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Passive acoustic monitoring (PAM) studies generate thousands of hours of audio,

which may be used to monitor specific animal populations, conduct broad

biodiversity surveys, detect threats such as poachers, and more. Machine

learning classifiers for species identification are increasingly being used to

process the vast amount of audio generated by bioacoustic surveys, expediting

analysis and increasing the utility of PAM as a management tool. In common

practice, a threshold is applied to classifier output scores, and scores above the

threshold are aggregated into a detection count. The choice of threshold

produces biased counts of vocalizations, which are subject to false positive/

negative rates that may vary across subsets of the dataset. In this work, we

advocate for directly estimating call density: The proportion of detection

windows containing the target vocalization, regardless of classifier score. We

propose a validation scheme for estimating call density in a body of data and

obtain, through Bayesian reasoning, probability distributions of confidence

scores for both the positive and negative classes. We use these distributions to

predict site-level call densities, which may be subject to distribution shifts (when

the defining characteristics of the data distribution change). These methods may

be applied to the outputs of any binary detection classifier operating on fixed-

size audio input windows. We test our proposed methods on a real-world study

of Hawaiian birds and provide simulation results leveraging existing fully

annotated datasets, demonstrating robustness to variations in call density and

classifier model quality.
KEYWORDS

bioacoustics, machine learning, wildlife monitoring, Bayesian modeling,
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1 Introduction

Slowing the alarming pace of global biodiversity loss will require

the development of tools and protocols for effective wildlife

population monitoring and management (Butchart et al., 2010).

Understanding population responses to threats and conservation

actions is critical in developing successful conservation strategies

(Nichols and Williams, 2006). Passive acoustic monitoring (PAM)

using automated recording units is a non-invasive and cost-effective

approach to collecting data on sound-producing species, including

those with cryptic behaviors or in difficult-to-survey habitats (Sugai

et al., 2019). However, PAM can generate large quantities of

acoustic data, necessitating machine and deep learning algorithms

to detect species of interest semi-automatically (Tuia et al., 2022).

These computational tools present a promising opportunity, but

inferring accurate biological and ecological significance from the

results remains a challenge (Gibb et al., 2018).

In many applications, a classifier score threshold is selected, and

classifier outputs are reduced to binary detections (Knight et al.,

2017; Cole et al., 2022), which creates false positives and false

negatives that need to be accounted for in downstream work (Miller

and Grant, 2015; Chambert et al., 2018; Clement et al., 2022).

Counts of these detections are a tempting proxy for activity levels,

but the ambiguity introduced by mis-detections makes such

interpretation difficult. As a result, binary detection counts are

often further aggregated to binary indicators of detection-

nondetection by validating high-scoring examples. This approach

can mitigate the risk of false positives, but at the risk of higher false

negative rates (Knight et al., 2017).

However, the underlying call density P(⊕), the proportion of

detection windows containing the target vocalization, is a compelling

target. When greater than zero, call density is an occupancy indicator.

After establishing occupancy (P(⊕) > 0), changes in call density may

also indicate changes in abundance, behavior, population health, site

turnover, or disturbance, which are difficult to capture using a binary

detection–nondetection framework.

The detection rate is the proportion of a classifier’s output scores

(z) which are greater than the threshold (t), and can be written as a

probability P(z > t). The detection rate is related to the underlying

call density P(⊕) by the law of total probability:

P(z > t) = P(z > t ⊕)P(⊕) + P(z > tj j⊖ )(1 − P(⊕)) : (1)

This simple relationship highlights an important challenge of using

threshold-based detection counts as proxies for call density. P(z > t) is

only equal to P(⊕) when both P(z > tj⊖ ) = 0 (no false positives) and

P(z > t|⊕) = 1 (no false negatives), which can only occur with perfect

classifiers that are hard to produce. Consequently, we expect detections

to over-count (due to false positives) and under-count (due to false

negatives) in an unknown ratio. In Figure 1, we demonstrate a

comparison between threshold detection rates and ground-truth call

density using synthetic data; the optimal threshold for balancing false

positives and negatives depends heavily on the true and, unfortunately,

unknown call density we aim to quantify.

As we examine different subsets of the data, such as

spatiotemporal slices, we expect the detection rate P(z > t) to
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vary. Equation 1 demonstrates that the detection rate may vary

because of changes in call density (which we hope to capture), but

also in response to changes in the false-positive and false-negative

rates. For example, a territorial species may use readily identifiable

vocalizations near a nest but change call type or rate further away

from its territory (Reid et al., 2022), and this behavior might shift

further depending on the season (Odum and Kuenzler, 1955). This

would manifest as a change in site-specific Ps(z > t|⊕), independent

of any change in actual call density (where the subscript s represents

the choice of site). Likewise, the presence or absence of another

species with a similar call can manifest as a change in site-specific

Ps(z > tj⊖ ), again independent of the call rate of the target species.

These examples characterize what is known as a distribution shift.

Distribution shifts are ubiquitous and underlie many difficulties in

using detection counts. In bioacoustics, previous work has shown

that thresholds selected on one dataset targeting a particular false-

positive rate will not apply to new datasets because of distribution

shifts (Knight and Bayne, 2018), but shifts can easily manifest in

subsets of datasets as well.

In this work, we begin developing a “threshold-free” bioacoustic

analysis framework that directly estimates call density P(⊕). With

the threshold discarded, Equation 1 becomes a statement about the

full distribution of classifier scores:

P(z) = P(z ⊕)P(⊕) + P(zj j⊖ )(1 − P(⊕)) :

We propose a validation scheme, using a fixed amount of human

validation effort, to approximate P(⊕) and conduct 4 experiments to

evaluate it. Using a logarithmic binning scheme, we convert the

continuous classifier scores to discrete sets and validate within each

bin. Logarithmic binning focuses validation effort on higher-scoring

examples, which is helpful when the classifier has decent quality and

the prevalence of the target species is low. The validation process

additionally allows us to obtain a bootstrap estimate of the

distribution over possible values of P(⊕) and the construction of

confidence intervals. We also obtain estimates of the conditional

distributions P(z|⊕) and P(zj⊖ ), describing the range of classifier

scores produced in positive and negative examples. This also yields

estimates of the reverse conditionals P(⊕|z), P(⊖ jz), describing the
probability of a true-positive given a particular classifier score. The

full process is summarized in Figure 2.
FIGURE 1

Root mean squared error (RMSE) between detection rates at six
different thresholds and true call density P(⊕), using synthetic data
and a model with 0.9 ROC-AUC. Notice that the optimal threshold
(depicted by a triangle) depends on P(⊕), which may vary
across sites.
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We investigate the coverage and error in the estimated probability

distributions using a combination of synthetic data and simulated

validations on a fully annotated dataset. We explore the impact of the

validation parameters on coverage and error, as well as the impact of

model quality and ground-truth call density. Of particular note, we

demonstrate that the estimates produced by our validation procedure
Frontiers in Bird Science 03
are only lightly coupled with classifier quality: We can obtain

reasonable estimates (with good confidence intervals) even with

moderately good classifiers, reducing the inherent need for a ‘perfect’

classifier. Finally, we examine 3 strategies for how one might use the

estimated distributions produced by validation in generalized settings:

For example, to estimate call density for a subset of the data, such as at a
A

B

FIGURE 2

A schematic of our direct call density estimation method at (A) the study-level using our validation scheme and (B) the site- or covariate-level using
computational Strategy 1.
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particular site s, Ps(⊕). We conduct an experiment to assess the relative

effectiveness of the 3 strategies. Computing these distributions allows us

to estimate ecological parameters directly and provides a foundation for

understanding and addressing the underappreciated problem of

distribution shifts. We emphasize that these techniques can be

applied to any acoustic classifier on fixed time-windows, including

those trained on nonvocal bioacoustic signals such as woodpecker

drumming, or abiotic signals such as gunfire.
2 Materials and equipment

We used three data sources for the experiments in this paper:

synthetic data, a fully-annotated dataset from Pennsylvania, and a

collection of PAM recordings from the Hawaiian Islands. The first

two data sources were used for simulating the validation scheme

and testing its coverage and error rates, as described in Sections

3.2.3 and 3.2.4. The Hawaiian data was used to study the effects of

distributional shifts in estimating site-level call rates using study-

level validation in Section 3.3.1.
2.1 Synthetic data

We first assessed the validation procedure using synthetic data,

where model quality and label density were controlled parameters.

The synthetic dataset consists of pairs xi =  (li, zi) where li ∈   1, 0f g
is the ground-truth label, and zi corresponds to a model confidence

score, and i indicates a particular example.

We may produce a ‘perfect’ model by setting zi = li; this

combination of labels and scores has an area under the receiver-

operator characteristic curve score (ROC-AUC) 1.0. We can

produce an all-noise model by choosing a random score zni for

each label. We draw the random scores from a unit Gaussian with

mean 0.5. The noise model will have an ROC-AUC near 0.5.

Using these extremes we can interpolate between perfect scores

and a set of noisy scores zni to create a model of arbitrary quality.

Given a noise ratio r between 0 and 1, we set zi = rzni +  (1  − r)li.

After producing the scores using a given noise ratio, we can then

measure the ROC-AUC of the model. Empirically, we find that the

ROC-AUC decreases roughly linearly from 0.98 to 0.60 as the noise

ratio varies between 0.25 and 0.75. A noise ratio of r = 0.37 yields a

model with approximately 0.9 ROC-AUC, which we use as a

default value.

We may freely vary the label density by changing the proportion of

positive and negative labels. We can also vary the noise level to produce

an arbitrary model quality. Note that ROC-AUC is not biased by label

ratio (unlike many other metrics) (van Merriënboer et al., 2024).
2.2 Fully annotated dataset

The Powdermill dataset consists of 6.41 hours of fully-

annotated dawn chorus recordings of Eastern North American

birds collected at Powdermill Nature Reserve, Rector, PA
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(Chronister et al., 2021). The data comprise 16,052 annotations

from 48 species. The annotations allow us to compute a ground-

truth call density for each species, which can be used to test the

validation procedure, as described in Section 3.2.4. This dataset has

particularly high label quality, as multiple expert reviewers labeled

each segment, but is relatively small.

We obtain scores for each 5 second audio window in the dataset

using the Google Perch bird vocalization classifier (https://

tfhub.dev/google/bird-vocalization-classifier/4). The classifier has

an EfficientNet-b1 convolutional architecture, and is trained on

over 10k species appearing on Xeno-Canto (Ghani et al., 2023). The

robust annotations allow us to exactly compute the model’s ROC-

AUC for each species. The model achieves a macro-averaged ROC-

AUC score of 0.83 on the Powdermill dataset, as reported in the

published model card.
2.3 Hawaiian data

The Hawaiian dataset consists of 17.52 hours of audio collected

using Song Meters (models 2, 4, or Mini, Wildlife Acoustics Inc.,

Maynard, MA) in 16-bit.wav format at a sampling rate of 44.1 kHz

and default gain from five sites on Hawai‘i Island: Hakalau,

Hāmākua, Mauna Kea, Mauna Loa, and Pu’u Lā‘au. These

recordings were compiled from past research projects and were

annotated by members of the Listening Observatory for Hawaiian

Ecosystems at the University of Hawai‘i at Hilo. Using Raven Pro

software (Cornell Lab of Ornithology, Ithaca, NY), annotators were

asked to create a selection box that captured both time and

frequency around every bird call they could either acoustically or

visually recognize, ignoring those that were unidentifiable at a

spectrogram window size of 700 points. Annotators were allowed

to combine multiple consecutive calls of the same species into one

bounding box label if pauses between calls were shorter than 0.5

seconds. Recordings were then split into 5 second segments (the

length of audio segments assessed by the classifier) and the number

of segments that contained an annotated vocalization were tallied

for each species in order to determine annotation densities P(⊕).

The majority of recordings were collected at Hakalau Forest

National Wildlife Refuge on the eastern slope of Mauna Kea,

totaling 11.25 hours. Hakalau is one of the largest (13,240 ha)

intact, disease-free, native wet forests in the Hawaiian archipelago

(United States Fish and Wildlife Service, 2010), and as such it is

widely viewed as having the most intact and stable forest bird

community remaining in Hawai‘i. Hakalau provides habitat for

eleven native Hawaiian bird species (including five federally listed

endangered species), as well as many introduced bird species

(Kendall et al., 2023). The next largest contribution of data came

from the high-elevation dry forests of Pu’u Lā’au on the southwest

slope of Mauna Kea with 5.2 hours of audio. Pu’u Lā’au is within

Ka’ohe Game Management Area, a mixed management area open

to the public for activities such as hiking and hunting, and a site

with ongoing native vegetation restoration efforts intended to

preserve and restore habitat for the few remaining native bird

species that live there. The remaining recordings were collected in
frontiersin.org
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high-elevation open habitat on the southern slopes of Mauna Loa

(0.55 hours), similar habitat on the eastern slopes near the summit

of Mauna Kea (0.17 hours), and at a low-elevation site in Hāmākua

(0.25 hours), an anthropogenically degraded habitat. The recording

locations on Mauna Loa and Mauna Kea are potential nesting sites

for native endangered seabirds that build burrows in lava flow

crevices (Day et al., 2003; Antaky et al., 2019). The Hāmākua site

has low potential to harbor native bird species, but is densely

populated by introduced bird species, and was included to assess

how well our computational per-site analysis would handle absent

species in an acoustically active environment.

Within this dataset we focused on three birds native to Hawai‘i

Island, one species of least conservation concern, the Hawai‘i

‘Amakihi (Chlorodrepanis virens), one vulnerable species, the

‘Ōma‘o (Myadestes obscurus), and one federally listed endangered

species, the ‘Ua ‘u (Pterodroma sandwichensis) (Dataset

International Union for Conservation of Nature, 2024). Since the

introduction of avian malaria, Hawai‘i ‘Amakihi have become

uncommon below 500 m (Scott et al., 1986), however they are

one of only two Hawaiian honeycreeper species of least

conservation concern. On Hawai‘i they reach the highest densities

above 1,500 m in the subalpine native forests of Pu‘u Lā‘au The

‘Ōma’o is an endemic thrush species that inhabits montane mesic

and wet forests on the windward side of Hawai‘i Island. ‘Ōma’o are

thought to be one of the more sedentary forest birds, with high site

fidelity, spending the majority of their time within a 2 ha core zone

(Netoskie et al., 2023), and are therefore likely to be picked up

frequently on a stationary recorder. The ‘Ua‘u, also known as the

Hawaiian Petrel, only nests in the Hawaiian Islands where they are

threatened by introduced predators (Raine et al., 2020). ‘Ua’u dig

nesting burrows on high-elevation volcanic slopes, which they

mainly only visit at night, meaning they rarely share acoustic

space with non-seabird species (Troy et al., 2016).
3 Methods

3.1 Notation

Let X = {x} be a large collection of audio examples, and suppose

we have a trained classifier C  :X → R mapping audio examples to

confidence scores for the target class. While it is not required in

what follows that the confidence scores be on the logit scale, we will

refer to these scores as logits, and denote these logits with the

variable z. Let P(⊕) = P(x ∈ ⊕) denote the probability that x is

contained in the positive set for the classifier’s target class, and let

P(⊖ ) = 1 − P(⊕ ). Likewise, we will refer to distributions such as P

(⊕|z), the probability that an example is in the positive class given

the logit predicted by the classifier.

Wemay use the law of total probability to expand P(z) over P(⊕):

P(z) = P(z ⊕)P(⊕) + P(zj j⊖)(1 − P(⊕)) :
Frontiers in Bird Science 05
Or we may expand P(⊕) over P(z):

P(⊕) =
Z

z

P(⊕jz)P(z Þ:

We may also convert the continuous logit scores into discrete

outputs by binning logits into a set of B bins, {b}. We will use b to

refer to a generic bin, but will use biwhen explicit indexing is

needed. In this case, the bin probabilities P(b) expand over P(⊕):

P(b) = P(b ⊕)P(⊕) + P(bj j⊖)(1 − P(⊕)) :

Or we may expand P(⊕) over bins:

P(⊕) =o
b

P(⊕jb)P(b Þ:
3.2 Validation with logarithmic binning

Because of the assumed large volume of data and low cost of

running the classifier, the overall distribution P(z) can be easily

approximated with high accuracy. We will now describe an efficient

method to estimate the distributions P(zj⊕), P(⊕jz), P(⊖ jz) and 
P(zj⊖ ) with a fixed amount of human validation work, which in

turn yields estimates of P(⊕)  =ozP(⊕jz)P(z).
We sort the examples into B logarithmic quantile bins b1, b2,…, bn

according to their logit scores, such that the lowest scoring 50% ofX are

assigned to b1, the next lowest scoring 25% are assigned to b2, and so

on, with the last bin gathering all remaining examples. With this

scheme, the probability that any given x falls into each bin is known

(i.e., P(x ∈ b1) = 0.50, P(x ∈ b2) = 0.25, P(x ∈ b3) = 0.125, etc.).

A set of k random examples are selected from within each bin

for human evaluation. Each example is labeled as positive, negative,

or unsure, so that for each bin b we obtain counts kb,⊕, kb,⊖, kb,?.

The amount of human validation work required to produce

these counts is fixed, given a choice of the number of bins B and the

number of examples to evaluate from each bin k.
3.2.1 Density estimates from validation outputs
We will now demonstrate how to use the validation outputs to

estimate P(⊕), P(⊕|b), and P(b|⊕) (Figure 2A).

We model each bin with a beta distribution P(⊕jb) ≈ b(kb,⊕ +

c,  kb,⊖ + c), where c is a small constant, representing an

uninformative prior for the Beta distribution. kb,⊕ and kb,⊖ can be

zero so the constant c is added to meet parametric constraints of the

Beta distribution. Note that the when kb,? > 0 the total kb,⊕ + kb,⊖ is

reduced, increasing the variance of the Beta distribution.

We know P(b) precisely from the logarithmic binning design.

Then, using the law of total probability:

P(⊕)  =o
b

P(⊕jb)P(b)  ≈o
b

b(kb,⊕ + c, kb,⊖ + c)P(b); (2)
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and

P(bj⊕)  =
P(⊕jb)P(b)

P(⊕)
≈

b(kb,⊕ + c, kb,⊖ + c)P(b)

odb(kb,⊕ + c, kb,⊖ + c)P(d)
:

Because P(⊕) is modeled as a weighted sum of Beta

distributions, we can compute its expected value as the weighted

sum of the expected values of the per-bin Beta distributions.

We obtain a bootstrap distribution for P(⊕) by sampling the

per-bin Beta distributions repeatedly and applying Equation 2. We

define a 90% confidence interval for P(⊕) using the 5th and 95th

quantiles of the bootstrap distribution.
3.2.2 Estimating model ROC-AUC from
validation outputs

The ROC-AUC metric is a useful threshold-free indicator of

model quality. In addition to its eponymous interpretation as the

area under the receiver-operator characteristic curve, it also has a

straightforward probabilistic interpretation, as the probability that a

uniformly-chosen positive example is ranked higher than a

uniformly-chosen negative example (van Merriënboer et al., 2024).

Our proposed validation scheme produces estimates of P(bj⊕),

P(bj⊖). One can use these to estimate the model's ROC-AUC on the

target data by summing the probability that a positive example is

chosen from a higher bin than a negative example, and assuming a

50% probability that the positive example is ranked higher when they

come from the same bin:

ROC − AUC ≈o
i>j
P(bi ⊕)P(bj

�� ��⊖) +
1
2oi

P(bi ⊕)P(bij j⊖) : (3)
3.2.3 Evaluating coverage and error of
density estimates

Our validation procedure responds to effectively five

parameters, which can be categorized in three types: First, the

Beta distribution prior is a general hyper-parameter. Second, we

have user parameters: the number of bins and the number of

validations per bin, which determine the total human effort

required, and impact the quality of estimates. Finally, we have

extrinsic parameters, out of control of the user: The actual

prevalence of the target signal in the dataset and the quality of

the classifier.

To measure the coverage of our estimate of P(⊕), we checked

whether the ground-truth density was within the 90% confidence

interval of the bootstrap distribution for P(⊕) around 90% of the

time, measured over a large number of trials. We found a value of

Beta prior which provides good coverage for both synthetic and

fully annotated data, across a wide range of ground-truth densities.

We measured the precision of the validation estimate by

tracking the root mean squared error (RMSE) of the expected

value of P(⊕) over a large number of trials. We examined the

response in error to choice of binning strategy (uniform or

logarithmic), changes in the number of bins, number of validated

observations per bin, and model quality.
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Computing the coverage and precision of validation requires

access to the ground-truth density, which we had for both the

synthetic data and Powdermill fully-annotated data.

3.2.4 Simulation experiments with
annotated dataset

To assess the ability of our validation procedure to reliably

estimate P(⊕), we leveraged the fully-annotated Powdermill dataset

and a pre-trained bird species classifier. For this experiment, we

simulated the entire validation process by leveraging the existing

human annotations. For each example we selected for validation, we

checked whether the example overlapped a human annotation, and

said it was a positive example if there was any overlap. We

computed the expected value of P(⊕) from the validation data, as

described above, and measured the RMSE from the ground-truth

value. We obtained a ground-truth value PGT(⊕) from the

annotations by counting the proportion of segments which

overlapped annotations for the target species. Finally, we checked

whether PGT(⊕) landed in the 90% confidence interval produced by

the bootstrap estimate.
3.3 Distribution shifts – site and
covariate estimates

It is common for a PAM project to span many microphones,

placed at various sites. We refer to any geotemporal subset of the

observations X as a site Xs. Likewise, we may have a covariate V and

can refer to a subset selected by covariate value v as Xv.

When restricting from the study-level set of observations to a

site or covariate subset, we expect to observe distribution shifts: In

fact, observing and explaining such distribution shifts is a major

reason to engage in bioacoustic monitoring in the first place. Let us

consider these distribution shifts in the context of Equation 2

(Figure 2B), and compare to the situation when using a

threshold-based binary classification scheme.

We are likely most interested in measuring the change in Ps(⊕)

between sites and by comparison to the study-level P(⊕). Thanks to

copious observations, we can observe any changes in Ps(z) easily,

which we expect will correspond to changes in the relative

abundance or activity of the target species. And indeed, our

equations tell us that this Ps(z) decomposes as:

Ps(z) = Ps(z ⊕)Ps(⊕) + Ps(zj j⊖)(1 − Ps(⊕)) :

While any of the three distributions on the right-hand side of

this equation might shift, it is Ps(⊕) which we wish to isolate. All of

Ps(⊕), Ps(z|⊕), and Ps(zj⊖ ) are unknown, which means that we

need to introduce either new assumptions or additional data to

estimate Ps(⊕). We can obtain estimates for Ps(⊕) in a few

different ways.

Strategy 0: First, we can add more data. Applying our validation

procedure on data from each site will certainly yield per-site

estimates of Ps(⊕), though we expect that this validation will be

onerous if the number of sites and/or target species is high.
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Alternatively, we can substitute in study-level estimates of the

component distributions to allow us to isolate Ps(⊕).

Strategy 1: We might assume that Ps(⊕|z) = P(⊕|z) to leverage

knowledge gained from validation at the study-level. Then we have:

Ps(⊕) =
Z
z
Ps(⊕jz)P(z)dz ≈

Z
z
P(⊕jz)P(z)dz :

Or, using our logarithmic binning:

Ps(⊕) ≈o
b

P(⊕jb)Ps(b) :

This is very straightforward to compute, but the distribution

shift between P(⊕|z) and Ps(⊕|z) may be problematic. Notice that

Ps(⊕|z) ∝ Ps(z|⊕)Ps(⊕), and thus depends vitally on the parameter

we want to estimate. In particular, if the site is unoccupied by the

target species, then Ps(⊕) = 0, so that Ps(⊕|b) = 0 as well.

This strategy is analogous to the application of a binary classifier

to a new subset of the data: counting threshold detections typically

assumes that the true-positive rate with respect to a given threshold

is fixed as we look at different subsets of data.

Strategy 2: Another approach is to assume that Ps(b|⊕) = P(b|⊕):

The distribution of logits for positive examples is roughly the same

across sites. This seems a far more reasonable assumption: The

vocalizations of the target species, wherever it is present, are

similar. However, it turns out that this is not enough to solve

directly for an estimate of Ps(⊕).

To obtain our estimate, we utilize the decomposition over

binned logits, additionally substituting the study-level distribution

P(bj⊖):

Ps(b) ≈ P(b ⊕)Ps(⊕) + P(bj j⊖)(1 − Ps(⊕)) :

We obtain a distribution over logit bins for any value q ∈ [0,1],

specifying an arbitrary mixture of the positive and negative logit

distributions:

Qq(b) = P(b ⊕)q + P(bj j⊖)(1 − q) :

Then for any choice of q, we may compute the KL-Divergence

KL(Ps(b)||Qq(b)), which is the cost of substituting Qq(b) for the

ground-truth distribution Ps(b). We then set:

Ps(⊕) ≈ argminqKL(Ps(b)jjQ(q) Þ:
The downside of this strategy is that we are vulnerable to shifts

in both the positive and negative distributions, relative to the

study-level.

Strategy 3: Because Strategies 1 and 2 use quite separate

heuristics for obtaining estimates of P(⊕), they can be combined

as an ensemble estimate by taking their geometric mean.

In Section 4.3, we compare all four strategies (per-site

validation, substitution of Ps(⊕|b), substitution of Ps(b|⊕), and

ensemble estimation) on the Hawaiian PAM data.

3.3.1 Distribution shift in real-world data
Finally, we used real-world PAM deployment data fromHawai‘i

to compare varying approaches to estimating site-level densities.
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We compared the results of site-specific validation to substitution of

study-level distributions P(⊕|z) or P(z|⊕).

Feature embeddings were extracted from the recordings using

the pre-trained Google Perch model. We then trained a linear

classifier over the pre-computed embeddings using examples from 7

native bird species, and 6 common non-native bird species, with

variable numbers of training samples (Table 1), following the

procedure in Ghani et al. (2023). None of the training examples

were sourced from the PAM recordings used in this study. The

classifier was then run over the embedded PAM data and a logit

score was generated for each 5 second segment within the dataset

for each of the three study species.

We then applied the validation scheme, using 4 bins and 50

examples per bin for Hawai‘i ‘Amakihi and ‘Ōma‘o for a total of 200

examples for each species. Because of their low density at the study-

level, 200 examples per bin were validated for ‘Ua‘u for a total of 800

examples. Using Equation 7 P(⊕) was estimated for each species.

Site-level estimates Ps(⊕) were then computationally estimated

for each study species using the methods described above in Section

3.3. Manual site-level validation was then performed for Hawai‘i

‘Amakihi for both the Hakalau and Pu’u Lā‘au datasets to generate

validated site-level estimates Psv(⊕). All manual validations were

performed by an acoustic specialist trained for Hawaiian bird

species (AKN).
3.4 List of experiments

In all, we performed the following experiments.

Most experiments verify the proposed validation process, and

are named Experiments V1 through V4. In Experiment V1, we
TABLE 1 Hawaiian classifier training data.

Class Train Examples

‘Akē‘akē 509

‘Apapane 3284

Erckels Francolin 56

Eurasian Skylark 233

Hawai‘i ‘Amakihi 1158

Hawai‘i ‘Elepaio 1096

I‘iwi 1756

Northern Cardinal 95

‘Ōma‘o 2046

Red-billed Leiothrix 138

‘Ua‘u 775

Warbling White-eye 120

Yellow-fronted Canary 96

Other/Unknown 372
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verify good coverage with Beta prior parameter 0.1, using both

synthetic and Powdermill data (Figure 3). In Experiment V2, we

compare the precision of estimates of P(⊕) on synthetic data using

uniform or logarithmic binning (Figure 4. In Experiment V3, we

check the quality of human validation estimates of P(⊕) on

Hawaiian data (Figure 5). In Experiment V4, we demonstrate the

impact of varying the number of bins or number of observations on

precision of validation estimates (Figure 6).

The final Experiment S5 compares strategies for estimating site-

level distributions from study-level validation work using human

validation of the Hawaiian data (Tables 2, 3).
4 Results

4.1 Validation coverage

We first investigated the coverage of the predicted P(⊕). We

found that coverage was typically good when the ground-truth

density P(⊕) was above 0.1, and depended on the choice of Beta

distribution prior at lower densities. As shown in Figure 3, we had

good coverage at low density with the prior c = 0.1. For the synthetic

data, we used the default noise value corresponding to a classifier

with ROC-AUC 0.9. For the Powdermill data, classifier quality

varied widely by species, demonstrating good coverage with the 0.1
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prior regardless of classifier quality. We fixed c = 0.1 in all

subsequent experiments.
4.2 Validation precision

We examine the relationship between classifier quality and

RMSE of the predicted P(⊕) on synthetic data, varying the

classifier quality between 0.58 and 0.98, and at three different

ground-truth densities (Figure 4). We found that improving

classifier quality generally decreased the RMSE. We also

compared our logarithmic binning scheme to a uniform binning

approach, and found that logarithmic binning generally gave a

lower RMSE once the classifier ROC-AUC was greater than 0.75.

Note that we would expect no improvement for classifiers with

ROC-AUC 0.5, since the higher logits are equally likely to be

positive or negative examples.

We examined the change in density prediction error on

synthetic data as we varied the number of bins and number of

observations per bin (Figure 6). In the logarithmic binning scheme,

increasing the number of bins only splits observations at the top end

of the logit distribution: For high quality classifiers, the highest bins

may already be purely positive, so that increasing the number of

bins adds no new information. Thus, we observed that eventually

there was no improvement in error as more bins were added.

On the other hand, increasing the number of observations per

bin steadily decreased the prediction error, as we would expect: The

per-bin Beta distributions become narrower and more precise,

which translates into more precise predictions of P(⊕).

Thus, we found that for a reasonably good classifier, four bins is

likely sufficient, and additional effort is better spent by increasing

the number of observations per bin, rather than further increasing

the number of bins.
4.3 Cross-site prediction

Manual annotation performed by the Listening Observatory for

Hawaiian Ecosystems found Hawai‘i ‘Amakihi were present at

Hakalau with an annotation density of 0.241 and were the most

acoustically active passerine species at Pu’u Lā‘au with an
A B

FIGURE 3

Experiment V1: For different uninformative Beta distribution priors c, measure how often the ground-truth prediction of P(⊕) is in the predicted 90%
confidence interval (coverage). The value c = 0.1 has better coverage at low call density to the Jeffrey’s prior or the uniform prior, both on synthetic
data (A) and in Powdermill validation simulations (B). In the Powdermill plot, each point corresponds to a different species; model ROC-AUC varies
widely by species. All experiments use 4 bins and 50 observations per bin, and 50 experiments were run for each data point appearing in the figure.
FIGURE 4

Experiment V2: Root mean squared error (RMSE) of the predicted
P(⊕) in synthetic data, demonstrating that error steadily decreases as
model quality improves (as one would expect), and that above 0.75
ROC-AUC logarithmic binning gives lower error above 0.75 ROC-
AUC. RSME’s are means over 50 trials. Dashed lines report results
with logarithmic binning, and dotted lines report results with
standard, evenly spaced bins.
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annotation density of 0.748, for an overall study-level annotation

density of 0.380. ‘Ōma‘o were only present at Hakalau where their

site-level annotation density was 0.240 resulting in a density of

0.155 at the study-level. ‘Ua‘u vocalizations were present at both

Mauna Kea and Mauna Loa, with annotation densities of 0.192 and

0.256, respectively, though because there were few recordings from

these locations, their study-level annotation density was only 0.009.

None of these species were present at the Hāmākua site.

The results of all strategies for cross-site prediction, as well as

call densities produced by manual validation (Figure 5), are

provided in Table 2. No validation was performed on sites known

to be unoccupied.

Overall, Strategy 1 struggled when a site was unoccupied:

Weight in low bins is still assigned to the target species, as

expected. On the other hand, Strategy 2 generally predicted non-

occupied sites correctly: no weight in the high bins implies that

there is no contribution from the target species.
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Meanwhile, we found that Strategy 2 often overestimated call

density when a site was occupied. Examining the actual study- and

site-level distributions, we found cases (such as the Hawai‘i ‘Amakihi at

Pu’u Lā’au, detailed in Table 3, and the ‘Ua’u at Mauna Kea) where the

study-level P(b|⊕) was extremely similar to the site-level Ps(b). In such

cases, Strategy 2 selects a Ps(⊕) very close to 1.

Strategy 3 did a surprisingly good job of balancing the strengths and

weaknesses of Strategies 1 and 2. Particularly in the case of unoccupied

sites, Strategy 2 often correctly predicted Ps(⊕) = 0, so that the geometric

mean was zero. And, at least in this study, we found that for occupied

sites Strategy 1 tended to underestimate while Strategy 2 overestimated,

leading to improved estimates in the geometric mean.
5 Discussion

Our method for directly estimating call densities in bioacoustic

data from machine learning classifier outputs yielded promising

results and could advance the field of PAM by expediting analysis

and providing a framework for formal ecological hypothesis testing.

This approach is less dependent on highly performant and

consistent classifiers because it utilizes the entire distribution of

model outputs to estimate study-level and site-specific distributions,

which makes it less reliant on consistent decision boundaries

around arbitrary threshold levels. We also found the distributions

over logarithmic bins helpful in identifying and describing

distribution shifts, a pervasive but underappreciated problem in

bioacoustic analyses.
5.1 Validation quality

Both the simulated data and Powdermill validation simulations

offer ground-truth values on which we tested the quality of our

validation scheme. We found that a single choice of Beta prior gives

strong coverage across a wide variety of ground-truth densities and

classifier qualities. The Powdermill validation simulations build

confidence by including a scenario with real data distributions

and a wide variety of call densities and classifier qualities.
A B

FIGURE 6

Experiment V4: The two user parameters for validation are the number of bins (nbins) and the number of validation examples per bin (kobs). Here we
demonstrate, using the synthetic data harness, variation in the precision of P(⊕) as we vary the number of bins (A) and observations per bin (B).
Adding more data (more bins, or more observations) generally leads to lower root mean squared error (RMSE). For this simulated classifier with 0.9
ROC-AUC, error saturates at 4–6 bins, but decreases steadily as more observations per bin are added.
FIGURE 5

Experiment V3: Confidence intervals for estimated P(⊕) on Hawaiian
PAM data, obtained using the full validation procedure. Results are
provided for study-wide validations for three species (Hawai‘i
‘Amakihi, ʻŌmaʻo, and ‘Ua‘u), as well as for two site-specific ‘Amakihi
validations (which are subsets of the study-level data for ‘Amakihi).
Green lines are the annotation density, which approximate ground-
truth. Solid orange lines give bounds of the 90% confidence interval,
and dotted orange lines give the expected value of P(⊕) based on
the validation procedure. The distributions of bootstrap-sampled P
(⊕) values are in grey. Note that there is only a 59% chance that all
five annotation density values would fall inside accurate 90% CIs.
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While we found that error decreased with increasing model

quality, we also found that adding additional validation effort

reduced error. This provides a path to improvement for

practitioners with access to a pre-trained classifier without further

machine learning effort.
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5.2 Handling distribution shifts in real-
world data

From the Hawaiian PAM dataset, our method produced study-

level call density estimates with 90% confidence intervals that

contained the manual annotation densities obtained by trained

technicians for Hawai‘i ‘Amakihi and ‘Ua‘u but produced a slight

overestimate for ‘Ōma‘o. Site-level validations (Strategy 0) similarly

achieved estimates close to annotation density values, as would be

expected with additional user effort. The manual annotation procedure

was not explicitly designed for this study, and some errors may have

been introduced in our derivation of annotation densities. For instance,

individual vocalizations may have been split into separate 5-second

segments. If either portion of the split call was too short to be identified,

it would be counted as a negative during validation but marked as a

positive annotation for both segments.

This PAM dataset also represents a high level of heterogeneity

between sites, ranging from the acoustically active Hakalau to the

windswept Mauna Loa, which is nearly devoid of any species

vocalizations. This inherent heterogeneity in acoustic characteristics led

us to expect the large distribution shifts observed in our analysis. Each of
TABLE 3 Distribution shifts between study-level estimates for Hawai‘i
‘Amakihi and site-level distributions at Pu‘u Lā’au.

Distribution b1 b2 b3 b4

All logits
P(b) 0.50 0.25 0.12 0.12

Ps(b) 0.19 0.17 0.26 0.39

⊕ logits
P(bj⊕) 0.18 0.17 0.28 0.38

Ps(bj⊕)∗ 0.03 0.16 0.31 0.50

⊖ logits
P(bj⊖) 0.66 0.29 0.05 0.00

Ps(bj⊖)∗ 0.76 0.19 0.05 0.00
For Hawai‘i ‘Amakihi the study-level unconditional distribution of confidence scores over the
bins was heavier in the lower bins relative to the site-specific distribution of confidence scores.
For Pu‘u Lā‘au the decomposition of the distribution of confidence scores over bins into
positive and negative components revealed a large shift in the positive distribution relative to
the site-level validation. * Indicates distributions produced by site-level validation.
TABLE 2 Experiment S5: Annotation density (Ann) and site-level predictions of P(⊕) via validation (Val), substitution of study-level P(⊕|b) (Strat 1) and
substitution of study-level P(b|⊕) (Strat 2), and the geometric mean of Strategies 1 and 2 (Strat 3).

Species ROC-AUC Site Ann Val Strat 1 Strat 2 Strat 3

Hawai'i 'Amakihi 0.84

Study-level 0.380 0.333 – – –

Hakalau 0.241 0.180 0.202 0.039 0.089

Pu‘u Lā’au 0.748 0.770 0.640 0.991 0.797

Hāmākua 0.000 U 0.123 0.000 0.000

Mauna
Kea

0.000 U 0.263 0.000 0.000

Mauna
Loa

0.000 U 0.205 0.000 0.000

‘Ōma‘o 0.78

Study-level 0.155 0.200 – – –

Hakalau 0.240 – 0.255 0.346 0.297

Pu‘u Lā’au 0.000 U 0.100 0.000 0.000

Hāmākua 0.000 U 0.098 0.000 0.000

Mauna
Kea

0.000 U 0.090 0.000 0.000

Mauna
Loa

0.000 U 0.088 0.000 0.000

‘Ua‘u 0.88

Study-level 0.009 0.009 – – –

Hakalau 0.000 U 0.000 0.000 0.000

Pu‘u Lā’au 0.000 U 0.020 0.190 0.062

Hāmākua 0.000 U 0.017 0.142 0.049

Mauna
Kea

0.192 – 0.068 0.972 0.258

Mauna
Loa

0.256 – 0.056 0.772 0.208
ROC-AUC is estimated from validation data, using Equation 3. U indicates sites unoccupied by that species.
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our focal species revealed strengths and challenges to our computational

strategies for estimating call densities at the site-level via extrapolation

from the study-level distributions of P(⊕) and P(⊖ ), and Ps(b).

5.2.1 Insights from Hawai‘i ‘Amakihi – cross-
site comparison

Not only were Hawai‘i ‘Amakihi at much lower densities at

Hakalau than Pu‘u Lā‘au, Pu‘u Lā‘au also has less competition for

acoustic space, and therefore the distributions of P(zj⊕) and P(zj⊖)

were significantly different for ‘amakihi at these two sites. Because of

this, differing computational strategies performed best for

predicting call densities each site. At Pu‘u Lā‘au, where the

distribution of Ps(b) closely tracked P(b|⊕), Strategy 3

outperformed the others, balancing out the underestimate from

Strategy 1 and overestimate from Strategy 2. However, at Hakalau,

where Ps(⊕|z) tracked the study-level P(⊕|z) Strategy 1 made the

closest estimate. It is worth noting that all strategies showed

distinctly higher acoustic activity levels at Pu‘u Lā‘au, the more

active site.

Table 3 shows the exact distribution shifts at Pu‘u Lā‘au Shifts in

the negative logits Ps(bj⊖) and positive logits Ps(b|⊕) almost exactly

canceled out, making Ps(b) closely resemble P(b|⊕), leading to over-

prediction in Strategy 2. The distribution shifts in Table 3 are also

interesting to consider from a threshold-detection perspective. If the

boundary between b3 and b4 were used as a threshold, we would see

a significantly increased true positive rate at Pu‘u Lā‘au If one only

counted detections at the site-level assuming the same true positive

rate as at the study-level, one would infer a too-high estimate of

activity change.

Leveraging knowledge about species-habitat associations and

vocalization behavior to inform the stratification process of the

validation procedure may improve the call density estimates. For

example, we could validate the logit distributions across stratified

covariates and leverage site-specific covariate values to develop

conditional site-level distribution estimates. We hope to explore

such approaches in later work.

5.2.2 Insights from ʻŌmaʻo – cross-species
confusions and classifier quality

When a classifier was trained solely on ‘Ōma‘o, a large portion

of logits fell into the higher-level bins at Mauna Kea and Mauna Loa

(data not shown). This may be because both ‘Ōma‘o and ‘Ua‘u, as

well as another seabird species present at these sites, often use low-

frequency vocalizations. While our validation protocol yielded

similar study-level estimates to those obtained using a classifier

trained on all species in Table 1, the site-specific call density 90%

confidence intervals did not encompass 0 at sites containing seabird

vocalizations. Adding non-class training examples from acoustically

similar species shifted ‘Ōma‘o logits out of those top bins and

yielded the estimates shown in Table 2.

This emphasized three things: First, our proposed validation

procedure lessens our dependency on developing high-performance

classifiers, as reliable study-level estimates can be made even when

only one species is included in the model. Second, including

acoustically similar species can boost model performance, shifting
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a large portion of the positive examples into the top bins, which

subsequently increases the precision of call density estimates by

lowering RMSE and improving site-level estimation. Last, observing

a strong shift from study-level distributions may indicate when

modifications to study design or additional validation efforts are

necessary for robust site-level estimates.

5.2.3 Insights from ‘Ua‘u – heavy top bin
The ‘Ua‘u was the only species for which Strategy 2 (and thus

Strategy 3) incorrectly predicted presence in unoccupied sites. At

the study-level, ‘Ua‘u has a very low overall prevalence. With four

bins of 200 examples each, all validated observations of the ‘Ua‘u

were obtained in the top bin. Additionally, nearly all logits at Mauna

Kea (97.5%), and to a lesser extent at Mauna Loa (79.9%), landed in

the top bin. We believe that the heavy wind on the otherwise quiet

mountain tops was a useful discriminative feature for the target

class (a nocturnal petrel), leading to relatively high logits for all

examples at these sites and from other sites containing wind with

few vocalizations. However, the classifier still ranks windy examples

with the target species higher than windy examples without the

target species. In essence, all of the interesting site-level variation is

subsumed in the top bin.

This problem could be addressed in a few ways. First, adding

more bins at the top should split the positive-windy examples from

the negative-windy examples. Second, the study-level validations

could be restricted to the mountain environments (Mauna Kea and

Mauna Loa), so the windy logits are distributed more evenly over

the bins. We would also expect less extreme shifts between the

study-level and site-level logit distributions, bolstering the

substitution assumptions in Strategies 1 and 2. Finally, the too-

broad highest bin suggests a role for a continuous distribution

estimate (such as a Kernel Density Estimate) instead of a binned

estimate. We leave exploring these options further for later work.
5.3 Conclusions and future research

Ecological inference increasingly relies on predictive modeling,

especially with the widespread adoption of sensor-based sampling

methods that rely on computational algorithms. A key challenge lies

in navigating sets of predictions and making informed decisions

amidst uncertainty. Classification is a decision process (Spiegelhalter,

1986) that requires disentangling predictive modeling from decision-

making under uncertainty (Steyerberg et al., 2010; Resin, 2023).

However, threshold-based approaches often conflate these steps,

limiting flexibility and potentially leading to sub-optimal decisions

(in this case, classifications). Our work takes an important step

forward by considering sets of probabilities and surfacing relevant

parameters for optimizable utility functions based on available

resources, such as lab capacity. Our findings demonstrated that

performance increased with more reviewed audio clips, indicating

that biacoustic programs can leverage this structured, data-driven

approach to allocate their resources adaptively.

The protocol we have proposed here for directly assessing call

densities in bioacoustic data has significant applications in the field
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of avian conservation. Our approach’s relatively low time cost

facilitates analysis of PAM data within actionable timeframes,

which can boost the utility of monitoring in informing wildlife

management decisions (Nichols and Williams, 2006; Gibb et al.,

2018). For example, the State of Hawai‘i Department of Land and

Natural Resources and U.S. Fish and Wildlife Service are currently

taking actions to mitigate avian malaria mortality in forest birds

native to Hawai‘i (Warner, 1968) by suppressing the population of

its mosquito vector (Culex quinquefasciatus) (Hawai‘i Department

of Land and Natural Resources et al., 2023). For malaria-sensitive

species, changes in juvenile call densities, a reasonable indicator of

fledgling survival, estimated using our approach could be used to

assess the efficacy of mosquito control efforts. Further, our methods

could provide a standardized approach for analyzing past PAM data

to establish historical baselines and assess changes to biodiversity

over time with fine spatiotemporal resolution.

While the work described here has great potential, it serves as a

preliminary tool, and we foresee multiple potential routes to

improvement. First and foremost, future work should focus on

improving covariate-level call density estimates. One potential way to

do so may be to validate samples along strata or gradients relevant to

the ecological or detection process of interest (e.g., along an elevational

gradient) instead of validating to bins of the study-level distribution.

This would mitigate the distribution shift issues encountered in our

study. In addition to distribution shifts along environmental or

temporal gradients, shifts in vocalization behavior could also lead to

domain shifts. Future work could investigate the effect of separating

species-level classifiers into call-type classifiers (i.e., separate classes for

‘songs,’ ‘contact calls,’ ‘begging’), which could improve classifier score

calibration at the study-level and thereby improve covariate-level call

density estimates. Call-type classifiers would have the additional benefit

of aiding in modeling behavior and ecology.
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