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Introduction:Chemotherapy response variability in cancer patients necessitates
novel strategies targeting chemoresistant populations. While combinatorial
regimens show promise through synergistic pharmacological interactions,
traditional pathway enrichment methods relying on static gene sets fail to
capture drug-induced dynamic transcriptional perturbations.

Methods: To address this challenge, we developed the Pathway-
Responsive Gene Sets (PRGS) framework to systematically identify
chemoresistance-associated pathways and guide therapeutic intervention.
Comparative evaluation of three computational strategies (GSEA-like method,
Hypergeometric test-based method, Bates test-based method) revealed that
the GSEA-like methodology exhibited superior performance, enabling precise
identification of drug-induced pathway dysregulation.

Results: Key experimental findings demonstrated PRGS’s superiority over
conventional Pathway Member Gene Sets (PMGS), exhibiting statistical
independence (p < 0.0001) and enhanced detection of chemotherapy-
driven pathway dysregulation. Application of PRGS to the GDSC dataset
identified 8 resistance-associated pathways. Screening of agents targeting these
pathways yielded candidates with predicted anti-resistance activity. An in vitro
cellular experiment demonstrated that the bortezomib-bleomycin combination
exhibited synergistic cytotoxicity (IDAcomboScore = 0.014) in T47D cells,
highlighting the potential of PRGS-guided therapeutic strategies.

Discussion: This study establishes a PRGS-based methodological framework
that integrates genomic perturbations with precision oncology, demonstrating
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its capacity to decode resistance mechanisms and guide therapeutic
development through dynamic pathway analysis.

KEYWORDS

chemotherapeutic resistance, pathway-responsive gene sets, drug discovery, drug
combination therapy, precision oncology

1 Introduction

Chemoresistance remains a critical obstacle in cancer treatment,
driven by the multifaceted mechanisms through which cancer
cells subvert chemotherapeutic efficacy (Talib et al., 2021). Tumor
heterogeneity, particularly intra-tumoral genetic and phenotypic
diversity, significantly contributes to therapeutic failure by enabling
dynamic adaptation to treatment pressures (Fernandez et al.,
2018). To overcome this complexity, combinatorial strategies
incorporating pathway inhibitors have emerged as a paradigm shift
in overcoming drug resistance. These inhibitors specifically target
oncogenic signaling cascades to effectively attenuate chemotherapy
resistance. They achieve this by simultaneously blocking adaptive
survival pathways that cancer cells activate under treatment
stress and disrupting pro-survival signaling networks that confer
drug tolerance, thereby enhancing therapeutic efficacy (Neel and
Bivona, 2017). For instance, Sui et al. (2010) demonstrated that
pharmacological inhibition of the estrogen receptor pathway
overcomes resistance to vinca alkaloids in breast cancer models,
highlighting the potential for targeted co-therapies. Such synergistic
interactions between pathway modulators and conventional
chemotherapeutics not only enhance treatment efficacy but also
provide mechanistic insights into resistance antagonism, paving the
way for precision oncology approaches (Song et al., 2022).

Traditional pathway gene annotations are predominantly
curated through subjective methodologies, wherein constituent
genes exhibit functionally coordinated interactions to execute
specific biological processes or pathways (Chicco and Agapito,
2022). These gene sets are compiled from heterogeneous sources,
including curated pathway databases (Kanehisa and Goto, 2000),
biomedical literature mining (Venet et al., 2011), and domain
expert knowledge systems (Zhang et al., 2011). Classification
criteria for pathway membership gene sets (PMGS) vary widely,
ranging from genes co-participating in canonical signaling
cascades to those sharing homologous functional annotations
(Li et al., 2017). Notably, when biological systems are perturbed
by pharmacological agents, a subset of genes demonstrating robust
transcriptional reprogramming, termed “response signatures”,
emerges as critical biomarkers for deciphering context-specific
therapeutic mechanisms (Atkinson et al., 2019). This conceptual
divergence between PMGS and response signatures lies in their
foundational definitions: the former is pre-defined through static
pathway frameworks, while the latter arises dynamically from
observed transcriptional adaptations to pathological stimuli.
Such mechanistic dichotomy underscores the necessity for a
dynamically informed model that integrates pathway response
signatures into existing pathway frameworks. This approach further
leverages treatment-perturbed pharmacodynamic profiles to refine
therapeutic target prioritization, effectively decoupling analysis
from static gene set definitions.

A substantial body of publicly available perturbation
experiments has been systematically curated to identify treatment-
responsive genes (Rydenfelt et al., 2020). These studies employ
differential expression profiling to compare perturbed and control
conditions, enabling the detection of genes exhibiting consistent
regulatory responses to specific interventions (Parikh et al., 2010).
Functionally, these genes are characterized by their tight association
with perturbed biological pathways. This collective set is defined as
pathway-responsive gene sets (PRGS).

Emerging evidence underscores the critical association between
post-treatment response gene signatures and therapeutic outcomes,
including both drug sensitivity and acquired resistance. Functional
interrogation of these genes has revealed their dual capacity
to delineate pathway perturbations driving resistance while
simultaneously identifying actionable therapeutic targets. For
instance, Cai et al. (2023) demonstrated in breast cancer models that
palbociclib (aCDK4/6 inhibitor) induced significant upregulation of
cyclin-dependent kinase regulators (CDK4, Cyclin D1, Cyclin E1),
whichmechanistically activated the PI3K/AKT/mTOR axis through
a feedback loop involving Cyclin D1 overexpression. Notably,
co-administration of PI3K/mTOR/AKT inhibitors disrupted
this circuit by reducing Cyclin D1 levels, effectively attenuating
palbociclib resistance. Similarly, Zhao et al. (2024) elucidated
a gefitinib resistance mechanism in non-small cell lung cancer
(NSCLC) driven by S6K1 hyperactivation, a process mediated
through the ELK1/mTOR/S6K1 signaling axis. Pharmacological
inhibition of S6K1 using the selective inhibitor PF-4708671 not
only attenuated gefitinib resistance in resistant models, while
simultaneously enhancing anti-tumor efficacy through targeted
pathway suppression, thereby establishing S6K1 as a master
regulator of adaptive resistance.

In SPEED (Parikh, Klinger, Xia, Marto and Bluthgen,
2010) and SPEED2 (Rydenfelt, Klinger, Klunemann and
Bluthgen, 2020), numerous experimental perturbation datasets
have been utilized. These datasets could be employed to
construct the PRGS, which maps treatment-induced gene
expression to drug sensitivity/resistance profiles, uncovering the
mechanistic relationship between pathway dysregulation and
therapeutic outcomes.

The evolution of enrichment analysis methodologies has
been driven by the need to address limitations in detecting
biologically meaningful gene sets. Over-representation analysis
(ORA), a foundational method in enrichment analysis, employs
the Hypergeometric test to assess statistical over-representation of
differentially expressed genes (DEGs) within predefined pathways
(Liu et al., 2022). While computationally efficient, ORA exhibits
inherent sensitivity biases, particularly failing to capture genes
with subtle expression changes that contribute meaningfully
to biological processes (Peng et al., 2023). To overcome these
constraints, Gene Set Enrichment Analysis (GSEA) introduced
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a paradigm shift by evaluating pathway enrichment through
Kolmogorov-Smirnov statistics applied to ranked gene lists,
prioritizing collective pathway behavior over individual gene
metrics (Cai et al., 2022; Hou et al., 2020). Concurrently, the Bates
test expanded the analytical framework by modeling gene set mean
rank shifts through Bates distribution approximations, enabling
robust detection of moderate but biologically relevant pathway
dysregulation (Rydenfelt, Klinger, Klunemann and Bluthgen, 2020).
This tripartite methodological framework, ORA for hypothesis-
driven single-gene prioritization, GSEA for systems-level pathway
interrogation, and the Bates test for quantitative ranking analysis,
was systematically applied to PRGS, achieving synergistic validation
of pathway-dysregulation hypotheses through complementary
analytical perspectives.

In this study, we aim to identify potential therapeutic agents to
address chemoresistance in cancer treatment.We constructed PRGS
by systematically integrating multiple experimental perturbation
datasets. Subsequent application of enrichment analysis methods
(GSEA-like, Hypergeometric test-based, Bates test-based) to PRGS
in GDSC data revealed candidate drugs with the capacity to
reduce cancer cell resistance. Finally, experimental validation was
conducted to assess the synergistic therapeutic effects of these drug
combinations.

2 Materials and methods

The overall process of data preparation, differential
expression analysis, dataset construction, enrichment analysis,
and cellular experimental validation in this study is shown in the
flowchart (Figure 1).

2.1 Data sources

2.1.1 Pathway perturbation-response gene
expression datasets

The experimental perturbation-response datasets were obtained
from the study previously published by Rydenfelt et al. (2020),
containing 15 pathways, 534 experimental datasets, and 29,133
genes. Each pathway contains multiple experimental datasets.

2.1.2 Drug sensitivity data in breast cancer cell
line

We curated a panel of 78 chemotherapeutic agents approved
by the American Cancer Society (ACS, https://www.cancer.org/)
(Narayanan and Honavar, 2017). Chemosensitivity profiles were
retrieved from the Genomics of Drug Sensitivity in Cancer
(GDSC) database for breast cancer cell lines, with complete
datasets available for 19 agents (Yang et al., 2013). To ensure
statistical robustness, compounds exhibiting extreme response
bias (defined as >90% of cell lines showing uniform resistance
or sensitivity) were excluded, eliminating seven agents. This
selection yielded 12 drugs with balanced resistance/sensitivity
distributions for quantitative analysis: 5-fluorouracil;
bleomycin; docetaxel; doxorubicin; epirubicin; etoposide;
gemcitabine; paclitaxel; vinblastine; vincristine; vinorelbine; and
vorinostat.

The GDSC repository provided chemosensitivity profiles across
51 breast cancer cell lines, with individual drug sensitivity data
coverage ranging from 38 to 51 cell lines per agent among the
12 selected agents. Drug sensitivity was quantified using the area
under the concentration-response curve (AUC) metric. Drug-
sensitive and drug-resistant groups were defined using predefined
AUC thresholds: drug-sensitive groups by AUC<0.8 and drug-
resistant groups by AUC≥0.8 (Callari et al., 2023). The sensitivity
of each chemotherapeutic agent was ranked in descending order
based on AUC values. Subsequently, drug-sensitive and drug-
resistant groups were identified through threshold-based selection,
prioritizing the lowest eight sensitive and highest 8–12 resistant
cell lines.

2.1.3 Gene expression in breast cancer cell line
Gene expression profiling data comprising 17,737 genes

across 1,018 cancer cell lines were retrieved from the GDSC
database. Subsequently, gene expression data were extracted
from breast cancer cell lines for drug sensitivity analysis,
encompassing 17,419 genes and 51 distinct breast cancer
cell lines.

2.2 Differentially expressed genes between
drug-sensitive and drug-resistant groups

Breast cancer datasets were categorized into drug-sensitive and
drug-resistant groups based on responses to 12 chemotherapeutic
agents (5-fluorouracil, paclitaxel, etc.). DEGs analysis was conducted
using independent samples t-tests, with statistical significance
defined as p-value < 0.01.

2.3 Pathway-responsive gene sets
construction

For each experimental perturbation dataset, genes with
expression below the median were excluded. When a gene
was expressed in multiple datasets, the z-value corresponding
to the highest expression was selected; conversely, for genes
expressed in a single dataset, their observed z-values were
retained. An adjusted z-value reflecting gene expression
changes specific to each perturbation type was calculated using
Formula 1:

zadjusted = zraw ∗ sign(type) (1)

where zadjusted represents the adjusted z-value for the gene, zraw
represents the raw z-value for gene expression, the sign represents
the signum function (returning 1 for input > 0, 0 for input = 0, or −1
for input<0), and type represents the perturbation types (assigning
1 for activation and −1 for inhibition).

For each pathway, z-transformed values were derived by
applying Gaussian transformation to all adjusted z-values within
each dataset (Hanzelmann et al., 2013) (Supplementary Figure S1).

Subsequently, the mean of these z-transformed values across
all experiments was calculated for each gene (hereafter termed z-
score), with genes expressed in fewer than two datasets excluded
from the analysis.
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FIGURE 1
Comprehensive workflow for identifying chemoresistance-associated pathways and therapeutic candidates through PRGS-based enrichment analysis
frameworks. (A) DEGs were systematically identified between drug-sensitive and drug-resistant groups using GDSC data. (B) PRGS was constructed by
integrating multiple experimental perturbation datasets. (C) A comparative analysis of three PRGS-based enrichment methods (GSEA-like, Bates
test-based, and Hypergeometric test-based) was performed to identify pathways associated with chemotherapy resistance. (D) Significant pathways
linked to chemoresistance were identified between drug-resistant and drug-sensitive groups. (E) Potential therapeutic candidates capable of mitigating
chemoresistance were discovered based on these pathways. (F) The synergistic effect of the bortezomib-bleomycin combination was experimentally
validated in T47D cells.

Pathway-related gene signatures (PRGS) were identified using a
stringent statistical threshold |z-score|>2.58, p-value < 0.01).

2.4 PRGS-based enrichment analysis

We conducted systematic pathway enrichment analysis using
the PRGS framework to identify dysregulated pathways between
chemoresistant and chemosensitive breast cancer subtypes.
Pathway significance was determined with p-values (p < 0.01).
Three methodologies were utilized in the analysis: GSEA-like,
Bates test-based, and Hypergeometric test-based analyses, each
implemented with distinct input variable configurations to
identify relevant pathways. Within the PRGS framework, variables
were categorized into continuous and discrete types based on
their characteristics and roles in pathway analysis. Continuous
PRGS were defined as genes within pathways that underwent
computational processing without statistical thresholding, retaining
quantitative measurements of gene expression changes. Discrete

PRGS were defined as signature genes meeting stringent statistical
criteria and closely associated with pathway regulation. Total
genes were derived from the gene expression dataset following
independent t-test analyses, retaining their processed were
obtained by applying statistical thresholds to these total genes,
identifying those significantly associated with drug sensitivity or
resistance.

Input variables for the three PRGS-based enrichment analysis
methods were as follows: discrete PRGS and total genes were used
for the GSEA-like methodology; continuous PRGS and DEGs were
employed for the Bates test-based methodology; DEGs and discrete
PRGS were used for the Hypergeometric test-based methodology
(Figure 2).

2.4.1 GSEA-like methodology
In GSEA-like method (Figure 2A), genes were ranked based on

t-statistics, and the enrichment score (ES) for each pathway was
calculated. The distribution of the ES for the jth gene g in the ith
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FIGURE 2
Systematic workflow for PRGS-based enrichment analysis methodologies. (A) In the GSEA-like methodology, genes are ranked using t-statistics, and
PRGS enrichment is assessed within the generated ranked gene list. (B) The overlap between DEGs and PRGS is evaluated by the Hypergeometric
test-based method, and a p-value is calculated to determine the significance of pathway enrichment. (C) Within the Bates test-based method, genes
are ranked using adjusted z-scores, and PRGS enrichment is evaluated within the resulting ranked list.

position of PRGS was calculated using a modified Kolmogorov-
Smirnov statistic.The ESwas evaluated by calculating themaximum
absolute deviation between Phit and Pmiss, as defined by Formula
2–4 (Marczyk et al., 2021):

Phit(S, i) = ∑
gj ∈ S

j ≤ i

|rj|
p

NR
whereNR = ∑

gj∈S
|rj|

p (2)

Where S represents the PRGS, r is the ranked score, p is a weighting
parameter, N is the number of total genes in the ranked list, and NR
is calculated by summing the ranks of genes within PRGS.

Pmiss(S, i) = ∑
gj ∉ S

j ≤ i

1
(N−NH)

(3)

Where NH is the number of genes in the PRGS.

ES = Phit − Pmiss (4)

Where Phit represents the weighted sum of genes within PRGS,
Pmiss represents the weighted sum of genes outside PRGS. The ES
increases when a gene is part of a gene set and decreases otherwise.
This process was repeated for PRGS and total genes in each group.

2.4.2 Hypergeometric test-based methodology
The Hypergeometric test-based method was employed to

ascertain the statistical significance of a given number of successes
(k) in a sample size (n) observed within a larger total size
(N), under the assumption that the total population encompasses
a total of (M) occurrences of the specific characteristic being
analyzed (Elia Venanzi et al., 2024). In this study, PRGS-based
Hypergeometric test-based enrichment analysis was conducted on
DEGs to identify significant over-expression within the PRGS
(Figure 2B).The probability of observing at least k overlapping genes
between DEGs and PRGS was calculated by Formula 5:

P(X ≥ k) = 1−
k‐1

∑
i=0

(
M

i
)∗(

N−M

n− i
)

(
N

n
)

(5)

Where N represents the total number of genes, n is the number of
DEGs, M is the number of overlapping genes between total genes
and PRGS, and k is the number of overlapping genes between DEGs
and PRGS. A smaller p-value indicates a higher likelihood of DEG
enrichment within the PRGS.
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2.4.3 Bates test-based methodology
The significance of pathway rankings under the null hypothesis

was evaluated through the Bates test-based methodology
(Figure 2C), which employs a null distribution modeled as the
arithmetic mean of N independent uniform variables spanning
the interval [−1, 1]. For each biological pathway, differential
expression z-values were computed as the ratio of experimental
fold changes (stimulated condition vs. control condition) to LOESS
regression-derived standard deviations, effectively normalizing
expression variation across experimental datasets. These raw z-
values underwent Gaussian transformation to address distributional
skewness, yielding z-transformed metrics (z-transformed value)
with improved normality characteristics. Subsequent analytical
steps included: (i) calculation of pathwaymean z-transformed values
across all N experiments, (ii) Quantile normalization to mitigate
batch effects, and (iii) iterative sorting-rescaling procedures that
transformed normalized means into final z-scores bounded within
[−1,1]. Gene ranking within each PRGS was ultimately determined
by these standardized z-scores, as defined in Formula 6:

r(g) =
{{{
{{{
{

zm + 1e− 50; if zm(g) ≥
Ua +Ub

2

zm − 1e− 50; if zm(g) <
Ua +Ub

2

(6)

Where zm is the mean z-value of gene, Ua = 1 and Ub = −1 represent
the upper and lower bounds of the standardized interval.The second
rank was performed using Formula 7, scaling the initial rank to the
interval [−1,1].

r′(g) =
{
{
{

−1− r(g); i f r(g) ≤ 0

 1− r(g); i f r(g) > 0
(7)

The r'(g) values of all genes are sorted in ascending order, and
each gene is assigned a unique rank from 1 to n based on its
position, resulting in the third rank r''(g). Subsequently, these r''(g)
values are scaled to the interval [−1,1], yielding the fourth rank
r'''(g). Within the context of a designated set of DEGs, overlapping
genes were pinpointed through the intersection of PRGS and DEGs.
Subsequently, the corresponding r'''(g) values for these overlapping
genes were retrieved. The mean rank R(G) was computed by
averaging these r'''(g) values, as delineated in Formula 8:

R(G) =
∑n

i=1
r‴(g)

n
(8)

Where n is the number of overlapping genes, r'''(g) is the value of
the fourth rank.The Bates p-value was calculated based on themean
rank and the number of overlapping genes using Formula 9:

P(x) =
{{
{{
{

 batesCDF(x,n); i f x ≤ a+ b
2

 1− batesCDF(a+ b− x
2
,n); i f x > a+ b

2

(9)

Where x is the R(G), n is the number of overlapping genes, a
corresponds to Ua and is assigned a value of 1, while b corresponds
to Ub and is assigned a value of −1.

2.5 Discovery of therapeutic inhibitors

Based on the statistical significance determined by PRGS-
based analysis, the top 1-2 pathways most strongly associated

with chemoresistance were prioritized as therapeutic targets for
each chemotherapeutic agent. Targeted inhibitors were identified
by screening the Selleck platform (Wojtaszek et al., 2019) (https://
www.selleck.cn/index.html) and PubMed, adhering to the following
criteria: (i) inhibitors that directly target pathways identified by
PRGS; (ii) among pathways with multiple targeted inhibitors,
priority should be given to drugs that have been validated through
in vitro and in vivo experiments, employed in numerous studies
and demonstrate broad applicability; (iii) drugs that modulate
specific pathways indirectly were also considered; (iv) relevant
inhibitors were sourced from PubMed-indexed preclinical research;
(v) extracts and plant-derived compounds were excluded.

2.6 In vitro validation

The predicted synergistic interaction between bortezomib
and bleomycin was systematically validated through a two-phase
pharmacodynamic evaluation in STR-authenticated T47D breast
cancer cells maintained under standardized culture conditions
(37 °C, 5% CO2). In the first phase, single-agent dose-response
profiling was performed to determine the optimal concentrations
for subsequent combination experiments. Bortezomib (0.5–40 nM)
and bleomycin (50–400 nM) were tested in eight technical
replicates per concentration. Dose-response curves revealed that
200 nM bleomycin corresponded to the optimal IC50 threshold
concentration, establishing it as the reference concentration for
combination studies. In the second phase, combination experiments
were conducted by exposing cells to a fixed concentration of 200 nM
bleomycin combined with a gradient of bortezomib (0.5–40 nM).
Each treatment arm was performed in eight technical replicates
to ensure robustness of the data. After 48 h of co-culture, cell
viability was quantified using the Cell Counting Kit-8 (CCK-
8) via absorbance measurement at 450 nm. Synergistic efficacy
was quantitatively assessed using the IDAcomboScore method as
described by Ling and Huang (2020). Full details of all experimental
protocols are available in Supplementary Material.

3 Results

3.1 Pathway-responsive gene sets

Heterogeneous data distribution across cross-experimental gene
expression datasets poses significant challenges to robust analytical
outcomes, particularly when dealing with heavy-tailed distributions
that violate normality assumptions. To address this issue, we
systematically evaluated three normalization strategies to determine
the most suitable preprocessing approach.

The most appropriate method was selected from Gaussian
normalization, Logarithmic transformation, and Quantile
normalization. Using the GSE13837 dataset as an illustrative
example, 70% of the data points were initially distributed within
the interval [−20, 20], while the remaining 30% exhibited a heavy-
tailed distribution outside this interval (Supplementary Figure S2).
After normalization, Gaussian normalization markedly diminished
distributional heterogeneity, concentrating 90% of the data
points within the narrower interval of [−3, 3], while the ratio of
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negative to positive values was balanced, changing from 58.9:41.1
to 49.6:50.4 (Supplementary Figure S3).

In contrast, the Logarithmic transformation resulted in data
clustering predominantly within the range [−5, 5], while the overall
distribution remained skewed. Notably, the ratio of negative to
positive values shifted markedly to 25.1:74.9.

Although the distribution resulting from Quantile
normalization approximates a normal distribution within the
interval [−15, 15], a limited number of extreme values persist
beyond these boundaries. Similar patterns were observed in the
other two datasets (Supplementary Figures S2 and S3).

Overall, Gaussian normalization emerged as the optimal
method. Itmaps data onto a standardnormal distribution, effectively
compressing extreme values and improving distributional balance.

Substantial inter-dataset distributional disparities were
observed, and we systematically applied Gaussian normalization
to all pathway-derived datasets, achieving scale consistency across
expression datasets (Hai et al., 2023).

A systematic analysis of these post-normalization datasets
spanning multiple pathways identified genes with consistent
regulation patterns across experimental conditions, enabling the
construction of PRGS (Supplementary Figure S4A). Differences in
the number of datasets across pathways were observed, with
IL-1 (9 datasets) and Wnt (12 datasets) having relatively small
numbers of experimental data, while JAK-STAT (66 datasets) and
TGFa (44 datasets) had relatively large numbers. This variation
may stem from differences in experimental design, the diversity
of available perturbation reagents, or the maturity of research
on different pathways. Quantitative comparison revealed that
the IL-1 pathway exhibited the highest number of responsive
signatures (410), which may be attributed to its role as a key pro-
inflammatory factor that triggers extensive transcriptional changes
(Supplementary Figure S4B). These changes are associated with
numerous biological processes, including immune responses, cell
proliferation, and apoptosis, where significant gene expression
alterations occur (Xiao et al., 2022). In contrast, the JAK-STAT
pathway exhibited the fewest responsive genes, with only 91
identified. This may indicate that fewer genes meet the criteria for
consistent response under the experimental conditions used.

Despite variations in the number of responsive genes,
they provide a robust foundation for subsequent functional
analysis, enabling more effective identification of pathway
dysregulation in specific biological samples. For instance, in a
study by Gregory et al., their analysis of dysregulated genes in
response to imatinib therapy identified the Wnt pathway as a
therapeutic target (Gregory et al., 2010).

3.2 Differential expression of
drug-sensitive genes across drug groups

DEGs between drug-sensitive and resistant breast cancer cell
groups across 12 chemotherapeutic agents were identified through
differential expression analysis. To focus on genes with significant
directional expression changes, we applied an additional filter (|t-
statistic|>2.8) to prioritize biologically impactful candidates. This
analysis revealed substantial heterogeneity in t-statistic distributions
across agents (Table 1; Supplementary Figure S5A), indicating that

chemotherapy resistance-associated pathway dysregulation exhibits
distinct molecular signatures under different drug regimens.

In cancer, downregulated tumorous suppressor genes have
been linked to chemotherapy resistance (Tallen et al., 2003).
Half of the DEGs in the some analyzed group showed a
tendency toward downregulation (i.e., a greater number of
downregulated genes than upregulated genes). Conversely,
the remaining DEGs of sample groups exhibited an opposite
expression pattern, suggesting potential differences in their
chemoresistance mechanisms. Additionally, significant expression
changes of some DEGs were only observed in the paclitaxel-
or gemcitabine-treatment group, with minimal overlap between
these groups (Supplementary Figure S5B). These findings indicated
a potential association between these genes and resistance to specific
pharmaceutical agents.

3.3 Evaluation of different enrichment
methods

Three enrichment analysis methodologies were systematically
applied to the PRGS framework using drug response-associated
DEGs. These genes were analyzed to compare drug-sensitive and
-resistant subgroups within the GDSC dataset, facilitating the
identification of pathways driving chemoresistance. The GSEA-
like methodology demonstrated superior performance, identifying
eight key pathways (p-value < 0.01) with strong activation of IL-
1 and TNFα pathways in multidrug-resistant groups (Figure 3A).
Notably, both of which were inflammatory pathways. Functional
interrogation further uncovered shared regulatory nodes (e.g.,
NF-kB activation) between these two pathways, mechanistically
linking their coactivation to sustained chemoresistant phenotypes
(Feng et al., 2025; Gao et al., 2024).

Three chemoresistance-associated pathways were identified
through Hypergeometric test-based methodology across two drug-
sensitive/resistant subgroup comparisons (Figure 3B).The statistical
significance of IL-1 and TNFα pathways was consistently validated
by both Hypergeometric test-based and GSEA-like methodologies.
Gene-sharing limitations between PRGS and DEGs resulted in
undetectable key pathways for 5-fluorouracil, bleomycin, and
docetaxel groups (Figure 3D).

Seven chemoresistance-associated pathways were identified
through Bates test-based analysis, with Hippo, PPAR, and JAK-
STAT pathways showing consistent activation across multiple
subgroups (Figure 3C). Functional validation confirmed these
pathways as master regulators of chemoresistance acquisition in
preclinical models (Nascimento et al., 2017; Zeng and Dong,
2021; Zhang et al., 2024). The statistical comparison revealed that
the Bates test-based methodology identified significantly fewer
chemoresistance-associated pathways compared to the GSEA-like
methodology (Figure 3D).

The comparative analysis demonstrated that pathways identified
through the GSEA-like methodology achieved superior statistical
significance (p < 0.0001). Significant overlap was observed
between pathways identified by the GSEA-like methodology and
those detected by alternative approaches, with the GSEA-like
methodology identifying the highest number of pathways across
all evaluated methods.These findings supported the conclusion that
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TABLE 1 The number of DEGs of drug-sensitive genes.

Drug Number of
upregulated genes

Number of
downregulated genes

Total number
of DEGs

Total sample
size

Paclitaxel 218 256 474 21

Gemcitabine 108 162 270 21

Etoposide 148 103 251 21

Bleomycin 113 120 233 21

Vorinostat 95 101 196 20

Vinblastine 110 82 192 20

Vincristine 82 74 156 22

5-Fluorouracil 130 19 149 20

Vinorelbine 65 43 108 20

Doxorubicin 55 41 96 21

Epirubicin 40 47 87 21

Docetaxel 38 21 59 21

the GSEA-like methodology represents the optimal approach for
pathway identification.

3.4 Comparing differences between PRGS
and PMGS

Gene sets for ten pathways were retrieved from the KEGG
database to evaluate differences between PRGS and PMGS. The
Jaccard index and the number of overlaps for each pathway were
calculated (Supplementary Figure S6; Supplementary Table S1).The
results show extremely low overlap between PRGS and PMGS
across all pathways, with an average Jaccard index of only 0.012
(range: 0–0.036).

From a biological perspective, this limited overlap stems
from their distinct design objectives. PMGS includes genes that
are annotated as components of well-known canonical pathways
and signaling cascades (Gerling et al., 2013). These encompass
pathway receptors, kinases, transcription factors and co-regulators
whose functions remain unaffected by external perturbations
(Rashidiani et al., 2024). To illustrate this point, consider the
estrogen pathway. In estrogen receptor-positive (ER+) breast cancers
that HER2 and EGFR are overexpressed, downstream signaling
components can be activated.This activation subsequently enhances
the activity of the estrogen receptor and its co-activator AIB1,
thereby facilitating the estrogen agonistic activity of tamoxifen in
breast cancer (Rahem et al., 2020). This phenomenon results from
dysregulated pathway activity due to aberrant gene function within
the PMGS. In contrast, PRGS comprises genes whose expression
levels are markedly upregulated or downregulated in response to
external perturbations affecting the pathway (Wang, Karikomi, et al.,
2019). Within the estrogen pathway, 17β-estradiol (E2) acts as a

perturbing ligand that binds to estrogen receptor α (ERα) in the
cytoplasm. This interaction induces a conformational change in
ERα, prompting its translocation to the nucleus, where it modulates
gene transcription by binding to estrogen response elements (EREs)
located in the promoter regions of target genes (Krolick and Shi,
2022). These target genes, which constitute the PRGS, are not core
pathway components but rather represent downstream “response
products” elicited following pathway activation.

The GSEA-like methodology demonstrated superior
performance when applied to PRGS using GDSC data (p <
0.0001). Subsequent implementation of the GSEA-like approach
on PMGS identified four key pathways (Supplementary Figure S7).
The Insulin and JAK-STAT pathways have been previously
reported to be associated with chemoresistance (Han et al., 2021;
Macaulay et al., 2013). The GSEA-like methodology is based on
differential expression rankings, which are inherently supported
by the continuous gene expression values of PRGS. In contrast,
PMGS-based analysis produced statistically significant but less
robust enrichment outcomes (p < 0.01), as its pathway annotations
lack quantitative expression data required for optimal GSEA-
like implementation (Figure 3D). This discrepancy arises because
PRGS captures dynamic pathway regulation through expression
magnitude, while PMGS only reflects static gene set membership.

3.5 Discovering potential drugs to
overcome chemoresistance in breast
cancer

Eight key pathways associated with chemoresistance in
breast cancer were identified using the PRGS-based GSEA-like
approach. These pathways are dysregulated in response to specific
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FIGURE 3
Identification of significant pathways by three enrichment analyses. (A–C) Significant pathways were identified using three enrichment analysis
methods: GSEA-like, Hypergeometric test-based, and Bates test-based. A chord diagram illustrates the complex relationships between pathways and
drug-sensitive/resistant groups, with the width of each band reflecting the strength of these relationships. (D) A comparison of enrichment results
across different drug-sensitive/resistant groups is shown. The x-axis represents drug-sensitive/resistant samples, while the y-axis represents 15
pathways. Color intensity indicates the significance of enrichment p-values, with grey indicating pathways not identified by the method. This
visualization highlights the performance differences among the three methodologies.

chemotherapeutic agents, and can be targeted for therapeutic
interventionwith pathway-specific inhibitors (Figure 4). In line with
the screening criteria, the selected pathway inhibitors were obtained
from the Selleck platformand relevant literature indexed inPubMed.

The estrogen pathway was found to be dysregulated in
paclitaxel-resistant subgroups. Tamoxifen and fulvestrant, both
explicitly classified as “estrogen receptor antagonists” in the Selleck
database, function by inhibiting estrogen activity and suppressing
the proliferation of breast cancer cells. Previous studies have
shown that fulvestrant can make estrogen receptor-negative breast
tumors more susceptible to chemotherapy, whereas tamoxifen can
mitigate paclitaxel resistance mediated by ERα-positive signaling
(Jiang et al., 2014; Nzegwu et al., 2021). Although both clomifene
citrate and tamoxifen are estrogen receptor modulators, clomifene
citrate has limited applicability and lacks sufficient experimental
validation in cancer models. In contrast, tamoxifen is supported by
Phase II clinical trial data and exhibits greater practical utility, with
multiple in vitro studies confirming its capacity to induce apoptosis

in breast cancer cells. Consequently, tamoxifen and fulvestrant are
viable inhibitors for the direct targeting of the estrogen pathway.

Bortezomib, while primarily a proteasome inhibitor, also
inhibits NF-kB activity. Its combined administration with IL-1
receptor antagonists has been shown to reduce tumor formation and
growth in vivo (McLoed et al., 2016). In patients with rheumatoid
arthritis, bortezomib suppresses the release of pro-inflammatory
cytokines TNFα and IL-1β (Maseda et al., 2014).Therefore, it serves
as an indirect inhibitor of the IL-1 pathway.

In addition, drugs that had previously been validated as
inhibitors of specific pathways were considered. ST-162 and ST-168
are small-molecule bifunctional inhibitors targeting both the MEK
and PI3K pathways, demonstrating dose-dependent suppression
of MEK and PI3K signal transduction (Smith et al., 2018).
They are being developed as novel anti-tumor agents, but are
not currently documented in the Selleck platform. Thus, they
represent potential inhibitors for targeting the MAPK+ PI3K
pathways.
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FIGURE 4
Discovery of drug candidates to overcome chemoresistance in cancer treatment. The Sankey diagram illustrates the relationships between
chemotherapeutic drugs, dysregulated pathways, and pathway inhibitors. Nodes on the left represent chemotherapeutic agents for cancer treatment,
central nodes correspond to dysregulated pathways associated with these drugs, and nodes on the right indicate pathway inhibitors capable of
modulating these pathways. Distinct colors and node shapes correspond to various chemotherapy agents, dysregulated pathways, and inhibitors,
respectively. The connecting lines illustrate the directional flow between these three elements.

Promising drug combinations targeting resistant cell lines
were identified through this workflow (Supplementary Table S2).
A notable example is the HCC1428 paclitaxel-resistant cells (AUC
= 0.95), exhibited significant estrogen pathway dysregulation
(Yang et al., 2013). Fulvestrant was determined to be an inhibitor
of the estrogen pathway (Wakeling et al., 1991). Therefore, they
were considered as a potential therapeutic combination. These
findings provide diverse combination therapy strategies to overcome
chemoresistance in breast cancer.

3.6 Bleomycin-bortezomib synergistic
effects validation in T47D cells

Both IL-1 and TNFα pathways were identified as key pathways
in both drug-sensitive and drug-resistant subgroups throughGSEA-
like and Hypergeometric test-based analyses.

Studies have shown that the IL-1 pathway increases drug
resistance by activating and reinforcing the release of pro-
inflammatory cytokines (Stanam et al., 2016). Moreover, in breast
cancer cells exhibiting high sensitivity to IL-1β, stimulation
with IL-1β markedly induces the upregulation of BIRC3
expression, consequently conferring resistance to doxorubicin
treatment (Rho et al., 2022). In alignmentwith these findings, BIRC3
is identified as a responsive genewithin the IL-1-responsive gene set,
thereby strongly suggesting its role as a mediator of IL-1-induced
chemoresistance.

Overexpression of TNFα can fragment tumor DNA,
thereby contributing to resistance to the cytotoxic effects of

chemotherapeutic agents (Adrian et al., 2023). TNFα can
also activate the NF-kB signalling pathway and promote the
expression of CXCL1/2, which leads to the amplification
of the CXCL1/2-S100A8/9 loop and induces chemotherapy
resistance (Cruceriu et al., 2020). Consistently, the presence of
CXCL1 and CXCL2 genes associated with the TNFα-responsive
gene set was observed, suggesting that this mechanism likely plays
a significant role in TNFα-mediated drug resistance.

The T47D cell line represents the luminal A subtype of
breast cancer, characterized by positivity for estrogen receptor
(ER+) and progesterone receptor (PR+) and human epidermal
growth factor receptor 2 (HER2-) (Ahmed et al., 2022). This
subtype constitutes approximately 70% of all breast cancer cases
(Fiorillo et al., 2020). The proliferation of T47D cell was inhibited
upon exposure to both native and recombinant human interleukin-
1 (IL-1) isoforms, specifically the α and β variants (Gaffney
and Tsai, 1986). Importantly, analysis using PRGS has identified
the IL-1 pathway as a key therapeutic target in the bleomycin
response subgroup. Bortezomib exhibits anti-inflammatory activity
and suppresses IL-1 (Mao et al., 2012). These findings suggest the
potential for synergistic benefits in combining bleomycin with IL-
1 inhibitors for use in patients who do not respond to bleomycin.
Consequently, bortezomib was selected for combination treatment
with bleomycin in T47D cell.

Under optimal drug concentrations, this combination reduced
cellular viability to 20% (Figure 5), with bleomycin and bortezomib
demonstrating IC50valuesof200 nmol/Land40 nmol/L, respectively.
An IDAcomboscoreof 0.014 (threshold≥0.004 for synergy) confirmed
significant interaction between bleomycin and bortezomib.
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FIGURE 5
The effect of bleomycin, bortezomib monotherapy and their
combination on T47D cell viability. The x-axis represents the different
treatment groups (bleomycin, bortezomib, combination therapy),
while the y-axis represents cell viability.

4 Discussion

Despite the increasing application of gene set analysis, systematic
investigations into gene set selection criteria remain limited. The
impact of distinct gene set definitions on analytical outcomes
remains underexplored. Two gene set categories, PRGS and PMGS,
were compared in this study. PMGS comprise curated gene sets
associated with biological processes, chromosomal locations, disease
associations, or pathway membership (Hermida et al., 2013),
reflecting their functional annotation purposes. Conversely, PRGS
capture pathway-specific expression changes under perturbation
conditions, maintaining causal relationships between gene expression
and pathway activity. Significant differences in gene composition
were observed between PMGS and PRGS, with limited overlap
indicatingdivergentdesignobjectives.WhilePRGSgenesmayoverlap
with PMGS, reciprocal inclusion was not observed. Consequently,
PRGS were prioritized to characterize chemotherapy resistance-
associated expression patterns.

Three enrichment analysis methodologies based on PRGS
were implemented.The GSEA-like approach demonstrated superior
performance, identifying a greater number of statistically significant
pathways compared to alternative methods. This superiority was
attributed to its emphasis on aggregate gene set trends within
ranked lists. Notably, predefined gene lists exhibited substantial
differential expression levels, contributing to substantial pathway
enrichment. The Bates test-based method involves multiple sorting
of gene z-values, focusing on the average ranking of genes within a
given gene set. Conversely, Hypergeometric test-based analysis was
constrained by limited gene overlap between PRGS and DEGs, with
overlapping gene quantity prioritized over expression magnitude.
This methodological limitation resulted in the lowest number of
detected pathways among all evaluated approaches.

Current strategies to address chemotherapeutic resistance
include combination therapies, nanomedicine platforms, and
gene therapeutic approaches. A self-delivery nanomedicine
incorporating α-tocopherol succinate and doxorubicin was
developed by Zheng et al. to overcome drug resistance through
synergistic chemotherapy (Zheng et al., 2021). Similarly,
CRISPR/Cas9-mediated gene editingwas employed to disrupt uPAR
expression, resulting in enhanced chemosensitivity of HCT 8/T

cells (Wang et al., 2019). In this study, pathway inhibitors were
combined with chemotherapeutic agents to target dysregulated
pathways underlying chemoresistance. The methodology proposed
herein exhibits broad applicability beyond chemotherapy resistance,
extending to endocrine drug and other drug class-associated
resistance mechanisms through combination with pathway
inhibitors. As an illustrative example, Dong et al. demonstrated that
PI3K/AKT/mTOR pathway inhibition restores estrogen receptor
signaling, thereby overcoming resistance to endocrine treatments
in preclinical models (Dong et al., 2021). Drug combination of
bleomycin and bortezomibwas validated in T47D cell line.However,
more experiments need to be performed in the following studies.

In summary, this study highlights the importance of PRGS
in characterizing chemotherapy resistance-associated expression
patterns. By prioritizing PRGS over PMGS, we were able to
capture dynamic pathway-specific expression changes and their
causal relationships with pathway activity, providing a more accurate
representation of biologicalmechanisms underlying chemoresistance.
The GSEA-like approach, with its focus on aggregate gene set
trends, outperformed other methodologies in identifying statistically
significantpathways,underscoringitsutility inpathwayanalysis.These
findings not only advance our understanding of chemoresistance
mechanisms but also offer a robust framework for developing
targeted therapeutic strategies. The proposed method exhibits broad
applicabilitybeyondchemotherapyresistance, extending tootherdrug
class-associated resistance mechanisms through the integration of
pathway inhibitors. Thus it provides a foundation for future research
aimed at overcoming treatment resistance and improving therapeutic
outcomes in cancer patients.
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