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Cardiac tissue engineering (CTE) holds promise in addressing the clinical
challenges posed by cardiovascular disease, the leading global cause of
mortality. Human induced pluripotent stem cells (hiPSCs) are pivotal for
cardiac regeneration therapy, offering an immunocompatible, high density cell
source. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) exhibit vital
functional deficiencies that are not yet well understood, hindering their
clinical deployment. We argue that machine learning (ML) can overcome
these challenges, by improving the phenotyping and functionality of these
cells via robust mathematical models and predictions. This review paper
explores the transformative role of ML in advancing CTE, presenting a primer
on relevant ML algorithms. We focus on how ML has recently addressed six key
address six key challenges in CTE: cell differentiation, morphology, calcium
handling and cell-cell coupling, contraction, and tissue assembly. The paper
surveys common ML models, from tree-based and probabilistic to neural
networks and deep learning, illustrating their applications to better understand
hiPSC-CM behavior. While acknowledging the challenges associated with
integrating ML, such as limited biomedical datasets, computational costs of
learning data, and model interpretability and reliability, we examine
suggestions for improvement, emphasizing the necessity for more extensive
and diverse datasets that incorporate temporal and imaging data, augmented by
synthetic generative models. By integrating ML with mathematical models and
existing expert knowledge, we foresee a fruitful collaboration that unites
innovative data-driven models with biophysics-informed models, effectively
closing the gaps within CTE.
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1 Introduction

Cardiac tissue engineering (CTE) is poised to improve clinical outcomes of
cardiovascular disease (CVD), the leading cause of death worldwide. Affecting over
80 million Americans every year (Benjamin et al., 2018), the impact of cardiovascular
disease is magnified by the heart’s inability to repair and self-regenerate. Cardiomyocytes
(CMs) have a limited ability to proliferate and generate new tissue after birth (Laflamme and
Murry, 2011). Thus, infarction events that cause the death of cardiac tissue commonly result
in permanent cardiac output deficiencies (Anderson andMorrow, 2017). Current treatment
strategies for CVD seek to resolve infarction triggers, like coronary artery atherosclerosis,
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and prevent future events (Reddy et al., 2015). While effective, these
strategies do not repair or regenerate already-damaged
cardiac tissue.

Human induced pluripotent stem cells (hiPSCs) are pivotal in
realizing the potential of cardiac regeneration therapy. They address
immunogenicity concerns associated with allogeneic cell sources
and, more importantly, facilitate the achievement of high cell
densities essential for restoring the over one billion cardiac cells
damaged during myocardial infarction. hiPSCs are derived from
patient tissue, minimizing the immunogenicity of implanted
engineered tissues. Additionally, the self-renewal and proliferative
behavior of hiPSCs ensure a theoretically limitless supply of CMs,
enabling the engineering of patient-specific cardiac macrotissues at
physiological cell densities. Yet, hiPSC differentiated
cardiomyocytes (hiPSC-CM) exhibit abnormal morphology and
decreased functionality compared to adult CMs with regards to
contraction force and electrochemical coupling (Feric and Radisic,
2016). These deficiencies compound to significantly increase the
potential for arrhythmias when hiPSC-CMs are implanted in vivo
(Chong et al., 2014). Numerous groups have demonstrated the role
of electrical (Nunes et al., 2013; Ruan et al., 2016), mechanical
(McCain and Parker, 2011; Ruan et al., 2016), and biochemical
stimuli (Horikoshi et al., 2019) on hiPSC-CM development and
functionality, working to close the gap between hiPSC-CMs and in
vivo cardiac tissues (Ronaldson-Bouchard et al., 2018). Even so, the
discovery and optimization of these stimuli requires complex
experimental methods and extended timelines, greatly slowing
the rate of progress. Artificial intelligence, and more specially
machine learning, has recently emerged to be a powerful tool,
poised to accelerate experimental methods and parallel, even
predict, in vitro work.

Herein we provide a primer on relevant machine learning
algorithms, review current work applying machine learning to
CTE and trends of focus, and discuss key ideas for further
development. Specifically, we identify the following six challenges
of CTE: cell differentiation, morphology, calcium handling and cell-
cell coupling, cell contraction, and tissue assembly. Historically,
biomedical applications of ML have primarily focused on processing
large quantitative sets like RNA sequencing data or MRI imaging
datasets (Wang et al., 2018; Cascianelli et al., 2020; Petegrosso et al.,
2020). Here we discuss how this work have been translated to the
field of tissue engineering to resolve the challenges related to hiPSC-
CM maturity. It is worth noting others have sought to review the
applications of machine learning in stem cell therapies (Coronnello
and Francipane, 2022), cardiovascular pathology and treatment
(Bizopoulos and Koutsouris, 2019; Glass et al., 2022; Kresoja
et al., 2023), 3D bioprinting (An et al., 2021), organ-on-a-chip
methodologies (Koyilot et al., 2022), and biomedical engineering
as a whole (Shajun Nisha and Nagoor Meeral, 2021), yet few focus
on the specific challenges of CTE and provide an in-depth review of
how machine learning may be leveraged to improve the maturation
of hiPSC-CMs.

It is important to note that ML remains a highly dynamic field of
research, particularly within tissue engineering. In our literature
review, we specifically targeted research articles that employ ML
models to enhance the comprehension of hiPSC-CM behavior. We
deliberately excluded studies that integrate ML into the use of
hiPSC-CMs as models, like drug cardiotoxicity or disease

progression (Heylman et al., 2015; Lee et al., 2017; Maddah et al.,
2020; Grafton et al., 2021; Juhola et al., 2021; Kowalczewski et al.,
2022; Yang et al., 2023). To assemble the cohort of research papers, a
comprehensive literature search was conducted using the PubMed-
NCBI database with the following search terms:

1) cardiac tissue engineering[MeSH:noexp] AND artificial
intelligence[MeSH:noexp];

2) cardiac tissue engineering[MeSH:noexp] AND machine
learning[MeSH:noexp];

3) cardiac maturation[MeSH:noexp] AND machine learning
[MeSH:noexp]; and

4) scaffold optimization hiPSC-CM machine learning.

Other searches with relevant key terms yielded no results;
therefore, they were omitted from this list. By selecting papers
from the last decade that align with our specific focus, we
curated a cohort of 23 research papers spanning 2013–2023.

In review, we observe that efforts within each challenge of CTE
work to 1) improve the functionality of hiPSC-CMs and 2) improve
physiological phenotyping and characterization of tissues to
accelerate innovation. This distinction is made in our discussion
of each implementation of ML in hiPSC-CM immaturity.

2 Artificial intelligence and
machine learning

Artificial intelligence (AI) has become a transformative force
across numerous disciplines, promising groundbreaking
advancements and technological revolutions. Within the
expansive landscape of AI, machine learning (ML) emerges as a
pivotal subset, fundamentally reshaping problem-solving and
decision-making processes. In our exploration of recent ML
methods in the realm of CTE, it is imperative to navigate
through the layers of AI and ML, grasping their core principles
and understanding their relevance in the broader field of biomedical
engineering (BME).

At its essence, AI strives to emulate intelligent behavior and
decision-making in computers, pushing the boundaries of what
machines can achieve. AI systems are designed to undertake
tasks requiring human-like intelligence, including learning,
reasoning, problem-solving, perception, and language
understanding. Within this multifaceted field, ML stands out as
an integral component as it falls within the vast data science
umbrella of AI, empowering systems to learn patterns and make
decisions from data without explicit programming. The hallmark of
ML lies in its capacity to enhance performance iteratively through
learning from experience and statistical inferences. This
computationally expensive learning process is a crucial feature,
especially in addressing the complex challenges posed by CTE,
where the interplay of biological components demands robust
and well-guided solutions. The intersection of ML and BME has
exposed unprecedented possibilities in healthcare, diagnostics, and
therapeutic interventions (Jovel and Greiner, 2021; Strzelecki and
Badura, 2022). In the context of CTE, ML algorithms offer the
potential to decipher intricate relationships within biological
systems. Mathematical or physics-based models traditionally
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attempt to decipher systems like cellular interactions and tissue
behavior, yet many times fall short (Park et al., 2018). To
supplement these efforts, researchers have begun to harness ML
in the recent decade to further analyze and explore novel avenues in
CTE. Within the broader ML landscape lies deep learning (DL) with
its neural network architectures, showing remarkable success in 2D
and 3D image and signal processing (Litjens et al., 2017; Zhou et al.,
2017). DL models with multiple layers (usually more than one
hidden layer between the input and output layers) excel in
capturing intricate hierarchical representations and features from
complex data, when enough data is provided (Cybenko, 1989;
Hornik et al., 1989; Yarotsky, 2017). Within CTE, this translates
to enhanced capabilities in biomedical image analysis, signal
processing, and predictive modeling, offering a deeper
understanding of cardiac dynamics and responses to various
perturbations.

The integration of AI and its subfields is not without
challenges. Biomedical data, either in signals or images, is
often complex, heterogeneous, and characterized by high
dimensionality (Dinov, 2016; Hulsen et al., 2019). Ensuring
the robustness and generalizability of ML models across
diverse datasets is a persistent challenge. Additionally, ML
models are often viewed as “black boxes,” which naturally
creates distrust regarding the transparency and interpretability
of decision-making processes in critical biomedical applications
and healthcare, specifically in clinical settings with diagnoses and
treatment plans. The challenges of ML in CTE are further
amplified by the intricate nature of cardiac tissue. Modeling
the dynamic and multifaceted aspects of cardiac function and
response requires sophisticated ML approaches. Furthermore,
DL models are known for their demand for substantial amounts
of labeled data, posing challenges in scenarios where obtaining
sufficiently large training sets may be difficult or impractical.
Nevertheless, as this review explores, ML methods, including DL
architectures, prove to be successful in CTE, especially in cases
where mathematical models are limited. It is noteworthy that
these physics-based models demand extensive time and
computational resources for numerically solving complex
systems of equations spanning multiple scales, all the while
data-driven methods often fall short in achieving high
accuracy and generalization capabilities (Peek et al., 2014;
Rueckert and Schnabel, 2020; Regazzoni et al., 2022). We
expect the balancing of these trade-offs will expedite the
evaluation and accuracy of mathematical models and tackle
issues associated with many-query problems in CTE
applications. By understanding these challenges, researchers
and practitioners can harness the potential of ML
methodologies and advance the frontiers of cardiac tissue
research and engineering.

3 Common machine learning models

In the last decade, ML has become integral to BME, particularly
in CTE, by providing powerful tools to extract meaningful insights
from complex data. We first discuss common ML models and then
delve into how these are used to tackle the CTE challenges we have
identified in this review.

3.1 Linear models

Two of the most intuitive and straightforward supervised ML
models are linear and logistic regression (James et al., 2023). Linear
regression learns the relationship between the dependent variable
and one or more independent variables by fitting a linear equation to
observed data. It is widely used in CTE for tasks, such as predicting
cell culture properties based on a set of initial parameters. Despite its
simplicity, linear regression provides interpretable insights into the
impact of individual features on the outcome. Applying a threshold
to the output classifies data into multiple categories, such as different
types of tissue structures or cell types. Similarly, logistic regression is
for binary classification tasks, making use of the logistic or sigmoid
function to map the linear combination of input features into a
probability distribution between 0 and 1 (Fukunaga and Hostetler,
1975). Logistic regression is valuable in scenarios like cell-type
classification, where it is essential understanding the likelihood of
a cell culture having a specific content of successfully differentiated
cells or having specific types of cell phenotypes, as we will discuss in
forthcoming sections.

3.2 Tree-based models

More involved, but well-established supervised ML models are
decision trees and random forests, both of which serve for both
regression and classification tasks. Decision trees partition the
feature space into regions based on feature thresholds, making
decisions by traversing the tree from the root to the leaves
(Quinlan, 1986). They are susceptible to overfitting, but standard
techniques like pruning and ensemble methods mitigate this.
Decision trees are intuitive and interpretable, while capturing
complex decision boundaries, making them valuable for feature
selection and identifying critical factors. Random forest models
build an ensemble of decision trees, each trained on a subset of
the data and features (Breiman, 2001). They leverage the diversity
among trees to improve generalization and robustness, favored for
its ability to handle high-dimensional data and nonlinear
relationships. The aggregation of multiple trees enhances
predictive performance and provides insights into feature
importance.

3.3 Probabilistic models

Naïve Bayes is a probabilistic classification algorithm based on
Bayes’ theorem, which describes the probability of an event based on
prior knowledge of conditions that might be related to the event
(Manning, 2008; Witten et al., 2011). The “naïve” assumption is that
features are conditionally independent given the class label, which
simplifies the computation of probabilities, but may not hold in all
cases. Thanks to its framework that is computationally efficient,
simple to implement, and often requires smaller amounts of training
data, naïve Bayes performs well in tasks with high-dimensional data,
like predicting diseases or drugs based on cellular features. Gaussian
Processes (GPs) are one of the most flexible models for regression
tasks, providing a probabilistic framework for learning relationships
in data by considering entire distributions of functions (Rasmussen
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andWilliams, 2006). Unlike traditional regression models, GPs offer
a non-parametric approach, making them suitable for capturing
complex patterns and uncertainties in diverse datasets. The strength
of GPs lies in their ability to provide not only predictions, but also
estimates of prediction uncertainty, valuable in CTE scenarios where
uncertainty quantification is crucial for cell maturation. Linear
discriminant analysis (LDA) and its variants, like quadratic
discriminant analysis (QDA), are dimensionality reduction and
classification techniques (Izenman, 2008; Hastie et al., 2009).
These models find combinations of features that maximize the
distance between class means and minimize the spread within
each class, making them valuable for task in biomedical signal
processing and imaging, like feature extraction and cell-type
classification.

3.4 Other models

Support vector machines (SVMs) aim to find the hyperplane
that maximally separates data points of different classes (Cortes and
Vapnik, 1995). They operate effectively in high-dimensional spaces
and are applicable for tasks such as classifying cell cultures based on
complex profiles. An SVM uses kernels to compute the similarity
between pairs of data points, enabling it to handle nonlinear
relationships and making it versatile in capturing intricate
patterns in biomedical data. It is mostly used in classification
tasks, but it can be extended to regression. As it implies,
k-nearest neighbors (kNN) classifies data points based on the
majority class among their k-nearest neighbors (Cover and Hart,
1967). kNN is valued for its simplicity and effectiveness, especially in
scenarios where data points form well-defined clusters. kNN is
sensitive to the choice of distance metric and the number of
neighbors, making careful parameter selection crucial in
achieving optimal results.

3.5 Neural networks and deep learning

Artificial neural networks (ANN) vary significantly from the
mentioned models, consisting of interconnected nodes organized in
layers that are trained using backpropagation (Haykin, 1998, 2008;
Bishop and Nasrabadi, 2006). The input layer receives the initial
data, usually preprocessed, and computations take place within
intermediate “hidden” layers, helping the network learn complex
patterns and representations. The output layer produces the final
output or prediction. Each connection between neurons or “nodes”
in different layers is associated with a weight. The network learns by
adjusting these weights during training, where the activation of
neurons in the hidden and output layers is determined by applying
certain activation functions, like sigmoidal, hyperbolic tangent, or
leaky rectified linear unit (ReLu). Fully-connected or “dense” layers
are those that have each neuron connected to every neuron in the
adjacent layer, creating a dense network of connections and, hence,
more unknowns to solve for. A common ANN is a feedforward
neural network, where information flows from the input layer
through one or more hidden layers to the output layer without
forming cycles or loops (Rumelhart et al., 1986; Haykin, 2008).
Feedforward neural networks are foundational and used in various

machine learning tasks like cell-type classification or bioprinting
parameter regression based on multimodal data.

While feedforward networks are powerful and can be considered
DL with several hidden layers, more complex architectures, such as
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), have been developed to address specific
challenges in different types of data through either supervised or
unsupervised learning (Goodfellow et al., 2016). CNNs are designed
for grid-like data, leveraging convolutional layers for spatial feature
extraction (Szegedy et al., 2015; Venkatesan and Li, 2017;
Shanmugamani, 2018). CNNs excel in medical image analysis,
detecting patterns and structures, by applying filters to learn
hierarchical representations that identify localized features critical
in tasks, such as cell detection and quality assessment of maturing
hiPSC-CMs. RNNs maintain hidden states to capture temporal
dependencies in sequential data with feedback loops and are
commonly applied to time-series data, allowing tasks like
physiological signal analysis and predicting disease progression
(Rumelhart et al., 1986; Pascanu et al., 2013). However,
traditional RNNs face challenges in capturing long-term
dependencies, leading to the development of more advanced
architectures like Long Short-Term Memory (LSTM). LSTM
networks are a type of RNN designed to address the vanishing
gradient problem, modeling long-range dependencies in sequential
data (Gers et al., 2000). These networks are crucial for tasks
requiring an understanding of temporal relationships across even
irregular intervals, such as subtleties of cellular interactions and
tissue development and analyzing dynamic physiological signals.
Their ability to capture context over extended sequences makes
them well-suited for time-sensitive medical data.

These handful of models collectively form a diverse toolkit for
addressing various challenges in BME, offering solutions tailored to
different data types, complexities, and desired outcomes. Other
models found in the literature that are more tailored to specific
CTE challenges will be discussed in the following sections. Although
the field of ML can be overwhelming, numerous resources exist to
support researchers from diverse backgrounds in acquiring the skills
to program, implement, and utilize ML models in Python, R, and
MATLAB (Conway and White, 2012; Murphy, 2012; Kelleher et al.,
2015; Theodoridis, 2015; Müller and Guido, 2016; Raschka and
Mirjalili, 2017; Géron, 2019).

4 ML in cardiac cell differentiation

Numerous protocols for CM differentiation exist that result in
varying degrees of purity and functionality. Post differentiation
purification schemes leveraging metabolic selection have become a
standard part of cardiac differentiation to ensure high percentages
of CMs and to prime lipid metabolism seen in adult CMs (Sharma
et al., 2015). These strategies are inherently reactive and cannot
proactively ensure efficient differentiation. Given that cardiac
differentiation is a multifactor process with complex
interactions, experimental optimization can be expensive both
in time and resources. ML techniques have been leveraged to
identify important factors in driving efficient cardiac
differentiation and predict the purity of differentiating hiPSC-
CMs at early timepoints.
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Williams et al. were among the first to leverage ML techniques to
identify the most influential experimental variables that may be
controlled during cardiac differentiation and sought to establish a
robust classification and prediction of CM purity during
differentiation in advanced stirred tank bioreactors (STBRs)
(Williams et al., 2020). STBRs facilitate scale-up of differentiation
protocols and continuous monitoring of environmental conditions
(such as media dissolved oxygen and pH level) and have been used
extensively for tissue culture over the last decade (Kehoe et al., 2010;
Kempf et al., 2016; Halloin et al., 2019). Manual sampling can also
enable evaluation of cell viability and proliferation. During the
differentiation process, spanning up to 5 days after initiation,
39 variables were measured relating to dissolved oxygen, pH, cell
density, aggregate size, nutrient concentration, and preculture
conditions. Post differentiation, CM purity was analyzed via flow
cytometry using canonical CM markers cardiac troponin T and
myosin heavy chain. Cultures yielding >90% CMs were coded to be
successful or insufficient otherwise. Data from 58 unique cardiac
differentiations were split into training (n = 42) and testing (n = 16)
datasets and applied to random forest, GP regression, and
multivariate adaptive regression splines (MARS) algorithms. The
latter is a non-parametric regression technique for modeling
complex relationships between input features and output
variables, well-suited for data with underlying nonlinear
interactions and discontinuities (Friedman, 1991). Random forest
and GP regression models yielded 90% accuracy and 90% precision
in identifying experiments that would yield sufficient CM purity,
while random forest models yielded 84% accuracy at identifying if an
experiment would have an insufficient final CM content.
Importantly, this work details how ML may be used to predict
CM purity after only 5 days of differentiation, using less than 16% of
collected data.

Similarly, Mohammadi et al. studied random forest, GP
classification, and SVM methods to identify important
differentiation factors and conduct quality checks on hiPSC-CM
embedded PEG-fibrinogen microspheres (Mohammadi et al., 2022).
While extruded cardiac microspheres enhance 3D culture and
differentiation efficiency, potentially facilitating scalable hiPSC-
CM production, they may affect CM purity due to variations in
physical properties. By tuning variables such as CHIR concentration,
fibrinogen concentration, differentiation media, size and shape of
extruded microspheres, and cells seeding density, this group aimed
to develop predictive models for resulting CM purity. Principal
component analysis (PCA) was first employed to determine features
that correlate strongly with efficient CM differentiation (65% CM or
higher). PCA is a method commonly used to transform high-
dimensional data into a lower-dimensional space by identifying
the principal components that capture the most variance (Pearson,
1901; Hotelling, 1936). This uncovers latent patterns in datasets with
numerous correlated features while retaining as much information
as possible. In this case, random forest, GP classification, and SVMs
were trained on select input features including postfreeze passage
number, PGE-fibrinogen concentration, and the ratio between the
CHIR concentration and microsphere surface to volume ratio with
CM purity as output. GP classification models yielded 70% accuracy
with 56% precision at classifying high purity cultures. It should be
noted that the principal components used in the best-performing
model explained only 18% of the input data variance. This suggests

that the variance of the input set did not entirely account for the
variance in the output data, indicating the need for more features
and indicators within a larger dataset.

One year later, the same supervised classification task was
tested, this time employing CNNs (Mohammadi et al., 2023). Two
models were created to predict the percentage of CM content on
Day 10 of differentiation, using pre-differentiation experimental
features and nondestructive images from Days 3 or 5. One CNN
utilized only phase-contrast image, while another incorporated a
combination of both images and the features identified in earlier
work (Mohammadi et al., 2022). With an accuracy of 85% and
precision of 92%, the best-performing model was the combination
CNN using images from Day 5, outperforming the other ML
models, including GP with features only, SVM with images
only, and SVM with a combination of images and features.
Although successful on only about 300 images, the model
developed a dependence on the specific cell line used.
Evaluation on another cell line yielded a significantly lower
accuracy of 46%, emphasizing the substantial challenges in
generalizing predictions across diverse cell lines.

5 ML in morphology

CMs exhibit a strong structure-function relationship, causing
morphological differences to have significant impact on cardiac
function. Healthy, adult CMs exhibit elongated, rod-shaped, and
anisotropic morphologies with high aspects ratios (7:1 to 9.5:1)
(Gerdes et al., 1992). hiPSC-CMs instead exhibit round, polygonal
morphologies with significantly smaller aspect ratios, trending more
to isotropic orientations (Feric and Radisic, 2016). Morphological
assessment has historically required extensive time and resources to
execute and is prone to user bias. ML methods trained on images of
CMs have accelerated and standardized morphological assessment
of hiPSC-CMs.

Pasquilini et al. were among the first to bring ML to analyze
hiPSC-CM morphology and intracellular structure (Pasqualini
et al., 2015). After gathering fluorescent images of rat primary
ventricular monocytes (rpCMs) and hiPSC-CMs, stained for
sarcomeric α-actinin and fibronectin, 11 metrics were assessed.
Among others, metrics included sarcomere length, sarcomeric
packing density, and Z-disk relative coherence. Naïve Bayes, a
feedforward neural network, and a bootstrap aggregation of
decision trees were trained to classify rat primary
cardiomyocytes (rpCMs) as mature or immature using the
11 metrics as prediction elements and a user-defined maturity
label as output elements. All models, trained with the same
dataset, yielded similar degrees of hiPSC-CMs immaturity
accuracy, with the naïve Bayes classifier yielding 70%, the
neural network yielding 71%, and the tree bagging classifier
yielding 77%.

Orita et al. addressed the variability in the viability of cultured
hiPSC-CMs through a CNN, emphasizing the need for accurate and
high-throughput screening methods due to limitations in manual
inspection (Orita et al., 2019). A VGG16 architecture, pretrained
with the ImageNet dataset for transfer learning, was further trained
on experimental images labeled as ‘normal’ or ‘abnormal’ by an
expert, however, the authors did not elaborate on what parameters
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warranted normal or abnormal classification. The
VGG16 architecture used contained a total of 16 layers:
13 convolutional layers and 3 fully connected layers. The former
are used for extracting image features, such as edges and colors,
while the latter are used for image classification through nonlinear
combination of the extracted features. All convolutional layers of
VGG16 were frozen and used as fixed feature extractors, except for
the eighth fully connected layer, which was modified from
1000 nodes to 2 nodes for binary classification. After
implementing data augmentation methods to expand the dataset
to 18,000 images, the model successfully reached 90% accuracy,
showcasing its capability for automating quality control.
Nevertheless, the study acknowledges the necessity for a more
extensive dataset, especially given the trade-off between
calculation speed and performance. The findings suggest that full
retraining of VGG16 or exploring more advanced pretrained models
could further enhance performance and robustness in classifying
hiPSC-CM cultures.

Khadangi et al. introduced CardioVinci, a deep-learning
framework combining a U-net and GAN for unsupervised
segmentation and synthesis of 3D electron microscopy (EM)
datasets of cardiac cells (Khadangi et al., 2022). 3D Electron
microscopy datasets excel in providing high resolution images of
intracellular organelles and extracellular matrix organization.
But their large data size cause processing and analysis steps to
be time and energy intensive. Generative adversarial networks
(GANs) excel in biomedical imaging by generating realistic
synthetic data through adversarial training of a generator and
discriminator network, fostering advancements in image
synthesis, data augmentation, and disease simulation for
enhanced machine learning model training (Goodfellow et al.,
2014). U-net, a versatile convolutional neural network, proves
indispensable in biomedical image segmentation, effectively
delineating and identifying structures with its distinctive
U-shaped architecture, thereby contributing to precise and
efficient medical image analysis and diagnosis (Ronneberger
et al., 2015). The U-net segments mitochondria, myofibrils,
and Z-discs, achieving notable accuracy as confirmed by niche
evaluation metrics, like compactness, flatness, sphericity,
elongation, and surface area to volume ratio (SA:V). Next in
the CardioVinci pipeline, a GAN is encoded as a probabilistic
model of CM architecture to extract morphological metrics and
spatial distributions of mitochondria, myofibrils, and Z-discs in
semantic segmentations. StyleGAN is popular type of GAN
architecture with densely connected convolutions motivated
by style transfer problems (Karras et al., 2019). Here,
StyleGAN was used to minimize the Fréchet inception
distance and was trained on experimentally collected 3D EM
datasets of left ventricular cardiomyocyte extracted from a type
1 diabetic rat tissue sample to generate a probability distribution
of 2D CM structures found within the image slices of the 3D EM
segmented volume datasets, offering a novel approach to
generative modeling of CM ultrastructure. Despite its ability
to generate statistically similar geometries, CardioVinci
requires an initial segmentation step and accurate stacking of
2D images into 3D volumes, posing challenges for large tissue
samples. Nevertheless, it represents a notable advancement in
automating the analysis of cardiac ultrastructure.

6 ML in calcium handling and cell-
cell coupling

Functional adult CMs exhibit mature intracellular and
efficient intercellular calcium handing. Effective intracellular
calcium handling is dictated by high expression of voltage-
gated Ca2+, Na+, and K+ ion channels in adult CMs (Bodi
et al., 2005; Sartiani et al., 2007). Responding to varying
membrane potentials, these channels trigger intracellular
calcium release and take-up, allowing for efficient contraction
cycles. Relative expressions of these ion channels are significantly
lower in hiPSC-CMs vs. adult CMs, resulting in deficient function
action potential and contraction cycling (Feric and Radisic,
2016). Similarly, hiPSC-CMs exhibit lower levels of gap
junction proteins, preventing efficient intercellular
transduction of cardiac action potentials between neighboring
CMs. Significant work has been conducted to accurately classify
calcium transient signals into normal or abnormal to study the
contributions of calcium handling to cardiac disorders and
overall disfunction. Application of these methods in
characterizing calcium transients of hiPSC-CMs may help
identify the root causes of deficient calcium cycling and
improve the electrophysiology of hiPSC-CMs to
match adult CMs.

Through spectral clustering, Gorospe et al. (2014)
automatically classified a population of hESC-CMs into
different phenotypes based on electrophysiology signals.
Spectral clustering is a ML technique that utilizes the
eigenvalues and eigenvectors of the data matrix to project the
data into a lower-dimensional space for the purpose of clustering
data points (Ng et al., 2001). Heterogeneity of differentiated CMs
may be characterized by electrophysiology as action potential
(AP) waveforms differ significantly across pacemaker, atrial, and
ventricular phenotypes. The classification task is based on the
hypothesis that APs of the same phenotype exhibit more similar
shapes than those of different phenotypes. This distinction is
captured via spectral clustering in an experimentally collected
dataset comprising 6940 APs from nine cardiac clusters, analyzed
using Euclidean distance to quantify the similarity between APs.
Then, these similarities were fed as inputs to a simple spectral
grouping algorithm with the aim to objectively distinguish
populations of cardiac APs with distinct phenotypes. The best
grouping fitness was achieved when identifying 2 phenotypes, as
indicated by normalized cut cost and Davies-Bouldin Index
metrics. However, due to the simplicity of the clustering
algorithm and diversity in waveforms, the strength of this
method diminished when attempting to identify three and
four phenotypes per cell cluster. Notably, grouping the
population based on standard AP features, like duration at
30% (APD30) and 80% (APD80) repolarization, and their
differential, was effective for two groups, while using the
entire AP waveform was effective for two, three, or four groups.

Researchers often use microelectrode arrays (MEAs) to
measure APs in cardiac cells. This technique enables
simultaneous recordings from multiple locations, allowing
researchers to capture the spatiotemporal dynamics of
electrical activity across the entire cell population. However,
simultaneous recordings from multiple locations generate a
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large amount of data, and the interpretation of such complex
datasets may pose challenges. To tackle this, Jurkiewicz et al.
(2021) implemented an SVM to analyze signals recorded from
hiPSC-CMs on MEAs. Within MEA readings, intracellular APs
can be directly measured via electroporation or indirectly via
extracellular field potentials (FPs). The SVM was used to filter
MEA recorded signals into APs and FPs, classify signals as usable
or unusable, and extract AP features from the signals. Collected
signals were first split into APs and FPs based on time of
electroporation. Signals collected prior to electroporation were
identified as FPs, while signal collected after electroporation were
classified as action potentials. APs and FPs were then sorted into
usable and unusable signals based on deterministic noise and
signal fidelity rules. The SVM was then trained on AP and FPs
signal as predictive inputs to identify usable and unusable signals.
The classifier achieved 100% accuracy on the training set due to
linear separability. Finally, once AP signals were identified,
3 classical features were computed - basic cycle length (BCL),
APD30 and APD80. This analysis facilitated an in-depth
investigation of cardiac restitution, exploring the relationship
between APD for a given beat to the diastolic interval (DI) of the
preceding beat, DI = BCL −APD. The application of an SVMwith
MEA readings accelerates the location and classification of APs
and allows for quick extraction of AP features within MEA
datasets, but is limited in its translatability to patch clamp
experimental data.

Juhola et al. (2015) extended the analysis to calcium cycling
signals, using ML techniques to characterize and classify hiPSC-
CMs based on calcium cycling signals. Calcium cycling,
downstream of cardiac action potentials, provides insight into
cardiac calcium handing and contraction. In this study, calcium-
reporting fluorescent images of hiPSCs-CMs derived from
patients with catecholaminergic polymorphic ventricular
tachycardia (CVPT) were collected. After pre-processing,
calcium waveforms were generated by plotting the average
intensity in regions of interest within calcium images,
resulting in 280 unique signals. Peaks within each waveform
were identified and classified as normal or abnormal via
deterministic rules associated with changes in absolute
fluorescence, peak amplitude, and symmetry. Next, seven peak
parameters, including left/right side amplitude, duration, and
time interval between peaks were calculated for each identified
peak. These seven predictive elements were reduced via PCA,
which yielded a first principal component explaining 95% of
sample variance and a second principal component explaining
5%. After testing a variety of ML models, including kNN and
SVMs, QDA was found to perform the best with an 80% accuracy
compared to human expert assessment. It should be noted that
the deterministic rules guiding classification were rooted in
identifying at least one abnormal peak in waveforms,
i.e., abnormal waveforms were classified as such if they
contain at least one abnormal peak. In a follow-up study,
Juhola et al. (2018) then applied this method to discriminate
specific genetic diseases. Applying previous methods to hiPSC-
CMs derived from patients with catecholaminergic polymorphic
ventricular tachycardia (CPVT), long QT syndrome (LQT), and
hypertrophic cardiomyopathy (HCM), yielded classification
accuracies of 79%–88%.

Building on this work, Hwang et al. (2020) incorporated
expert determined ground truths, leveraging shared
characteristics of normal and abnormal Ca2+ transient peaks
and signals across all samples. The peaks in 200 training calcium
transients were identified and characterized according to
14 peak characteristics similar to Juhola et al. (2015).
Notably, the peak detection algorithm was improved by using
derivatives of calcium transient over raw amplitudes and
additional peak characteristics were calculated, such as nearby
peak distance varying peak amplitude, and peak asymmetry. A
peak-level SVM classifier was then trained using the 14 peak
variables as predictive features and expert normal/abnormal
assessment as outcome variables. Taking the outcomes of
peak-level classification, overall calcium transient signals were
classified as normal/abnormal using a cell-level SVM. For
training, peak normality assessments along with additional
cell variables, like proportion of abnormal peaks per signal,
variance of peak amplitude per signal, variance of peak
distances per signal, and variance of peak areas per signal,
were taken as predictive features, while human-expert
assessments were taken as outcomes. This two-tiered signal
analysis pipeline results in an 88% training accuracy and 87%
test accuracy, but these models were trained and tested on
similar signals potentially overfitting or biasing the model. In
general, training and testing on more varied data sets is
recommended.

Yang et al. (2022) introduced an alternative ML method to
identify drug treatment of hiPSC-CMs, of 63 unique compounds,
using calcium waveforms. The custom CardioWave pipeline
extracts 38 parameters from waveforms, including metrics on
rise/decay time, number of peaks, peak frequency, amplitude, and
shoulder characteristics. With 303 samples across 63 compounds,
PCA was used to project all samples parameters into a 2D space.
Next, a random forest model was trained with calcium waveforms
as predictive elements and the identity of the dosed compound as
ground truth elements. Employing leave-one-compound-out
cross-validation to evaluate the random forest model yielded
an overall accuracy rate of 86%. Gaps in the experimental data
set, notably varying drug concentrations and forced hyper-
parameterization of training inputs, may be reducing the
accuracy of this model.

Aghasafari et al. (2021) introduced a multitask network that
simultaneously classifies iPSC-CM AP traces into categories
representing drugged CMs and drug-free CMs and translates
them into adult-CM AP waveforms. Action potentials of drug-
free iPSC-CM and adult human CMs were generated via pacing
in silico models using the Kernik iPSC-CMs in silico model
(Kernik et al., 2020) and the O’Hara–Rudy human adult-CMs
in silico model (O’Hara et al., 2011). Drugged action potentials
were collected via simulation of the above models modified with a
simple drug-induced IKr block model of hERG channel
conduction, reducing conductance by 1%–50%, and complex
Markov model of conformation-state dependent IKr block in
the presence of hERG blocking drug dofetilide. A deep learning
algorithm was built on an RNN architecture with LSTM layers,
where the layers remember the most important iPSC-CM AP
features needed for the synchronized classification and
translation tasks. The model used preprocessed iPSC-CM APs
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as the network input and adult-CM APs along with
corresponding drug-free and drugged labels as network
outputs. The supervised tasks of classification and translation
were achieved independently of each other through individual
fully-connected layers. Addressing the challenge of immature
hiPSC-CM models, the algorithm navigates the translation task
by learning from synthetic data, exhibiting proficiency in
predicting drug-free and drugged states with approximately
90% accuracy. Although the model also successfully translates
hiPSC-CM APs into adult-CM APs with less than 0.003 mean-
squared error, it requires multiple high-quality datasets for
effective training, with potential improvements including
addressing data sparsity and exploring diverse approaches
beyond supervised learning. The LSTM-based multitask
network showcases the capability to discern and translate
cardiac APs, offering promise for applications in drug testing
and disease modeling.

7 ML in cell contraction

Contraction is intricately tied to intracellular calcium
handling in CMs. Thus, the abnormal calcium cycling seen in
hiPSC-CMs further diminishes contractile force generation and
contributes to a large functionality gap between hiPSC-CMs and
adult, and even neonatal, CMs. The active stress generated by
freshly isolated contracting human ventricular CMs was
measured to be >50 mN/mm2 (van der Velden et al., 1998)
and neonatal (<2 weeks) ventricular CMs generated of
0.8–1.7 mN/mm2 (Wiegerinck et al., 2009). hiPSC-CMs, by
comparison are measured to produce 0.15–0.30 mN/mm2
(Kita-Matsuo et al., 2009; Hazeltine et al., 2012). Numerous
mechanical and electrical stimuli such as static and cyclic
mechanical stretch (Kensah et al., 2011; Turnbull et al., 2014;
Ribeiro et al., 2019), electrical stimulation (Nunes et al., 2013;
Ruan et al., 2016), and supporting cell co-cultures (Richards
et al., 2017; Beauchamp et al., 2020), have been noted to improve
contractile properties of hiPSCs. Given the multitude of factors
influencing cardiac contraction development, machine learning
emerges as a powerful tool for accelerating the characterization
and optimization of hiPSC-CMs’ contraction.

Lee et al. (2015) provided one of the first applications of ML to
evaluate the contraction of CMs. Leveraging an SVM, brightfield
image sequences of beating CMs were classified as normal or
abnormal. Brightfield images were first processed with optimal
flow algorithms to generate matrices of x- and y-directional
vectors that describe CM motion. PCA summarized vector
information into a singular variable that described bulk
cardiac contraction over time. Using user-identified
contraction and relaxation peaks, 12 contraction parameters
were calculated including peak duration, amplitude, rise time,
area under curve, and frequency. An SVM was then trained with
over 200 unique samples to classify samples as normal or
abnormal using the contraction parameters as predictive
variables and known experimental conditions as the outcome
variable. The trained model achieved an accuracy rate of 83%–

99% in identifying cells treated with known contraction
modulators, E-4031, verapamil, and blebbistatin, at higher

concentrations. Notably, the model faced challenges in
predicting outcomes for drug dosing concentrations lower
than 10 nM.

Orita et al. (2020) automated the process of contraction
identification and employed a trained SVM to classify hiPSC-
CM cultures as normal (experimentally usable) or abnormal
(experimentally unusable). 556 brightfield image sequences of
beating hiPSC-CMs were captured and classified by experts as
abnormal (n = 190) or normal (n = 366). The contraction
properties of the imaged CMs were calculated to be the 200-
frame simple moving average (SMA) around the frame of
interest. Data augmentation, via the sliding window method,
enabled each contraction profile to be split into individual
contraction waves, increasing the data set six-fold. Then, a
fast Fourier transform converted contraction waves (n =
3,336) to the frequency domain and UMAP was employed to
reduce the dimensionality of contraction waves to two
dimensions. Uniform manifold approximation and projection
(UMAP) is a nonlinear dimensionality reduction technique that
is particularly effective for preserving both local and global
structures in high-dimensional data (McInnes et al., 2020).
Finally, an SVM was trained, using UMAP reduced
dimensions as inputs and expert-assessment as ground truths,
yielding an 89% accuracy and 92% precision rate. Notably, this
pipeline was trained on global features within image sequences,
potentially overlooking important local features that could
impact accuracy negatively.

Similarly, Teles et al. (2021) employed ML to differentiate
healthy CMs from CMs derived from patients with Timothy
syndrome (TS). Cardiomyocytes were differentiated from healthy
iPSC lines (WTC-11 and BS2) and from iPSCs derived from
patients with TS. Brightfield videos of contracting hiPSC-CMs
were collected and processed using custom MATLAB software to
assess contractility parameters like beat frequency, peak-to-peak
time, interbeat variability, and rise time. Contractility parameters
and experimentally defined ground truths were trained on kNN,
decision trees, naive Bayes classifier, QDA, and SVM. QDA and
decision trees yielded a 92% accuracy when discriminating TS
and healthy WTC-11s, while decision trees and SVM were best
preforming at differentiating TS and healthy BS2 cells with 88%
and 87% accuracy respectively. Finally, WTC-11 and BS2 derived
cardiomyocytes were differentiated from each other with
accuracies above 90% using decision trees, naïve Bayes with
normal kernel, and SVM with quadratic and cubic kernel.
Given the strongest predictive parameter was unable to be
identified due to dimension reduction pre-processing, the
authors argue for the generation of more diverse datasets of
contractility, varying race, ethnicity, sex, and disease of
donor cells.

Another automated approach for assessing drug-induced effects
on CM electrophysiology used a feed-forward neural network that
processes mechanical beating signals from hiPSC-CMs (Ouyang
et al., 2022). A custom feature extraction program was applied to
partition CM beating signals into distinct beating patterns and
extract specific features in the time domain. These features were
then manually analyzed to identify various drugs and predict their
cardiotoxic concentrations. A multi-labeled neural network
(MLNN) was constructed to identify different drugs and drug
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concentrations based on the specialized features of individual CM
beating patterns. Nodes with dual labels in the output layers were
designed to represent both binary drug types and numeric drug
concentrations. This approach aimed to reduce the number of
output classes in the classifier, preventing overfitting, especially
when training with a limited dataset. By combining automatic
feature extraction and MLNN, the model accurately classified six
different drugs as either cardiotoxic or not and predicted their
cardiotoxic concentrations, achieving 98% and 96% for training
and testing accuracies, respectively. Despite the introduction of
noise, the MLNN demonstrated robust performance, maintaining
accuracy, precision, and recall at approximately 96%. Although the
MLNN outperforms other DL methods like CNN and RNN
frameworks at low concentrations, there is a need for more
extensive datasets to enable a comprehensive comparison with
other deep-learning methods.

8 ML in tissue assembly

The assembly of in vitro differentiated CMs into functional
tissue is hindered by the complex nature of healthy myocardium,
characterized by the high cell density, multicellularity, ordered
structural composition. While the self-assembly of hiPSC-CMs
into engineered heart tissues has produced largely functional 3D
myocardium, its scalability and lack of vasculature pose limitations
(Ronaldson-Bouchard et al., 2018). Various approaches, including
scaffold or scaffold free systems (Feinberg et al., 2013; Nunes et al.,
2013; Kobayashi et al., 2019; Qasim et al., 2019) such as bioprinting
have been explored for 3D cardiac tissue assembly (Ong et al., 2018;
Esser et al., 2023; Finkel et al., 2023). ML offers a potential avenue to
expedite the optimization of scaffold and bioink parameters for
supporting multicellular culture and facilitating functional
tissue assembly.

Rafieyan et al. (2023) provide one of the few direct applications
of ML to hiPSC-CM scaffold optimization. Their main objective
was to overcome limitations created by small experimental
datasets. To address this, they first developed a
comprehensive, multi-cell line, muti-fabrication method
dataset through an extensive literature review that connected
material properties to CM function. Subsequently, they identified
the most accurate algorithm to predict cell behavior on CTE
scaffolds. Briefly, scaffold materials in this dataset included
synthetic and natural materials like polycaprolactone and
Fibroblasts-derived ECM. Fabrication methods in the dataset
were comprised of electrospinning, hydrogel encapsulation, and
3D printing among others. Finally, cell lines ranged from cardiac
progenitor cells to hiPSCs. Cellular response with these materials
was categorized into 4 classes: (0) no evaluation of cellular
behavior preformed, (1) poor cell viability, growth, and
proliferations, (2) cell viability, growth, and proliferation seen
up to 3 days, and (3) cell viability, growth, and proliferation seen
past 3 days. The dataset, encompassing 33 different materials,
16 different cell lines, and 6 different fabrication methods, was
used to train 23 algorithms using material parameters as
predictive inputs and the 4 classifications of cell response as
outcomes. XGBoost, a gradient boosting machine for regression
and classification problems, yielded the highest classification

accuracy (87%), while quadratic discriminant analysis yielded
the lowest (33%). XGBoost also indicated bioactive ECM as a
defining feature driving CM function. This study demonstrates
the importance of comprehensive datasets in achieving high
accuracy in ML methods and illustrates an example wherein
ML may help identify important contributors of CM behavior,
leveraging a diverse and disparate dataset.

Among various cardiac tissue assembly methods, bioprinting
stands out as particularly promising. Not surprisingly, there is a
notable emphasis on the application of hierarchical machine
learning (HML) to optimizing bioprinting parameters
specifically addressing the complexities of bioprinting for
cardiac tissues, where achieving precise and accurate spatial
arrangements of cells is crucial for functional outcomes. HML,
a hybrid approach integrating physical and statistical
methodologies, is particularly designed for small experimental
datasets (Menon et al., 2017). In this approach, predictors are
linked to the system response through an intermediary layer with
variables parameterized by established physiochemical
relationships. Regression techniques are then employed to
establish connections between the middle layer and the system
response, enabling effective prediction and optimization. Bone
et al. (2020) used HML to optimize ink-related variables and
printer settings for improved print fidelity in the Freeform
Reversible Embedding of Suspended Hydrogels (FRESH)
bioprinting modality. FRESH printing, while successfully
employed for assembling 3D cardiac tissues, is plagued by
print fidelity issues difficult to optimize (Finkel et al., 2023).
With 48 prints generated and assessed for print fidelity by
varying normalized flow rate, nozzle speed, alginate
concentration, and nozzle diameter, an HML model was
constructed. The model included a bottom layer composed of
predictor system variables, a middle layer leveraging known
physical relationships of the flow-gelation process of alginate,
and a top layer representing print fidelity rating. Despite the low
sample size, the model revealed that faster nozzle speed and
higher alginate concentrations were the primary factors
contributing to print fidelity. The model was then used to
predict print scores based on synthetic parameters yielding
R2 = 0.5 for the fidelity of lines and corners. Although
exhibiting low accuracy, this model primary leverages physical
knowledge to enhance predictive power and achieve
interpretability of the results for downstream analysis, even
with limited training data.

Another innovative ML approach to optimize bioprinting
fidelity was employed by Conev et al. (2020), taking one step
further by training a regression ML model to estimate the
printing quality metric based on given material and printing
parameters. Utilizing a previously collected data set that varied
weight percent of poly(propylenefumarate) (PPF) composition,
fiber spacing, printing speed, and printing pressure, two ML
models were explored for their accuracy in predicting print
fidelity. The first approach involved a classification-based
model, using random forests with user defined high and low
print fidelity ground truths. The second approach tested a
regression-based model to circumvent the need for user-
defined thresholds for print fidelity. A random forest model
was trained to predict machine precision and material
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accuracy, followed by applying a threshold to characterize the
printing as either “low” or “high” quality. These models were
compared to a standard linear regression model that predicts
material accuracy based on printing speed and printing pressure.
The random forest classifier and regressor models yielded
accuracies of 74% and 75%, respectively. The high
performance of this model should be weighted by the limited
scope of this study. Only one polymer, PPF, made up the entire
training and testing data set, albeit at varying weight percentages.

Lee et al. (2020) focused on optimizing bioink composition,
particularly for CTE, with a keen consideration of properties like
elastic modulus and yield stress that are crucial for efficient 3D
printing. For the optimization process, they employed inductive
logic programming (ILP), a ML technique that learns general
rules or patterns from specific instances by combining logic
programming with inductive reasoning (Muggleton and de
Raedt, 1994). Concentrations of type 1 collagen, fibrin, and
hyaluronic acid as components of the bioink were varied to
create 19 unique bioink formulations. By training a model
using the fidelity of these formulations, the authors can
predict rheological parameters and printing results. The ML
analysis revealed that the main contributing factor
determining shape fidelity is the bioink’s elastic modulus,
accounting for 85% accuracy, while the dominant factor
determining extrusion efficiency was the bioink’s yield stress,
accounting for 90% accuracy. To validate the model’s findings,
the study successfully produced 3D structures of fibroblast-laden
hydrogels with high shape fidelity, maintaining the shape for
28 days without collapsing or contracting. Confocal microscopy
observations showed an increase in the number of living cells
over time, emphasizing the bioink’s potential for sustained cell
culture. While the predictive model demonstrated effectiveness,
the study underscores the need for a more comprehensive
understanding of the complex relationships among bioink
variables and parameters in the context of 3D bioprinting for
CTE applications.

Similarly, Ruberu et al. (2021) utilized Bayesian optimization
(BO) to identify the optimal printing parameters of gelatin
methacryloyl (GelMA) and hyaluronic acid methacrylate
(HAMA) bioinks with minimal experimentation. Notably, this
pipeline leveraged ML to adaptively inform sampling during the
experimentation process, surpassing classical Design of Experiment
(DoE) methods that determine a sampling pattern prior to taking
observations. This enables development of a database to predict
printability and to make recommendations to the experimenter. A
data set of score prints were generated varying GelMA and GelMA/
HAMA composition, ink reservoir temperature, print pressure,
print speed, and platform temperature. This seed data set was
used to initialize the Bayesian optimizer. Within the optimizer, a
probabilistic model of the system was built and used to recommend
the next batch of experiments (printer settings) to be conducted.
After executing the recommended experiments, prints were scored
and fed again into optimizer in a continuous loop until optimal print
conditions were reached. Optimal prints were achieved in 4-
47 experiments, depending on the concentration of GelMA,
drastically under the 6,000 to 10,000 possible combinations in
the Bayesian algorithm. Here, BO efficiently navigates the
complex parameter space of 3D bioprinting via theoretical

convergence guarantees and collaborative adaptability. However,
there is still a significant reliance on trial-and-error experimentation,
and larger batch sizes potentially encompassing experiments with
lower confidence.

9 Discussion

The lack of effective curative treatments for CVD generates a
large need that hiPSC-CMs may fill if their functionality can be
better understood and improved. Traditional brute-force methods at
improving cardiac maturity have yielded some results, but there still
exists a large gap between engineered cardiac tissue and the tissue
they aim to repair or replace. The high experimental costs of cardiac
optimization create opportunities for the utilization of ML.

Several groups have employed mathematical and numerical
modeling of cardiac systems to help guide future areas of focus.
Sobie and Wehrens (2009) reviewed computational and
experimental models that may be used to explain the
mechanisms of Ca2+-dependent arrythmias, like CPVT. Montero-
Calle et al. (2022) have utilized computational modeling to guide the
fabrication of biomaterials to support the assembly of cardiac
microtissues. Furthermore, other researchers have generated in
silico mathematical models of hiPSC-CMs to estimate adult-CM
behavior (Koivumäki et al., 2018; Tveito et al., 2018). These
methods, while effective, are inherently deterministic as they
require extensive model parameter definition and incorporate
assumptions on relationships and system operation. The
computational challenges of traditional models are summarized
in long response times to solve the equations at hand, high
monetary costs for computational resources for every evaluation
with a new set of parameters, and a high environmental footprint
precisely due to the repeated long response times. On the other
hand, training a ML model is the most arduous computational step
that is done once, while response times are typically 1 s or less for a
new input or set of parameters.

Table 1 summarizes the ML methods reviewed here in
connection to the functional deficiencies of hiPSC-CM they
aim to address. Methods are implemented primarily in Python
using experimental data (Figures 1A, C). The top three common
models are SVMs, random forests, and kNNs, successful at
learning from limited datasets with relatively low training
times. However, these supervised models require the selection
of specialized features that may make-or-break the task at hand.
Meanwhile, deep convolutional networks benefit from the ability
to process images and signals without such careful selection of
features, since they learn the features themselves, but they require
significantly more data than the supervised models. This yields
higher computation costs with the longer training times, leading
to their lower utilization (Figure 1D). The frequency of model
usage within each CTE challenge show the utility of SVMs within
various problem cases and the specialization of neural networks
for the analysis of image data sets within CM morphology
(Figure 2). A handful of studies emphasize the potential of DL
for automating quality control, while acknowledging the trade-
off between calculation speed and performance compared to the
more common ML methods cited in this review. Two of the more
critical items that should be measured for all ML models are the
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computational resources and the amount of time required for
successful implementation and training. However, many authors
do not provide this. Finally, there exists a distinct focus on
physiological phenotyping in the field, and that is reflected in
this review. These studies are critical to inform the necessary
interventions that may improve hiPSC-CM functionality. This
need places further emphasis on the importance of training data

bias, for if bias exists in phenotyping methods, it may skew the
results of interventions designed to these parameters.

In addition, the training size itself is a crucial factor for almost
every AI approach. Notably, the studies reviewed here rely on
experimental data, particularly from cardiac differentiation
experiments, as a primary data source. The experimental data
consists of variables related to cell density, bioprinting

TABLE 1 Summary of machine learning application in cardiac tissue engineering.

CTE Challenge
Addressed

Model(s) used Type of prediction Evaluation
metrics

Data availability Citation

Purity RFs, GPR, and MARS Supervised (classification) 90% accuracy Training/Testing Dataset
only

Williams et al.
(2020)

RFs, GPs, SVM Supervised (classification) 70% accuracy Available upon request Mohammadi et al.
(2022)

CNN Supervised (classification) 85% accuracy None Mohammadi et al.
(2023)

Morphology Naïve Bayes, NN, tree bagging Supervised (classification) Not provided Training/Testing Dataset
only

Pasqualini et al.
(2015)

CNN Supervised (classification) 90% accuracy None Orita et al. (2019)

U-Net, StyleGAN Unsupervised (segmentation
and synthesis)

N/A Code + training and
testing datasets

Khadangi et al.
(2022)

Calcium Handling or EP spectral grouping Supervised (classification) NCC = 0.14
DBI = 1.16

None Gorospe et al.
(2014)

kNN, LDA, QDA, NNB,
classification tree, SVM

Supervised (classification) 80% accuracy None Juhola et al. (2015)

kNN, RFs, SVM Supervised (classification) 88% accuracy None Juhola et al. (2018)

SVM Supervised (classification) 87% accuracy Code + training and
testing datasets

Hwang et al.
(2020)

RNN Supervised (classification
and translation)

90% accuracy Code + training and
testing datasets

Aghasafari et al.
(2021)

SVM Supervised (classification) 100% accuracy None Jurkiewicz et al.
(2021)

RFs Supervised (classification) 86% accuracy Code + training and
testing datasets

Yang et al. (2022)

Contraction SVM Supervised (classification) 83%–99% accuracy None Lee et al. (2015)

UMAP, SVM Supervised (classification) 89% accuracy None Orita et al. (2020)

Feed Forward -NN Supervised (classification
and regression)

96% accuracy None Ouyang et al.
(2022)

kNN, decision trees, Naive Bayes
classifier, QDA, SVM

Supervised (classification) >90% accuracy None Teles et al. (2021)

Tissue Assembly hierarchical ML Supervised (regression) R2 = 0.5 datasets and model
equations

Bone et al. (2020)

RFs Supervised (classification
and regression)

75% accuracy None Conev et al. (2020)

Inductive Logic Supervised (classification) 90% accuracy None Lee et al. (2020)

Bayesian Optimization Supervised (regression) N/A Training/Testing Dataset
only

Ruberu et al.
(2021)

decision trees, logistic regression,
kNN, XGBoost, SVM

Supervised (classification) 87% accuracy Code + training and
testing datasets

Rafieyan et al.
(2023)

Acronyms used: RFs, random forests; GPR, gaussian process regression; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; MARS, multivariate adaptive regression

splines; SVM, support vector machine; CNN, convolutional neural network; NN, neural network; kNN, k-nearest-neighbors; NNB, normal naïve Bayes; RNNs, recurrent neural networks; and

UMAP, Uniform manifold approximation and projection.
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parameters, drug concentrations, and preculture conditions. While
these datasets capture various aspects of the differentiation process,
they remain low in sample sizes. Researchers often choose to focus
on different variables, even when addressing the same challenges,
such that this variability poses a barrier when attempting to join
datasets across studies (Rafieyan et al., 2023). This review highlights
the need for more features and larger datasets to comprehensively
explain the variance in output data. Closing this gap is vital for
understanding the complete set of factors influencing cardiac
differentiation.

The lack of proper training data sets could be addressed by
incorporating more temporal data, integrating diverse types of
data from imaging and variable cell sources, and implementation
of generative models to synthesize larger datasets. Firstly, long-
term dependencies and variations in cardiac differentiation need
to be considered, especially when aiming for clinically relevant
outcomes. Although binary classification tasks are proactive ways
to quantify if a particular environment will be successful or not,
how the environment succeeds or fails over time can lead to new
insights for early correction approaches. These insights can also
aid in more accurate mathematical modeling, emphasizing the
symbiotic relationship between data-driven and physics-based

techniques. Secondly, collecting data from diverse cell lines and
experimental conditions, like 3D bioprinting settings, is crucial to
improving the robustness and generalizability of ML models.
Consistent data collection across the field is needed to compare
and combine disparate datasets. Integrating various features and
modalities, including imaging data, can enhance the predictive
power of nowadays pragmatic ML models. However, prioritizing
or even measuring the vast possible number of features is
overwhelming. There is a gradual shift toward unsupervised or
semi-supervised learning to capture nuanced information,
especially now that these approaches are more practical. The
ultimate goal is to generate digital twins (An et al., 2021;
Zimmermann et al., 2021) of hiPSC-CMs, producing robust
and diverse datasets spanning various configurations.
Although this goal is still out of reach, we anticipate that ML
coupled with mathematical modeling will play a crucial role in
achieving it. In the meantime, generative models can close the
gap, augmenting existing data with tailored synthetic data. Some
emerging approaches rely on DL frameworks, like GANs and
autoencoders (Goodfellow et al., 2014; Goodfellow et al., 2016),
but with sufficient modeling and understanding of the task at
hand, non-DL approaches many times are sufficient, particularly

FIGURE 1
Of the 23 papers reviewed, we describe the frequency of programming language used (A), the specific python package used (B), the source of
training data (C), and if deep learning methods were used (D).
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hidden Markov models and Gaussian mixture models (Bishop
and Nasrabadi, 2006).

10 Conclusion

The application of ML in CTE is progressing toward more
sophisticated frameworks capable of handling diverse data types.
These observations underscore the multidimensional nature of CTE
challenges, the innovative integration ofMLwith computationalmodels,
and the ongoing need for refining ML frameworks to balance accuracy,
interpretability, and computational efficiency. Through combining ML
with mathematical models and expert knowledge, we envision a rich
collaboration between novel data-driven and biophysics-informed
models to bridge knowledge and computational gaps.
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