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Sustainable food production is a grand challenge facing the global economy.

Traditional agricultural practice requires numerous interventions, such as

application of nutrients and pesticides, of which only a fraction are utilized

by the target crop plants. Controlled release systems (CRSs) designed for

agriculture could improve targeting of agrochemicals, reducing costs and

improving environmental sustainability. CRSs have been extensively used in

biomedical applications to generate spatiotemporal release patterns of targeted

compounds. Such systems protect encapsulant molecules from the external

environment and off-target uptake, increasing their biodistribution and

pharmacokinetic profiles. Advanced ‘smart’ release designs enable on-

demand release in response to environmental cues, and theranostic systems

combine sensing and release for real-time monitoring of therapeutic

interventions. This review examines the history of biomedical CRSs,

highlighting opportunities to translate biomedical designs to agricultural

applications. Common encapsulants and targets of agricultural CRSs are

discussed, as well as additional demands of these systems, such as need for

high volume, low cost, environmentally friendly materials and manufacturing

processes. Existing agricultural CRSs are reviewed, and opportunities in

emerging systems, such as nanoparticle, ‘smart’ release, and theranostic

formulations are highlighted. This review is designed to provide a guide to

researchers in the biomedical controlled release field for translating their

knowledge to agricultural applications, and to provide a brief introduction of

biomedical CRSs to experts in soil ecology, microbiology, horticulture, and crop

sciences.
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1 Introduction

Biomedical controlled release systems (CRSs) have made

significant advances since their introduction ~70 years ago

(Ullyot et al., 2000). Biomedical CRSs can be manufactured

from a variety of materials with controlled release spanning

hours to years. They can be programmed to release on

demand, at a set rate, or in response to changing

environmental conditions. Manufacturing methods for these

materials are well established, and several formulations have

reached the clinic (Moghanjoughi et al., 2016). Meanwhile, there

is a growing and compelling need for sustainable food

production, highlighted by the National Academies as one of

the ten grand challenges for the 21st century

(National_Academies_of_Sciences_Engineering_and_Medicine,

2019). We believe the time is right to translate learnings from

biomedical CRSs to agriculture. This review discusses the

potential for CRSs in agriculture. We begin by providing a

brief history of biomedical CRSs detailing similarities and

differences between agricultural CRS engineering design

criteria. Then, we outline the need for CRSs in agriculture,

including the types of organisms and encapsulants to be

targeted. We discuss the challenges that must be met by

agricultural CRSs and describe opportunities to meet these

challenges by leveraging knowledge gained from biomedical

CRS systems. We then discuss existing agricultural CRSs,

including common materials and manufacturing methods. We

conclude by highlighting the rich opportunities for growth,

particularly in nanoparticle, ‘smart’ release, and theranostic

agricultural CRS formulations.

2 Biomedical controlled release
systems

2.1 History of controlled drug delivery
systems

Biomedical CRSs were first developed to increase

therapeutic efficacy and safety by controlling the time,

place, and rate of drug release (Jain and Jain, 2008). The

history of CRSs traces its origins to 1952 with Smith, Kline &

French’s Spansule, sustained release capsule technology that

used granules with different dissolution rates to achieve

release over 12 h (Ullyot et al., 2000). In 1964, Dr. Judah

Folkman published the first article on “zero order” reservoir

drug delivery systems that released drugs at a constant rate

(Folkman and Long, 1964). As head of Alza Corp’s Scientific

Advisory Board, Folkman (and others) would usher in the era

of macroscopic CRSs throughout the 1970’s and 1980’s

(Hoffman, 2008). These macroscopic devices exhibited

constant drug release profiles and included intrauterine

devices (IUDs), ocular inserts, and transdermal patches. In

the mid to late 1980’s, the CRS field expanded to include

drug-loaded, biodegradable polymer microparticles based on

polyesters (Hoffman, 2008). These degradable microparticles

exhibited sustained delivery rates that gradually decreased

with time. These technologies have paved the way for

nanomedicine CRSs, such as micelles, liposomes, and

dendrimers (Bobo et al., 2016).

In this review, we will confine our discussion to polymers and

polymer hydrogels used in biomedical CRSs with potential for

crossover utilization in agriculture, later highlighting materials

unique to agricultural CRSs. These systems can undergo the zero

order release of Folkman (i.e., passive release) or follow

degradational release patterns of microparticles (Figure 1).

Additionally, release may be initiated by a specific

environmental cue, so-called “smart” or stimuli-responsive

release systems. These designs in particular would have

advantages for agricultural CRSs, enabling release in response

to plant, pathogen, or beneficial microbe signals.

2.2 Release by solute diffusion and
polymer matrix swelling

CRSs comprised of non-degradable polymers can be

categorized as either “reservoir” or “matrix” devices (Figures

1A,B). The most common release mechanism for these systems is

diffusion (Fu and Kao, 2010). Reservoir devices typically are

comprised of an inert coating that acts as a rate-controlling

membrane against drug diffusion. As such, the thickness and

permeability of the membrane dictates the drug release rate. This

design is similar to agricultural seed coatings. Matrix devices

consist of a polymer matrix in which the drug is either dissolved

or dispersed. The release rate decreases with time, and is

controlled by Fickian diffusion (Crank, 1975) based on drug

concentration gradient and diffusivity (Liechty et al., 2010). In

devices for which the encapsulant concentration far exceeds

the solubility limit, zero order, constant release rates can be

achieved until the concentration falls below this limit

(Higuchi, 1961).

Non-degradable polymers can also exhibit drug release via

swelling mechanisms (Figure 1C). Hydrogels are hydrophilic

polymer networks capable of swelling with large amounts of

water to release an entrapped drug. In these designs, water-

soluble drugs are initially loaded into dry hydrogels in the glassy

state. Drug release is then triggered by the addition of aqueous

media that rapidly swells the matrix. As the hydrogel swells, it

undergoes a transition between glassy and rubbery states, leading

to polymer chain relaxation and drug diffusion into the

surrounding media through simultaneous swelling-diffusion

mechanisms (Lee, 1985; Liechty et al., 2010). This particular

design could be attractive for translation to agricultural CRS as it

would permit CRS transport in a non-hydrated state, which

could enhance ease of shipping.
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FIGURE 1
Categorization of controlled release systems (CRSs) according to release mechanism. (A and B) Diffusion controlled systems can be (A)matrix
or (B) reservoir based. (C) Polymer matrices can swell to release drugs. (D) Chemical degradation leads to release via surface erosion. (E) Stimuli-
triggered “smart” release systems rely on external or environmental cues such as temperature, pH, and enzymatic activity to alter matrix properties.
Created using BioRender.

FIGURE 2
Chemical structures of polyglycolic acid (PGA), polylactic acid (PLA), and poly (lactic-co-glycolic acid) PLGA and its stereoisomers D-lactide and
L-lactide. Reprinted with CC BY 4.0 permission from C. S Miranda, A. R. M Ribeiro, N. C Homem, H. P Felgueiras. Spun Biotextiles in Tissue
Engineering and Biomolecules Delivery Systems. Antibiotics (2020) 174.
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2.3 Release based on degradation

One of the most popular methods of drug release relies on

controlled degradation of cross-links within the matrix

(Figure 1D), typically through hydrolysis or enzymolysis

(Treiser et al., 2013). Whereas all polymers degrade over time,

polymers classified as degradable polymers exhibit degradation

within the timeframe of their expected shelf life (Treiser et al.,

2013). In this context, the terms degradation and erosion are

often used interchangeably; however, it should be noted that

degradation differs from erosion in that it involves changes to the

chemical structure, whereas erosion involves physical changes in

the shape and size of the matrix (Treiser et al., 2013).

Degradable polymers can be natural or synthetic, but

synthetic polymers have been more widely studied because of

the ability to engineer and predict their properties and control

their batch-to-batch uniformity (Nair and Laurencin, 2007). The

most commonly used degradable, synthetic polymers are

polyesters: poly (glycolic acid) (PGA), poly (lactic acid) (PLA),

and their combination poly (lactic-co-glycolic acid) (PLGA)

(Figure 2). PGA represents the simplest linear, aliphatic

polyester and has low solubility in organic solvents because of

its high crystallinity (Vroman and Tighzert, 2009). Because of its

excellent ability to form fibers, PGA was used to form the first

biodegradable synthetic suture, DEXONTM, approved by the

FDA in 1969 (Nair and Laurencin, 2007). However, PGA

degrades very rapidly and generates acidic degradation

products that limit its biomedical usage.

Unlike glycolic acid, lactic acid is a chiral molecule, meaning

that it exists as two stereoisomers, D-lactide and L-lactide.

Polymerization of D-lactide and L-lactide monomers forms

semi-crystalline polymers, whereas polymerization of racemic

or equimolar D,L-lactide forms amorphous polymers (Nair and

Laurencin, 2007). In general, poly (L-lactic acid) (PLLA) is used

over its pure D-lactide counterpart because its hydrolysis yields

L-lactide, which is the naturally occurring isomer of lactic acid

(Nair and Laurencin, 2007; Treiser et al., 2013). Semicrystalline

PLLA exhibits good mechanical strength and toughness making

it ideal for orthopedic devices, whereas the amorphous poly (DL-

lactide) (PDLLA) is more suited for CRSs because it is of low

strength and quicker degradation rate (Nair and Laurencin, 2007;

Treiser et al., 2013).

To improve biomedical applicability of PGA, the copolymer

poly (lactic-co-glycolic acid) (PLGA) combines features of PGA

and PLA. Compared to PGA, PLA has methyl side groups

making it more hydrophobic, thus reducing backbone

hydrolysis compared to PGA. This has the effect of slowing

degradation rate and subsequent drug release. The physico-

mechanical properties of PLGA can be tuned by altering the

ratio of lactic to glycolic acid, but the relationship is not linear

(Jain, 2000). For example, 50:50 PLGA copolymers degrade

much quicker than either PGA or PLA (Jain, 2000; Nair and

Laurencin, 2007; Treiser et al., 2013). Whereas a PLGA co-

polymer made of 10:90 LA:GA PLGA ratio has been used in

resorbable suture designs (VicrylTM); PLGA has also been used

for meshes and skin grafts (Jain, 2000). The ability to control

degradation rates by tuning monomer ratios and polymer

molecular weight has strongly contributed to the popularity of

PLGA in the biomedical field, including drug delivery. In

particular, increasing the proportion of lactic acid in PLGA

increases copolymer hydrophobicity, which can be used to

reduce water penetration and slow release rate or to better

match drug hydrophobicity to increase drug encapsulation

efficiency (Hines and Kaplan, 2013).

2.4 Smart release systems

The term “smart” release refers to stimuli-responsive

materials that release target molecules in the presence of a

specific biological or environmental cue, such as a change in

pH (Falamarzian and Varshosaz, 1998), temperature (Chen and

Hoffman, 1995), or the availability of a biomolecule (Mann et al.,

2001). CRSs that respond to pH or temperature changes are

typically based on polymer systems that undergo a phase

transition in response to these cues, whereas biomolecular

smart release is usually based on the presence of an enzyme

cleaving a substrate in the CRS material. Smart release systems

can improve drug targeting because release only occurs under

certain conditions, improving therapeutic benefit while reducing

systemic side effects (Moghanjoughi et al., 2016). A unique

advantage of these materials is that release rates are often

reversible. As materials cycle between swollen and collapsed

states, release can be turned “on” and “off” (Moghanjoughi

et al., 2016).

2.4.1 Temperature-responsive CRSs
Temperature responsive smart materials are typically

polymers that exhibit changes in aqueous solubility in

response to small alterations in temperature. Often these

materials exhibit a lower or upper critical solution

temperature (LCST or UCST) that demarks a rapid transition

from a swollen to collapsed state (Yoshida et al., 1995). The most

widely studied temperature responsive smart material is the

polymer poly (N-isopropylacrylamide) (PNIPAm), which

undergoes a reversible phase transition (LCST) in water

around 32–34°C (Schild, 1992). Below the LCST the polymer

is soluble and swollen and above the LCST it rapidly collapses

(Dong and Hoffman, 1986), releasing encapsulants. With initial

collapse, water and the drug are expelled in a burst, followed by a

slower diffusion of the drug from the shrunken gel in what is

defined as pulsatile release (Moghanjoughi et al., 2016). PNIPAm

has been of particular interest for biomedical applications

because its LCST is close to body temperature of 37°C. To

further tune its response, the LCST of PNIPAm can be

adjusted by copolymerization with more hydrophilic
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monomers that alter swelling/collapse behaviors (Moghanjoughi

et al., 2016). Collapse kinetics can be enhanced by grafting chains

of either free PNIPAm or poly (ethylene glycol) PEG to cross-

linked PNIPAm gels (Kikuchi and Okano, 2002).

2.4.2 pH-responsive CRSs
Another widely studied category of smart release CRSs relies

on pH changes to induce material conformational or phase

changes. This pH-responsive drug release can occur based on

biological pH variations found throughout the body, such as in

the gastrointestinal tract or via locally induced pH changes, such

as those found in the tumor microenvironment or cellular

lysosomes (Gupta et al., 2002). pH-responsive systems are

typically composed of polymers or polymer networks,

i.e., hydrogels, that display large numbers of ionic side

(pendant) groups (Moghanjoughi et al., 2016). Some of the

most commonly studied ionic polymers include poly (acrylic

acid) (PAA), poly (methacrylic acid) (PMAA), poly

(ethyleneimine) (PEI), poly (amidoamine) (PAMAM), poly

(diethylaminoethyl methacrylate) (PDEAEMA), and poly

(dimethylaminoethyl methacrylate) (PDMAEMA) (Peppas

et al., 2013; Moghanjoughi et al., 2016) (Figure 3). In aqueous

media of the appropriate ionic strength and pH, the pendant

groups ionize, changing their hydrophobicity/philicity and

therefore water solubility. This can induce material collapse/

swelling enabling on-demand drug release (Peppas et al., 2013).

Anionic polymers swell at high pH, whereas cationic polymers

swell at low pH. Swelling is caused by the presence of mobile

counter-ions that electrostatically balance the fixed

charges—even with small changes in pH, the shift in osmotic

pressure of the counter-ions can lead to significant changes in the

water content and mesh size of the ionic polymer network

(Peppas et al., 2013).

2.4.3 Enzyme responsive CRSs
Enzymatic-responsive CRSs are typically based on enzyme-

substrate systems (Mann et al., 2001). The substrate, consisting of

a cleavable peptide, protein, biomolecule, or chemical molecule,

FIGURE 3
Chemical structures of synthetic polymers commonly used as smart release systems, including poly (N-isopropylacrylamide) (PNIPAm), poly
(acrylic acid) (PAA), poly (methacrylic acid) (PMAA), poly (diethylaminoethyl methacrylate) (PDEAEMA), poly (dimethylaminoethyl methacrylate)
(PDMAEMA), poly (amidoamine) (PAMAM), and poly (ethyleneimine) (PEI).
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is incorporated into a polymeric material. When the enzyme is

present, it acts on the substrate, cleaving it. Similar to

hydrolytically degradable materials, this increases the material

pore size, enhancing diffusion rates. However, in contrast to these

systems, cleavage and therefore diffusion only takes place (or is

increased) when the enzyme is present. Examples of this

approach include hydrogels responsive to the presence of

matrix metalloproteinases (MMPs) commonly secreted by

migrating cells (Mann et al., 2001; Leight et al., 2013) and

glucose responsive systems that release insulin (Brown et al.,

1986). Hydrogels employed as host matrices for substrates are

typically composed of inert, biocompatible materials, such as

poly (ethylene glycol) or alginate.

3 The potential for controlled release
systems in agriculture

The long history of biomedical CRSs can inform agricultural

applications, which would benefit from enhancements in

controlled delivery. Agricultural inputs are generally

categorized as fertilizer or pesticides, and are applied in

millions of tons worldwide each year (Food and Agriculture,

2022). Reducing these inputs has long been desirable as they 1)

require fossil fuels for production, 2) increase farm expenses, 3)

can have off target effects in the farm field (e.g. (Matsuda et al.,

2020; Meena et al., 2020; Siviter and Muth, 2020; Raven and

Wagner, 2021)) and 4) can leave the field in water or as a gas

resulting in nutrient overloading in waterways (eutrophication)

or increases in atmospheric greenhouse gases. Current nutrient

and pesticide applications tend to be untargeted and reactive.

This is for good reason: farmers frequently cannot detect nutrient

deficiencies or pathogens until after a crop plant has detected it

and failed to handle it. Farmers identify this failure in crop plants

when they observe disease symptoms and changes in growth rate

or leaf coloration indicative of nutrient deficiencies. Thus,

farmers and land managers are gaining information about

issues in their systems almost third hand. Precision farming

aims to reduce time to detection by gaining information before or

concurrently with the plant (e.g., via soil nutrient testing or

advanced imaging); however, this often requires significant

expense (e.g., multiple soil tests or purchasing imaging

equipment). By contrast, if engineers could develop controlled

release systems (CRSs) responsive to organisms in the

environment, farmers could potentially target nutrient

deficiencies or pathogens before they threaten the crop or yields.

Whereas agricultural inputs are numerous, here we focus on

the most abundant classes: nitrogen (N) and phosphorus (P)

fertilizer and pesticides targeting bacterial and fungal pathogens

and herbivores. Next to carbon, N is the nutrient most in demand

by all living organisms. N is needed to produce the building

blocks of life (e.g., nucleic acids, amino acids, and proteins), and

most N in aboveground living organisms is sourced from plants.

To provide N for crops, worldwide in 2019, 107 million tons of N

fertilizer were applied to agricultural fields (Food and

Agriculture, 2022). Yet, only an estimated 46% of applied N is

utilized by crop plants (Zhang et al., 2021a). Much of the

remaining 54% is converted by soil microbes into other forms

of N, including gasses such as nitrous oxide (N2O) that make

significant contributions to global change.

Following N, P is considered the second most limiting

nutrient for crops. In 2019, 43 million tons of phosphate were

added to agricultural settings worldwide (Food and Agriculture,

2022), but less than half of this applied phosphate reaches crop

roots (Syers et al., 2008). Broad phosphate application

recommendations are high despite variations in soil ability to

retain phosphorus (P) because of geochemical, biological, and

hydrological characteristics (Kleinman, 2017). Excess P can leave

agricultural systems via run-off, and persist long term in

waterways (Powers et al., 2016) and sediments, resulting in

long term patterns of eutrophication, i.e., toxic algal blooms,

and poisoned water (Schindler, 2012). Research to mitigate P

application has focused on Ecosystem Service payouts

(Macintosh et al., 2019) and plant breeding for increased P

use efficiency (e.g. (Schindler, 2012; de Souza et al., 2020)).

Similarly, worldwide 969,061 tons of fungicide and bactericide

and 698,169 tons of insecticides were added to agricultural

settings in 2019 (Food and Agriculture, 2022). All of these

agrochemicals have non-target effects. Like P, fungicides

(Zubrod et al., 2019; de Souza et al., 2020) can leave

agricultural systems via run-off and persist in waterways and

sediments (Schindler, 2012; de Souza et al., 2020). Additionally,

fungicides frequently persist in soil long term, and therefore are

likely having non-target effects on soil organisms both good and

bad (Silva et al., 2019). Insecticides and bactericides also have

non-target effects that can lead to the loss of beneficial insects and

soil microbes (e.g. (Matsuda et al., 2020; Meena et al., 2020;

Siviter and Muth, 2020; Raven and Wagner, 2021)).

Thus, there are significant opportunities for CRSs in

agriculture to manage delivery of nutrients, like P and N,

and pesticides. However, in addition to compound delivery,

agricultural CRSs also afford the opportunity to manage soil

water content, an application more specific to this field (Chu

et al., 2006; Mazloom et al., 2020). Soil water content

influences the growth of crop plants and soil organisms, as

well as the effectiveness of fertilizer and pesticide

applications. Water can be introduced into agricultural

systems naturally (e.g., via rainfall) or via irrigation. High

soil water contents lead to low-oxygen environments that

inhibit the growth of plants and aerobic microorganisms and

contribute to fertilizer or pesticide run-off, leading to off-

target effects. In contrast, low soil water content leads to

drought and can limit the delivery of fertilizers or pesticides

that move through soil water. Therefore, proper maintenance

of soil water content is crucial for improved crop yields and

water use efficiencies.
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CRSs provide opportunities to meet these challenges. The

most common CRS design consists of a matrix material, usually

polymer or lipid, that encapsulates the compound(s) to be

delivered into the aqueous phase. The encapsulant can be

water soluble or insoluble and can be a small molecule or a

large nanoparticle. Typically, release is achieved by passive

diffusion through the porous matrix or hydrolytic

degradation, although many advanced designs are possible.

The advantages of CRSs are numerous. They protect the

encapsulant from degradation and off-target uptake; they can

enhance diffusion of the encapsulant, enabling it to reach its

target before activation; and, they control access to the

encapsulant, delivering it at a desired time and rate.

Application of CRSs to agriculture could reduce fertilizer and

pesticide applications, lowering costs and improving

environmental sustainability, and could also enhance water

management. However, CRSs have primarily been designed

for biomedical applications.

4 Potential agricultural CRS targets

The agricultural milieu is a complex environment with

many contributors that can provide both positive and

negative impacts (Figure 4). Each of these serves as a

potential target for CRSs. In addition, the soil itself is a

multiphase mixture that can influence local biology

through changes in pH, hydration, and porosity, and CRSs

also offer the potential to alter some of these characteristics.

Here, we review key potential targets for agricultural CRSs

(Figure 5).

4.1 Plants

Plants are obvious potential targets for CRSs, as most

agricultural inputs target plants. Farmers add fertilizer to

plants to improve plant growth, and spray plants with

herbicides and pesticides to improve their disease and

herbivore resistance. Biologists know more about crop plants

than most of the other organisms in agricultural systems. For

many of the more common agricultural and horticultural crops,

basic root architecture (e.g. (Guo et al., 2020; Maqbool et al.,

2022; Viana et al., 2022)), chemicals exuded into the soil

(exudates) surrounding plant roots (rhizosphere) (e.g.

(Weston and Mathesius, 2013; Schmelz et al., 2014; Tsunoda

and van Dam, 2017)) are known, and biologists can manipulate

many of the underlying genetics for these traits (e.g., (Atkinson

et al., 2014; Soyano et al., 2019; Guo et al., 2020; Huang et al.,

2021). This data is available for the top crops per area cultivated

worldwide in 2020: cereals (wheat, maize, rice, barley, sorghum,

and millet), legumes (soybeans and dry beans), and oil rapeseed

(Food and Agriculture, 2022) and their close relatives. This

biological knowledge could be used to develop CRSs or to

engineer plant-CRS partnerships. However, crop and

horticultural plants are often grown in dense monocultures,

and therefore have the greatest biomass in these systems.

Thus, targeting nutrients or other inputs to plants in need

FIGURE 4
A depiction of the complexity of soil including the soil physics/structure consisting of aggregates of clay, sand, and organic matter with water
and air containing pores between them; different soil chemistry constituents (e.g., nutrients, carbon, and signaling compounds) released into the
pore spaces by plants, microbes, and other organisms; and the soil microbiome consisting of bacterial, fungal, archaeal, oomycete, protozoan, and
viral constituents that contribute to decomposition, pathogenic interactions, and beneficial interactions. Partially created using BioRender.com.
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could prove challenging if a controlled release compound could

be taken up by a near neighbor. An ideal CRS would detect plant

distress signals and release nutrients directly in response to the

plant releasing the distress signal.

4.2 Beneficial microbes

Beneficial soil microbes are another potential target for CRSs.

There are many types of beneficial microbes, including plant

growth promoting rhizobacteria (PGPR), plant growth

promoting fungi (PGPF), endophytes, entomopathogens,

rhizobia, and arbuscular mycorrhizal (AM) fungi. These

microbes play different roles in soil that benefit plants,

including delivering nutrients to host plants, fixing

atmospheric nitrogen, decomposing organic matter,

suppressing plant pests and diseases, and improving soil

structure (Hayat et al., 2010). For example, rhizobia are

beneficial soil bacteria that associate with leguminous

crops and fix nitrogen for host plants (Peter et al., 1996).

Phosphate solubilizing bacteria, including a wide range of

species from the genera Pseudomonas, Bacillus and

Rhizobium, can turn immobile mineral P into its soluble

form that is absorbable by plants (Chen et al., 2006). Some

species in Pseudomonas and Bacillus also control pests and

pathogens (Pineda et al., 2010; Pineda et al., 2013; Pieterse

et al., 2014; Shikano et al., 2017; Gruden et al., 2020). Thus,

promoting beneficial soil microbes has the potential to

enhance crop growth.

To our knowledge, there are no current CRSs targeting

beneficial soil microbes. To demonstrate the potential of CRSs

for beneficial microbes, we provide an example using arbuscular

mycorrhizal (AM) fungi as a case study. AM fungi are a group of

obligate symbionts in Glomeromycota that can associate with

over 80% of vascular plants. They provide multiple benefits to

host plants and receive photosynthetic carbon in return. AM

fungi can promote plant growth by providing soil mineral

nutrients to host plants, improving plant biotic and abiotic

stress tolerance, and producing secondary metabolites to

promote plant growth or improve soil structure (Bennett and

Groten, 2022). Thus, AM fungi have significant effects on

phytobiomes (the plant along with all other organisms living

in, on, or around the plant) in both natural and agricultural

systems.

Sustainable agriculture would benefit from a greater reliance

on AM fungi for nutrient delivery to crops, but promoting the

AM fungal-plant interaction in agriculture has proven difficult in

the face of tillage, heavy fertilization, and monocultures (Bennett

et al., 2013). However, CRSs could be used to encourage AM

fungal-plant interactions. For example, CRSs could be designed

to release signaling compounds, such as strigolactones and

flavonoids, that attract AM fungi to colonize host plants.

Strigolactones are phytohormones that can induce AM fungal

spore germination, hyphal branching, and production of chitin

FIGURE 5
(A) Potential targets of controlled release systems (CRSs) in agriculture include plant roots and the beneficial microbes and pathogens found
throughout the rhizosphere adjacent to plant roots and in bulk soil. CRSs may take many forms such as hydrogels (i.e., water swollen polymer
networks) and nanoparticles that could be implemented in films, inserts, or as components of (B) seed coatings. Examples shown are of Example of
tomato and Microlaena stipoides (Australian grass) coated seeds. (A) Created using Biorender.com. (B) Reprinted without edit under Creative
Commons license from Pedrini, S., K. Bhalsing, A.T. Cross, and K.W. Dixon, Protocol Development Tool (PDT) for seed encrusting and pelleting. Seed
Science and Technology, 2018. 46 (2): p. 393–405 (Pedrini et al., 2018).

Frontiers in Biomaterials Science frontiersin.org08

Lee et al. 10.3389/fbiom.2022.1011877

http://Biorender.com
https://www.frontiersin.org/journals/biomaterials-science
https://www.frontiersin.org
https://doi.org/10.3389/fbiom.2022.1011877


oligosaccharides which stimulate the response of host plants

(Lanfranco et al., 2018a). Flavonoids released by plants also

promote the colonization of both rhizobia and AM fungi

(Steinkellner et al., 2007; Oldroyd, 2013). General release of

these compounds into the soil could have negative effects,

such as inducing AM fungal spores to germinate without a

suitable host. However, if release of strigolactones and

flavonoids from CRSs could be coupled with plant release of

these compounds, the plant-derived signal to enhance plant-

fungal associations could be boosted. Thus, CRSs could promote

the AM fungal-plant interaction and sustainable agriculture by

reducing fertilizer needs.

4.3 Antagonistic microbes

Antagonistic microbes and herbivores have long presented

challenges in agriculture and horticulture. A recent estimate of

crop losses to pests and pathogens in five of the major crops

worldwide (wheat, rice, maize, potato, and soybean) revealed

losses ranging from 8–41% and with higher losses in areas of

food insecurity (Savary et al., 2019). Mechanisms for

controlling pests and pathogens are thus of significant

interest. Soils host a number of antagonistic microbes,

many of which infect a wide range of plants or have

dramatic impacts on important crop species. Here, we

highlight some of the most damaging species found in soil

as potential targets for CRS management. Botrytis cinerea,

which causes grey mold, leads to significant losses because of

its wide host range and host structural use (e.g., stems, leaves,

and fruits). Among above and belowground pathogens, B.

cinerea is the second most important fungal pathogen

worldwide (Dean et al., 2012). Another potential target is

the fungal pathogen Fusarium oxysporum, which can infect

over 100 plant hosts, also has a wide host structural use, and

frequently causes significant losses in horticultural systems

(Michielse and Rep, 2009). Among above and belowground

pathogens, F. oxysporum is considered the 5th most important

fungal pathogen worldwide (Dean et al., 2012). Another

potential target, the oomycete pathogen Phytopthera

infestens, is the causal agent of late blight in potatoes—the

pathogen known to have caused the Irish Potato famine in the

mid-1800s. P. infestans can infect multiple plant hosts in the

Solanaceae (i.e., nightshade) family; is found above and

belowground, and can persist in soil as oospores for many

years. To this day, farmers have few effective means of

eliminating late blight once it has infected a potato field.

The most effective means of controlling P. infestans is to

grow resistant cultivars. All of these pathogens present

opportunities for CRS management. CRSs could be

designed to release fungicides or pesticides upon detection

of metabolites associated with these pathogens; thereby,

controlling the pathogen in soil before it reaches a host plant.

5 Commercial and emerging
agricultural controlled release
systems

5.1 Applications

5.1.1 Nutrient and pesticide delivery
Nutrient delivery, particularly to plants, has been a primary

focus of the agricultural controlled release market. The first CRS

for the agricultural market was Osmocote (Scotts Company),

introduced by the Archer Daniels Midland company in 1960 for

nutrient delivery (Lafaille et al., 2018). These fertilizers are

comprised of plant nutrients in an encapsulated form that

delays availability for plant uptake, therefore extending the

window in which the fertilizer is available for use after a

single application (Fu et al., 2018). The use of CRS

encapsulated fertilizers has many potential benefits, including

delivery of nutrients to crops, maintaining water availability, and

reducing greenhouse gas emissions by limiting the availability of

applied nitrogen for denitrification and N2O production

(Jariwala et al., 2022). In addition, by controlling fertilizer

release into soil, CRS encapsulated fertilizers can prevent

shifts in soil pH, as overfertilization leads to acidification

(Jariwala et al., 2022). Controlled release fertilizers like

Osmocote operate by limiting access to water to limit

encapsulant solubilization or through slow coating hydrolysis

to limit release over time. Coating fertilizers with multiple

materials, including CRSs, is a growing area (Jariwala et al.,

2022; marketresearch, 2022a); and the industrial leaders in this

area are BASF Corporation, DuPont Pioneer, and Invista. New

products in this market include U-COAT (Bio-on), a controlled

release coating of urea fertilizer produced using proprietary

bioplastic. Graphene based nanocarriers are also gaining

popularity for the delivery of both fertilizers and pesticides

(Bhattacharya et al., 2022). Seed coatings are another fast

growing sector of agricultural CRSs (Farooq et al., 2012;

Pedrini et al., 2017; Afzal et al., 2020). Seed coatings are used

to deliver nutrients, pesticides and fungicides, and beneficial

microbes to germinating seeds (Farooq et al., 2012; Pedrini

et al., 2017; Rocha et al., 2019; Afzal et al., 2020; Cardarelli

et al., 2022). Engineered nanomaterials are also being used as seed

treatments (De La Torre-Roche et al., 2020) and pesticides

(marketresearch, 2022b). However, most of these

nanomaterials are not used in combination with CRSs.

Controlled release pesticides, particularly incorporating

nanomaterials, are also a growing agricultural sector (Chaud

et al., 2021; Hou et al., 2021), but they lag behind other CRSs

because of ecotoxicology concerns and the potential to promote

pesticide resistance. These products vary in composition, but

often comprise a smaller part of the market than other

formulations as the controlled release aspect increases the cost

of the product (Li et al., 2021). The first pesticide CRS was

microencapsulated methyl parathion introduced by the Pennwalt
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Corporation in 1974, and the majority of products currently on

the market are microencapsulated (Li et al., 2021). Advances in

this area include the use of nanoparticles as disease sensors

(Singh et al., 2022) (that could be partnered with controlled

release systems, see below theranostics). We see an opportunity

for the expansion of CRSs for targeted pesticide release in soil and

on crop plants, particularly in combination with nanotechnology.

5.1.2 Modulating soil water content
In addition to agrochemical delivery, controlling hydration is

a target for agricultural CRSs. This application may be unique to

agricultural systems in that water itself is the delivered molecule.

CRSs, and in particular hydrogels, have been used in agricultural

to provide water in drought conditions (Chaudhary et al., 2020;

Mazloom et al., 2020; Gao et al., 2021). Hydrogel carriers,

comprised mostly of water (Ullah et al., 2015), have been

evaluated for their ability to retain soil water and release it

when soil gets dry (Romero et al., 2016). Also, hydrogels can

deliver water and plant nutrients (N or P) into soil

simultaneously, making them more efficient carriers

(Dhanapal et al., 2021; Hu et al., 2021). Hydrogels can release

water for 6–30 days, depending on the soil type (Chaudhary et al.,

2020; Zhang et al., 2021b; Dhanapal et al., 2021). This approach

has longer impact than most irrigation methods and could save

human, equipment, and energy costs. Also, CRSs can be “smart”

and designed to release water under conditions other than soil

humidity (Azevedo and Bertonha, 2008; Fujita et al., 2022). Thus,

CRSs may be designed as a constant, economical, and precise

water supply, complementary to traditional agricultural

irrigation systems, while delivering fertilizers or pesticides

simultaneously. Furthermore, CRSs may be able to deliver

water differently to disparate targets in soil, and be applied to

different crop rotations or intercropping systems.

5.2 Materials for agricultural CRSs

As discussed above, synthetic polymers, such as PLGA, pose

potential toxic hazards when applied in agriculture. As such,

natural polymers have garnered much interest because of their

inherent biocompatibility and lower potential for environmental

toxicity. Of these, cellulose, chitosan, and alginate are the most

commonly studied for mutual biomedical and agricultural CRS

use. These materials are abundant, low-cost, and have high

biocompatibility. In addition, other plant-derived materials,

such as zein, have been more popular in agricultural CRSs

with more limited use in biomedical settings. Here, we discuss

the most common agricultural CRS materials (Figure 6).

5.2.1 Cellulose
Cellulose is the most abundant biopolymer and is mostly

found as the main component in lignocellulosic plants and

natural fibers including cotton and linen (Ghorbani et al.,

2018). Celluloses are polysaccharides comprised of repeating

FIGURE 6
Chemical structures of biopolymers commonly used in agricultural controlled release systems, including cellulose, chitosan, alginate, and zein.
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glucose units with a high degree of crystallinity. The intricate,

multi-level, hierarchical structure of cellulose provides it with

functionality, flexibility, and a high strength-to-mass ratio,

making it attractive for biomedical applications (Seddiqi et al.,

2021). Whereas pure cellulose has less favorable properties, such

as its insolubility in water, substitution of its native hydroxyl

groups with alternative functional groups allows for modulation

of its properties (Seddiqi et al., 2021). Indeed, water-soluble

cellulose derivatives methyl cellulose (MC), carboxymethyl

cellulose (CMC), and hydroxypropyl cellulose (HPC) have

been used in tissue engineering, wound healing, and drug

delivery (Seddiqi et al., 2021). These materials also have cross-

over use as agricultural CRS matrices. Cellulose-based

superabsorbent hydrogels have been explored as soil

conditioners, as these hydrogels can hold water in capacities

of hundreds to thousand times more than their dry mass. For

example, CMC and acrylamide composite hydrogels exhibited up

to 6,000% swelling with water retention up to 1 month (Ibrahim

et al., 2007). Moreover, the inherent biodegradability of cellulose

via cellulases secreted by the soil microbiome (Béguin and

Aubert, 1994) and lack of environmental toxicity (Seddiqi

et al., 2021) make cellulose an ideal candidate for agricultural

applications.

5.2.2 Chitosan
Chitosan is the secondmost abundant natural polysaccharide

and is obtained by partial deacetylation of chitin, which is mainly

found in the exoskeletons of crustaceans (Ramli, 2019). Chitin

consists of repeating N-acetyl glucosamine units, whereas

chitosan is generated by partial deacetylation to yield

repeating units of N-acetyl glucosamine and glucosamine. The

conversion of water-insoluble chitin to chitosan confers

solubility in dilute acid solutions. Chitosan is more commonly

employed as it is biodegradable, non-toxic, and has some

antibacterial properties (Divya and Jisha, 2018). Additionally,

as a cationic polymer, chitosan enables bio-adhesion, cellular

transfection, and possesses anti-inflammatory properties,

making it a highly attractive biopolymer for biomedical

applications (Bandara et al., 2020). Chitosan has been used

extensively in contact lenses, wound dressings with FDA

approval, and in drug delivery as a carrier for proteins and

biomolecules (Jiang et al., 2014). Chitosan has also been

employed in environmental engineering to remove heavy

metals from industrial wastewater because of its chelating

properties, and has also been used in cosmetics because of its

antimicrobial and antifungal properties (Jiang et al., 2014).

Chitosan has direct biological activity on plants, enhancing

their metabolic response and pathogen defense (El Hadrami

et al., 2010), but has also been used widely for controlled

release of fertilizers and pesticides (Divya and Jisha, 2018;

Kumaraswamy et al., 2018), and to a lesser extent for

managing abiotic stress in plants (Bandara et al., 2020). The

degradation of chitosan largely depends on the degree of

deacetylation, and the in vitro degradation of chitosan via

oxidation or enzymatic hydrolysis has been well-established.

In living organisms, chitosan is likely degraded by lysozymes

to non-toxic oligosaccharides that can be excreted (Szymańska

and Winnicka, 2015). Chitosan is also readily biodegraded in

agricultural settings, as evidenced by complete degradation of

chitosan films in industrial compost, gardening soil, and vineyard

soil within 14 days (Oberlintner et al., 2021).

5.2.3 Alginate
Alginates are naturally occurring anionic polysaccharides

derived from kelp or brown algae that are biocompatible,

biodegradable, non-toxic, and readily form gels. Whereas

alginic acid is insoluble in water, its monovalent salts, such as

sodium alginate, are water-soluble and form viscous solutions

that can readily interact with polyvalent cations (e.g., calcium) to

form ionic hydrogels (Zhang et al., 2021c). Such alginate

hydrogels have been extensively explored for biomedical

applications like wound healing (moist wound dressing), drug

delivery (encapsulation of active substances for controlled

release), and tissue engineering (scaffolding material) (Zhang

et al., 2021c). In agriculture, alginate has been used to

encapsulate, protect, and release growth-promoting

microorganism soil inoculants (Martínez-Cano et al., 2022).

Alginate has also been used to deliver nutrients (Fan et al.,

2019). However, it is more commonly applied as a co-

polymer than in its pure form (Al Rohily et al., 2020). For

example, anionic sodium alginate and cationic chitosan have

been combined to form copolymers with improved mechanical

properties (Iwasaki et al., 2004). Alginate-chitosan beads have

been used to encapsulate micronutrients, increasing their

stability against temperature, moisture, and acidic pH changes

(Han et al., 2008). Degradation of alginate occurs via partial

oxidation and strongly depends on the alginate degree of

oxidation, temperature, pH, and molecular weight (Lee and

Mooney, 2012). Interestingly, degraded alginate can promote

plant growth and even provide protection against salinity stress

(Hien et al., 2000; Salachna et al., 2018).

5.2.4 Zein
Zein is the predominant protein found in corn and has been

widely used in biodegradable plastics, fibers, and textiles (Shukla

and Cheryan, 2001). Zein is biocompatible, biodegradable,

relatively cheap to produce, and is considered generally

regarded as safe by the FDA (Kacsó et al., 2018).

Furthermore, zein is inherently hydrophobic and can self-

assemble into nanoparticles, making it an attractive delivery

vehicle. While zein has been used for biomedical applications

such as drug delivery and tissue engineering, it has not been as

widely used compared to cellulose, chitosan, or alginate. Instead,

zein has been of more interest in agriculture for encapsulation of

food products such as essential oil components for increased

stability (Chen et al., 2015) and more recently as pesticide
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carriers. While pesticides suffer from poor stability and rapid

degradation, encapsulating repellents with zein nanoparticles

exhibited effective protection from UV degradation, decreased

phytotoxicity, and served as effective barriers against pests

(Oliveira et al., 2018).

5.3 Manufacturing methods

The most common formulations for agricultural CRS are

micro-capsule suspensions encapsulating agrochemicals (Hack

et al., 2012). Emerging technologies include nanoparticles

comprised of polymers, starches, and polysaccharides

(Moulick et al., 2020; Shakiba et al., 2020; Vega-Vasquez

et al., 2020) (see below). Both are manufactured via similar

processes. Given that agricultural applications will likely

require kg-scale quantities of these materials in a given field

application, it is crucial that scalable methods for their

manufacture exist. Traditional methods have focused on

bottom-up approaches that assemble molecules at the

molecular scale, offering excellent control over final size and

shape. However, these methods are limited in their ability to

generate large quantities and the slow kinetics of assembly.

Hence, there has been a recent shift in academic focus

towards rapid and scalable approaches that are more suitable

to the high volume, low cost demands of agricultural CRSs

(Figure 7). In this section, we focus discussion on common

methods of micro/nanoparticle synthesis amenable to current

and emerging agricultural CRSs.

5.3.1 Nanoprecipitation
Nanoprecipitation, also known as solvent displacement or

anti-solvent precipitation, is a facile technique for producing

micro/nanoparticles. The technique was first reported by Fessi in

FIGURE 7
Methods for forming nanoparticle controlled release systems (CRSs): (A) batch nanoprecipitation in large, stirred vessels, (B) flash
nanoprecipitation in a confined impinging jet mixer, (C) batch emulsion-evaporation techniques, and (D) batch ionotropic gelation for crosslinking
charged matrices.
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1989 to produce drug-loaded polymer nanocapsules (Fessi et al.,

1989). Over the years, nanoprecipitation has gained prominence

because of its simplicity of operation and low energy

requirements. In nanoprecipitation, dissolved solutes are

precipitated as particles through rapid change in solvent

quality generated by the addition of miscible anti-solvent or

ionic, pH, or temperature manipulation (Hornig et al., 2009;

Zhou et al., 2017; D’Addio and Prud’homme, 2011; Zhu et al.,

2010) (Figure 7A). This approach has been used primarily to

generate CRSs for pesticide delivery (Boehm et al., 2003; Yearla

and Padmasree, 2016). CRS formulations offer many benefits

over their commercial counterparts, including enhanced

penetration across the leaf (Boehm et al., 2003), increased

systemic delivery to the plant (Boehm et al., 2003), and higher

efficacy (Yearla and Padmasree, 2016).

Toward agricultural implementation, nanoprecipitation

approaches can be translated to commercial scales through a

modified approach known as flash nanoprecipitation (FNP)

(Johnson and Prud’homme, 2003; Feng et al., 2019a). FNP

converts nanoprecipitation from a batch to continuous

process by the addition of cross flows in a confined

micromixer geometry (Figure 7B), such as the confined

impinging jet mixer (Han et al., 2012), multi-inlet vortex

mixer (Liu et al., 2008), or jet mixing reactor (Ranadive et al.,

2019). FNP can generate production rates of 3–10 kg/day using

an apparatus that can fit onto a standard lab workbench (Lim

et al., 2014; Feng et al., 2019b). Production can also be enhanced

by scale-out, running parallel FNP unit operations to maximize

throughput (Sealy, 2021). Similar to nanoprecipitation, FNP has

been used to generate agricultural CRS delivering pesticides

(Chen et al., 2018a; Chun and Feng, 2021), revealing similar

performance to other manufacturing methods (Chen et al.,

2018a) and improved performance against unencapsulated

compounds (Chun and Feng, 2021).

5.3.2 Emulsion evaporation
Emulsion methods are based on self-assembly phenomena

that occur at the oil-water (O-W) interface, and are the most

common CRS manufacturing method in current use (Hack et al.,

2012). In emulsion-evaporation, agrochemicals, CRS matrices,

and other organic components (e.g., excipients) are dissolved in a

water-immiscible, volatile organic solvent, such as

dichloromethane, chloroform, or ethyl acetate. The oil phase

is emulsified with a water phase containing surfactants using an

ultrasonic probe or a high-speed homogenizer (Figure 7C). After

a O-W emulsion forms, the organic solvent is removed by

evaporation. This leads to micro/nanoparticle formation via

self-assembly. Emulsion-evaporation has been widely reported

in the academic literature (Zhang et al., 2013; Kumar et al., 2014;

Pereira et al., 2014; Liang et al., 2017; Shen et al., 2018; Salinas

et al., 2021; Mendez et al., 2022), primarily for pesticide delivery,

and shows similar encapsulation efficiency to nanoprecipitation

approaches (Zhang et al., 2013). However, application is limited

by the energy-intensive homogenization/sonication process and

the need for additional solvent removal steps. Furthermore,

many of the organic solvents employed may pose ecological

toxicity if not removed, which limit enthusiasm for this

approach.

5.3.3 Ionotropic gelation
Ionotropic gelation involves CRS formation through

crosslinking or electrostatic interactions between a charged

matrix and an oppositely charged ionic species (Figure 7D).

Common examples include crosslinking of sodium alginate with

calcium ions or chitosan crosslinking with sodium

tripolyphosphate; both are natural polymers that have been

studied for agrochemical delivery. This approach has been

used to generate CRSs for delivery of a wide variety of

agrochemicals, including plant regulators (Santo Pereira et al.,

2017; Valderrama et al., 2020), insecticide metabolites

(Namasivayam et al., 2018), herbicides (Maruyama et al.,

2016; Ghaderpoori et al., 2020), and fungicides (Maluin et al.,

2019). These materials provide sustained release that can extend

activity of agrochemicals in the field (Artusio et al., 2021).

5.4 Emerging agricultural controlled
release systems

5.4.1 Nanoparticles
One of the largest areas of growth for agricultural CRSs has

been the explosion of nanoparticle delivery devices, which have

also been widely used for medical drug delivery (Mura et al.,

2013). Nanoparticles can be comprised of natural or synthetic,

organic or inorganic materials with one aspect from 1–100 nm.

Typical technologies for controlled release are ~20–80 nm in

diameter. Their small size is a significant advantage as these small

particles can more readily diffuse through soils. Furthermore,

nanoparticle surfaces can be modified (e.g., charge neutral) to

reduce non-specific accumulation. Nanoparticles protect their

encapsulated compounds and increase solubility of poorly

soluble compounds (Moghanjoughi et al., 2016). Nanoscale

interactions also provide an opportunity to manage soil

organisms at their length scale, before they interact with the

crop. Thus, nanoparticles could reduce agrochemical non-target

uptake or degradation, reducing costs and environmental

impacts.

Nanoparticle CRSs can be made from a variety of materials

(Vega-Vasquez et al., 2020), but polymer materials are the most

popular. Polymers can be natural (e.g., cellulose, chitosan) or

synthetic (e.g., polyacrylamide) materials (Aouada et al., 2011),

and in agricultural applications natural polysaccharides are most

commonly employed (Barclay et al., 2019). Macroscale polymer

materials have been used for fertilizer, pesticide, and herbicide

delivery, as soil conditioners, and to increase water absorbency

(Milani et al., 2017). These materials are biodegradable (e.g., by
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chelation of alginate crosslinking ions (Ullah et al., 2015) or

enzymatic oxidation and photocatalyzed Fenton reactions in

polyacrylamide materials (Stahl et al., 2000)), non-toxic (Chen

et al., 2018b), and can benefit soil by promoting drought

tolerance via increased water absorption and by carbon

fixation via reduced anti-oxidant activity (Islam et al., 2011).

Nanoparticle versions of these materials are generated via self-

assembly of individual chains into complexes that can have

disordered or highly defined structures (Mai and Eisenberg,

2012). Although similar phase transformations also manifest

in macroscale materials, unique structures such as micelles

and liposomes emerge at the nanoscale that may increase

solubility or afford better protection for agrochemicals.

However, despite their promise, translation of nanoparticle-

based formulations to commercial applications is limited by

the lack of adequate toxicity studies, poorly defined regulatory

structure, consumer distrust, and other economic feasibility

roadblocks (Pérez-de-Luque, 2017).

5.4.2 Materials derived from agricultural waste
Another area of rapid growth is the use of materials derived

from agricultural waste as CRS matrices, toward a circular

agricultural economy. Chitin and chitosan, already common

biomedical CRSs (Shen et al., 2016), are attracting increased

attention because of their environmental compatibility. Chitin

and chitosan are derived from the shells of marine crustaceans,

generating up to 80,000 waste tons per year (Divya and Jisha,

2018). Other waste polymers include those comprising plant cell

walls, such as celluloses, hemicelluloses, and lignin. These

materials are derived from woods and grasses, and their

biomass waste is estimated at 5 billion tons per year (Naidu

et al., 2018). Celluloses comprise 30–50% of this waste, with the

remainder hemicellulose (15–35%) and lignin (10–20%). Like

celluloses, hemicelluloses are polysaccharides, but are comprised

of a greater variety of sugars, are non-crystalline, and have

shorter chains with more branching. Lignin is composed of

phenylpropane molecules displaying a variety of linkages

(Naidu et al., 2018). All of these materials are hydrophobic

and require processing to generate pure feedstocks for

downstream applications. However, because of their derivation

from plants, they can usually be degraded by enzymes in the soil

microenvironment, making them an attractive option for

agricultural CRSs (Yadav et al., 2022). Materials commonly

employed include hydroxypropyl methylcellulose (HPMC)

(Chen and Chen, 2019), carboxymethyl cellulose (CMC)

(Elbarbary and Ghobashy, 2017; Fujita et al., 2022),

ethylcellulose (EC) (Sopeña et al., 2011), and lignin (Mazloom

et al., 2020; Mendez et al., 2022).

Aside from bio-polymers, other common waste materials

targeted for agricultural CRSs include zein (Salinas et al., 2021),

the primary protein of the maize plant, and biochar (Sashidhar

et al., 2020). Given the growing global focus on sustainability, it is

likely that interest in converting waste materials to CRSs will

continue to grow. Because the amounts of material required for

agricultural CRSs are much higher than those needed for

biomedical therapy (e.g., treating a field vs. a patient), the

low-cost and biocompatibility of these materials makes them

an attractive option. However, it will be important to control for

variability in feedstock composition and develop sustainable

manufacturing techniques to process these materials.

6 Challenges in agricultural
controlled release

Current agricultural CRSs focus primarily on nutrient or

pesticide delivery, and most systems employ passive or

degradational release mechanisms that are not targeted to

changes in the soil microenvironment. Thus, we believe there

are significant opportunities to adapt advances in biomedical

CRSs to agriculture. However, translating biomedical CRSs to

agriculture is not necessarily straightforward. Whereas many

challenges are similar in both systems, the scale of application,

cost, commercial considerations, and the uniquemilieu of the soil

microenvironment, make agriculture CRSs a distinct class of

materials. In this section, we outline challenges of translating

biomedical CRSs to agriculture, highlighting shared and

dissimilar challenges that must be surmounted.

One of the biggest differences between biomedical and

agricultural CRSs is cost and scale. Whereas healthcare

applications typically require mg to g scales with a high cost

tolerance, agricultural applications require kg to ton scales with

very low cost tolerance. World annual fertilizer (N, P and K)

consumption is 146.4 kg per hectare of arable land (Food and

Agriculture, 2022). Depending on the fertilizer type, the average

cost is $227–333 per metric ton (data from 2017–2020) (the

World Bank Group Commodity Markets Outlook, 20222022),

resulting in the average annual cost for fertilizer applications of

$33.2–48.7 per hectare of arable land. NPK fertilizers are

available as granular solid or liquid formulation, and farmers

employ various sprayer systems for field applications, with

multiple application cycles throughout the year depending on

crop and land requirements. Given 166 million hectares of

agricultural land in US alone, there is an annual demand of

~24.2 million tons of fertilizer. Agricultural CRSs will need to be

produced at the multi-ton scale and at similar price points to be

competitive with current agricultural practice. However, it is

likely that the use of CRSs would decrease the required number of

field applications and agricultural run-off, which would need to

be considered in establishing commercial viability. Regarding

scaling issues, several of the scalable nanomanufacturing

approaches discussed above offer both scale-up (larger, single

manufacturing units) and scale-out (multiple smaller

manufacturing units operating in parallel) opportunities.

Agricultural CRSs will also need to be compatible with

current agricultural application processes, such as seed
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coatings, soil inserts (horticulture), and spreaders. However, the

number of application cycles and timing would likely be altered

by the slower and/or triggered release patterns of CRSs. One

intriguing possibility is potential integration with precision

agriculture systems for release on demand from CRS depots.

In addition to cost, scale, and usability, similar to biomedical

CRSs, biocompatibility is tantamount. However, in agriculture

this encompasses a broader concept. Whereas biomedical

systems are primarily concerned with cell, tissue, and organ

level toxicity, agricultural CRSs must also consider

ecotoxicology. Of great concern is the potential for CRSs to

have negative effects on the soil ecosystem. For example,

common biomedical CRS materials, such as PEG and PLGA,

are difficult to degrade to monomers, have monomers that could

persist in soils, or can acidify soil (Plaut and Federman, 1985;

Nishu et al., 2020). Even for some currently accepted agricultural

materials (e.g., polyacrylamide), there is debate as to the long-

term environmental consequences (Chen and Chen, 2019). Toxic

degradation products from CRSs can accumulate through the

food chain, potentially including crop plants, which could impact

human consumption. Therefore, there is a need to check the

physical, chemical, and biological safety of CRS materials before

using them in agriculture.

Assuming compatibility with the soil environment, the next

challenge is the soil itself. Soil is a multi-phase media with solid,

gas, and liquid components, as well as dissolved chemicals and

organisms (Figure 4). The complexity of the soil system makes it

difficult to control. As a result, soil may decrease CRS

effectiveness. CRSs may be degraded before they reach their

targets because of changes in soil physical or chemical conditions

(e.g., local acidification). To date, most CRSs applied in

agriculture have utilized either passive release or smart release

controlled by environmental properties (i.e., temperature, pH,

and soil moisture) (Jariwala et al., 2022). The latter approach

demands environmental stability for constant and uniform

release. A small environmental change, such as a sudden rain,

a short period of extreme cold/hot weather, or human

disturbance, and could reduce CRS effectiveness. A second

challenge of the soil environment is the presence of chelators,

sometimes even the soil particles themselves, that can bind CRS

encapsulants, which are often ionic P or N forms (Marschner

et al., 2011). Thus, soil can prevent CRS contents from reaching

their targets.

After surviving physical and chemical challenges found in

soil, CRSs may encounter another challenge: non-target

organisms. Similar to the delivery of drugs in gut systems

(Fan and Pedersen, 2021), the biological diversity of the soil

microbiome may result in decreased delivery of encapsulants to

targets (Marschner et al., 2011). This could occur through a

number of mechanisms: changes in the soil environment,

enzymatic digestion, or off-target uptake of the compound.

Off-target uptake could have particularly negative

consequences on the agricultural system. If beneficial

compounds are delivered to neutral organisms, only target

organism access is impacted, but if they are delivered to

antagonistic microbes (e.g., pathogens), increased disease

incidence and decreased yields may occur. Similarly, releasing

pesticides to non-targeted beneficial microbes could reduce crop

production. To increase targeting efficiency, the composition of

the target environment (e.g., plants, soil composition, soil

microbiome) must be considered when selecting and

designing CRS materials.

However, understanding of the soil microbiome and the

chemical environment generated by root exudates and the

microbiota secretome is limited, in part by its complexity.

Organisms living in soil often have to navigate multiple

habitats (e.g., air, water, and solid media) as well as interact

with other organisms and/or find hosts. Navigation is often

mediated by the metabolome of focal organisms and

interaction with the metabolome of neighbors. For example,

plants manipulate their rhizosphere microbiome composition

via release of metabolites in their exudates (e.g. (Tsunoda and van

Dam, 2017; Vives-Peris et al., 2020; Rizaludin et al., 2021)), and

microbes communicate and compete via the release of

metabolites (Weisskopf et al., 2021; Avalos et al., 2022).

However, whereas the importance of the soil metabolome has

been established, its content is less understood. Plant

metabolomes are the most frequently studied ((Weston and

Mathesius, 2013; Schmelz et al., 2014; Tsunoda and van Dam,

2017), but knowledge is primarily limited to crop species and

model systems. The metabolomes of beneficial or pathogenic soil

microbes, which could be used to target them in situ, are not well

understood. This is further complicated by the difficulties in

culturing soil microbes—whereas microbiologists can now

culture the majority of microbes found in gut systems, the

ability to culture soil microbes lags far behind. Thus, there are

multiple opportunities for genomics, transcriptomics, and

metabolomics to contribute to expanding our knowledge of

soil organisms and identifying specific metabolites produced

by plants and microbes that could be used to improve

agricultural CRS design.

7 Translating biomedical CRS
diffusion models to agriculture CRSs

Once compatibility with the soil ecosystem has been

established, the next challenge is understanding compound

release, which is doubly challenging for agricultural CRSs.

First, the encapsulant must be released from the carrier itself

into the soil phase. Then, the encapsulant must navigate through

complex, multiphase soil media to reach its intended target.

Fortunately, many of the diffusion models developed for

biomedical engineering can be readily translated to

agricultural systems (Table 1) (Bruschi and Bruschi, 2015;

Paarakh et al., 2019; Trucillo, 2022). Many common
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agricultural CRSs consist of solid granules coated with polymers

(Guilherme et al., 2015). These materials are akin to biomedical

tablet formulations that can be described using zero order

kinetics or Hixson-Crowell models. Agriculture controlled

release is characterized by a lag period, often seen in

biomedical CRSs, followed by a period of constant release

(zero order release) when the solute concentration greatly

exceeds solubility limits, and then a gradual decay as the

carrier concentration falls below the solubility limits of the

soil media because of the declining diffusional driving force

(Hixson-Cromwell) (Guilherme et al., 2015). However,

mathematical models have also been developed specifically for

agricultural CRS (Fickian Three Stage) based on a direct solution

of Fick’s second law. These models are suitable for compositions

in which the encapsulant is a solid, initially present in large excess

relative to its solubility in the fluid phase.

Alternatively, there has been interest in developing

agriculture CRSs that encapsulate soluble compounds in

polymer or sugar-based matrices. In these systems, the

encapsulant is usually present at a concentration below its

solubility limit and is usually dispersed throughout the matrix.

Like biomedical CRSs, these CRSs can exhibit passive,

degradational, or smart/triggered release. However, the most

common materials are nanoparticles that employ passive, or

more commonly, degradational release (Shakiba et al., 2020).

Release in these systems usually includes a passive,

concentration-gradient driven component that is accelerated

by degradation of the matrix material. As the matrix degrades,

the pore sizes change. Thus, the diffusion coefficient, D, is a

function of time. These types of release correspond to either pure

Fickian behaviors (Crank, 1975) or anomalous diffusion that can

be understood using one of several existing biomedical CRS

models (Table 1).

In a standard Fickian model with no degradation, release as

measured by Mt
M∞, the amount of release at time, t, relative to the

total amount release at the endpoint, is proportional to t1/2. The

Higuchi model (Higuchi, 1961) improves upon this slightly by

lumping together other terms in the Fickian solution into a

proportionality constant. Models that capture anomalous

diffusion behaviors improve upon these by recognizing that D

is a function of time, the most popular of which is the Peppas

(Korsmeyer et al., 1983) equation. The Peppas equation defines

release by the effective diffusion constant, k, and the diffusional

exponent, n. The Peppas equation has the advantage of being

applicable to a wide variety of systems regardless of their

mechanism of release, and is in fact often used to determine

the release type, which correlates with the value of n. Depending

on geometry, n is ~0.5 for Fickian release, between ~0.5 and 1 for

anomalous diffusion driven by degradation or time-dependent

swelling, and n≥ 1 for Case II transport characteristic of glassy

polymer relaxation. These models are equally applicable for

biomedical and agricultural CRSs.

Once a compound has been released from the CRS, it must

navigate through soil to reach its target. In biomedical systems,

this may mean navigating through blood, tissue, or fluid filled

spaces. In agriculture, this primarily means navigating through

the soil. Similar to biomedical environments, soil can exist in a

myriad of forms and compositions (Wiesmeier et al., 2019),

TABLE 1 Biomedical diffusion models.

Model Formulation Equation Release Type Assumptions Ref.

Zero Order Coated Granules Q − Qo � Kot Fickian Diffusion Initial solute concentration > than solubility in
soil low solubility

Crank, (1975)

Hixson-
Crowell

Coated Granules M1/3
o −M1/3

t � KHCt Solute dissolution
from a surface

Solute dissolution occurs in a plane parallel to
the CRS surface Geometric form is unchanged
by dissolution

Hixson and Crowell,
(1931)

Fickian Three
Stage

Coated Granules Stage 1: Mt
M∞ � 0

Stage 2: Mt
M∞ � 3

psr
(D(t−t′)

l Cs − 1
6)

Stage 3: Mt
M∞ � 1 − Cs

ps
exp (−3D

rl (t − Y)

Fickian Diffusion Water saturation of the matrix Initial solute
concentration > than solubility in soil

Du et al. (2004)

Fickian (short
times, sphere)

Matrix Mt
M∞ ~ 6D1/2

π1/2r
Fickian Diffusion Only describes first 10–15% of release data (Crank, 1975; Ritger

and Peppas, 1987)

Higuchi Matrix Q � KHt
1
2 Fickian Diffusion Matrix is not altered by water contact Matrix is

saturated with drug Unidirection diffusion (no
edge effects) Matrix is much larger than
encapsulant size Matrix swelling and dissolution
is negligible Perfect sink conditions in the bulk
phase are maintained

Higuchi, (1961)

Peppas Matrix Mt
M∞ � ktn Multi Good for ~ first 60% of release data. Known

matrix geometry Degradation and diffusion
components are time matched

(Korsmeyer et al.,
1983; Ritger and
Peppas, 1987)

Q � solute release or dissolved,Qo � initial solute in soil (usually zero),Ko � zero order release constant, t � time,Mo � initial solute mass,Mt � solute mass at time (t),KHC � constant of

proportionality, ps � solute density, r � radius of diffusion,D � the solute diffusion coefficient, t′ � lag time, l � diffusion length,Cs � saturated solute concentration, Y � time to complete

dissolution of the solute, KH � Higuchi release constant, k � effective diffusion constant, n � diffusional exponent.
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exhibiting varying hydration, porosity, and chelation strengths

that effect diffusion. Fortunately, soil diffusion models have been

well developed in the context of petrochemical engineering and

geological sciences (Ghanbarian et al., 2013; Hunt and Sahimi,

2017). Diffusion through the complex soil network is captured

using a tortuosity parameter (τD):

τD � ϕ
df

dp

where ϕ is the porosity, df is the diffusion constant in liquid

media, and dp is the value observed in soil. Porosity can be

modeled from percolation theory (Hunt and Sahimi, 2017), with

the Rieu and Sposito (RS) model commonly used (Rieu and

Sposito, 1991).

As with biomedical CRSs, it is important to consider several

factors when using these models to determine the release rate in an

actual use setting. Many systems are characterized in vitro where

infinite sink conditions are maintained (i.e., matrix volume is 1:

10 volume of the bulk phase). This assumptionmay not be the case if

a compound is released into a sterile environment. Mixing in soil,

which is a multiphase mixture, is much lower than in pure liquid

phases, but may be closer to the poormixing conditions experienced

in tissues. If mixing is poor, a compound may build up in the

bulk phase despite sink conditions. A second problem, also

experienced by biomedical CRSs, is off-target removal of the

compound from the bulk phase. In soil, a compound could be

removed via chelation (Marschner et al., 2011), hydrolytic or

enzymatic degradation, or off-target uptake by another

organism (Canarini et al., 2019). In this sense, agricultural

delivery has many parallels to challenging gastrointestinal

biological delivery environments, such as the stomach or gut

(Fan and Pedersen, 2021). All of these factors may alter CRS

performance relative to in vitro testing results.

8 Discussion: Opportunities to
translate biomedical CRSs to
agriculture

8.1 Smart release CRSs for agriculture

Currently, most agricultural CRSs rely on passive transport or

biodegradation for delivery. However, smart release strategies offer

many advantages in that they can directly respond to conditions in

the soil environment. Agricultural smart release strategies are

relatively new, with virtually no reports prior to 2015 (Calabi-

Floody et al., 2018; Camara et al., 2019). Most agricultural smart

release systems are based on pH or temperature changes, with only

10% utilizing enzymatic degradation (Camara et al., 2019).

Agricultural pH- or temperature-responsive CRSs are comprised

of different materials than biomedical CRSs, largely because the

temperature and pH conditions in agricultural fields differ widely

from those found in the body. However, there is also emphasis on

the use of low cost, ecological friendly materials. Commonmaterials

employed include chitosan, alginate, and polydopamine; specific

functionalizations can also be added to generate pH- and

temperature-responsive behaviors (Camara et al., 2019). It is

likely that development of pH- and temperature-responsive CRSs

will continue to grow; however, these are relatively untargeted in

their response. Temperature changes could reflect seasonal

variations and pH changes could result from fertilization or other

interventions.

By far, the largest opportunity for smart agricultural CRSs lies

in enzyme-responsive systems. Enzymatic-responsive CRSs for

agriculture are emergent, despite the fact that all soil organisms

produce enzymes that degrade substrates in their

microenvironment. Examples of agricultural enzymatic-

responsive CRSs include cellulose materials responsive to

cellulases and starches responsive to amylases (Camara et al.,

2019). However, development of these systems has been limited

by a lack of knowledge of the plant andmicrobial secretomes (e.g.

(Kamel et al., 2017; Lanfranco et al., 2018b; Vincent et al., 2020)).

Advances in agricultural enzymatic-responsive CRSs will require

concomitant advances in plant and microbe ‘-omics’. A further

difficulty is the complexity of the soil microbiome. For example,

all fungi emit hydrolases (Béguin and Aubert, 1994) that break

down plant cell walls. Thus, targeting a specific (e.g., pathogenic)

fungal class would require complex materials optimization and

would likely require utilization of several enzyme-substrate

combinations. If these barriers can be overcome, smart release

CRSs offer many potential benefits with the potential to manage

the microbiome at the scale of the soil microbes themselves.

8.2 Agricultural theranostics

Another significant opportunity for advancing CRSs is the

potential for developing agricultural equivalents of biomedical

theranostic systems. Theranostics are a class of materials that can

both sense and treat a disease. This is often achieved using materials

that exhibit “smart” release (see above) in combination with built in

reporter elements. For example, a smart hydrogel could incorporate

a fluorescent reporter that is quenched until cleaved by an enzyme

(Leight et al., 2013), releasing a drug and restoring fluorescence of

the reporter.

Such materials would be complementary to existing practices in

“precision farming”, which focus on more precise application of

agrichemical inputs. Precision farming technologies, such as drones,

can sense a need for agrochemicals at the centimeter scale (e.g. (de

Jesus Colwell et al., 2021)). Whereas these technologies have great

potential, they require significant infrastructure investment that can

limit application for some stakeholders. Additionally, there is still a

minimum scale at which agrochemical application occurs—typically

about a meter, much larger than soil organisms (~micrometers in

size). Finally, precision farming is still reactive: agrochemicals are

applied when deficiencies or pathogens are detected. Current state-
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of-the-art technology allows for earlier antagonist detection;

however, damage to the crop must occur before a farmer can

react with agrochemical applications. Thus, current methods to

control agrochemical delivery are expensive, limited in scale, and are

necessarily reactive.

Developing theranostic CRSs for agriculture similar to their

biomedical counterparts will require significant advances in soil

sensing technologies. Because of the poor light transmissibility of soil

and potential toxicity, theranostic detection methods used in

biomedicine based on fluorescence or radiological signals are not

appropriate for farming (El-Sawy et al., 2018). Agricultural

techniques such as reflectance spectroscopy for monitoring plant

health (Katsoulas et al., 2016) or wireless sensor networks for

monitoring soil conditions (Ojha et al., 2015) could be integrated

with CRS depots that release agrochemicals into the soil upon

activation. However, these are only modest improvements over

existing precision farming methods. Some progress may be

obtained from the burgeoning field of nanoparticle disease

sensors (Singh et al., 2022). However, true agricultural

theranostics require materials that sense a condition in the soil

and release an ameliorating compound in response. Existing smart

materials that respond to pH and temperature changes offer promise

as theranostics (Camara et al., 2019), but they are non-specific.

Ideally, concomitant advances in enzymatically responsive systems

or those requiring multiple cues for activation would be used.

Additionally, most theranostics report sensing results to the

external world, but currently used stimuli-responsive materials

lack this capability. One can envision smart materials that

incorporate electrochemical or optical sensing components (e.g.,

co-encapsulated metallic nanoparticles) that could be coupled with

inground sensors for read-out. Combined with Internet of Things

(IoT) connectivity, such an approach could compete with precision

farming technologies. However, at present, this remains an area of

great opportunity.

9 Conclusion

Given the increasing challenge of feeding a growing population,

the translation of biomedical CRS technologies to agricultural

delivery practices will likely play an important role in sustainable

food production. With the potential to target crop plants, the soil

microbiome, or modulate the properties of soil, CRSs offer many

advantages. CRSs can protect compounds from the environment,

provide spatiotemporal control of their release, and can limit

agricultural waste, run-off, and concomitant eutrophication

(Schindler, 2012; Paerl et al., 2016). However, agricultural CRSs

are underdeveloped compared to biomedical CRS technologies.

Currently, CRSs are primarily employed as seed and fertilizer

coatings (marketresearch, 2022a; marketresearch, 2022b), whereas

hydrogel and nanoparticle formulations are still being developed.

Most agricultural systems rely on passive or degradational release,

whereas smart, stimuli-responsive materials are still being realized

(Calabi-Floody et al., 2018; Moulick et al., 2020) and advanced

theranostic approaches remain beyond reach. Nevertheless,

agricultural and biomedical CRSs share many features. They

employ similar materials and manufacturing methods (although

agricultural CRSs favor inexpensive natural materials composed of

starches or sugars) and their release is governed by similar

mathematical frameworks. However, advances in understanding

the soil microenvironment and plant molecule biology are

needed to realize advanced technologies, like smart CRSs and

theranostics. Additionally, sensing methods that can penetrate

soil and are compatible with large-scale, IoT sensing networks

are vital. These advances will likely require a convergent research

approach that combines existing experience in biomedical CRSs

with expertise in soil ecology, agricultural science, horticulture, and

microbiology. Agricultural CRSs are thus at a precipice, with the

potential to offer solutions to the urgent problems of providing a

sustainable food supply while minimizing pollution. However, it is

only through combined efforts across multiple disciplines that their

promise will be achieved.
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