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Introduction: Intra-tumoral heterogeneity is a prominent characteristic of
hepatocellular carcinoma (HCC). However, it remains unexploredwhether intra-
tumoral transcriptomic differences can capture crucial information regarding
HCCevolution and be utilized to derive a predictive signature for patient’s clinical
trajectories.
Methods: We quantified transcriptomic heterogeneity using four multiregional
HCC cohorts comprising 172 samples from 37 patients, and validated
transcriptomic heterogeneity and spatial dynamics using multiregional single-
cell transcriptomic profiling of 110,817 cells from 34 liver specimens. The HCC
evolutionary signature (HCCEvoSig) was developed and assessed across six
cross-platform HCC cohorts.
Results: Genes exhibiting high intra- and inter-tumor expression variation were
significantly enriched in a gene set associated with HCC prognosis, from which
we developed and validated a reproducible and robust transcriptomic signature,
HCCEvoSig. Multiregional single-cell data confirmed the high intra- and inter-
tumoral heterogeneity of HCCEvoSig genes across different cell types, and
importantly, demonstrated that the dysregulation of HCCEvoSig genes exhibited
a geospatially gradual transition from the non-tumor region to the tumor border
and tumor core, as well as from non-malignant to malignant epithelial cells.
HCCEvoSig showed significant positive associations with adverse features of
HCC, and a high HCCEvoSig risk score predicted increased risks of disease
progression and mortality, independent of established clinicopathological
indices. Furthermore, HCCEvoSig outperformed 15 published signatures in
discriminative ability and prognostic accuracy, particularly regarding 1-year
survival rates. Notably, HCCEvoSig demonstrated predictive utility for responses
to immunotherapy and trans-arterial chemoembolization. Additionally, we
established a well-calibrated predictive nomogram that integrates HCCEvoSig
and TNM stage to generate an individualized numerical probability of mortality.
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Conclusion:Our study reveals that regional transcriptional heterogeneity within
tumors is substantial enough to capture survival signals, and the constructed and
validated HCCEvoSig provides reliable prognostic information for HCC patients.
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hepatocellular carcinoma, multi-region sequencing, expression dynamics, tumor
evolution, prognostication

Introduction

Primary liver cancer is the sixth most commonly diagnosed
cancer and the third leading cause of cancer-related deathworldwide
(Sung et al., 2021). Hepatocellular carcinoma (HCC) is the most
dominant histological form of liver cancer, accounting for 75%–85%
of cases (Vogel et al., 2022). Over the past 2 decades, significant
progress has been made in the treatment of HCC, driven by
the development of new molecular targeted therapies, immune
checkpoint inhibitors (ICIs), and trans-arterial chemoembolization
(TACE) (Singal et al., 2023; Brown et al., 2023). Despite these
advancements, the prognosis for patients with HCC remains poor
and varies significantly among individuals, with a relative 5-year
survival rate of approximately 18% (Vogel et al., 2022), which may
be attributed to tumor evolution induced by treatment (Craig et al.,
2020). However, if detected at an early stage, surgical resection
offers a favorable prognosis, with 5-year survival rates exceeding
70%. Accurate stratification reflecting the prognosis and treatment
response of HCC patients is crucial for disease surveillance and
the selection of treatment strategies. Therefore, there is an urgent
need to develop reliable biomarkers and models that can accurately
predict HCC prognosis and identify patients most likely to benefit
from drug-based therapies. Considerable effort has been devoted
to establishing such stratification models using patient’s clinical
and pathological characteristics (Duseja, 2014). Currently, several
classification systems, including the American Joint Committee
on Cancer (AJCC) TNM system, the Cancer of the Liver Italian
Program (CLIP), and the Barcelona Clinic Liver Cancer (BCLC)
staging, have been developed and implemented in clinical practice.
While these assessment approaches have proven useful, they exhibit
various limitations in patient stratification and provide limited
predictive accuracy (Ganesan and Kulik, 2023). Furthermore, they
do not account for the biological characteristics of HCC that
contribute to clinical heterogeneity, highlighting the need for
improvement.

Advances in genome-wide expression profiling technology have
significantly enhanced our understanding of HCC biology. Many
studies assessed the prognostic abilities of gene signatures, and
identified numerous predictive signatures that were nominally
able to predict prognosis (Kim et al., 2012; Villa et al., 2016;
Sun et al., 2024; Luo et al., 2023); however, none have yet
entered clinical practice. These studies predominantly focused
on the interrogation of single tissue samples from individual
tumors, without concerning the evolutionary nature of tumor,
thus limiting the ability to infer disease pathogenesis, and to
correlatemolecular findings with the clinical trajectory of individual
patients. Recent studies have revealed that the clinical trajectory
of HCC patients is largely determined by the most aggressive

fraction of tumor cells, a phenomenon termed the ‘bad apple’ effect,
wherein a bad apple spoils the whole barrel (Chen et al., 2024;
Zhai et al., 2022). Additionally, Losci et al. revealed that intra-
tumoral transcriptomic differences could capture the evolutionary
information of tumors (Losic et al., 2020). These clues highlight
the importance of obtaining data from multiple regions of a tumor,
suggesting that multiregional transcriptomic analysis may aid in
identifying significant transcriptomic signatures that can forecast
patient’s clinical trajectories.

In the current study, we examined 172 multiregional
transcriptomic profiles from 37 HCC patients to analyze intra- and
inter-tumoral expression dynamics, and found genes exhibiting both
high intra- and inter-tumoral expression variation were significantly
enriched in prognostic information for HCC. Subsequently, we
devised a de novo strategy to develop a transcriptomic signature,
termed the HCC evolutionary signature (HCCEvoSig), which
captured critical information regarding tumor evolution and
provided more reliable risk estimates for HCC patients. The
dynamic transcriptomic changes of HCCEvoSig genes were further
validated through multiregional single-cell transcriptomic profiling
of 110,817 cells from 34 liver specimens. We assessed and validated
the prognostic and predictive accuracy of this classifier in five
independent cohorts, involving a total of 765HCCpatients. Notably,
our results demonstrated the predictive utility of HCCEvoSig for
responses to immunotherapy and TACE in two retrospective HCC
cohorts. Additionally, we compared its prognostic and predictive
efficacy with 15 previously reported HCC prognostic models, and
established a well-calibrated nomogram based on this classifier and
the TNM staging system, providing a more individualized approach
to predict prognostic information for HCC patients.

Materials and methods

Multiregional gene expression data of HCC

Following data preprocessing, multiregional gene expression
data of HCC from four studies were compiled, encompassing a
total of 172 samples from 37 patients (Supplementary Table S1).
The MultiRRnaSeq1 cohort consisted of RNA-seq data from seven
patients, comprising 33 tumoral regions (mean of 4.7 tumor regions
per patient, range: 3–5), derived from the study by Losic et al.
(2020). The MultiRRnaSeq2 cohort included data from 14 patients,
with a total of 75 tumoral regions (mean of 5.4 tumor regions
per patient, range: 3–10), obtained from the study by Yang et al.
(2022).TheMultiRRnaSeq3 cohort comprised data from11 patients,
with 39 tumoral regions (mean of 3.5 tumor regions per patient,
range: 3–5), originating from the study by Shen et al. (2020). In
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addition, Agilent mRNA transcriptome profiles were curated from
another study (Shi et al., 2017), consisting of 25 tumor samples
from five patients with HCC (designated as theMultiRArray cohort;
five regions per patient). Detailed information on data collection,
filtering, and normalization is available in the Supplementary
Materials.

Acquisition of HCC cohorts with survival
information

Six HCC cohorts with clinical follow-up information were
compiled, encompassing a total of 1,120 HCC specimens and 693
normal specimens from 1,149 patients (Supplementary Table S2).
These included four sequencing-based cohorts (TCGA-LIHC
(Cancer Genome Atlas Research Network, 2017), ICGC-LIRI-
JP (Fujimoto et al., 2016), CHCC-HBV (Gao et al., 2019), and
Mongolia-HCC (Candia et al., 2020)) and two microarray-
based cohorts (FULCI-HCC (Roessler et al., 2010) and NCI-
HCC (Lee et al., 2006)). Detailed information on data collection,
filtering, and normalization is available in the Supplementary
Materials.

Compilation of HCC cohorts undergoing
trans-arterial chemoembolization

Microarray-based cohorts of HCC patients treated with TACE
were obtained from the GEO database under accession numbers
GSE104580 (Singapore-HCC-TACE) andGSE14520 (FULCI-HCC-
TACE). The Singapore-HCC-TACE cohort originated from a
continuing study, and included 147 patients with unresectable
HCC and preserved baseline liver function, comprising 81 tumor
tissues from TACE responders and 66 from non-responders. All
samples were obtained from tumor biopsies collected prior to TACE
treatment. Patients who achieved a complete or partial response
were classified as responders, while those with stable or progressive
disease were considered non-responders (Shi et al., 2013). The
FULCI-HCC-TACE cohort was prospectively recruited at the Liver
Cancer Institute of Fudan University and included 247 patients
who underwent curative-intent resection between 2002 and 2003.
Patients lacking relevant clinical data or those receiving non-TACE
adjuvant or recurrence therapies were excluded (Fako et al., 2019).
For downstream analysis, only data generated using the GPL571
platform were included, consisting of 71 patients who received
adjuvant TACE after liver resection and 28 patients who received
TACE following tumor recurrence.

Collection of previously published HCC
prognostic signatures

Fifteen previously published HCC prognostic gene expression
signatures (ProGESigs), each associated with a specific formula,
were collected. Detailed information for each signature and the
strategy for its application are presented in Supplementary Table S4
and in the SupplementaryMethods of the SupplementaryMaterials.

Establishment and validation of the HCC
prognostic signature

A five-step analysis pipeline was developed to construct and
validate an HCC evolution-related prognostic model based on six
expression datasets. First, gene heterogeneity scores were calculated
using transcriptome data from fourmulti-region sequencing studies
of HCC (see Supplementary Methods for details), and genes
exhibiting high inter- and intra-tumor heterogeneity were selected
and integrated. Second, dysregulated genes were identified using
175 paired tumor-normal samples from the ICGC-LIRI-JP cohort.
Differential expression analysis was performed using the R package
DESeq2, with genes exhibiting an absolute log 2-fold change >1.0
and adjusted p value <0.05 considered differentially expressed.
Third, univariate Cox regression analysis was conducted to identify
genes significantly associated with overall survival (OS) in the
TCGA-LIHC cohort. Statistically significant was defined as a p-
value <0.05. Fourth, the elastic-net algorithm was employed to
refine the candidate genes selected by the aforementioned criteria,
through removing redundancies and selecting the most informative
prognostic markers for HCC. Specifically, the TCGA-LIHC training
dataset was subsampled 1,000 times, and genes repeatedly selected
by least absolute shrinkage and selection operator (LASSO)
penalized Cox regression against OS were identified using the
R package glmnet. Finally, an HCC evolutionary signature was
constructed through multivariate Cox regression analysis. The risk
score for each patient was calculated as a linear combination of
gene expression values, weighted by the model coefficients fitted
in the training cohort. Patients were then dichotomized into high-
and low-risk groups based on the median risk scores in each
cohort.The predictive performance of the signature was assessed via
Harrell’s concordance index (C-index) and time-dependent receiver
operating characteristic (ROC) curve analysis.

Analysis of multiregional scRNA-seq data
of liver cancer

Multiregional single-cell transcriptomic data from seven
liver cancer patients were analyzed, including four patients
with primary HCC and three with primary intrahepatic
cholangiocarcinoma (iCCA) (Ma et al., 2022). These data were
obtained from the GEO database under accession number
GSE189903. Specifically, three not-adjacent samples from the
tumor core (T1, T2, and T3), one sample from the tumor border
(B), and one sample from the adjacent non-tumor tissue (N),
which was in close proximity to the tumor, were included. The
Seurat package in R was utilized to conduct quality control (QC)
and downstream analyses. Details of the QC process, including
quality checks, data filtering, and the identification and removal
of cellular debris, doublets, and multiplets, are provided in the
Supplementary Methods.

Following quality filtering, a total of 110,817 cells were retained
for downstream bioinformatic analyses using Seurat’s standard
pipeline (Satija et al., 2015). First, normalization and scaling of
the feature expression measurements for each cell were performed
using the NormalizeData and ScaleData functions. Cell clustering
was then conducted using a shared nearest neighbor graph-based
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method, followed by the original Louvain algorithm for modularity
optimization after data dimensionality reduction through principal
component analysis. Once the cell clusters were determined, their
marker genes were identified using the FindMarkers function. For
cluster annotation, the top marker genes were manually curated to
align with canonical cell types and their associated marker genes
based on literature research.Detailed information ondimensionality
reduction, clustering, and cell type determination is provided
in the Supplementary methods. Malignant and non-malignant
epithelial cells were inferred based on large-scale chromosomal
copy-number variations derived from single-cell transcriptome
profiles, as described in previously published single-cell studies
(Ma et al., 2022; Ma et al., 2021; Ma et al., 2019). Differential gene
expression between conditions was calculated using the Wilcoxon
rank-sum test with Bonferroni correction, implemented in the
FindMarkers functionwith the following parameters: min.pct = 0.10
and logfc.threshold = 0.25. For the analysis, a minimum of 10 cells
per group was required under specific conditions. Genes with logFC
>0.25 and FDR <0.05 were considered differentially expressed.

Immune infiltration and
immunophenoscore analysis

The relative proportions of 22 infiltrating immune cell
types were estimated using the TCGA-LIHC cohort based on
CIBERSORT algorithm (Chen et al., 2018), and these cells were
aggregated into broader immune cell categories, including CD8+ T
cells, CD4+ T cells, B cells, NK cells, plasma cells, monocytes,
macrophages, dendritic cells, mast cells and neutrophils, following
the guidelines outlined by Thorsson et al. (Thorsson et al., 2018).
The immunophenoscore (IPS), which predicts the likelihood of
response to anti-CTLA-4 and anti-PD1 therapies by quantifying
tumor immunogenicity, immunomodulators, effector cells, and
suppressor cells (Charoentong et al., 2017), was obtained for HCC
patients from The Cancer Immunome Atlas (TCIA, https://tcia.
at/home). Additionally, the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm was employed to evaluate potential
responses to immunotherapy (Fu et al., 2020). TIDE scores and T
cell exclusion scores for HCC patients were calculated using the
TIDE Python package (https://github.com/jingxinfu/TIDEpy).

Statistical analysis

Categorical variables were analyzed using the Chi-squared test
or Fisher’s exact test, as appropriate. Pearson’s and Spearman’s
correlation tests were used to assess correlations between variables,
as appropriate. Survival analysis was performed using the Kaplan-
Meier method, with p-values determined using the log-rank test.
Hazard ratios, along with univariate and multivariate analyses
adjusting for age, gender, AJCC stage, cirrhosis, alpha foetoprotein
(AFP), and histological grade (if available), were calculated
using a Cox proportional hazards model. The nomogram and
corresponding calibration maps were constructed using the R
package rms. Calibration plots, generated via a bootstrap method
with 1,000 resamples, were used to evaluate the concordance
between actual and predicted survival. The C-index was calculated

using the R package Hmisc. Time-dependent ROC analysis and
AUC values were calculated using the R package timeROC. All
statistical analyses were two-tailed, performed using R statistical
software, and statistical significance was defined as a p-value <0.05.

Results

EvoGenes represent a concentrated
reservoir of prognostic information

Given the extensive transcriptomic intra-tumor and inter-tumor
heterogeneity observed in previous multi-region sequencing studies
of HCC (Losic et al., 2020; Yang et al., 2022; Shen et al., 2020;
Shi et al., 2017), we hypothesized that intra-tumoral expression
variation would capture critical information regarding tumor
evolution, while inter-tumoral expression variation would reflect
differences between patients. If this hypothesis holds true, genes
exhibiting high levels of both types of variation would demonstrate
significant prognostic value in HCC cohorts based on single biopsy
samples. To explore this hypothesis, we derived inter- and intra-
tumoral heterogeneity metrics for each gene using multi-region
HCC samples, and stratified both heterogeneity metrics into a
high and low group based on their 75th percentile, resulting
in four gene heterogeneity quadrants. The analysis utilized four
independent cohorts, involving transcriptomic data from a total of
172 multi-region primary HCC samples, representing 37 patients
(Supplementary Table S1). Genes classified in Q1 met the desired
criteria, demonstrating both high intra-tumoral variability that
reflected HCC clonal evolution, and significant inter-tumoral
variability that potentially served as valuable biomarkers for
patient stratification. Specifically, we identified 2,120 Q1 genes
from the MultiRRnaSeq1 cohort, 1,698 from the MultiRRnaSeq2
cohort, 2,761 from the MultiRRnaSeq3 cohort, and 1,902 from
the MultiRArray cohort (Figure 1A; Supplementary Figure S1A-C).
To minimize inter-dataset variability and enhance the accuracy of
identifying genes with high intra- and inter-tumoral expression
variation, we integrated Q1 genes from the four datasets, resulting
in a consensus set of 449 genes (Figure 1B), designated as evolution-
related genes (EvoGenes).

Prognostic significance analysis using the TCGA-LIHC RNA-
seq dataset revealed that EvoGenes exhibited significantly lower
p-values (p = 1.16 × 10−7; Figure 1C) and a higher proportion
of prognosis-associated genes (Cox p < 0.05) compared to other
genes (OR = 1.73, p = 7.21 × 10−8; Figure 1D). This prognostic
superiority was consistently replicated across five independent
validation cohorts, comprising three RNA-seq-based and two
microarray-based gene expression datasets (total: n = 765 patients;
Supplementary Table S2; Supplementary Figure S1D-M). Notably,
while EvoGenes represented only 4% of all expressed genes in
the MultiRRnaSeq1 cohort (449/12,429), they accounted for
15% of the genes identified in fifteen published prognostic
signatures (28/192; Supplementary Table S3), demonstrating an
approximately fivefold enrichment (OR = 4.55, p = 7.56 ×
10−10; Figure 1E). This enrichment suggested that prior studies
tended to select EvoGenes even without explicit consideration
of tumor evolution. Similar results were observed in three
other multiple-region cohorts (Supplementary Figure S1N).
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FIGURE 1
Gene Expression Heterogeneity and Prognostic Significance. (A) Gene expression inter- and intra-tumoral heterogeneity quadrants calculated using
the MultiRRnaSeq1 cohort. The plot is divided into four quadrants (Q1, Q2, Q3, and Q4) based on the 75th percentile of inter- and intra-tumoral
heterogeneity scores. (B) Venn diagram illustrating the consensus set of 449 genes, designated as EvoGenes, derived from four independent
multiregional HCC cohorts. (C) Prognostic p values of genes in the TCGA-LIHC cohort assessed using a univariate Cox proportional hazards model,
stratified by EvoGenes and other genes. Box plots represent median values, as well as the 25th and 75th percentiles, with vertical bars spanning the 5th
to 95th percentiles. Statistical significance was tested using a two-sided Wilcoxon signed-rank test. (D) Percentage of genes with prognostic
significance (univariate Cox p < 0.05) in the TCGA-LIHC cohort, stratified by EvoGenes and other genes in the cohort. (E) Stacked bar plot showing the
percentage of EvoGenes in expected (all expressed genes in the MultiRRnaSeq1 cohort) versus observed (genes merged from 15 published HCC
prognostic signatures) categories. Statistical significance was tested using a two-sided Fisher’s exact test. (F) Bubble plot displaying the Gene Ontology
(GO) enrichment results for EvoGenes. The size and color of the nodes represent the number of genes and the adjusted p-value of each GO term,
respectively.

These findings provided evidence that EvoGenes were highly
enriched for genes with a reproducible association with survival
compared to other genes. Gene ontology enrichment analysis
indicated that EvoGenes were significantly overrepresented
in critical biological processes, including metabolic, immune
and metastasis categories (Figure 1F; Supplementary Table S4),
with similar result observed in KEGG enrichment analysis
(Supplementary Figure S1O; Supplementary Table S5). Collectively,
these findings suggested that EvoGenes represented a concentrated
reservoir of prognostic information, providing valuable insights into
tumor progression and patient outcomes.

A de novo strategy to develop a prognostic
signature linked to HCC evolution

To assess the significance of our findings for biomarker design,
we devised a de novo six-step strategy to construct and validate a
prognostic signature for HCC (Figure 2A). In the discovery phase,
we utilized six expression datasets, including five RNA-seq-based
and one microarray-based, encompassing 845 liver tissue samples
from 535 HCC patients: (Sung et al., 2021): the aforementioned four
multiple-region expression datasets, from which candidate RNA
molecules exhibiting high inter- and intra-tumoral heterogeneity
(i.e., EvoGenes) were derived; (Vogel et al., 2022); the ICGC-
LIRI-JP HCC dataset (350 samples from 175 paired tumor-
normal tissues), used to identify differentially expressed genes; and

(Singal et al., 2023) the TCGA-LIHC dataset (323 HCC patients
with prognostic information), from which genes associated with
survival were identified. In the validation phase, we employed
transcriptome data from a total of 765 HCC patients across
five cohorts (Supplementary Table S2), including three RNA-seq-
based cohorts (ICGC-LIRI-JP, CHCC-HBV, and Mongolian-HCC
cohorts; n = 203, 159 and 70, respectively) and two microarray-
based cohorts (FULCI-HCC and NCI-HCC cohorts; n = 221 and
112, respectively).

To identify genes with reproducible survival associations,
we further integrated EvoGenes with differentially expressed
genes (DE genes) and survival-associated genes (Surv genes)
from two independent datasets (ICGC-LIRI-JP and TCGA-LIHC,
respectively), resulting in a candidate gene set containing 80 genes
(Figure 2B). Differential expression analysis conducted across five
cohorts containing paired HCC and normal liver tissues revealed
that all these 80 candidate genes were significantly differentially
expressed in all cohorts (a total of 660 paired tumor-normal tissues),
encompassing four RNA-seq-based datasets and one microarray-
based dataset (Figure 2C, Supplementary Figure S2), validating that
these genes were generally dysregulated in HCC regardless of the
profiling platform, thus they might play critical roles in HCC
evolution. Subsequently, we utilized the elastic-net algorithm, to
refine the 80 candidate genes by removing redundancies and
selecting the most informative prognostic markers for HCC. In
this analysis, we subsampled the dataset 1,000 times and selected
the genes that were repeatedly chosen in more than 850 iterations
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FIGURE 2
A Six-step De Novo Strategy to Develop HCCEvoSig. (A) Schematic representation summarizing the strategy to construct and validate the HCC
prognostic signature, termed HCCEvoSig. (B) Venn diagram illustrating candidate prognostic genes with evolutionary features. EvoGenes,
inherited from Figure 1B, represents genes with high inter-tumoral and intra-tumoral heterogeneity. The DE set consists of differential expression
genes identified using paired tumor and normal samples from the ICGC-LIRI-JP cohort. The Surv set includes genes associated with overall survival in
the TCGA-LIHC cohort. (C) Heatmap displaying the expression of 80 candidate genes in paired tumor and normal samples from the TCGA-LIHC
cohort. Genes marked in red are components of HCCEvoSig. (D) Bar plot showing the frequency of gene occurrence in the model based on 1,000
random experiments.

(Figure 2D), resulting in an 11-gene prognostic signature. Finally,
an HCC evolutionary signature was derived through multivariate
Cox regression analysis, which we designated as HCCEvoSig (the
components ofHCCEvoSig are detailed in Supplementary Table S6).

HCCEvoSig gene expression exhibits
spatial dynamics

To explore the spatial expression patterns of HCCEvoSig genes,
we analyzed multiregional single-cell transcriptomic data of 34
liver specimens from four HCC and three iCCA patients. Graph-
based clustering and canonical cell marker annotation revealed six
major cell types (Figures 3A,B and Supplementary Figures S3A,B):
T cells (n = 87,476), tumor-associated macrophages (TAMs, n =
7,380), B cells (n = 3,094), epithelial cells (EPIs; n = 2,250), cancer-
associated fibroblasts (CAFs, n = 1,530), and tumor-associated
endothelial cells (TECs, n = 1,332). The cell identities identified
here were highly consistent with those reported in the original
study (Ma et al., 2022) (Supplementary Figure S3C). A dot plot
displaying the expression of HCCEvoSig genes indicated that
ten of eleven HCCEvoSig genes were expressed in EPIs with

relatively low expression levels. RAMP3, SERPINE1 and SPP1 were
primarily expressed inTECs, CAFs andTAMs, respectively. Notably,
we did not observe expression of HCCEvoSig genes in B cells
and T cells. The relatively low expression levels of HCCEvoSig
genes in specific cell types implied that these genes might harbor
high transcriptomic heterogeneity both intra-tumorally and inter-
tumorally. When examining the expression of HCCEvoSig genes
in different tumor cores (T1, T2, and T3) across various patients,
we indeed found that those HCCEvoSig genes expressed in
EPIs exhibited marked variability in intra-tumor and inter-tumor
contexts (Figures 3C,D). Similar phenomena were observed for
RAMP3, SERPINE1 and SPP1 (Supplementary Figures S3D,E) in
TECs, CAFs and TAMs, respectively. We also analyzed HCC
patients separately to avoid potential tumor type bias, and found
consistent results (Supplementary Figures S3F-G).

Given that HCCEvoSig was constructed with considering
the differential expression between tumor and normal samples,
we further explored the spatial dynamics of HCCEvoSig gene
expression from adjacent non-tumor tissue (N) to tumor
border (B) and tumor core (T). We found that HCCEvoSig
genes exhibited different expression levels between normal and
tumor tissues, largely consistent with bulk analysis (Figure 3E;
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FIGURE 3
HCCEvoSig Genes Exhibit Spatial Dynamic Expression Changes. (A) UMAP plot of 110,817 filtered single cells, colored by their assigned cell types: T
cells, tumor-associated macrophages (TAMs), B cells, epithelial cells (EPIs), cancer-associated fibroblasts (CAFs), and tumor-associated endothelial
cells (TECs). (B) UMAP plot showing the expression of marker genes for the 6 cell types. (C) Dot plots illustrating the percentage of each cell type
(upper) and EPIs across different patients and tumor cores (bottom) expressing HCCEvoSig genes (indicated by the size of the circle) and their scaled
expression levels (indicated by the color of the circle). (D) Violin plot displaying the expression levels of HCCEvoSig genes in EPIs across different
patients and tumor cores. (E) Dot plots depicting the expression of HCCEvoSig genes that are differentially expressed across geospatial regions in EPIs
(left), TECs (middle) and TAMs (right). The size of the circle represents the percentage of cells expressing the gene in that specific region, while the
color indicates the average expression of the gene. Genes marked in blue and red indicate downregulation and upregulation in the tumor core
compared to normal tissue, consistent with bulk analysis. Light blue and light red genes did not reach the strict statistical significance threshold defined
in the Methods. See Supplementary Table S9 for details. Non-tumor tissue (N); tumor border (B); tumor core (T). (F) Violin plots for representative
genes expressed in EPIs (upper), TECs (middle) and TAMs (bottom), which exhibit differential expression across geospatial regions. The color coding of
the genes is consistent with that in panel (E) (G) Dot plots depicting the expression of HCCEvoSig genes that are differentially expressed between
malignant EPIs and non-malignant EPIs. Genes marked in blue and red indicate downregulation and upregulation in malignant EPIs compared to
non-malignant EPIs. Light blue and light red genes did not reach the strict statistical significance threshold defined in the
Methods. See Supplementary Table S9 for details. (H) Violin plots of representative HCCEvoSig genes that are differentially expressed between
malignant EPIs and non-malignant EPIs. The color coding of the genes is consistent with that in panel (G)
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Supplementary Table S7). Interestingly, we observed continuous
dynamic changes in expression from normal tissue to tumor core
(Figures 3E,F). Specifically, from N to B and T, ADH4, CFHR3,
CYP2C9, RDH16 and SPP2 showed sustained downregulation in
EPIs, while CDC20 and TRNP1 exhibited sustained upregulation.
The expression of RAMP3 in TECs demonstrated continuous
downregulation, whereas SPP1, expressed in both TAMs and EPIs,
showed sustained upregulation. An exception was SLC16A11,
which demonstrated increased expression in tumor samples in
bulk analysis but did not show significant upregulation in the EPIs
of tumor core; however, we noted its increased expression in B
compared to N (Figure 3E). Another exception was SERPINE1,
which showed decreased expression in bulk analysis. We found
that the expression of SERPINE1 in CAFs slightly increased from
N to T (Supplementary Figure S4A), while in EPIs, SERPINE1
exhibited decreased expression in T compared to N (Figure 3E).
When analyzing data fromHCC patients alone, we obtained similar
results (Supplementary Figure S4B,C; Supplementary Table S8).
Furthermore, we explored HCCEvoSig gene expression in
malignant EPIs, and found that genes exhibiting sustained
upregulation or downregulation in EPIs were further upregulated
or downregulated in malignant EPIs compared to non-malignant
EPIs (Figures 3G,H; Supplementary Table S9). Consistent results
were observed when analyzing data from HCC patients
alone (Supplementary Figure S4D-E; Supplementary Table S10).
Collectively, HCCEvoSig genes demonstrated dynamic
transcriptomic changes in intra-tumoral and inter-tumoral contexts,
and importantly, exhibited geospatially consistent evolution from N
to B, T, suggesting that they underlined the progression of HCC.

Prognostic implications of HCCEvoSig in
HCC across diverse datasets

To investigate the prognostic performance of HCCEvoSig,
we firstly dichotomized TCGA-LIHC patients using the median
risk score, and found that the HCCEvoSig risk score was
significantly positively associated with mortality (log-rank test:
p < 0.0001; univariate Cox regression: p < 0.0001, HR =
3.40; Supplementary Figure S5A; Supplementary Table S11). The
median OS interval for patients with high HCCEvoSig scores
was 2.46 years (95% CI: 1.76–3.82), whereas the median OS
for patients with low HCCEvoSig scores was 6.93 years (95%
CI: 5.83-NA). Subsequently, we applied the HCCEvoSig weights
trained in the TCGA-LIHC discovery cohort to three additional
independent RNA-seq-based HCC datasets. Consistent results
were observed across all datasets, indicating that patients with
high HCCEvoSig risk scores had shorter median survival times
(Figures 4A–C; Supplementary Tables S12-14 log-rank test: p <
0.0001; univariate Cox regression: p = 0.0001, HR = 5.06 in the
ICGC-LIRI-JP cohort; log-rank test: p < 0.0001; univariate Cox
regression: p < 0.0001, HR = 4.20 in the CHCC-HBV cohort; log-
rank test: p = 0.015; univariate Cox regression: p = 0.0197, HR =
2.88 in the Mongolian-HCC cohort).

Moreover, we included two microarray-based HCC expression
datasets to further evaluate the prognostic power of HCCEvoSig.
We initially anticipated that the performance of HCCEvoSig might
be diminished due to the cross-platform application of weights

trained on TCGA-LIHC transcriptome sequencing data. However,
HCCEvoSig remained significantly associated with survival in
both microarray datasets (Figures 4D,E; log-rank test: p < 0.0001;
univariate Cox regression: p < 0.0001, HR = 2.84 in the FULCI-
HCC cohort; log-rank test: p = 0.0230; univariate Cox regression:
p = 0.0241, HR = 1.76 in the NCI-HCC cohort). In a meta-
analysis considering all training and testing cohorts (combined: n
= 1,088 HCC patients), HCCEvoSig also demonstrated a significant
association with patient outcomes (Figure 4F; univariate Cox
regression: p = 4.35 × 10−22, HR = 2.98 [2.39–3.72]). Furthermore,
we observed that HCC patients with higher HCCEvoSig risk scores
exhibited significantly faster disease progression compared to those
with lower scores across three datasets (Supplementary Figure S5B-
D). These results demonstrated the reproducible prognostic
performance and concordance of HCCEvoSig across multiple
cohorts from different profiling platforms, suggesting that a
prognostic signature robust to variations in cohort characteristics
and expression profiling technologies could be achieved by
capturing the transcriptomic phenotype of HCC evolution.

HCCEvoSig demonstrates independent and
superior prognostic performance

In four out of five training and validation datasets with
available clinicopathological factors, HCCEvoSig was significantly
associated with OS in multivariate Cox proportional hazards
analysis, adjusting for age, sex, TNM stage, histological grade,
cirrhosis, and AFP (Supplementary Table S11-15, TCGA-LIHC: p
= 0.0008, HR = 3.11 [1.60–6.06]; ICGC-LIRI-JP: p = 0.0031,
HR = 3.71 [1.56–8.86]; CHCC-HBV: p = 0.0002, HR = 3.45
[1.82–6.55]; and FULCI-HCC: p = 0.0038, HR = 2.05 [1.26–3.34]).
The non-significant result obtained in the Mongolian-HCC cohort
may be attributed to the limited sample size when multiple
variables were considered (fewer than 50 samples for multivariate
analysis; Supplementary Table S14). Notably, HCCEvoSig remained
a significant prognostic model even when TNM stage was
replaced with BCLC stage or CLIP stage, which are collinear with
TNM stage (Supplementary Tables S16-18). This analysis suggested
that HCCEvoSig provided independent prognostic value beyond
established clinicopathological indices.

As previously reported, gene expression signatures nominally
have excellent performance in predicting outcomes for HCC
patients. Here, we evaluated the discrimination and prognostic
accuracy of 15 established multigene HCC signatures alongside
our HCCEvoSig. Time-dependent ROC curve analysis and C-index
calculations indicated that HCCEvoSig was either superior to or
comparable with the other 15 models (Supplementary Table S3)
in terms of 1-, 3-, and 5-year survival prediction (Figures 4G–I;
Supplementary Table S19). Notably, HCCEvoSig unequivocally
outperformed the other models in terms of the AUC for 1-year
survival (0.83, 95% CI: 0.77–0.89) and C-index (0.74, 95% CI:
0.70–0.79) (Figure 4G; Supplementary Table S19). These results
demonstrated that HCCEvoSig not only maintained robust
prognostic performance across diverse cohorts but also represented
a significant advancement over existing multigene signatures in
predicting short-term survival outcomes for HCC patients.

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1669236
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Luo et al. 10.3389/fbinf.2025.1669236

FIGURE 4
HCCEvoSig Demonstrates Robust and Reproducible Prognostic Efficacy Across HCC Cohorts and Profiling Platforms. (A–E) Kaplan-Meier estimations
of overall survival in HCC patients, stratified by HCCEvoSig risk scores, across independent RNA-seq-based validation cohorts: ICGC-LIRI-JP (A),
CHCC-HBV (B), and Mongolian-HCC (C), as well as independent microarray-based validation cohorts: FULCI-HCC (D), and NCI-HCC (E). Patients in
each dataset are categorized into high-risk and low-risk groups based on the median HCCEvoSig risk score. The dashed lines indicate the
subgroup-specific median overall survival (OS). (F) Forest plot summarizing the prognostic power of HCCEvoSig in a meta-analysis across all six
cohorts. Univariate Cox regression analysis was performed for each dataset; hazard ratios, 95% confidence intervals, and p values are presented. The
diamond indicates the hazard ratio for the meta-analysis. (G–I) Time-dependent ROC curves comparing HCCEvoSig with 15 other established HCC
signatures regarding 1-year (G), 3-year (H), and 5-year (I) survival predictions.

HCCEvoSig correlates with aggressive
clinical and Molecular Features

Exploring the clinicopathological and biological underpinnings
of the HCCEvoSig signature using the TCGA-LIHC cohort, we
found that HCC tumors with high HCCEvoSig scores exhibited
elevated activity in cell cycle-related pathways (Figure 5A;
Supplementary Table S20), such as DNA replication, cell cycle,
and p53 signaling pathway, along with enhanced central carbon
metabolism. In contrast, these tumors showed suppressed lipid
metabolism and amino acid metabolism compared to those with
low HCCEvoSig scores. Assessment of tumor hallmark activities
further reinforced these findings, revealing significantly activated
cell-cycle related pathways, including the E2F targets, G2M
checkpoint, and mitotic spindle pathways, alongside enhanced

glycolysis, while fatty acid metabolism was suppressed (p <
0.0001; Figures 5B–G; Supplementary Table S21). Additionally,
significantly mutated gene analysis performed in the TCGA-
LIHC cohort revealed that patients with high HCCEvoSig scores
had a significantly higher probability of TP53 mutations (50%
in high vs 13% in low HCCEvoSig risk group, p = 1.00 × 10−12;
Supplementary Figure S6A), which was further confirmed in
three independent validation cohorts (Supplementary Figure S6B-
D; ICGC-LIRI-JP, CHCC-HBV and Mongolian-HCC cohorts).
Conversely, we found that CTNNB1mutations were more prevalent
in the low HCCEvoSig risk group, although this was statistically
significant only in the ICGC-LIRI-JP and CHCC-HBV cohorts
(Supplementary Figure S6B, C). These results were consistent with
previous studies indicating that TP53 mutations were significantly
enriched in high-risk and poorly differentiated HCC, whereas
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FIGURE 5
Clinicopathological and Molecular Features of HCC Patients Stratified by HCCEvoSig Risk Score. (A) Gene set enrichment analysis illustrating
upregulated and downregulated pathways in HCC tumors with high HCCEvoSig scores, assessed in the TCGA-LIHC cohort. (B–G) Box plots showing
differences in representative pathway activities between HCC tumors with high and low HCCEvoSig risk scores in the TCGA-LIHC cohort. The center
line represents the median, and the box bounds indicate the 25th and 75th percentiles. (H–I) Bar charts showing the distribution of HCC patients
across different TNM stages (H) and histological grades (I) within the high and low HCCEvoSig risk groups in the TCGA-LIHC cohort. (J) Correlation
between HCCEvoSig risk scores and tumor volume doubling time calculated from imaging data in the GSE54236 cohort. Pearson’s correlation test was
used for correlation analysis. (K) Kaplan-Meier analysis of tumor volume doubling time in HCC patients from the GSE54236 cohort, stratified by
HCCEvoSig risk score. (L–O) Bar charts showing the distribution of HCC patients with different vascular invasion statuses (L, TCGA-LIHC), varying
metastatic risks (M, FULCI-HCC), and different serum AFP levels (N, TCGA-LIHC; O, FULCI-HCC) within the high and low HCCEvoSig risk groups.

CTNNB1 mutations were predominantly associated with low-risk
and well-differentiated HCC (Calderaro et al., 2017).

Clinical factors analysis revealed that higher TNM stage
(proportion of patients at stage III/IV: 39% in high vs 16% in
low HCCEvoSig risk group, p = 1.08 × 10−5; Figure 5H) and
histological grade (proportion of patients at grade 3/4: 50% in
high vs 26% in low HCCEvoSig risk group, p = 6.78 × 10−6;
Figure 5I) were significantly enriched in the high HCCEvoSig
risk group. In the ICGC-LIRI-JP, CHCC-HBV and FULCI-HCC
cohorts, we validated patients with advanced HCC, characterized

by high histological grade, TNM stage, BCLC stage, or CLIP
stage, exhibited a significant increase in HCCEvoSig risk scores
(p < 0.005; Supplementary Figures S6E-K). Moreover, we found
that HCCEvoSig risk scores were significantly negatively correlated
with HCC doubling times, which were calculated based on
imaging data in the GSE54236 cohort (R = −0.33, p = 0.0033;
Figure 5J), implying patients with high HCCEvoSig scores had
significantly shorter HCC doubling times (log-rank test: p =
0.0006; Figure 5K). A high HCCEvoSig risk score also predicted
an increased risk of vascular invasion (p = 1.45 × 10−2; Figure 5L)
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and metastasis (p = 1.52 × 10−22; Figure 5M) in the TCGA-
LIHC and FULCI-HCC cohorts, respectively, with consistent results
obtained in the ICGC-LIRI-JP cohort (Supplementary Figures S6L-
M). Additionally, the serum level of AFP was significantly positively
associated with HCCEvoSig risk scores in both training and
validation datasets across RNA-seq-based and microarray-based
platforms (Figures 5N,O and Supplementary Figure S6N-O; p< 0.01
for TCGA-LIHC, CHCC-HBV, Mongolian-HCC, and FULCI-HCC
cohorts). These results indicated that aggressive characteristics,
including advanced tumor status, faster tumor growth rates and
higher invasive and metastatic potential, were presented in HCC
patients with high HCCEvoSig scores.

Predictive practicability of HCCEvoSig for
therapeutic response

Several treatments have been proposed for advanced HCC,
including immunotherapy, molecular targeted therapy and TACE.
As a locoregional therapy, TACE can induce tumor cell necrosis,
facilitating the release of tumor-associated antigens and pro-
inflammatory cytokines, which in turn remodels the tumor
microenvironment (TME), and modulates it into a state more
conducive to the efficacy of ICIs in antitumor response (Pinato et al.,
2021; Ren et al., 2025). We firstly assessed the correlation between
the infiltration abundance of immune cells inferred by the
CIBERSORT algorithm and the HCCEvoSig risk score using the
TCGA-LIHC cohort. The results showed that cells with antitumor
effects, such as CD4+ T cells, NK cells, monocytes, and plasma
cells, were negatively associated with the HCCEvoSig risk score,
whereas cells with pro-tumor functions, such as macrophages
and neutrophils, were positively correlated (Figure 6A). In
addition to immune cell infiltration, another factor influencing
the efficacy of ICIs is the expression level of immune checkpoint
molecules.Therefore, we evaluated the association between immune
checkpoint expression and HCCEvoSig risk scores, and found
that numerous markers exhibited significantly different expression
levels between the high- and low-risk groups (Figure 6B). We
further investigated whether the HCCEvoSig risk score could
serve as a predictor of response to ICIs in patients with HCC. The
IPS is a widely applied indicator for predicting immunotherapy
responsiveness. In this study, we observed that IPS scores for anti-
PD-1 and anti-CTLA-4 therapies were significantly higher in the
low-risk group (Figure 6C). Finally, we demonstrated that high-
risk patients exhibited enhanced immune evasion capacity and
elevated TIDE scores (Figures 6D,E: Supplementary Figure S7A, B).
These findings indicated that the HCCEvoSig model held potential
predictive value for assessing the efficacy of ICI therapy.

To further evaluated the clinical utility of the HCCEvoSig
model, we analyzed two retrospective cohorts of HCC patients who
underwent TACE: the FULCI-HCC-TACE and Singapore-HCC-
TACE cohorts. In the Singapore-HCC-TACE cohort, TACE non-
responders exhibited significantly higher HCCEvoSig risk scores
(Figure 6F), and were predominantly enriched in the high-risk
group defined by HCCEvoSig (Figure 6G). The HCCEvoSig model
demonstrated superior performance in distinguishing responders
from non-responders, with an AUC of 0.80 (95% CI: 0.73–0.88;
Figure 6H). In the FULCI-HCC-TACE cohort, patients were

stratified into responder and non-responder groups based on
the HCCEvoSig model using the median risk score as the
threshold. As shown in Figure 6I, the predicted responder group
exhibited significantly longer OS compared to the non-responder
group (log-rank test: p < 0.0001). Among patients who received
adjuvant TACE treatment, the model successfully identified a
group with markedly prolonged OS (log-rank test: p = 0.0004;
Figure 6J). Likewise, among patients receiving post-recurrence
TACE, the median OS was significantly higher in responders
than in non-responders (log-rank test: p = 0.0120; Figure 6K).
Furthermore, TACE non-responders exhibited shorter disease-free
survival compared to responders (Supplementary Figures S7C-E).
These findings underscored the potential of the HCCEvoSig model
as a valuable tool for predicting TACE response and guiding
personalized treatment strategies in patients with HCC.

Construction and validation of a prognostic
nomogram for HCC survival prediction

To provide clinicians with a quantitative model for predicting
the survival probability of individualHCCpatients, we constructed a
nomogram that integrated bothHCCEvoSig and clinicopathological
risk factors to estimate 1-, 3-, and 5-year outcomes. HCCEvoSig and
TNM stage, both of which demonstrated independent prognostic
capacity across multiple cohorts according to multivariate analysis
(Supplementary Table S11, 12, 15), were incorporated into the
model (Figure 7A). Calibration plots for the 1-, 3-, and 5-
year survival rates indicated that the outcomes predicted by
the nomogram closely approximated actual survival in TCGA-
LIHC training cohort (Figure 7B) and three validation cohorts
(Figures 7C–E; ICGC-LIRI-JP, CHCC-HBV, and FULCI-HCC
cohorts). The discriminative ability of the nomogram (C-index:
0.76 [0.71–0.81]; 0.79 [0.72–0.86]; 0.72 [0.65–0.79]; and 0.70
[0.64–0.76] for TCGA-LIHC, ICGC-LIRI-JP, CHCC-HBV, and
FULCI-HCC cohorts, respectively) was stronger than that of either
HCCEvoSig or tumor TNM stage alone across multiple cohorts
(Supplementary Table S22). Time-dependent ROC curves further
demonstrated that the specificity and sensitivity of the prognostic
nomogramwere superior to any single independent predictive factor
for 1-year (Figure 7F; AUC: 0.83, 0.82, and 0.69 for nomogram,
HCCEvoSig, and TNM stage, respectively), 3-year (Figure 7G;
AUC: 0.79, 0.75, and 0.66 for nomogram, HCCEvoSig, and TNM
stage, respectively) and 5-year (Figure 7H; AUC: 0.78, 0.75, and
0.63 for nomogram, HCCEvoSig, and TNM stage, respectively)
survival. These results were also validated in three independent
cohorts (Supplementary Figure S8; Supplementary Table S22).
Taken together, the combined nomogram based on HCCEvoSig
and TNM stage enhanced survival prediction compared to the use
of either prognostic factor alone.

Discussion

Intra-tumoral heterogeneity is a common characteristic of solid
malignancies and is thought to be evolutionarily selected to drive
tumor cell fitness and survival (Black and McGranahan, 2021).
Molecular signatures derived from single biopsies (Kim et al., 2012;

Frontiers in Bioinformatics 11 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1669236
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Luo et al. 10.3389/fbinf.2025.1669236

FIGURE 6
Predictive Performance of HCCEvoSig in Treatment Response. (A) Violin plot illustrating differences in immune cell infiltration between the high and low
HCCEvoSig risk groups. Statistical significance: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. (B) Violin plot showing the expression levels of immune checkpoint
molecules across HCCEvoSig risk groups. Statistical significance: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. (C) Comparison of immunophenoscore (IPS)
scores in response to immune checkpoint blockade between the low and high HCCEvoSig risk groups. (D) Boxplot showing differences in TIDE scores
between high and low HCCEvoSig risk groups. (E) Scatter plot illustrating the linear correlation between the HCCEvoSig risk score and TIDE score. (F)
Boxplot comparing HCCEvoSig scores between TACE responders and non-responders. (G) Proportion of TACE responders and non-responders in the
high and low HCCEvoSig risk groups. (H) ROC curve showing the predictive accuracy of the HCCEvoSig model for TACE response in the
Singapore-HCC-TACE cohort. (I–K) OS comparison between predicted responders and non-responders receiving either adjuvant or post-recurrence
TACE (I), adjuvant TACE treatment (J), and post-recurrence TACE treatment (K). The dashed lines indicate the subgroup-specific median OS.

Villa et al., 2016; Sun et al., 2024), based on high-throughput
expression profiles of HCC tumors and/or adjacent non-tumor
tissues, often overlook the regional transcriptional heterogeneity
within a single tumor that may contribute to evolutionary fitness.
In this study, we quantified transcriptomic heterogeneity using
multiregional HCC expression profiles, and found that genes
exhibiting high intra- and inter-tumor expression dynamics served
as a concentrated reservoir of prognostic information. From
these genes, we defined a signature, HCCEvoSig, consisting of
11 core genes, which demonstrated prognostic reproducibility
and generalizability across multiple HCC cohorts and commercial
profiling platforms, suggesting that HCCEvoSig recapitulated the

different stages of tumor evolution observed in a large HCC
cohort across a spectrum of clinical stages. To consolidate the
results, we conducted multiregional single-cell transcriptomic
analysis, revealing that HCCEvoSig genes demonstrated dynamic
transcriptomic changes regarding intra-tumor and inter-tumor
contexts, and importantly, exhibited geospatially gradual transitions
from non-tumor tissue to tumor border, and tumor core, and from
non-malignant to malignant epithelial cells, suggesting that they
underpinned the evolution of HCC.

Since HCCEvoSig was derived fromHCC prognostic indicators,
we evaluated its discrimination ability and prognostic accuracy
by comparing it to established multigene expression signatures.
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FIGURE 7
Nomogram Construction and Performance Evaluation. (A) Nomogram constructed based on multivariate analysis in the TCGA-LIHC cohort to predict
1-, 3-, and 5-year survival probabilities. (B–E) Calibration curves demonstrating the performance of the nomogram in predicting 1-, 3-, and 5-year
survival in the TCGA-LIHC (B), ICGC-LIRI-JP (C), CHCC-HBV (D), and FULCI-HCC (E) cohorts. The dotted line represents the ideal nomogram, while
the violet, green, and pink solid lines represent the observed nomograms for 1-, 3-, and 5-year survival predictions, respectively. (F–H)
Time-dependent receiver operating characteristic (ROC) curves evaluating the sensitivity and specificity of the nomogram, HCCEvoSig, and TNM stage
in predicting 1- (F), 3- (G), and 5-year (H) survival in the TCGA-LIHC cohort.

The results demonstrated that HCCEvoSig outperformed the other
signatures, with only one gene (SERPINE1) overlapping with the
established signatures (Supplementary Table S6). Additionally, we
investigated whether the core genes of HCCEvoSig were included in
the CancerLivER database (Kaur et al., 2020), which comprises over
594 liver cancer biomarkers, and found that four of 11 genes (ADH4,
CYP2C9, SPP1 and SERPINE1) were included in the database.
Furthermore, we explored the presence of HCCEvoSig core genes
in scientific literature using the PubMed database. The results
indicated low co-occurrences of the targeted genes (components
of HCCEvoSig mentioned in article titles) with hepatocellular
carcinoma (mentioned in article titles or abstracts) in scientific
literature (Supplementary Table S6). These findings suggested that,
although prior studies tended to select EvoGenes (Figure 1E,
Supplementary Table S1N), more than half of the HCCEvoSig genes
have not been reported as biomarkers for HCC. Notably, a recent
milestone study using single-cell sequencing analysis found that
SPP1 expression patterns follow hierarchical relationships of tumor
cell branching evolution, positioning SPP1 as a candidate regulator
of tumor evolution in response to treatment (Ma et al., 2021).

Supporting these findings, our results showed that SPP1 expression
exhibited dynamic changes, with a sustained increase from non-
tumor tissue to tumor border, and tumor core. Importantly, compare
to non-malignant EPIs, malignant EPIs exhibited upregulation
of SPP1. Further in vitro and in vivo experimental analyses are
warranted to functionally validate the genes within HCCEvoSig that
exhibit intra-tumor transcriptional dynamics and drive tumor cell
biodiversity.

Currently, clinical classification systems for HCC, including
the AJCC TNM system, CLIP and BCLC staging, are employed
to evaluate patient outcomes and provide guidelines for
intervention. However, these systems cannot meet additional
clinical requirements, such as drug response prediction
(Vogel et al., 2022; Brown et al., 2023). The HCCEvoSig we
developed demonstrated superior performance in prognostic
prediction compared to these systems. Furthermore, HCCEvoSig
was significantly correlated with the infiltration abundance of
immune cells and the expression levels of immune checkpoint
molecules. Consequently, we investigated its ability to predict
outcomes of immunotherapy. The TIDE and IPS results indicated
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that the model held potential predictive value for assessing the
efficacy of ICI therapy. Additionally, this model was capable of
assigning cases into responsive and non-responsive subtypes in two
retrospective cohorts from independent centers, which exhibited
marked differences in both procedure and patient population,
thereby underscoring robustness of this model.

In summary, our results revealed that genes exhibiting high
intra- and inter-tumor expression heterogeneity were significantly
enriched for HCC prognostic information. Utilized a machine-
learning algorithm, we developed and validated a prediction
signature, HCCEvoSig. Multiregional single-cell transcriptomic
data validated that HCCEvoSig genes exhibited spatial dynamics
and gradual changes from non-tumor tissue to tumor border,
then to tumor core, suggesting that these genes underpinned the
evolution of HCC. A higher HCCEvoSig risk score was significantly
associated with adverse tumor features and patient mortality, which
was validated across multiple cohorts and profiling platforms,
demonstrating robust prognostic significance. Notably, HCCEvoSig
also exhibited predictive utility for responses to immunotherapy
and TACE. However, it is important to note that our results were
based onmulti-independent datasets, all of whichwere retrospective
cohorts. Therefore, further refinement of the HCCEvoSig model
and the integrated nomogram is necessary in a prospective study
involving a large cohort with multiregional tumor samples.
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