy are widely used to confirm the
formation of i-motif structures under physiological conditions,
particularly at slightly acidic pH or under molecular crowding
(Alves et al., 2025). High-throughput techniques such as iMab-
based immunoprecipitation sequencing (iM-IP-seq) and DNA
microarrays have recently enabled large-scale experimental profiling
of iM-forming regions in human cells (Ruggiero et al., 2025).
Integrating these datasets with our predictions could offer a
powerful validation pipeline. Furthermore, overlaying our candidate
loci with ChIP-seq profiles of transcription factors or replication
origin data could shed light on the regulatory potential of i-motifs
in specific genomic contexts (Ma et al., 2012). In the long term, this
catalog of candidate iMsmay also guide the rational design of small-
molecule ligands to selectively stabilize or disrupt i-motif structures
in gene promoters, a promising avenue for therapeutic modulation
in diseases such as cancer.
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