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Lung cancer, a predominant source of cancer-related mortality, poses
considerable obstacles for conventional therapies. Carbon nanotubes, an
innovative category of nanomaterials, have surfaced as prospective agents for
cancer treatment owing to their distinctive characteristics. This article examines
the potential of carbon nanotubes (CNTs) in the treatment of lung cancer,
emphasizing their roles in targeted drug delivery, photothermal and
photodynamic therapy, and gene therapy. The high surface area, electrical
conductivity, and biocompatibility of CNTs render them optimal for the
delivery of anticancer medications, thereby augmenting their efficacy and
minimizing side effects. Furthermore, CNTs can be employed in photothermal
and photodynamic therapy, facilitating cell death via heat production or oxidative
stress. Furthermore, carbon nanotubes can effectively transport genetic material
for gene therapy, providing a focused method for lung cancer treatment. Despite
limitations like as clinical translation, carbon nanotubes exhibit significant
potential as novel instruments for enhancing lung cancer therapy outcomes.
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1 Introduction

Lung cancer is one of the most aggressive and widespread cancers globally, accounting
for 2.2 million new cases and 1.8 million deaths in 2020. It remains the leading cause of
cancer-related mortality among men and second leading cause among women, following
breast cancer (Peng et al., 2008). Lung cancer has a high rate of metastases and is resistant to
traditional treatments, making early detection and treatment difficult despite continuous
attempts. It is classified into small cell and non-small cell types, is traditionally treated with
chemotherapy, radiation, and medications, though these methods often harm healthy
tissues and have limited effectiveness due to issues such as poor drug stability and resistance.
Moreover, these conventional therapies frequently do not effectively target malignant cells,
resulting in inadequate therapeutic results and heightened toxicity to healthy cells.
However, recent advancements in nano-drug delivery systems have shown promise in
overcoming these obstacles. Nanoparticle-based therapies, especially those employing
CNTs, provide enhanced precision and reduced side effects through more localized
treatment. The use of nanocarriers in cancer treatment has significantly increased in
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recent years, offering more targeted and efficient therapeutic options
(Chatterjee et al., 2013). CNTs represent an emerging category of
nanomaterials characterized by distinctive chemical, physical, and
biological properties. Structurally, CNTs are carbon allotropes with
a cylindrical form. In addition to their unique morphology, CNTs
exhibit remarkable electronic and thermal conductivity. These
properties make them highly suitable for a wide range of
applications across various disciplines, including electronics,
chemistry, optics, and biomedicine (Brock, 2015). Furthermore,
CNTs have exhibited the capacity to traverse biological barriers,
including cell membranes, which presents a considerable benefit in
drug administration. In the medical field, carbon nanotubes
have several.

Important applications, including their use in the delivery of
molecules such as genes, drugs, and enzymes. Additionally, due to
their excellent electrical conductivity, CNTs contribute to
advancements in tissue engineering and regenerative medicine.
Their biocompatibility and capacity for functionalization with
specific ligands further augment their capability to preferentially
target cancer cells, while minimizing off-target effects. They also
exhibit antioxidant properties and are effective in targeted thermal
therapies, further enhancing their potential in medical treatments
(Brock, 2015). Moreover, the unique optical characteristics of
carbon nanotubes, including their capacity to absorb and
transform light into heat, enable them very effective in
photothermal therapy, wherein regulated heating can trigger the
elimination of cancer cells. This review aims to highlight key features
of CNTs that make them suitable for cancer treatment especially
lung cancer, focusing on their application in photodynamic and
photothermal therapies, as well as their effectiveness in targeted drug
and gene delivery. This article will also address the potential of CNT-
based therapies to address existing treatment limitations, thereby
providing more effective and personalized options for lung
cancer patients.

2 Overview of carbon nanotubes

2.1 Definition and types

The main structure of carbon nanotubes is made up of carbon
atoms arranged in a hexagonal honeycomb pattern. This special
arrangement leads to outstanding physical and chemical properties
(Chatterjee et al., 2013; Crowley et al., 2013). CNTs are categorized
into two types: single-walled nanotubes (SWCNTs) and multi-
walled nanotubes (MWCNTs), each characterized by distinct
dimensions (Chatterjee et al., 2013; Alunni-Fabbroni and Sandri,
2010; Sardarabadi et al., 2021). The lengths of carbon nanotubes can
extend to the micrometer scale, while their diameters typically vary,
with single-walled CNTs measuring around 1–2 nm and multi-
walled CNTs ranging from 2 to 100 nm (Sardarabadi et al., 2021).
CNTs exhibit remarkable properties, such as high biocompatibility,
excellent thermal and electrical conductivity, and a large surface
area. In this section, we will focus on discussing some of these key
attributes (Chatterjee et al., 2013). Due to their delocalized π-
electron system, carbon nanotubes exhibit high electrical
conductivity (~106–107 S/m), enabling efficient charge transport
(Yung et al., 2022; VanderLaan et al., 2014) This makes CNTs

suitable for electrical stimulation in tissue engineering. They
promote cell proliferation and stem cell differentiation,
particularly in neurite and cardiomyocyte systems (Sun et al.,
2018; Freidin et al., 2015; Leiter et al., 2023). A new rectangular
patch antenna incorporating multi-walled carbon nanotubes has
been designed and developed to aid in the early detection of
COVID-19-affected lungs. Thanks to their high conductivity,
each nanotube uniquely reflects electromagnetic waves,
contributing to an increased bandwidth (Sheikhpour et al., 2020).
Numerous studies have demonstrated the biocompatibility of
carbon nanotubes in both in vivo and in vitro environments. In
recent years, CNT composites have gained increasing popularity,
with biocompatibility assays consistently showing their high
biocompatibility (Saliev, 2019; Parande Shirvan et al., 2024). The
following table provides a summary of some key studies on the
biocompatibility of CNTs and their composites (Figure 1).

MWCNT chitin MTT assay CNTs also have demonstrated a
large surface area, making them highly suitable for the development
of new generations of anticancer systems (Parande Shirvan et al.,
2024; Gupta et al., 2019). CNT’s high surface area makes it an
excellent choice for modifications and adaptations for specific
applications like biosensing technologies and cancer therapies
(Brock, 2015) (Table 1).

3 Carbon nanotubes properties

Unprocessed CNTs are unable to dissolve in water due to the
very hydrophobic nature of their surfaces. One approach to
resolving this issue is to functionalize CNTs. The introduction of
certain functional groups onto the walls of CNT is made possible
through the process of chemical synthesis (Burnstine-Townley et al.,
2020). This process results in the formation of functionalized carbon
nanotubes (f-CNT), which can be utilized in a wide range of
applications. Functionalization of substances can be accomplished
through two distinct methods: covalent bonding, which involves the
formation of chemical bonds, and noncovalent bonding, which
involves physioadsorption (Nekounam et al., 2021; Mostafavi
et al., 2022).

The covalent attachment of polymer chains to CNTs creates
robust chemical interactions between the molecules and the
nanotubes. The many covalent processes applicable to graft
molecules are categorized based on their distinct features (Shar
et al., 2023). For instance, grafting from processes entail the
incorporation of preexisting polymer chains, whereas grafting to
reactions involve the polymerization of monomers initiated from
surface-derived initiators on CNTs. Both methods involve
interacting with the CNT surface for functionalization. The
surfaces of virgin, prefunctionalized, or oxidized CNTs can
facilitate the formation of covalent connections with molecules or
polymer chains (Hasan et al., 2022). Most drug delivery techniques
documented in the literature depend on noncovalent interactions
between molecules and CNTs. An alternative to covalent
functionalization is the application of amphiphilic surfactant
molecules or polymers to cover CNTs, facilitating noncovalent
functionalization. For best performance in biological applications,
a noncovalently functionalized CNT must demonstrate clearly
defined properties (Aoki and Saito, 2020). A method to
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accomplish this involves covering carbon nanotubes with
amphiphilic compounds, yielding micelle-like structures. CNTs,
comprising SWCNTs and MWCNTs, demonstrate exceptional
mechanical qualities, with Young’s modulus values attaining up
to 2.8e3.6 TPa for SWCNTs and 1.7e2.4 TPa for MWCNTs (Dias

and Mfouo-Tynga, 2020; Meran et al., 2018). These materials have
remarkable strength along their axial axis, with MWCNTs
displaying a tensile strength of 63 GPa, substantially surpassing
high carbon steel’s 1.2 GPa (Huang et al., 2019). Carbon nanotubes
have exceptionally high elastic moduli, roughly 1 TPa, in contrast to
around 70 GPa for aluminum (Wu et al., 2017). Their specific
strength, at 48,462 kN m/kg, significantly exceeds that of high
carbon steel (154 kN m/kg), due to their low solid density of
1.3–1.4 gm/cm³ (Bhattacharya et al., 2023). Furthermore, findings
from transverse electron microscopy (TEM) reveal that two adjacent
nanotubes can be altered by van der Waals forces, demonstrating
their malleability and resilience (Figure 2).

CNTs possess remarkable thermal properties, with individual
MWCNTs exhibiting thermal conductivity of 3000 W/K at ambient
temperature, exceeding that of graphite (Bhattacharya et al., 2023).
SWCNTs have notable thermal conductivity, exceeding 200W/m K.
Measurements of low-temperature specific heat and thermal
conductivity offer clear proof of the one-dimensional
quantization of the phonon band structure in carbon nanotubes,

FIGURE 1
Carbon nanotubes overview.

TABLE 1 Summary of some key studies on the biocompatibility of CNTs and their composites.

References CNT type Composite Evaluations

Saleemi et al. (2020) SWCNT PEG MTT assay

Solorio-Rodriguez et al. (2023) MWCNT PCL alamarBlue assay

Wang and Weng (2018) MWCNT chitin MTT assay

TABLE 2 Examples of drug delivery using carbon nanotubes.

Organ Functionalization CNT type

Lung ammonium PEI/PAMAM SWCNT/
MWCNT

Singh et al.
(2020)

bone PLGA CNTs

liver Ammonium PEG MWCNT

Breast PEG-PEI SWCNT

Pancreas PL-PEG SWCNT

Skin PEI-succinic acid SWCNT
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further emphasizing their distinctive thermal properties. The
configuration of carbon atoms in CNTs creates a hexagonal
lattice, with each carbon atom covalently connected to three
adjacent carbon atoms through sp2 molecular orbitals
(Bhattacharya et al., 2023). This configuration results in one
valence electron being free, which becomes delocalized among all
atoms, influencing the electrical properties of CNTs (Bhattacharya
et al., 2023). SWCNTs can demonstrate metallic properties, with
resistivities varying from 0.34 to 1.0 × 10⁴ Ω cm. Carbon nanotubes
can exhibit either conductive or semiconductive properties based on
their chirality. In the medical domain, CNTs are especially
advantageous owing to their diminutive size, elevated surface
area to volume ratio, and ability for functionalization, facilitating
diverse new uses (Prato et al., 2008).

4 Mechanisms of action

4.1 Targeted drug delivery

CNTs exhibit unique physicochemical and biological
characteristics, coupled with a considerable ability for surface
modification, making them promising candidates for drug
delivery systems. SWNTs and MWNTs can infiltrate cells via
endocytosis or by directly embedding into the cell membrane. In
addition to their capacity to permeate cell membranes, their stability,
customizable structures, and significant drug-loading potential have
led to extensive research on their use as nanocarriers for the
treatment of critical diseases like cancer (Table 2)(Sahoo et al.,
2011; Basheer et al., 2020). It was observed that anticancer drugs are
encapsulated within the inner hollow core of multi-walled carbon
nanotubes using an inert, nonaqueous platinum (IV) complex
through hydrophobic-hydrophobic interactions. Upon
undergoing chemical reduction, the anticancer drug is converted
into its cytotoxic and hydrophilic form, allowing it to be released
from the transporter The needle-like morphology of carbon
nanotubes provides a substantial specific surface area, rendering
them suitable for the adsorption or conjugation of many therapeutic

substances due to their diminutive size and elevated aspect ratios.
The needle-like morphology of CNTs facilitates their internalization
into target cells (Tuncel et al., 2011). Consequently, carbon
nanotubes exhibit significant potential as nanocarriers for the
delivery of proteins, DNA, and pharmaceuticals. The
administration of anticancer agents using CNT-based
nanocarriers has been thoroughly investigated, while vesicle-
based carriers such as liposomes have mitigated other disorders
beyond cancer. Chemotherapy, with other cancer treatments such as
radiation and surgery, has historically been the gold standard.
Regrettably, side effects from treatment diminish the potential for
effective therapy, and the nonspecificity of medications may result in
resistance. To diminish the probability of unwanted effects and
enhance therapeutic efficacy, innovative strategies for targeting
tumors with anticancer medicines are urgently needed.
Topoisomerase inhibitors, platinum (Pt)-based agents, and
antimicrotubule drugs are frequently administered through CNTs
as anticancer therapies (Basheer et al., 2020).

4.2 Photothermal and
photodynamic therapy

Photodynamic therapy (PDT) is a light-activated treatment that
employs photosensitizing molecules (PSs), specific wavelengths of
light, and molecular oxygen (O₂) to induce cytotoxic effects through
oxidative reactions, effectively targeting solid tumor cancer cells
(Parande Shirvan et al., 2024). Hyperthermia, or photothermal
therapy, is a straightforward cancer treatment method in which
the irradiation of near-infrared (NIR) light raises the local
temperature of tumors, disrupting cancer cells. Internalized
nanoparticles (NPs) at tumor sites can be activated by laser
irradiation to generate localized heat in the range of 40°C–45°C,
effectively destroying cancer cells. Notable examples of NPs include
single-walled carbon nanotubes and MWNTs (Jahromi and
Setoodeh, 2020; Tang et al., 2021). A study demonstrated that
the photothermal effect of single-walled carbon nanotubes
(CNTs), when used in conjunction with doxorubicin, effectively

FIGURE 2
The TEM picture of SPIO-MWCNTs coated with polymer is on the left. Comparing in vivo MRI scans of the livers of mice before and after SPIO-
MWCNT injection (white arrows denote tumors) with those of the internal control group (water, top right). Used with authorization from Bianco
et al. (2005).
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targets and eliminates breast cancer cells (Lourie andWagner, 1998).
Also there is a research about Photothermal therapy of melanoma
tumor using multiwalled carbon nanotubes (Jahromi and
Setoodeh, 2020).

4.3 Gene therapy

CNT-based delivery systems are being studied for their potential to
transport genetic materials with low immunogenicity. Their favorable
length-to-diameter ratio and modification capabilities allow for the
efficient delivery and release of various genetic materials. Investigations
into functionalized CNTs (fCNTs) for creating CNTs/DNA complexes
have shown promising results, demonstrating successful internalization
as proof of concept (Yu et al., 2000). This table presents examples of
drug delivery using CNTs.

5 Recent innovations in lung cancer
applications

5.1 Diagnostic tools

In addition to the conventional imaging methods previously
discussed, CNTs can be included into advanced diagnostic
instruments (Figure 3). They can be functionalized with specific
antibodies or aptamers to directly target cancer cells. This focused
strategy can enhance the sensitivity and specificity of diagnostic
tests, resulting in earlier diagnosis and more precise staging of lung
cancer. CNTs have demonstrated potential in lung cancer detection
by recognizing alterations in volatile organic compounds (VOCs)
seen in respiratory samples (Yu et al., 2005). Research has shown
that individuals with lung cancer display increased concentrations of
diverse volatile organic compounds, encompassing polar vapors
such as water, methanol, isopropanol, ethanol, acetone, 2-
butanone, and propanol, alongside nonpolar vapors including
chloroform, benzene, o-xylene, n-decane, 1-hexene, toluene,
styrene, n-propane, cyclohexane, 1,2,4-trimethylbenzene, and
isoprene (Liu et al., 2015).

The diagnosis and profiling of lung cancer pose considerable
obstacles, especially in the early stages when tumors are tiny and

hard to distinguish from benign nodules (Chen et al., 2017).
Individuals with lung cancer frequently possess comorbidities
that elevate the risks linked to invasive interventions such as
biopsies (Paul et al., 2023). Furthermore, tracking disease
progression, recurrence, or the emergence of secondary tumors
might be challenging. Circulating tumor cells (CTCs) provide a
non-invasive method for evaluating lung cancer, as Organ
Functionalization CNT type Reference Lung ammonium PEI/PA
they may be readily identified and tracked during treatment and
disease advancement (Zare et al., 2021). Contrary to cell-free nucleic
acid profiles, CTCs do not rely on specific mutations. CNTs can
successfully isolate and analyze CTCs. Due to their remarkable
mechanical strength and extensive surface area, these rare cancer
cells can be effectively collected (Sobhani et al., 2017). Researchers
can improve the selectivity of CTC capture and separate just cancer
cells by functionalizing CNTs with specific markers. This process
enables the cells to maintain viability for further genomic profiling,
encompassing the analysis of their mutational landscape, drug
sensitivity, and metastatic capacity. This data can facilitate
treatment decisions, monitor disease development, and enable
early relapse diagnosis. Owing to these attributes, CNTs represent
a viable material for personalized cancer therapy, disease
surveillance, and early diagnosis. Yung et al. established a CNT
platform for capturing CTC from whole blood specimens. The
technology was evaluated on a cohort of lung cancer patients and
shown a high accuracy in detecting CTCs, even in early-stage
disease. Their approach exhibited elevated sensitivity, specificity,
and positive predictive value, indicating its potential utility for the
early detection and monitoring of lung cancer (Jeyamohan et al.,
2013). Despite the exciting promise of liquid biopsies, existing
technologies continue to need help with detection sensitivity and
throughput. The limited presence of circulating tumor markers in
the bloodstream impedes their identification, necessitating
highthroughput methodologies to address these issues and fully
exploit the advantages of liquid biopsies (Caoduro et al., 2017).

5.2 Therapeutic tools

Carbon nanotubes can function as effective drug transporters,
transporting anticancer medicines directly to neoplastic cells. This

FIGURE 3
(A) A picture of the mouse tumor’s location as seen using an optical microscope; (B–D) from left to right, NIR-II fluorescent time course imaging 12,
24, and 48 h after injection, revealing distinct accumulation of SWCNTs in the tumor. All near. Reused with permission from Ebbesen et al. (1996).
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precise administration can improve treatment effectiveness while
reducing adverse effects on healthy tissues. Moreover, CNTs can
elicit apoptosis (programmed cell death) in neoplastic cells, an
essential mechanism for oncological therapy. Single-wall carbon
nanotubes (SWCNTs) have emerged as effective carriers for drug
administration in cancer therapy, attributed to their distinctive
qualities such as elevated surface area, biocompatibility, and
capacity to traverse cell membranes. This has resulted in
comprehensive study on employing SWCNTs for the delivery of
diverse lung cancer therapeutics (Singh et al., 2020).

5.2.1 Single-walled carbon nanotubes and lung
cancer pharmaceuticals

This is a summary of significant studies investigating the
application of SWCNTs in conjunction with other lung cancer
therapeutics: Paclitaxel: SWCNTs have been integrated with
paclitaxel to augment its efficacy against lung cancer cells.
Alterations such as chitosan and hyaluronic acid have been
employed to enhance biocompatibility and selectively target
specific cell types (Antaris et al., 2013). SWCNTs have enabled
the administration of TRAIL, a protein that triggers death in cancer
cells, resulting in enhanced tumor elimination (Yang et al., 2008).
Doxorubicin: SWCNTs have been utilized for the delivery of
doxorubicin, a commonly employed chemotherapy agent,
improving its targeting and therapeutic effectiveness (Yu et al.,
2016). Curcumin: Curcumin, a natural substance possessing anti-
cancer effects, has been integrated with SWCNTs to enhance its
delivery and efficacy against lung cancer cells (Zakaria et al., 2015).
Survivin siRNA: SWCNTs have been employed to transport survivin
siRNA, a gene silencing agent, to diminish survivin expression and
trigger apoptosis in lung cancer cells. Gemcitabine: SWCNTs have
demonstrated potential as carriers for gemcitabine, a
chemotherapeutic agent frequently utilized in lung cancer
treatments (Al Faraj et al., 2016).

5.2.2 Multi-wall carbon nanotubes with
pharmacological agents for lung cancer

Inhibition of telomerase: Multi-walled carbon nanotubes
(MWCNTs) have been integrated with graphene oxide to
obstruct telomerase, an enzyme linked to the longevity of cancer
cells (Palaci et al., 2005). Modified MWCNTs containing ethylene
glycol and antibodies have been employed to target drugresistant
lung cancer cells. SiRNA delivery: MWCNTs have been utilized to
transport siRNA molecules aimed at specific genes implicated in the
genesis and progression of lung cancer. Alternative pharmaceuticals:
Multi-walled carbon nanotubes have been utilized to provide a range
of lung cancer therapeutics, such as methotrexate, cisplatin, betulinic
acid, docetaxel, etoposide, and IRGD peptide (Singh et al., 2018; Cao
et al., 2019).

5.2.3 Benefits of SWCNTs and MWCNTs in lung
cancer treatment

Improved medication delivery: SWCNTs and MWCNTs can
augment the delivery of pharmaceuticals to lung cancer cells,
enhancing their effectiveness. Targeted therapy: Alterations to
SWCNTs and MWCNTs enable the precise delivery of
pharmaceuticals to certain cancer cell types. Decreased toxicity:
By safeguarding pharmaceuticals from degradation and enhancing

their dispersion, SWCNTs and MWCNTs may potentially mitigate
negative effects.

6 Future perspective

It appears that artificial intelligence (AI) and machine learning
(ML) have significant potential to contribute to advancements in the
CNT usage, particularly in cancer treatment. As a result, we are
witnessing a growing trend in the development and application of
these technologies in oncology (Lodhi et al., 2013). Carbon
nanotubes (CNTs) require functionalization and surface
chemistry modification to enhance their biocompatibility, reduce
toxicity, and improve their physical properties. For future clinical
and biomedical uses, thorough in vivo and in vitro assessments are
necessary. Despite their potential, CNTs face challenges such as low
solubility in both aqueous and organic solvents. Covalent
functionalization has shown improved pharmacokinetics and
biodistribution, which are crucial for medical applications. The
toxicity of CNTs is influenced by factors like nanotube type,
administration method, dosage, and the targeted tissues, but can
be reduced through eco-friendly functionalization and synthesis
methods. Evaluating biodistribution, toxicology, and biosafety is key
for advancing CNT-based systems in medical contexts (Cirillo et al.,
2019). Also There are several challenges that hinder the clinical
application of CNT-based therapies. Key among them is the lack of
comprehensive safety studies in humans, as most in vivo tests have
been conducted over short periods in animal models. Long-term
safety assessments are needed to confirm their suitability for clinical
use. Additionally, many functionalization methods of CNTs are
complex, making large-scale, reproducible production difficult.
Despite these obstacles, CNTs hold significant promise for cancer
treatment and diagnosis, and with advances in technology, more
thorough preclinical studies will help explore their clinical potential
(Singh and Kumar, 2022).

In our opinion, the prospects of CNTs in cancer therapy are
fascinating, owing to their distinctive attributes, including elevated
surface area and biocompatibility. Functionalizing CNTs for
targeted medicine delivery could improve treatment accuracy
while reducing negative effects. Moreover, their optical
characteristics may enhance real-time tumor imaging, therefore
supporting tailored therapy strategies. However, it is imperative
to tackle issues such as potential toxicity and guarantee safe
biodegradability. As research advances, CNTs may transform
cancer treatment, facilitating the development of more effective
and personalized therapeutic approaches.

7 Conclusion

Carbon nanotubes have emerged as viable alternatives for lung
cancer therapy owing to their distinctive characteristics and
adaptability. Their capacity to administer pharmaceuticals, induce
cellular apoptosis via photothermal and photodynamic therapies,
and convey genetic material presents novel strategies to surmount
the constraints of conventional treatments. Despite the necessity to
address issues like biocompatibility and clinical translation, the
prospective advantages of CNTs in lung cancer therapy justify
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additional research and development. Ongoing discoveries in
nanotechnology suggest that carbon nanotubes may significantly
enhance outcomes for lung cancer patients.
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