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Bone metastasis is highly prevalent in breast cancer patients with metastatic
disease. These metastatic cells may eventually form osteolytic lesions and
affect the integrity of the bone, causing pathological fractures and impairing
patient quality of life. Although some mechanisms have been determined in
the metastatic cascade to the bone, little is known about how the
mechanical cues of the bone marrow microenvironment influence tumor
cell growth and invasion once they have homed to the secondary site. The
mechanical properties within the bone marrow range from 0.5 kPa in the
sinusoidal region to 40 kPa in the endosteal region. Here, we report an
alginate-Matrigel hydrogel that can be modulated to the stiffness range of
the bone marrow and used to evaluate tumor cell behavior. We fabricated
alginate-Matrigel hydrogels with varying calcium sulfate (CaSO4)
concentrations to tune stiffness, and we demonstrated that these
hydrogels recapitulated the mechanical properties observed in the bone
marrow microenvironment (0.7–16 kPa). We encapsulated multiple breast
cancer cell lines into these hydrogels to assess growth and invasion. Tumor
cells in stiffer hydrogels exhibited increased proliferation and enhanced
elongation compared to lower stiffness hydrogels, which suggests that
stiffer environments in the bone marrow promote cellular invasive
capacity. This work establishes a system that replicates bone marrow
mechanical properties to elucidate the physical factors that contribute to
metastatic growth.
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1 Introduction

Metastasis, the spread of cancer cells from the primary tumor site to a distant site in
the body, is a well-studied hallmark of cancer and is associated with higher death rates
in patients (Hanahan and Weinberg, 2011; Chopra and Davies, 2020). In breast cancer,
distant recurrence is common in sites such as the brain, bone, liver, and lungs (Berman
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et al., 2013). It has been shown that bone metastases are
correlated with lower incidences of death in breast cancer
patients, but 70% of patients who succumb to the disease
have bone metastases after autopsy (Macedo et al., 2017). The
bone marrow microenvironment is highly dynamic and
composed of many fibrous macromolecules and progenitor
cells (Buenrostro et al., 2014; Haider et al., 2020). The bone
marrow is highly variable in terms of biophysical properties
such as stiffness, three-dimensional (3D) architecture, and fluid
flow. The process by which mechanical cues, such as matrix
stiffness and porosity, can affect biophysical and biochemical
responses is called mechanotransduction and is highly integral
to tumor cell progression in the primary site (Martino et al.,
2018). The mechanical forces of the environment can affect
biological processes in the bone marrow such as the production
of osteoactive agents for tumor-induced bone disease (Allen
et al., 2012). Studies have shown that the stiffness of the bone
marrow microenvironment can influence progenitor cells that
are responsible for the development and prevalence of
hemopoietic stem cells (Choi and Harley, 2017). Additionally,
previous work has shown that the increased stiffness in the
primary breast tumor microenvironment alters cell behavior,
leading to more mesenchymal phenotypes and enhanced
proliferation (Stowers et al., 2019). However, many sites of
metastasis are ten-fold stiffer than the breast primary site
(Choi and Harley, 2017), and how physical factors at
metastatic sites influence tumor cell behavior is not well-
studied. We therefore hypothesized that the stiffness changes
within the bone marrow environment, which spans 0.3 kPa
to >35 kPa (Nelson and Roy, 2016), will affect the behavior
of cancer cells.

Like the breast microenvironment, systems to mimic the bone
microenvironment can be synthetic or naturally derived (Northcutt
et al., 2020). Cancer-related bone pathologies in both the marrow
and bone are typically evaluated with in vivo models, which can be
costly and can take time to see osteolytic effects, using techniques
such as intratibial injections to study established tumors in bone as
well as potential treatments to inhibit tumor-induced bone disease
(Rosol et al., 2003; Blouin et al., 2008; Vanderburgh et al., 2019).
Synthetic hydrogels are highly tunable but often require UV-
crosslinking that may reduce the viability of encapsulated cells.
Naturally-derived hydrogel systems can also be utilized for in vitro
studies as they may better replicate the range of proteins and binding
sites in tissues. In addition, engineered systems such as microfluidic
devices have been used to study the metastatic properties of breast
cancer to the bone matrix along with mineralized osteoblastic bone
tissue (Dhurjati et al., 2008; Bersini et al., 2014).

Although many studies attempt to model the bone marrow and
its surrounding environment, few systems can replicate its stiffness
without changing the number of biological binding sites (Chaudhuri
et al., 2014). Many of these materials evaluate stiffness in 2D
environments, which limits studying the forces that surround the
cell and potential interactions with the microenvironment
(Baruffaldi et al., 2021; Xiao et al., 2022). 3D hydrogels typically
do not incorporate both mechanical properties and biological
complexity. Recently, Jansen et al. (2022) designed synthetic
polyethylene glycol hydrogels with a bone marrow-specific
protein signature to mimic the bone marrow microenvironment.

This novel work combined relevant, tunable mechanical properties
and chemical extracellular matrix (ECM) cues. However, the study
focused on cell behavior in an environment that matched the
average marrow modulus. Here, we present an alginate-Matrigel
hydrogel system as a bone marrow model with varied crosslinking
through calcium sulfate (CaSO4) to allow for changes in stiffness
alone. While stiffness does not necessarily drive cell behavior in 3D
(Riaz, 2016; Zonderland and Moroni, 2021), we are interested in
probing how 3D environmental stiffness directly influences breast
cancer cells, which may give insight into how sites of metastasis
promote tumor growth and invasion. Indeed, the tunability of
alginate and the ECM proteins that Matrigel provides allow for
evaluating cellular mechanotransduction in 3D (Caliari and
Burdick, 2016; Neves et al., 2020; Cao et al., 2021). We found the
stiffness of our hydrogels can span two orders of magnitude within
the range of the bone marrow microenvironment, which can alter
tumor cell proliferation and morphology. Overall, we show how our
tunable system may be used to understand how the stiffness of the
bone marrow affects metastatic progression.

2 Materials and methods

2.1 Biomimetic hydrogel preparation

Hydrogels were developed as previously described
(Chaudhuri et al., 2014; Wisdom and Chaudhuri, 2017). The
hydrogels consisted of high G alginate (PRONOVA) 5–10 mg/
mL and growth-factor reduced Matrigel (4.5 mg/mL, Corning).
Calcium sulfate (CaSO4) was used for alginate crosslinking
starting at a stock concentration at 1.22 M and diluted to a
122 mM working solution in the appropriate media. The
volume of the working solution was adjusted for each
condition to achieve a range between 5 and 50 mM CaSO4. To
form hydrogels, two 1 mL syringes were connected via a Luer lock
with alginate and Matrigel in one and CaSO4 in a separate
syringe, and the solutions were mixed back and forth 10 times
(Figure 1A).

2.2 Rheology measurements

Stiffness measurements of the hydrogels were conducted
using a rheometer (AR 2000 Ex, TA Instruments) with a 25 mm
top and bottom plate. The plate was rotationally mapped.
500 μL hydrogel solution was added to the plate, and a disk
was formed by lowering the plate head. The plate was warmed to
37°C, and mineral oil was used to coat the edges of plate to
prevent dehydration of the gel. The resulting plate separation
was approximately 1,000 µm. Gel characteristics were measured
over time until the storage modulus reached equilibrium
(between 1 and 2.5 h depending on the crosslinking density)
with 0.5% applied strain and strain frequency of 1 Hz. The
average storage and loss modulus of the last 3 data points were
averaged and calculated using the Young’s Modulus (E)
equation in units of Pascals (Pa):

E � 2G 1 + ν( )
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where the ν is Poisson’s Ratio and assumed to be 0.5 (Chaudhuri
et al., 2014).

G (bulk modulus) is calculated using G = (G’ + G″), where G′ is
the storage modulus and G″ is the loss modulus.

2.3 Culturing of cancer cells in hydrogels

4T1 murine triple-negative breast cancer cells (ATCC)
were cultured in RPMI media, supplemented with 10% heat-
inactivated fetal bovine serum (HI-FBS) and 1% penicillin-
streptomycin. MCF7 human estrogen receptor-positive breast
cancer cells (from Dr. Rachelle Johnson, Vanderbilt University
Medical Center) were cultured in DMEMmedia, supplemented
with 10% HI-FBS and 1% penicillin-streptomycin. Cells were
embedded at a concentration of 1.0 × 105 cells/mL for each
condition and incorporated in the hydrogel (Wisdom and
Chaudhuri, 2017) (Figure 1B). This resulted in an evenly
distributed single cell suspension. A MatTek dish with a No.
1 glass slide was used for culturing cells in hydrogels, and
100 µL of the cell-pre-gel solution was added to the wells for
complete coverage (MatTek, P35G-0-10-C). Hydrogels were
allowed to form for 45 min at 37°C before adding 3 mL of media
to the wells. The cells formed clusters and were grown in the
hydrogels for either 2 or 7 days in complete media. The media
was changed every 2 days.

2.4 Fluorescence staining and cell imaging

Following culture, the gels were fixed in 10% formalin for 15 min
and washed with phosphate-buffered saline (PBS) 3 times. The cells
were permeabilized with 0.1% Triton in PBS and blocked with 5%
normal goat serum (NGS) in PBS for 1 h. After blocking, 1000X
Phalloidin (Phalloidin-iFluor 594 Reagent, Abcam) was diluted to
1X in 5%NGS and incubated for 1.5 h in the dark. After staining that
actin cytoskeleton, the gels were mounted with Antifade Diamond
Mount with NucBlue overnight. 10–15 images (0.045 mm2

field) per
gel were acquired using a Leica DMi8 inverted fluorescence
microscope. A minimum of 50 nuclei for the 2 days incubation
or 150 nuclei for the 7 days incubation were counted per
independent gel replicate.

2.5 Cluster morphology analysis

Using ImageJ, multicellular clusters were traced using the
“Freehand Selection Tool” to measure the major and minor axis
dimensions. The elongation index (EI) was calculated using the
following equation (Cavo et al., 2018):

EI � Major Axis/MinorAxis

A minimum of 10 colonies for the 2 days incubation or
5 colonies for the 7 days incubation were evaluated per replicate.

FIGURE 1
Development of crosslinked alginate-Matrigel hydrogels. (A) Image of component mixing to form hydrogels. (B) Schematic of cell encapsulation
within hydrogels. CaSO4 concentrations from 5–50 mM were used to form the cell embedded hydrogels.
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2.6 Statistical analysis

Data were analyzed using analysis of variance (ANOVA) to
determine statistical significance (p < 0.05) after confirming
normality. All analyses were performed in GraphPad Prism 9.

3 Results and discussion

3.1 Alginate-Matrigel hydrogels crosslinked
with CaSO4 replicate the stiffness of the
bone marrow

In previously published studies using the alginate-Matrigel
system, the stiffness of the breast tumor microenvironment has
been mimicked. Here, we intended to extend previously
published methods by increasing CaSO4 concentrations up to
50 mM to achieve stiffnesses within the bone marrow
microenvironment range of 0.3 to >35 kPa (Nelson and Roy,
2016). In hydrogels with 5 mg/mL alginate and 4.5 mg/mL
Matrigel, Young’s moduli ranged from approximately
0.7–8 kPa when varying CaSO4 concentrations between
10 and 50 mM (Figures 2A–C). To increase the stiffness
range, the alginate concentration was increased to 10 mg/mL,
and the Young’s moduli range expanded to 16 kPa (Figure 2D).

Although this system did not exceed 35 kPa, a stiffness range of
more than two orders of magnitude was achieved, which to our
knowledge has not been shown in similar alginate-Matrigel
hydrogel systems. We continued to use the 5 mg/mL alginate
formulation in our proof-of-concept studies, which spanned
one order of magnitude within the stiffness range of the bone
marrow, as the 10 mg/mL formulation showed reduced viability
in our cell lines. Future studies will explore composite hydrogels
and the addition of relevant peptides to the bone marrow
microenvironment that may better support cell growth.

3.2 Evaluating tumor cell proliferation

After developing hydrogels within the stiffness range of the
bone marrow microenvironment, we then evaluated the
proliferative response of tumor cells encapsulated in the
hydrogels by counting the nuclei in cell clusters. 4T1 and
MCF7 cells were seeded in 1 kPa (10 mM CaSO4) and 8 kPa
(50 mM CaSO4) hydrogels up to 7 days. Fluorescence images
from nuclear staining demonstrate an increasing proliferation
trend in 4T1 cells (Figures 3A, C) but not MCF7 cells (Figures
3B, D) after 7 days. Both 4T1 and MCF7 cells are known to grow
in clusters in 3D (Krause et al., 2010; Li and Lu, 2011; Perrin
et al., 2022). Nuclei counts were used as a proxy for proliferation

FIGURE 2
Evaluation of alginate-Matrigel hydrogel stiffness with varying alginate and calcium sulfate (CaSO4) concentrations. Hydrogel mechanical properties
were analyzed using rheology. Time sweep analysis with the indicated crosslinker concentration is shown for the storage (A) and loss (B) modulus.
Young’s moduli were calculated for 5 mg/mL (C) and 10 mg/mL (D) alginate-Matrigel hydrogels. Results represent n = 3–6 independent replicates. Error
bars are standard deviation. Statistical significance was determined by ANOVA with *p < 0.05, **p < 0.01, and ***p < 0.001.
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in this study, and we therefore need to further validate the
results. Future studies will confirm proliferative capacity
through Ki67 staining as well as additional proliferation
assays that directly measure DNA synthesis. In addition, we
will evaluate cell proliferation beyond 7 days, which may reveal
larger differences in cell subtype.

3.3 Increased stiffness enhances elongation
in breast cancer cell clusters

Cell morphology has been shown to correlate with the ability
of tumor cells to become invasive and motile (Anderson et al.,
2006). Additionally, alginate-Matrigel systems mimicking
breast tissue environments display increased cell elongation
and expression of epithelial-to-mesenchymal transition
markers (Stowers et al., 2019). However, this system has not
been shown to mimic the bone marrow microenvironment.
Here, we evaluated the morphology of encapsulated cell
clusters by determining the EI following F-actin staining

(Figures 4A, B). EI showed statistically significant increases
after 2 and 7 days in both cell lines in stiffer hydrogels (Figures
4C, D). 4T1 cells showed a greater increase in EI following 7d
compared to MCF7s with an approximately 40% increase in EI
compared to a 20% increase in MCF7 cells in stiffer hydrogels.
Taken together, we have shown the feasibility of studying breast
cancer cell invasive properties and cytoskeletal dynamics in a
biomimetic bone marrow hydrogel system and that there may be
a differential response according to subtype. We measured cell
cluster elongation consistent with invasion, but additional work
must be done to evaluate cellular invasion beyond correlative
properties. We will evaluate movement through the gel,
invadopodia through cortactin-actin co-localization, and
invasion gene signatures in the future.

3.4 Limitations

Although our work is useful for understanding cellular
responses within the stiffness of the bone marrow, using

FIGURE 3
Determination of the effect of stiffness on breast cancer cell proliferation. Breast cancer cells (mouse 4T1; human MCF7) were embedded into
alginate (5 mg/mL)-Matrigel hydrogels crosslinkedwith 10 and 50 mMCaSO4 up to 7 days, and stained nuclei (blue) were counted. Representative 4T1 (A)
and MCF7 (B) images are shown. Quantification of nuclei for 4T1 (C) and MCF7 (D) using ImageJ. 10–15 fields of 0.045 mm2 were taken per independent
hydrogel replicate (n = 3) to determine nuclei counts. Cells were seeded at a concentration of 1 × 105 cells/mL. Scale bar is 50 µm. Error bars are
standard deviation.
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confocal or two-photon microscopy will enhance the cellular
image quality. Our study evaluates single stiffness gels, which
do not capture the complex physical properties of the bone
marrow. Future studies will expand this work to incorporate a
stiffness gradient to replicate the bone marrow
microenvironment more accurately. It is also necessary to
study multiple microenvironmental factors in the bone
marrow, including other mechanical cues. While this system
directly evaluates stiffness, the primary components of Matrigel
are laminin and collagen IV whereas the bone marrow is mainly
comprised of collagen I (Boskey, 2013). Characterizing
and mimicking the bone marrow ECM, controlling and
modulating other physical properties such as degradability,
and including additional relevant cell types will increase
the impact of this system. Lastly, we visualized
cells using fluorescent markers. Future studies will
explore cell extraction from hydrogels to examine
specific molecular mechanotransduction pathways involved
in promoting metastasis in the bone marrow
microenvironment.

4 Conclusion

Currently, there are limited systems that allow for varying
environmental stiffnesses without changing the number of
biological binding sites. We have developed alginate-Matrigel
hydrogels that replicate the stiffness within the bone marrow
microenvironment by changing only crosslinker concentration
and leaving binding sites constant. This stiffness range has not
been previously studied. Additionally, we have shown the
possibility of studying proliferation and invasive capacity in
this system. This proof-of-concept work will be expanded in the
future to evaluate additional cell types, time points, and gene
expression to better understand the role of mechanical
properties in influencing metastatic potential in breast cancer.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

FIGURE 4
Investigating breast cancer cell cluster morphology to determine invasive capacity. (A) Example analysis of cell cluster elongation index. (B)
Representative images of F-actin (red) and nuclei (blue) staining of 4T1 and MCF7 cells following 7 days incubation in alginate (5 mg/mL)-Matrigel
hydrogels crosslinked with 10 mM and 50 mM CaSO4. Quantification of elongation index in 4T1 (C) and MCF7 (D) cell clusters following incubation for
2 and 7 days. Scale Bar is 50 µm. Results represent n = 3 independent hydrogel replicates with a minimum of 10 colonies evaluated for the 2 days
incubation or 5 colonies for the 7 days incubation per replicate. Error bars are standard deviation. Statistical significance was determined by ANOVA with
*p < 0.05, **p < 0.01, and ***p < 0.001.
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