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Proton channel Hvl modulates
microglial responses to
neurological disorders

Maite Stratmann, Caterina Gagliardi and Melania Capasso*

German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1, Bonn, Germany

Proton channels are transmembrane proteins that enable selective proton (H+)
transport. The voltage-gated proton channel Hvl or HYCN1 is the only one found
in mammalian cells, primarily in immune cells, where it facilitates rapid proton
extrusion in response to membrane depolarization, mediating outward proton
currents. Therefore, it is well equipped to support NADPH-oxidase function,
facilitating the proton flux that maintains physiological pH and membrane
potential for efficient reactive oxygen species (ROS) production. In the central
nervous system (CNS), Hvl is predominantly found in microglia. Its role in
microglia homeostasis is yet to be elucidated; however, recent research has
highlighted its involvement in neurological conditions, including demyelinating
disease, spinal cord injury, stroke, and Parkinsonism. These studies have shown
beneficial effects of Hvl deletion, including improved neurological function,
reduced microglial activation, enhanced myelination, and decreased
neuroinflammation. This review explores the role of Hvl in the CNS and its
potential as a therapeutic target in neurodegenerative diseases.
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Introduction

The voltage-gated proton channel Hvl (HVCN1/VSOP) is a highly proton-selective
transmembrane protein that plays a central role in regulating intracellular pH and membrane
potential, particularly in immune responses (Decoursey et al., 2000; Kapus et al., 1993; He
etal, 2021; Capasso et al., 2010; Wu et al., 2012; Wang et al., 2021; Ramsey et al., 2006; Sasaki
et al,, 2006; DeCoursey, 2010; Tomb et al., 2008; Tombola et al., 2010). For a review of the
physiology of the channel please refer to (DeCoursey, 2010; DeCoursey, 2003).

In different immune cell types, Hvl functions largely to support NADPH-oxidase
complex activity (Figure 1). Upon activation, the complex transfers electrons across
biological membranes to reduce molecular oxygen (O,) into superoxide (O,”) during
the respiratory burst, contributing to cellular oxidative processes (Decoursey, 2010;
Henderson et al., 1987; El Chemaly et al., 2010). The electron transfer depolarizes the
membrane and lowers cytosolic pH, two phenomena that suppress NADPH-oxidase
activity but open Hvl, enabling the extrusion of protons to restore membrane potential
and pH and ensuring continued ROS generation (Ramsey et al., 2009; Morihata et al., 2000).
In Hvl-deficient cells this feedback fails, leading to intracellular acidosis, impaired ROS
production, and compromised immune responses (DeCoursey, 2003).

While extensively studied in peripheral immune cells (DeCoursey et al., 2000; Kapus et al,,
1993; Capasso et al.,, 2010; Capasso, 2014), the role of Hv1 in microglia and more generally in the
central nervous system (CNS) is still being elucidated, as previously reviewed by He et al. (2021).
Microglia are the tissue-resident macrophages of the CNS and maintain its homeostasis by
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FIGURE 1

Hv1 supports NADPH oxidase activity, ROS generation and cytosolic pH homeostasis. Schematic of the voltage-gated proton channel Hv1 acting in
concert with the NADPH oxidase complex. During NADPH oxidase activity, electrons are transferred from cytosolic NADPH to molecular oxygen to
generate superoxide (O',-) with concomitant conversion of NADPH to NADP*. The resulting electrogenic electron flux and proton production depolarize
the membrane and acidify the cytosol. Hvl provides an outward proton flux that compensates charge across the membrane to permit sustained
NADPH oxidase electron transfer, enables continued ROS production, and helps maintain cytosolic pH. Created in BioRender. Gagliardi, C (2025) https://

BioRender.com/mxOfjex.

pruning synapses, clearing cellular debris, and responding to injury
(Guzmaén-Ruiz et al., 2024; Salter and Stevens, 2017). However, their
dysregulation is implicated in a range of neurological diseases, largely
through excessive ROS production and secretion of pro-inflammatory
cytokines (Salter and Stevens, 2017). ROS generated by the NADPH
oxidase play a dual role in microglial physiology. At low concentrations,
they participate in signaling cascades regulating proliferation and stress
responses and supporting microglia’s role during development.
However, when produced in excess, ROS induce mitochondrial
dysfunction and oxidative damage to lipids, proteins and nucleic
acids that might lead to apoptosis (Tauffenberger and Magistretti,
2021). Thus, the fine-tuned regulation of ROS via Hvl may be
critical for maintaining a functional balance between physiological
and pathological microglial activation (Haslund-Vinding et al., 2017).

Hvl expression in the brain is both region- and age-dependent
(Kawai et al., 2021). It is undetectable in neonates, detectable in adults,
and significantly upregulated in aged brains, particularly in the striatum,
where it correlates with markers of microglial activation CD11b,
CX3CR1, CD68 (Kawai et al,, 2021; Okochi et al, 2009). This age-
related upregulation likely parallels the increased activation state of
microglia observed during aging. Interestingly, in aged Hvl-deficient
mice, increased cortical oxidative stress and altered microglial
morphology have been reported, along with behavioral changes
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linked to anxiety and dysregulated GPCR signaling (Kawai et al,
2021). These findings suggest that Hvl may influence both cellular
and behavioral aspects of aging via region-specific effects on microglia.

Emerging findings now implicate Hv1 in a range of CNS pathologies
characterized by oxidative stress and inflammation. In models of
ischemic stroke (Wu et al., 2012; Yu et al, 2020; Yu et al, 2018; Li
etal, 2019; Tian et al., 2016; Kawai et al., 2017; Kimura et al,, 2025; Yang
etal, 2025), traumatic and spinal cord injury (Liu et al., 2023; Ritzel et al,,
2021; Li et al., 2020a; Li et al., 2020b; Li et al., 2023; Murugan et al.,, 2020),
demyelination (Wang et al,, 2021; Chen et al,, 2020; Liu et al., 2015; Sun
et al,, 2024), pain (Peng et al.,, 2021; Zhang et al., 2022), and Parkinson’s
disease (Neal et al., 2023), Hvl deletion or pharmacological inhibition
consistently reduced microglial activation, lowering ROS levels and
improving neurological outcomes. These findings point to Hvl as a
potential  therapeutic target for limiting microglia-mediated
neuroinflammation and secondary neuronal damage, as we will
illustrate in details in subsequent paragraphs.

Stroke and hypoperfusion

Stroke and cerebral hypoperfusion are major neurological
insults involving restricted blood and oxygen supply to the brain,
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which trigger energy failure and excitotoxicity and are accompanied
by activation of inflammatory processes. Central to this pathology is
microglial overproduction of ROS, which drives neurotoxicity
(Kimura et al, 2025; Zhu et al, 2022). Increasing evidence
implicates Hvl as a mediator of such damage: Wu and colleagues
first demonstrated that Hvl mediates NADPH-oxidase-dependent
ROS generation in microglia and its deletion in a middle cerebral
artery occlusion (MCOA) ischemic stroke model reduced infarct
volume and neuronal death, improving neurological deficit scores
24 h post-injury (Wu et al, 2012). A follow-up study in a
photothrombotic stroke mouse model confirmed these findings:
Hvl KO caused a shift towards an anti-inflammatory microglial
phenotype, resulting in reduced brain injury and improved motor
function (Tian et al.,, 2016). Interestingly, the role of Hv1 in stroke
appeared age-dependent, as neuroprotection was evident in 6-
month-old but not 9-week-old mice (Kawai et al., 2017), possibly
due to aforementioned age-dependent changes in Hv1l expression.

Furthermore, in chronic cerebral hypoperfusion, using the
bilateral carotid artery stenosis model, Hvl KO mice displayed
lower ROS levels, reduced cytokine release, and an anti-
inflammatory microglial profile (lower CD68/CD16, higher
CD206/Argl). White matter integrity and working memory were
preserved, likely due to improved oligodendrocyte precursor cell
(OPC) nproliferation and differentiation (Yu et al, 2020).
Mechanistically, Hvl KO suppressed PI3K/Akt activation in
microglia, limiting pro-inflammatory polarization and enhancing
OPC maturation (Yu et al.,, 2018). Indeed, in co-cultures, Hvl KO
microglia reduced OPC apoptosis and MAPK pathway activation
under oxygen-glucose deprivation.

Pharmacological inhibition of Hvl in a experimental stroke
models also showed promise. Brain-targeting lipid nanoparticles
carrying the Hvl inhibitor YHV984 reduced infarct size when
administered 1 h post-stroke, suppressing NLRP3 inflammasome
activation and decreasing neuronal death (Yang et al, 2025).
Behavioral outcomes and survival improved significantly;
however, efficacy with delayed treatment remains unknown.
Further insights into potential therapeutic strategies came from
Li and colleagues, who suggested that Hvl interacted functionally
with the Na*/H* exchanger NHE-1 in the context of stroke (Li et al.,
2019). Their results indicated a potential synergistic effect of
inhibiting both Hvl and NHE, supporting co-targeting as a
strategy for future investigation.

Collectively, these results converge on a shared mechanism
through which Hvl amplifies microglial-mediated damage in
acute and chronic models of brain vascular pathology, which
warrants further investigations.

Traumatic CNS injury

Traumatic CNS injury, including traumatic brain injury (TBI)
and spinal cord injury (SCI), is trauma caused by external forces,
which triggers acute and chronic secondary damage characterized by
oxidative stress, acidosis, and neuroinflammation (Rubiano et al.,
2015; Ryan et al., 2023; Venkatesh et al., 2019). Microglial Hv1 has
emerged as a driver of these responses, promoting extracellular
acidosis and ROS production. In a controlled cortical impact model
of TBI, Hv1 was upregulated in the cortex and hippocampus within
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24 h and remained elevated for several weeks (Ritzel et al., 2021).
Hvl KO mice exhibited attenuated ROS production, reduced
expression of pro-inflammatory cytokines (TNF-a, IL-1B, IL-6),
and improved neurological performance across multiple
behavioral tests, including novel object recognition, Y-maze, and
beam walk tests.

Mechanistic studies have implicated Hv1 in amplifying acidosis-
driven damage via neuronal acid-sensing ion channels (Zeng et al.,
2015). However, acidosis-induced cell swelling itself exacerbates
Hvl activity by stretching the membrane, thereby triggering the
channel’s mechanosensitivity (Pathak et al., 2016). Additionally,
Hv1 upregulation in microglia of the olfactory bulb after TBI led to
disrupted network activity and synaptic loss, contributing to
olfactory dysfunction (Liu et al., 2023). These deficits were
rescued in Hvl KO or NADPH-oxidase-deficient mice and
ameliorated by pharmacological NADPH-oxidase inhibition.

Similar mechanisms were observed in SCI models. Following
thoracic contusion, Hvl KO mice showed improved white matter
preservation, enhanced neuronal survival, and improved motor
recovery over several weeks post-injury (Murugan et al., 2020).
Reduced IL-1P expression, lower ROS, and diminished microglial
activation were observed, along with decreased extracellular acidosis
and leukocyte infiltration (Murugan et al., 2020; Li et al., 2021).
Hvl deletion also shifted microglia toward an anti-inflammatory
phenotype, with reduced expression of the pro-inflammatory
markers CD16/CD32 and elevated anti-inflammatory markers
CD206 and Argl (Li et al., 2020b). This was accompanied by an
increase in neuroprotective astrocytes, and their elevated expression
of synaptogenic and neurotrophic factors (Li et al., 2020b; Li et al.,
2023). These effects were linked to reduced astrocytic ROS and
downstream STAT3 phosphorylation (Li et al., 2023), suggesting
that Hvl indirectly modulates astrocyte behavior through redox-
sensitive signaling pathways.

Another mechanism linking Hvl to secondary damage is
Hvl KO mice

significantly lower levels of NLRP3 inflammasome components,

inflammasome activation. After SCI, show
which resulted in reduced neuronal pyroptosis in the lesion area
(Lietal., 2020a). The same effect could be achieved with antioxidant
treatment, indicating that Hv1-driven ROS is a key upstream trigger
of inflammasome activation and cell death.

In vitro studies of neuron-microglia co-cultures treated with the
Hv1 inhibitor 2CGI offer corroborating evidence of reduced TNF-a,
ROS, and zinc-mediated neuronal damage and upregulation of
neurotrophic factors (Hernandez-Espinosa et al., 2023). However,
as 2CGI may also inhibit the NLRP3 inflammasome (Liu et al.,
2025), more selective Hv1 inhibitors or genetic tools are needed to
dissect Hvl-specific pathways.

Taken together, these studies establish Hv1 as a central regulator
of microglia- and astrocyte-mediated secondary damage following
CNS trauma, confirming it as a promising therapeutic target that
should be investigated further, including with more specific
pharmacological inhibitors.

Peripheral nerve injury and pain

Microglial activation and oxidative stress are central also to the
pathogenesis of chronic pain and peripheral nerve injury. Recent
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research demonstrated that Hvl is functionally expressed in spinal
microglia and upregulated following spinal nerve transection (SNT), a
model for peripheral nerve injury (Peng et al., 2021). Mice lacking
Hvl displayed reduced pain behaviors such as mechanical allodynia
and thermal hyperalgesia compared to WT mice. Although microglial
proliferation and p38 MAPK activation were intact in Hvl KO mice,
Hvl deficiency led to lower ROS production, alongside lower
astrocytic activation in the ipsilateral dorsal horn. Furthermore,
IFN-y levels in spinal astrocytes diminished in Hvl KO mice;
indeed, neutralizing IFN-y in WT mice mimicked the protective
phenotype of Hvl deficiency, while exogenous IFN-y reversed the
Hvl KO phenotype. These results suggest that Hvl and IEN-y in
microglia-astrocyte interaction promote pain hypersensitivity.

Zhang and colleagues extended these findings by identifying
Hvl mRNA expression in dorsal root ganglion (DRG) neurons,
challenging the previous notion of a microglia-specific expression in
the CNS (Zhang et al., 2022). DRG Hvl expression increased in
response to several pain models, including complete Freud’s
adjuvant (CFA)-induced inflammation, spared-nerve injury and
formalin injection, as well as stimulation with TNF-a, IL-1pB, and
PMA. Activity- and injury-induced neuronal Hvl expression
promoted intracellular alkalization, ROS production, and pro-
inflammatory cytokine release. Both genetic deletion and
pharmacological inhibition of Hvl with the selective inhibitor
YHV984 reduced ROS levels, cytokine release, and pain-related
behaviors. Mechanistically, YHV-984 normalized SHP-1/pAKT
signaling in DRG neurons, preventing the CFA-induced decrease
of SHP-1 expression and subsequent overactivation of the PI3K-
pAKT pathway. Importantly, Hvl inhibition also alleviated
morphine-induced tolerance, a major obstacle in chronic pain
treatment. Co-administration of YHV984 preserved morphine
analgesic effects while preventing allodynia, drug tolerance, and
DRG ROS production. These findings implicate Hv1 as a modulator
of both injury- and opioid-related neuroimmune mechanisms.

Demyelinating diseases

Emerging evidence points to a role for Hv1 also in demyelinating
diseases such as multiple sclerosis (MS), a chronic inflammatory disease
of the CNS in which oxidative stress plays a central role. Post-mortem
analyses of MS brains revealed oxidized lipids and DNA in active
plaques, especially in oligodendrocytes and axonal spheroids. In a
chronic experimental autoimmune encephalomyelitis (EAE) model,
a distinct ROS-positive CD11b* microglial subset was identified using
single-cell RNA sequencing. Treating mice with acivicin, which
enhances antioxidant capacity by inhibiting glutathione breakdown,
reduced oxidative damage and neurodegeneration even 80 days post-
disease onset, highlighting the therapeutic potential of targeting ROS
production (Mendiola et al., 2020).

Liu and colleagues used a cuprizone-induced demyelination model
in adult male mice to investigate Hv1 in demyelination (Liu et al., 2015).
Hvl KO mice exhibited reduced ROS levels, decreased microgliosis,
increased oligodendrocyte progenitor proliferation, and enhanced
oligodendrocyte maturation in the corpus callosum. Even 2 weeks
after recovery, HV1 KO mice showed preserved myelin integrity and
improved motor performance in the rotarod test. Similarly, in a
lysophosphatidylcholine (LPC)-induced demyelination model of the
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corpus callosum, Hvl KO decreased ROS production and lowered
microglial activation, improving remyelination (Chen et al, 2020).
Enhanced myelin repair was linked to increased oligodendrocyte
maturation and decreased autophagy in microglia, alongside
improved spatial memory in the Morris water maze. These findings
underscore the role of Hvl in microglial-mediated demyelination and
support its therapeutic potential in promoting both protection from
demyelination and regeneration.

Wang and colleagues further investigated Hvl in microglial
migration and myelin debris clearance (Wang et al., 2021). Genetic
deletion or antibody-mediated neutralization of Hvl enhanced
microglial motility and debris clearance in vivo, however, the ability
of the reported anti-Hvl antibody to block proton channel activity
warrants further investigation. The authors showed that Hvl was not
required for myelin phagocytosis in vitro but rather for proper
lysosomal acidification in human kidney cell line 293T but not in
bone marrow-derived macrophages, suggesting a cell-type-specific
role. Moreover, systemic LPS exposure increased Hvl expression in
the corpus callosum, indicating that Hvl reacts to inflammatory
stimuli in a wider range of ways than only focal demyelination.

Following up on Hvl involvement in neuroinflammation, Sun
and colleagues tested the Hvl inhibitor 2-GBI in an LPS-induced
neuroinflammation model. Inhibition of Hvl blocked HIF-la-
mediated aerobic glycolysis, resulting in reduced ROS production
and suppression of pro-inflammatory signaling both in vitro and in
vivo. Systemic 2-GBI treatment decreased hippocampal microglial
activation and inflammation, which translated to improved
cognition in the novel object recognition test and Y maze.
these
approaches using Hvl knockout, knockdown, and overexpression
models demonstrated that Hvl loss attenuates NF-kB-mediated
cytokine production and PI3K/Akt/HIF-la-dependent glycolytic
reprogramming in microglia in a LPS-induced hippocampal

Complementing pharmacological ~ findings, genetic

neuroinflammation model (Sun et al, 2025). Hvl deficiency
disrupted the cellular redox state and altered metabolism,
resulting in increased levels of glutamate and aspartate alongside
decreased lactate and citrate, reflecting impaired glycolysis and TCA
cycle flux. This metabolic reprogramming was accompanied by
improved cognition in LPS-treated mice.

Collectively, these findings emphasize Hvl involvement in
demyelinating diseases and neuroinflammation. Genetic and
pharmacological Hvl inhibition reduced neuroinflammation and
improved myelin clearance, protecting cognitive and motor function.
However, it is important to consider the limitations of the cuprizone
and LPC model, which mimics toxin-induced demyelination and lacks
the autoimmune component of MS, an aspect in which Hvl might also
play a role. Further investigation using immune-driven models and
human samples will be crucial to validate the role of Hvl in disease
progression and its therapeutic potential.

Other neurodegenerative diseases:
Parkinsonism, Amyotrophic lateral
sclerosis (ALS), Huntington’'s disease
(HD) and Alzheimer's disease (AD)

Recent evidence highlights the involvement of Hvl in
Parkinsonism, particularly in promoting microglial activation and

frontiersin.org


https://www.frontiersin.org/journals/biophysics
https://www.frontiersin.org
https://doi.org/10.3389/frbis.2025.1681011

Stratmann et al.

dopaminergic neuron loss. Transcriptomic data from patient brains
revealed its elevated expression, especially in men (Neal et al., 2023).
In both acute 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) and lipopolysaccharide (LPS)-induced
Parkinson’s mouse models, Hvl expression was upregulated in

sub-chronic

the striatum 2 days after treatment, and Hvl deficiency conferred

partial neuroprotection, with diminished loss of tyrosine
hydroxylase-positive neurons (Neal et al, 2023). This was
accompanied by decreased pro-inflammatory and oxidative
markers (e.g., TNF-a, IL1b, IL6, Nos2, IFN-y, gp91phox) and
increased anti-inflammatory markers (e.g., Argl, YM1). In vitro,

Hv1 KO microglia failed to show typical LPS-induced inflammatory

responses, and their conditioned media caused reduced
dopaminergic  neuron  death. These findings  suggest
Hvl promotes both basal and stimulus-induced pro-

inflammatory activity and may contribute to dopaminergic
neuron vulnerability. However, the MPTP model represents acute
toxicity and may not reflect chronic PD pathophysiology.
Investigating Hv1 in more relevant systems, such as iPSC-derived
neuron-microglia co-cultures or overexpression of a-synuclein
(Pinto-Costa et al., 2023), will be needed to clarify its role in
chronic neurodegeneration.

Elevated Hvl protein has been observed across multiple
neurodegenerative contexts, including ALS and HD in mouse
models, and, in the case of HD also in patient blood samples
(Wang et al,, 2021). Similarly transcriptomic analyses of human
AD postmortem tissue show increased Hvl expression, although
functional studies in AD remain limited (Ou et al., 2021; Brooks and
Mias, 2019; Seligmann et al, 2024). These converging findings
indicate a broader upregulation of Hvl across neurodegenerative
disorders, consistent with its role in regulating microglial
polarization and sustaining neuroinflammation, processes that are
central to the pathophysiology of AD, ALS, and HD. Through
NADPH-oxidase-dependent ~ ROS
Hvl may amplify oxidative stress, drive neuronal injury and

supporting production,
death, and facilitate propagation of misfolded protein aggregates
(Ma et al.,, 2017; Zhang et al., 2023). Given that chronic oxidative
stress and persistent neuroinflammation are common hallmarks of
these diseases (Ma et al., 2017; Zhang et al., 2023), Hvl may act as a
shared amplifier of pathogenic microglial responses and represent
an important mechanistic link between microglial activation, ROS
production, and neurodegeneration.

Hv1 has also been investigated in the context of aging and cognition
(He et al,, 2021), suggesting a potential contribution to age-related
cognitive decline and neurodegenerative conditions such as dementia.
Notably, Hv1 deficiency has been associated with improved cognitive
performance in models of neuroinflaimmation (Sun et al, 2025),
supporting a role for Hvl in mediating inflammation-induced
cognitive impairment. However, direct functional evidence in the
context of aging and dementia remains limited.

Discussion, treatment perspectives,
and future outlook

The voltage-gated proton channel Hvl has emerged as a key
regulator of oxidative stress in the CNS; its expression in microglia
and its role in ROS production place it at the center of redox-sensitive
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inflammatory responses. In pathologies such as stroke, TBI, SCI,
chronic pain, demyelinating diseases, and neurodegeneration, Hvl is
often upregulated in response to injury or disease-related stimuli.

challenges the that
Hvl uniformly promotes ROS generation. In primary microglia,

Recent evidence traditional  view
Hvl deletion paradoxically increased extracellular ROS production,
likely via altered actin dynamics that enhance NADPH-oxidase
assembly, independently of proton extrusion (Kawai et al., 2017).
This implies that Hvl may normally suppress excessive actin
remodeling, indirectly limiting NADPH-oxidase complex assembly
and ROS generation. Importantly, such mechanisms illustrate that
Hvl functions are not restricted to cytokine- or inflammation-driven
pathways but also extend to cytoskeletal regulation and other non-
inflammatory processes. Similarly, in vitro data from Hvl KO cells
showed an upregulation of genes linked to migration, such as ACTA2,
SEMAG6A, GPNMB, RAC2, LRP1 (Wang et al., 2021). These findings
underscore the multifaceted role of Hv1 in microglia (Figure 2) and
the need to investigate its role in relevant models and with genetic and
pharmacological inhibition.

Hvl presents a compelling therapeutic target due to its unique
structure, restricted expression profile, and functional role in proton
extrusion. Unlike the NADPH-oxidase complexes, which require
assembly of multiple subunits, Hvl is a simple voltage-gated
homodimer, offering a structurally less complex and potentially
more tractable drug target (Tomb et al,, 2008). Hvl inhibition can
suppress excess ROS production without compromising basal
homeostatic functions. Moreover, since Hvl conducts significantly
more protons per NADPH-oxidase electron transfer event (De and
coursey, 2003), lower doses of Hvl inhibitors are likely sufficient to
reach therapeutic efficiency. Some Hvl inhibitors, such as zinc or
guanidine derivatives such as 2-guanidinobenzimidazole (2GBI),
suffered from poor specificity, low potency, or limited bioavailability
(He et al,, 2021; Liu et al,, 2025; Seredenina et al., 2015; Hong et al.,
2014). Derivatives like CIGBI have modestly improved cell
permeability and affinity but still face challenges related to
specificity and therapeutic utility (Hong et al, 2014). Other
affect  Hvl
pH homeostasis, such as

inhibitors indirectly by altering intracellular
amiloride, and

amantadine, or by modulating lipid rafts like epigallocatechin-3-

4-aminopyridine,

gallate (Jin et al, 2013). More promising candidates have since
emerged. YHV-984, a small molecule inhibitor, shows improved
selectivity and efficacy in models of neuroinflammation and pain
but has limited water solubility that limits its therapeutic potential
(Zhang et al, 2022). To address this, lipid nanoparticles (LNPs)
modified with the T7 peptide carrying a small molecule inhibitor
(T7-LNP@YHV984) were developed, successfully delivering YHV-984
across the blood-brain barrier in an ischemic stroke model, where it
accumulated in microglia, reduced neuroinflammation, and improved
neuronal survival and behavioral outcomes.

Despite its promises, Hvl-targeted therapy faces several
challenges. Hvl function is context- and cell-dependent, and its
inhibition may suppress protective microglial responses in early
disease stages (Ekdahl et al., 2009). This highlights the need for
precise control over timing, dosage, and cell-specific delivery.
Current studies rely heavily on germline Hvl knockout models
(He et al, 2021),
compensations that obscure the temporal or cell type-specific
should

which may introduce developmental

functions of Hvl in the adult brain. Future work
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Hvl expression in microglia modulates their inflammatory phenotype in neurological disorders. Schematic representation of the effects of Hvl
expression versus Hv1 deficiency in microglia upon noxious stimulation or disease conditions. In the presence of Hv1 (left), microglia release increased levels
of ROS and pro-inflammatory cytokines, which promote astrogliosis, neuroinflammation, neurodegeneration, excitotoxicity, and impaired OPC maturation.
As a result, oligodendrocyte apoptosis increases and remyelination decreases. Hvl-deficient microglia (right) produce less ROS and exhibit an anti-
inflammatory phenotype, resulting in lower astrocyte activation, improved neuronal survival, higher OPC proliferation and maturation, increased white matter
integrity as well as increased actin remodeling and migration. Created in BioRender. Gagliardi, C (2025) https://BioRender.com/vl1u9jq.

prioritize conditional and inducible models to dissect the function of
Hvl1 in distinct cell populations and disease stages.

Moreover, the broader role of Hv1 in glial crosstalk, network-level
signaling, and regional heterogeneity remains poorly understood. Its
regulation in aging and chronic disease contexts also requires further
investigation. There is increasing interest in whether Hv1 modulation
might offer therapeutic benefit beyond acute CNS injuries, including
in chronic neurodegenerative diseases or systemic conditions with
neurological impact, such as diabetes or cancer.

In conclusion, Hvl is emerging as a central modulator of
microglial function, oxidative stress, and neuroinflammation. As
new molecular and delivery platforms advance, Hvl holds a
significant potential as a therapeutic target across a wide range of
acute and chronic neurological conditions.
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