
REVIEW
published: 21 August 2019

doi: 10.3389/fbloc.2019.00008

Frontiers in Blockchain | www.frontiersin.org 1 August 2019 | Volume 2 | Article 8

Edited by:

Stefano Bistarelli,

University of Perugia, Italy

Reviewed by:

Andrea De Salve,

University of Palermo, Italy

Laura Ricci,

University of Pisa, Italy

Francesco Buccafurri,

Mediterranea University of Reggio

Calabria, Italy

*Correspondence:

Roberto Zunino

roberto.zunino@unitn.it

Specialty section:

This article was submitted to

Non-Financial Blockchain,

a section of the journal

Frontiers in Blockchain

Received: 03 April 2019

Accepted: 31 July 2019

Published: 21 August 2019

Citation:

Bartoletti M and Zunino R (2019)

Formal Models of Bitcoin Contracts: A

Survey. Front. Blockchain 2:8.

doi: 10.3389/fbloc.2019.00008

Formal Models of Bitcoin Contracts:
A Survey
Massimo Bartoletti 1 and Roberto Zunino 2*

1Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy, 2Dipartimento di Matematica, Università di

Trento, Trento, Italy

Although Bitcoin is mostly used as a decentralized application to transfer cryptocurrency,

over the last 10 years there have been several studies on how to exploit Bitcoin to execute

smart contracts. These are computer protocols which allow users to exchange bitcoins

according to complex pre-agreed rules. Some of these studies introduce formal models

of Bitcoin contracts, which specify their behavior in non-ambiguous terms, in some cases

providing tools to automatically verify relevant contract properties. In this paper, we survey

the formal models proposed in the scientific literature, comparing their expressiveness

and applicability in the wild.

Keywords: blockchain, smart contracts, cryptocurrencies, formal models, concurrency

1. INTRODUCTION

Smart contracts were originally conceived in Szabo (1997) as agreements among two or more
parties, that can be enforced automatically without a trusted intermediary. The recent surge of
applications like Bitcoin and Ethereum has revived the idea of smart contract, because of the
possibility of creating and transferring crypto-assets in a decentralized way. These applications are
run by a peer-to-peer network of nodes, which collectively maintain a public, append-only data
structure, called blockchain. The basic usage of the blockchain is to record transactions of crypto-
assets between users. In Bitcoin, one can exploit some advanced features of transactions to extend
this basic usage: at an abstract level, transactions can be interpreted as updates to the global state of a
contract, and the sequence of transactions on the blockchain determines the state of each contract—
and, accordingly, the crypto-assets owned by each user. In Ethereum this mechanism is made more
explicit, as transactions are calls to procedures of contracts.

The first proposal to implement smart contracts on Bitcoin dates back at least to Bitcoin wiki
(2012), when simple contracts were proposed that delegate an external entity (like an oracle or an
escrow service) to regulate transfers of bitcoins. Going beyond these basic contracts, Andrychowicz
et al. (2014c) demonstrated how to exploit some advanced features of Bitcoin transactions to
implement the timed commitment protocol. This is a contract which allows a participant to commit
to a secret, ensuring that either she reveals the secret before a certain deadline, or she pays a
penalty to another participant. The time commitment protocol is the basic building block of more
sophisticated contracts, like lotteries and other gambling games, since it allow players to choose
their moves independently through a public channel, ensuring non-repudiation. In particular,
multi-player lotteries in Bitcoin have been thoroughly investigated, starting from the version
in Andrychowicz et al. (2014c), which requires each player to deposit a quadratic collateral in the
number of players, to the versions in Bartoletti and Zunino (2017) and Miller and Bentov (2017),
which enable lotteries without collaterals using Bitcoin extensions. More general forms of fair
multiparty computations were proposed in Andrychowicz et al. (2014a), Bentov and Kumaresan
(2014), and Kumaresan and Bentov (2014). Contingent payments contracts, allowing users to trade
solutions of a class of NP problems, were proposed in Banasik et al. (2016) and Maxwell (2016).

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2019.00008
http://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2019.00008&domain=pdf&date_stamp=2019-08-21
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles
https://creativecommons.org/licenses/by/4.0/
mailto:roberto.zunino@unitn.it
https://doi.org/10.3389/fbloc.2019.00008
https://www.frontiersin.org/articles/10.3389/fbloc.2019.00008/full
http://loop.frontiersin.org/people/570157/overview
http://loop.frontiersin.org/people/574226/overview

Bartoletti and Zunino Formal Models of Bitcoin Contracts

All the works mentioned above share a common trait:
they describe smart contracts in an informal manner, by
using protocol narrations where, besides the usual actions of
cryptographic protocols (e.g., sending and signing messages,
computing hashes, verifying signatures), participants can also
read and append transactions to the Bitcoin blockchain.
Transactions, as well, are expressed informally, relying upon
a simplified intuition of their behavior in Bitcoin. The lack
of formal models of Bitcoin contracts is an obstacle to their
verification. The current practice in the scientific literature is
that each time a new contract is proposed, it is accompanied
by a paper-and-pencil proof of correctness. Besides being a
time-consuming task, doing these proofs by hand is error-
prone, since for complex contracts is it quite likely to miss
some corner cases, or to misinterpret the behavior of some
Bitcoin transactions. This is a critical issue: since smart contracts
cannot be changed after deployment, and they may handle the
ownership of valuable crypto-assets, attackers may be tempted to
exploit their vulnerabilities to steal or tamper with these assets.
Automatic verification tools for Bitcoin contracts would help to
overcome these issues.

Starting from Andrychowicz et al. (2014b), a few formal
models of Bitcoin contracts have been proposed in the scientific
literature. They are based on different modeling techniques,
ranging from timed automata to process algebras and λ-
calculi, and pursue different goals: some works are focused
on contracts that can actually be run on Bitcoin, while some
others propose extensions of Bitcoin; some works enable the
verification of contract properties, while some others just provide
an executable semantics.

In this paper, we survey the existing formal models of
Bitcoin contracts, applying them to a common basic use case:
the timed commitment. We start in section 2 by providing
the needed background on Bitcoin; then, in sections 3–7 we
illustrate the models, and in section 8 we compare them along
various directions: expressiveness, usability, and suitability for
verification. This comparison can help programmers to choose
the right model for their decentralized application. In section 9
we also briefly overview a parallel research direction, that is the
study of formal models contracts in other blockchain platforms,
like Ethereum.

2. BACKGROUND

In this section we give a minimalistic introduction to
Bitcoin (Nakamoto, 2008), focusing on the aspects related
to contracts; see (Bonneau et al., 2015) for a broader overview.
Bitcoin is a decentralized infrastructure to securely transfer
currency (the bitcoins, B) between users. Transfers of bitcoins are
represented as transactions, and the history of all transactions
is stored in a public, append-only, distributed data structure
called blockchain. The blockchain is maintained by the nodes
of the Bitcoin network; a subset of them, called miners, gather
the transactions sent by users, aggregate them in blocks, and
try to append these blocks to the blockchain. A consensus
protocol based on moderately-hard “proof-of-work” puzzles
is used to resolve conflicts that may happen when different
miners concurrently try to extend the blockchain, or when some

miner attempts to append a block with invalid transactions. The
security of the consensus protocol relies on the assumption that
miners are rational (i.e., that following the protocol is more
convenient than trying to attack it). To make this assumption
hold, miners receive some economic incentives for performing
the time-consuming computations required to solve the puzzles.
Part of these incentives is given by the fees paid by users upon
each transaction.

To illustrate how transfers of bitcoins work, we consider
two transactions T0 and T1, which we represent graphically
as follows:

T0

in: · · ·
in-script: · · ·
value: v0
out-script:pubKeyAOP_CHECKSIG

T1

in:hash(T0)

in-script:sigA
value: v1
out-script: · · ·

The transaction T0 contains v0 Satoshis (1 bitcoin = 108

Satoshis). A user can redeem this amount by publishing another
transaction (e.g., T1), whose in field contains the identifier
of T0 (its hash), and whose in-script field makes the
out-script of T0 evaluate to true. When this happens, the
value of T0 is transferred to the new transaction T1, and
T0 becomes unredeemable. In the example above, the two
transactions are using a pattern called Pay to public key (P2PK).
Namely, executing the output script starts with a signature
sigA on top of an evaluation stack, and then proceeds by
pushing also pubKeyA. Then, the opcode OP_CHECKSIG
verifies, using the public key pubKeyA, if sigA is a valid
signature of T1. If this check succeeds, and v1 ≤ v0, then T1

can be appended to the blockchain, specifying a new condition
for redeeming v1 Satoshis. For instance, if the output script
of T1 is pubKeyB OP_CHECKSIG, then T1 is effectively
moving v1 Satoshis from the user with public key pubKeyA
to that with key pubKeyB. Further, the difference v0 − v1
Satoshis is transferred from the user with key pubKeyA
to the miner which has appended the block enclosing T1 to
the blockchain.

The previous example shows the simple case of transactions
with only one input and one output. In general, transactions
can have multiple inputs and outputs, and can specify more
complex redeeming conditions. A transaction with multiple
inputs redeems all the (outputs of) transactions in its in
fields, by providing a suitable in-script for each of
them. Transactions with multiple outputs may have only some
of them redeemed by a subsequent transaction; each output
has its own value, and the sum of the values of all the
outputs must be greater than or equal to the sum of the
values of the inputs. Other transaction fields can be used to
specify time constraints on when a transaction can appear on
the blockchain.

An informal presentation of the Bitcoin scripting language is
in Antonopoulos (2017), while an executable formalization of a
significant fragment of this language is in Klomp and Bracciali

Frontiers in Blockchain | www.frontiersin.org 2 August 2019 | Volume 2 | Article 8

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

(2018). In this paper we do not investigate the actual Bitcoin
scripting language: rather, we focus on the higher-level languages
that can be used to model Bitcoin contracts.

3. BALZAC

Balzac (for “Bitcoin Abstract Language, analyZer and Compiler”)
is a formal model and a toolchain for Bitcoin contracts,
composed by a transaction model, and an endpoint protocol
model. The transaction model is an abstraction layer over the
Bitcoin transactions sketched in section 2: it features a modeling
language for transactions, with a formal semantics (Atzei
et al., 2018b) and an online tool (https://blockchain.unica.
it/balzac/) that translates Balzac transactions into standard
Bitcoin transactions. The endpoint protocol model (Atzei et al.,
2018a) specifies the behavior of the participants involved
in the smart contract, allowing them to exchange messages,
to inspect the blockchain, and to append transactions. We
now briefly illustrate the two models, by applying them to
formalize the timed commitment protocol. The protocol involves
two participants: a committer A who chooses a secret, and
promises to reveal it within a given deadline, and a
receiver B who will either know the secret, or otherwise
obtain 1B.

Overall, the protocol uses three transactions: Commit and
Reveal specified by A (in Figure 1, left), and Timeout
specified by B (in Figure 1, right). The committer A uses
Commit to commit to her secret, and to deposit the reward
for B, which is taken from an unspent transaction FundsA.
Committing to a secret s is obtained by appending to the
blockchainCommit(h,sigAc)whereh=sha256(s)
is the SHA256 hash of s, and sigAc is a signature of A on
Commit. This signature is needed to authorize the transfer of
currency from FundsA to Commit. Since the hash h occurs
in Commit.output, it becomes public, but the secret s
is not revealed. As specified in its output field, Commit
can be redeemed in two ways: either by revealing the secret
and providing A ’s signature, or by providing B’s signature after
the deadline.

Once Commit is on the blockchain, A can append
Reveal(h,s,sigAr) to redeem it. For this to succeed,
h must be the hash specified within Commit, and s
must be one of its preimages. Instead, sigAr must be a
signature by A on Reveal. Appending Reveal to the
blockchain makes the witnesses in its input field public: in
particular, B will know the secret s. Note that, after Commit
is on the blockchain, A cannot change her secret: indeed,
trying to append a transaction Reveal(h,s2,sigAr)
with sha256(s2) 6= h would fail. Appending Reveal
transfers the balance back to A , since its output field is
only satisfied by a witness x which is A ’s signature on the
redeeming transaction. We remark that Balzac exploits the
SegWit feature of Bitcoin (Lombrozo et al., 2015): this is why
the input field of Reveal refers to Commit(h,_), i.e.,
the transaction Commit with only the parameter h specified.
Indeed, the second parameter is only used within the witnesses

of Commit, so it does not contribute to its identifier according
to SegWit.

Finally, Timeout can be used by B to punish A if she
does not reveal her secret before the deadline. More
specifically, Timeout(h) redeems Commit(h,_)
after the deadline, using B’s signature sig(kB)
on Timeout as a witness in Timeout.input. The
absLock field prevents Timeout to appear on the
blockchain earlier than the deadline, ensuring that A has
enough time to reveal her secret by using Reveal. Note that
B might attempt to violate this time constraint by choosing
a lower value for the absLock field before computing
his signature sig(kB); however, doing so would make
Commit.output fail, since checkDate deadline
ensures that the absLock field of the redeeming transaction
(in our case, Timeout) does not refer to an earlier time. Once
Timeout is on the blockchain, it can be redeemed using B’s
signature, only: so, Timeout effectively allows B to claim
A ’s funds as his own, as a compensation for A ’s misbehavior.
We remark that this version of Timeout slightly differs from
the one in Atzei et al. (2018a), where also A ’s signature was
used. Here, the use of checkDate makes this additional
signature unneeded.

Note that the transactions in Figure 1 are not enough to
completely specify the protocol, as they do not describe the actual
behavior of participants. For instance, the transactions do not
describe whether A chooses to reveal the secret or not, and they
do not say whether B will eventually opt to use Timeout.

A natural behavior for A could be to commit to the secret,
and then reveal it before the deadline. We formalize this behavior
using the Balzac endpoint protocol language, as follows:

PA = put Commit(h,sigAc).B !h.put Reveal(h,s,sigAr)

The prefix put Commit(h,sigAc) appends Commit
to the blockchain, provided that the transaction FundsA
occurs unredeemed on the blockchain. Note that sigAc is
A ’a signature on Commit(h,_): neglecting the second
parameter is possible because this parameter would only affect
the witnesses of Commit, and witnesses are not covered
by Bitcoin signatures (indeed, were signatures also covering
witnesses, it would be unfeasible to include a signature as a
witness, since it would need to sign itself). The prefix B !h sends
to B the hash of chosen secret. Then, put Reveal(h,s,sigAr)
appends Reveal to the blockchain, revealing the secret.
Note that this specification does not impose time constraints
on actions: in particular, it does not ensure that Reveal is
appended before the deadline. Modeling this behavior would
be possible by extending the language with urgent operators, as
in Nicollin and Sifakis (1991).

A possible behavior of the receiver B is specified by the
following protocol QB , where the subprotocols Qok and Qnok are
left unspecified:

QB = A ? x.ask Commit(x, _).Q′

Q′ = ask Reveal(x, _, _) as T .Qok(get_secret(T))

+ put Timeout(x).Qnok

Frontiers in Blockchain | www.frontiersin.org 3 August 2019 | Volume 2 | Article 8

https://blockchain.unica.it/balzac/
https://blockchain.unica.it/balzac/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

FIGURE 1 | Balzac transactions for the timed commitment protocol.

In this protocol, B first receives from A (and saves in x)
the hash committed to within the transaction Commit. The
prefix ask Commit(x, _) waits until a transaction of the form
Commit(x, y) is indeed on the blockchain, for some value of y
(while x is fixed, and it corresponds to the hash received from A).
Then, B proceeds by executingQ′, a guarded choice between two
actions. The leftmost guard is satisfied when a transaction of the
form Reveal(x, y, z) is on the blockchain, for some y and z. If
the leftmost prefix is fired, the variable T is bound to the actual
Reveal transaction on the blockchain: from there, B extracts
the secret, and uses it in the continuation Qok. The rightmost
guard is enabled only when the transaction Timeout can
be appended to the blockchain, i.e., after the deadline.
Firing the prefix put Timeout(x) appends Timeout to
the blockchain, allowing B to get his reward, and to continue
with Qnok.

The overall behavior of the participants involved in a contract
is defined in Atzei et al. (2018a) as an LTS between systems.
A system is the parallel composition of the protocols of all
participants, written A[PA] | B[QB] | · · · , and the blockchain,
written as a pair (B, t), where B is a sequence of timestamped
transactions (Ti, ti), and t is the current time (greater than the
time of all transactions in B). For instance, we show a trace
of our timed commitment specification, starting from a system
S = A[PA] | B[QB] | (B, t), where the blockchain B contains
an unredeemed FundsA, and t < deadline − 1. We have
the trace:

S −→ A[PA] | B[QB] | (B, t)

→ A[B !h.put Reveal(h,s,sigAr)] | B[QB]

| (B(Commit(h,sigAc), t), t)

→ A[put Reveal(h,s,sigAr)]

| B[ask Commit(h,_).Q′{h/x}]

| (B(Commit(h,sigAc), t), t)

→ A[put Reveal(h,s,sigAr)]

| B[Q′{h/x}]

| (B(Commit(h,sigAc), t), t)

→ A[put Reveal(h,s,sigAr)]

| B[Q′{h/x}] | (B(Commit(h,sigAc), t),deadline− 1)

→ A[0] | B[Q′{h/x}] | (B’,deadline− 1)

where B’ = B(Commit(h,sigAc), t)(Reveal(h,s,sigAr),)

deadline− 1

→ A[0] | B[Qok(get_secret(Reveal(h,s,sigAr))){h/x}]

| (B’,deadline− 1)

= A[0] | B[Qok(s){h/x}] | (B’,deadline− 1)

Note that the time advances at the fifth step of the computation,
but, at the subsequent step, A manages to append Reveal
before the deadline, withdrawing her deposit. After that,
the receiver B obtains the secret s, and uses it within the
continuation Qok(s).

4. IVY

Ivy (https://ivy-lang.org/bitcoin) is an abstraction layer over
Bitcoin scripts, featuring a compiler from its abstract language to
standard Bitcoin scripts.We exemplify Ivy bymodeling the timed
commitment protocol in Figure 2. The contract Commit
describes the two redeeming conditions for the first transaction
(corresponding to the output script within the transaction
Commit in section 3). Each condition is specified by a
clause construct. The reveal clause requires a preimage
of the hash h, and a signature by Alice verifiable with her
public keykApub. This clause can be redeemed by a transaction
using the script within contract Reveal (the witnesses
of this transaction are not included in the Ivy contract). The
timeout clause can be satisfied only after the deadline,
and it requires Bob to provide his signature, verifiable with

Frontiers in Blockchain | www.frontiersin.org 4 August 2019 | Volume 2 | Article 8

https://ivy-lang.org/bitcoin
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

FIGURE 2 | Ivy scripts for the timed commitment protocol.

kBpub. This is done by a transaction using the script within
contract Timeout.

Each Ivy contract describes only the output script,
while there are no constructs to model the other parts of the
transactions—they can be programmed in Javascript when using
Ivy as a Javascript library. For instance, Ivy does not specify
that the transaction usingcontract Timeout should have
contract Commit as its input, nor that it should have
an absLock field set to deadline (or later) in order to
correctly redeem contract Commit. By contrast, Balzac
includes all this information in its transaction code, allowing
the tool to perform some sanity checks on the whole set of
transactions, e.g., that each witness correctly redeems its own
input. Such kind of checks have to be done in Ivy in an interactive
way, by testing the code in its web playground. This requires
to provide explicit parameters to each contract, as well as
the absLock.

5. SIMPLICITY

Simplicity (O’Connor, 2017) is an alternative language for Bitcoin
scripts, aimed at replacing the Bitcoin scripting language with a
more easily analyzable one, neglecting backward compatibility
with Bitcoin. Technically, it is a first-order simply-typed λ-
calculus. Its types include a unit type 1, product types A × B,
and sum types A+ B, but no function types. More complex types
are defined in terms of these basic ones: for instance, the type of
booleans is defined as 2 = 1+1, while fixed-length bitstring types
are defined e.g., asHash256 = 2256 = 2×2×· · · . By construction,
each type is inhabited by finitely many values. Because of this,
Simplicity can be proven to be universal, i.e., its combinators
allow to define any function f :A ⊢ B between types A and B.

Among the primitive combinators, we findpair a b :C ⊢ A×
B which constructs a pair with the outputs of functions a :C ⊢ A
and b :C ⊢ B. Dually, take t :A × B ⊢ C applies t :A ⊢ C to
the first component of the input pair, while drop s :A × B ⊢ C
applies s :B ⊢ C to the second component. Values in sum types
can be eliminated using case s t :(A+B)×C ⊢ D, which checks
whether its first input is a “left” value of type A or a “right” value
of type B. In the former case, case s t applies s :A × C ⊢ D
to the inputs, otherwise it applies t :B × C ⊢ D. Note that

case generalizes the usual “if-then-else” expression, which only
operates on booleans. Simplicity features an identity combinator
iden :A ⊢ A, and a composition combinator s; t :A ⊢ C which
sequences the combinators s :A ⊢ B and t :B ⊢ C. Finally, the
combinator unit :A ⊢ 1 discards any value of any type A, while
fail :A ⊢ 1 causes the program to abort unsuccessfully, making
the transaction redemption fail.

To showcase how Simplicity can be used in modeling
Bitcoin contracts, we replace the output scripts in the Balzac
transactions of the timed commitment protocol (Figure 1) with
equivalent Simplicity programs. Note that all the other fields of
the transactions remain unchanged, since Simplicity does not
feature a model of transactions (this is because O’Connor, 2017
focuses on scripts, without detailing how to use them to formalize
multi-transaction smart contracts like the timed commitment).

We start by modeling some constant values. These are
combinators that can take as input a value of any type A, and
return a constant value (neglecting the input). More precisely, we
assume the following:

• kApub :A ⊢ PubKey models the public key of A (similarly,
kBpub :A ⊢ PubKey for B);

• deadline :A ⊢ Date models the deadline before which A
should reveal her secret;

• h :A ⊢ Hash256 models the hash of the secret committed
by A .

Simplicity also features combinators that operate on
the (implicit) redeeming transaction. For instance,
txHash : 1 ⊢ Hash256 returns the hash of such a transaction
(to keep our treatment simple, here we neglect the signature
modifiers, affecting which parts of a transactions are considered).
The combinator txHash is often used together with
versig : Signature × (PubKey × Hash256) ⊢ 2, which verifies
a given signature against a public key and the hash of the signed
message. The result of versig is a boolean, denoting whether
the verification succeeded or not. In our example we also use
the combinators equal :Hash256 × Hash256 ⊢ 2, which checks
whether two hashes are equal, and checkDate :Date ⊢ 1,
which verifies that the absLock field in the (implicit)
redeeming transaction contains a later date than the one
provided as input, failing in the other case. Further, the

Frontiers in Blockchain | www.frontiersin.org 5 August 2019 | Volume 2 | Article 8

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

combinator witness extracts the witness from the (implicit)
redeeming transaction.

We start by describing the output script of the Reveal
transaction, since it is the simplest one (it is just a signature
verification on the redeeming transaction). The Simplicity
program is the following:

(pair witness (pair kApub txHash) ; pair versig
unit ; case fail unit)

Here, witness : 1 ⊢ Signature denotes a signature provided
by the redeeming transaction. It is used to form a triple with
the public key of A and the hash of the redeeming transaction.
This triple is then fed to versig for verification. If the
signature verification fails, the combinator fail aborts the
program preventing Reveal to be redeemed. Otherwise, if the
verification succeeds, unit is used to allow the redemption.
The output script used in the Timeout transaction
is similar.

The Commit transaction is more complex, since its output
script involves two conditions, which can be satisfied by witnesses
of two forms: either a pair containingA ’s signature and her secret,
or B’s signature (but only after the deadline). We uniformly
represent these cases by assuming that witness has a sum
type, witness : 1 ⊢ (Signature × Secret256) + Signature. Then,
the output script is the following program:

(pair witness unit ; case (take SA) (take SB))

The program above checks whether the witness is of the “left”
form Signature×Secret256 or of the “right” form Signature. In the
first case, the program appliesSA to the pair at hand, while in the
second case it applies SB to the signature.

The subprograms SA : Signature × Secret256 ⊢ 1 and
SB : Signature ⊢ 1 are as follows:

SA = (pair
(drop (pair sha256 h ; pair equal unit ;
case fail unit))
(take (pair iden (pair kApub txHash) ;
pair versig unit ; case fail unit))
; unit)

SB = (pair iden (pair kBpub txHash)
; pair versig unit
; case fail (take (deadline ; checkDate)))

Intuitively, SA constructs a pair 1 × 1 and then discards it
using the final unit. The value of the pair is indeed immaterial,
but the evaluation of its components verifies the witnesses.
Indeed, in the first component we compute the hash of the
provided secret using sha256 and we compare it with the
committed hash h. If these hashes are equal, the combinator
case evaluates unit, resulting in a success; otherwise, if they
differ, case evaluates fail, causing a failure. Instead, the
second component verifies the signature in the witness against
the public key of A and the hash of the (implicit) redeeming
transaction. This program is analogous to the one used for the
Reveal transaction.

The program SB verifies a signature in a similar way,
except that when the verification succeeds, instead of simply

evaluating unit and succeed, we evaluate deadline ;
checkDate to check that the absLock field of the
redeeming transaction is correct.

6. UPPAAL

Andrychowicz et al. (2014b) model Bitcoin contracts in
Uppaal (Behrmann et al. , 2004), a model checking framework
based on Timed Automata (TA; Alur and Dill, 1994). The idea
is that the behavior of each participant in a contract (including
the adversary) is modeled as a TA, and the overall system is
the network obtained by composing these TAs, plus a TA which
models the Bitcoin network.

The overall system state is given by the current location of
each TA, the values of all the clocks used in the TAs, and the
values of a set of global variables. Transitions between locations
are guarded by a predicate on the global variables and the clocks,
and can trigger an update of the global variables. Each location
has an invariant (true by default), which must be satisfied as long
as the TA stays in that location. Both predicates and updates are
defined through a C-like procedural language. A network of TAs
can be model-checked, using a simplified version of TCTL (timed
computation tree logic) to express queries.

We illustrate this modeling technique by slightly adapting the
timed commitment contract in Andrychowicz et al. (2014b), to
make it coherent with the models in the previous sections (in
particular, to avoid using A ’s signature in Timeout). This
model exploits global variables to represent the current state of
the Bitcoin network (e.g., which transactions have been sent or
confirmed), as well as the knowledge of the participants (e.g.,
private keys and secrets). The initial knowledge is set by the
procedure init_prot (see Figure 4, lines 19–24).

We show in Figure 3 (left) the TA modeling the Bitcoin
network. Essentially, the transition labeled init_bc()
initializes the state of all the needed transactions, calling the
procedure init_bc to update the state (see Figure 4, lines
1–8). Besides the four protocol transactions (an initial deposit,
Commit, Reveal, and Timeout), init_bc creates
four additional transactions, used by the adversary to attempt
to disrupt the contract by redeeming the protocol transactions.
After init_bc, the TA waits until the participants broadcasts
some transaction (is_waiting), and fulfills such requests
(try_to_confirm). The invariant on the rightmost
location ensures that each transaction is confirmed within
MAX_LATENCY of sending it. Moreover, the TA also sets the
flag timelock_passed on all the transactions when the
time specified by their timelock field is reached, so that they
can now be appended.

The TA modeling the adversary has a single location,
with a self-loop (Figure 4, right). This TA simply tries
to append to the blockchain any transaction, in a non-
deterministic fashion (try_to_append). Before
modifying the state of the blockchain, the procedure
try_to_append verifies that the adversary can
indeed satisfy the output scripts of the input transactions.
This is checked by can_create_input_script

Frontiers in Blockchain | www.frontiersin.org 6 August 2019 | Volume 2 | Article 8

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

FIGURE 3 | Uppaal timed automata for the blockchain network (Left) and for the adversary (Right).

FIGURE 4 | Snippet of Uppaal code for the timed commitment contract.

(see Figure 5, lines 10–16). This procedure deals separately
with standard and non-standard output scripts. Standard
output scripts are dealt with by know_signature,
which checks that either the signature or the private key are
known. Non-standard output scripts are hard-coded within
can_create_input_script: in our example, this
only happens for the script in Commit, which is detected
by o.script == 0 at line 13. The script is satisfied
either by A ’s signature (using C_KEY) and the secret, or
by B’s signature (using R_KEY) when the timelock
is after the deadline. Note that the implementation of
can_create_input_script strictly depends on
the contract at hand, in particular on all the non-standard output
scripts used by the contract.

Finally, in Figure 5 we show the TA describing the behavior
of an honest receiver B. The TA initially waits for a confirmed
Commit transaction. If that transaction is not confirmed within
MAX_LATENCY, B does not accept the commitment, and
moves to location failure. Otherwise, B checks that he can
construct the input script for Timeout (this is always true,
since B knows R_KEY) and then accepts the commitment.

After that, B simply tries to append the Timeout transaction
as soon as it is enabled (try_to_send).

Uppaal can be used to verify that the given model
behaves as expected. For instance, when A is impersonated
by the adversary, an expected property is that in all runs
where B does not reject the commitment (failure),
after time DEADLINE+MAX_LATENCY either B knows
the committed secret (know_secret[0]) or he earns a
reward (hold_bitcoins). This property is formalized
by the following TCTL formula, which is verified as true
by Uppaal:

A[] (not BobTA.failure and time >=
DEADLINE+MAX_LATENCY) imply

(parties[BOB].know_secret[0] or
hold_bitcoins(parties[BOB]) == 1)

7. BITML

Bartoletti and Zunino (2018) express Bitcoin contracts through
a simple process calculus, named BitML. The workflow of

Frontiers in Blockchain | www.frontiersin.org 7 August 2019 | Volume 2 | Article 8

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

FIGURE 5 | Uppaal timed automaton for an honest receiver B.

FIGURE 6 | Syntax of BitML contracts and preconditions.

BitML contracts consists of three phases. First, participants can
broadcast a contract advertisement, which specifies the actual
contract and the preconditions to its execution (e.g., depositing
given amounts of bitcoins). Then, participants can accept some
contract by fulfilling all the required preconditions. When all
the needed participants have fulfilled the preconditions, the
contract is stipulated and can be executed. Executing the contract
will eventually result in a transfer of the bitcoins deposited by
participants, according to the logic defined by the contract.

A contract advertisement is modeled as a term of the form
{G}C , where C is the contract, specifying the rules to transfer
bitcoins, while G is the set of preconditions. Preconditions
(Figure 6, left) may require participants to deposit some B, or
to commit to some secret. For instance, our timed commitment
contract requires the following preconditions:

G = A:! 1B@ x | A:secret a | B:! 0B@ y

This means that A must put a persistent deposit (named x) of
1B, and must commit to a secret a before the contract starts.
Instead, B puts a null deposit, named y (here, for simplicity we
have omitted the transaction fees). Once the two deposit has been
used for stipulating the contract, either A or B will redeem 1B by
executing the contract.

A contract is a guarded choice of branches, with the syntax
in Figure 6, right. For instance, with the precondition G
above, we can model the timed commitment contract in BitML
as follows:

C =
(

reveal a.withdraw A
)

+
(

afterdeadline:withdraw B
)

Contract C is a guarded choice between two branches, separated
by the + operator. The first branch reveal a.withdraw A

can be taken only by A , by revealing the previously committed
secret a. After that, anyone can execute withdraw A , which
transfers the 1B deposit back to A . Instead, the second branch
afterdeadline:withdraw B can be taken only after the
deadline. Its execution causes the deposit to be transferred to
B. Intuitively, stipulating C in BitML corresponds, in Balzac, to
appending the transaction Commit to the blockchain. Further,
taking the first branch of C corresponds to appendingReveal,
while taking the second branch corresponds to appending
Timeout. In spite of this similarity, BitML uses higher level
code, which does not directly describe the Bitcoin transactions,
but rather focuses on how the bitcoins are transferred.

We remark that a BitML contract only specifies which moves
may be taken by participants, while their actual behavior must
be specified separately from the contract, through strategies.
Strategies roughly play the same role as Balzac endpoint
protocols, even if in Bartoletti and Zunino (2018) they are
simply modeled as algorithms, and not expressed in a specific
formal language.

The semantics of BitML is a labeled transition system between
configurations, which are the parallel composition of terms of the
following form:

• {G}C , representing an advertisement of contract C with
preconditions G;

• 〈C , v〉x , representing a stipulated contract, holding a current
balance of vB. The name x uniquely identifies the contract in
a configuration;

• 〈A , v〉x representing a fund of vB owned by A , and with
unique name x;

• A[χ], representing A ’s authorization to perform some
operation χ ;

• {A : a#N}, representing that A has committed to a random
secret a with (secret) length N;

Frontiers in Blockchain | www.frontiersin.org 8 August 2019 | Volume 2 | Article 8

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

• A : a#N, representing that A has revealed her secret a (with
its length N);

• t ∈ N is a global time (can only occur once in
a configuration).

Once stipulated, contracts start their execution with a balance,
initially set to the sum of the persistent deposits required by the
preconditions. Running a contract will affect its balance, when
participants deposit/withdraw funds to/from the contract. Back
to our timed commitment contract, let the initial configuration
be Ŵ = 〈A , 1B〉x | 〈B, 0B〉y | t, with t < deadline. A possible
computation where A reveals her secret and then redeems the
deposit is the following:

Ŵ −→ Ŵ | {G}C (1)

−→ Ŵ | {G}C | {A : a#N} | A[#� {G}C] (2)

−→ Ŵ | {G}C | {A : a#N} | A[#� {G}C] | B[#� {G}C] (3)

−→ Ŵ | {G}C | {A : a#N} | A[#� {G}C] | B[#� {G}C]

| A[x � {G}C] (4)

−→ Ŵ | {G}C | {A : a#N} | A[#� {G}C] | B[#� {G}C]

| A[x � {G}C] | B[y � {G}C] (5)

−→ 〈C , 1B〉x1 | {A : a#N} | t (6)

−→ 〈C , 1B〉x1 | A : a#N | t (7)

−→ 〈withdraw A , 1B〉x2 | A : a#N | t (8)

−→ 〈A , 1B〉x3 | A : a#N | t (9)

Step (1) advertises {G}C , which refers to the deposits x and y,
available in the initial configuration Ŵ. At step (2), A commits
to a secret a, with length N. The term A[#� {G}C] witnesses
that A ’s secrets have been committed to. Similarly, at step (3) B
adds the term B[#� {G}C]. At steps (4)–(5), A and B give their
authorization to stipulate C , by providing their authorizations to
spend the deposits x and y, respectively. At step (6) the contract
is stipulated, transferring the deposits x and y to the contract. At
step (7), A reveals her secret. After that, the action reveal a is
performed at step (8), reducing the contract to withdraw A ,
and discarding the after branch. Finally, step (9) performs
the withdraw A action, producing a fresh deposit x3 with 1B
redeemable by A .

We also show a computation where A does not reveal her
secret, and B waits until t′ > deadline to redeem A ’s deposit.
Starting from Ŵ′ = 〈C , 1B〉x1 | {A : a#N} at time t, we have the
following steps:

Ŵ′ | t −→ Ŵ′ | t′ −→ 〈B, 1B〉y | {A : a#N} | t′

The first step lets the time pass, making the deadline expire. In the
second step, B fires the prefix withdraw B within the after,
and in this way he collects 1B.

Bartoletti and Zunino (2018) also introduce a compiler
from BitML contracts into standard Bitcoin transactions.
In this way, participants can effectively execute BitML
contracts on the Bitcoin network, by appending the obtained
transactions according to their strategies. The compiler enjoys a
computational soundness property, which basically ensures that

computational attacks to compiled contracts at the Bitcoin level
are also observable at the BitML level. In practice, this result can
be exploited to prove the correctness of static analyses on BitML
contracts, like the one for liquidity presented in Bartoletti and
Zunino (2019).

8. DISCUSSION

The works we have discussed in this survey serve different
purposes, and consequently the formal models they introduce
have substantial differences. Uppaal and Simplicity are the
models which allow more expressiveness, not being constrained
to be translated into actual Bitcoin transactions. On the other
side, Balzac, Ivy and BitML can be compiled into Bitcoin, and
so they suffer from the limitations of the Bitcoin scripting
language—although in a different way. Balzac covers most of
the features of Bitcoin, including SegregatedWitnesses, signature
modifiers, and temporal constraints. Similarly, Ivy seems to
cover most of the features of Bitcoin scripts. So, Balzac and Ivy
seem suitable to specify any contract actually realizable on top
of Bitcoin. BitML poses some limits to expressiveness, which
however are exploited for verification purposes, as we will discuss
below. For instance, BitML cannot exploit signature modifiers
besides all-inputs / all-outputs, and it requires participants to
sign all the transactions potentially used in a contract before
stipulation. As a consequence of these limitations, BitML cannot
express e.g., infinite-state crowdfunding contracts, which instead
are expressible as Balzac endpoint protocols (Atzei et al., 2018a),
where signatures can be provided at any moment. Since this
kind of contracts are inherently infinite-state (because the set of
participants is not known a priori), modeling them in Uppaal
seems unfeasible as well. Notwithstanding the limitations, BitML
can express a wide variety of common contracts, as discussed
in Bartoletti et al. (2018).

The higher level of abstraction featured by BitML allows for
expressing complex contracts more succinctly than in the other
models. For instance, a slight variant of the timed commitment
contract where both participants are both committers and
receivers can be specified in 3 lines of BitML (Bartoletti
and Zunino, 2018), while it requires 9 transactions (18, also
considering those for the adversary) in Uppaal (Andrychowicz
et al., 2014b), as well as in the other transaction-based models.
Another advantage of BitML is that it allows programmers
to focus on high-level behaviors (revealing secrets, providing

TABLE 1 | Comparison between the models of Bitcoin contracts.

Model Expressiveness Abstraction

level

Verification

Balzac = Bitcoin Set of transaction Basic type checking +

sanity checking

Ivy = Bitcoin Script Basic type checking

Simplicity > Bitcoin Script Type checking (with

simple types)

Uppaal > Bitcoin Set of transaction

+ TA

LTL model checking

BitML < Bitcoin Contract LTL model checking

Frontiers in Blockchain | www.frontiersin.org 9 August 2019 | Volume 2 | Article 8

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

authorizations, checking deadlines, . . .), rather than struggling
with the low-level details of Bitcoin transactions (hashes,
signatures, scripts, . . .). Simplicity provides an alternative
language for Bitcoin output scripts based on algebraic types,
which, compared with Bitcoin scripts, can help the protocol
designer to structure the data in a more rigorous way than
using bare bit-strings. In this way, Simplicity also enables type
checking, which helps to reduce programming errors. On the
other hand, Simplicity differs from many declarative languages
by using a point-free notation, which can be rather inconvenient
to use directly, without leveraging a transformation from a
more human-friendly point-full language (as in Cunha and Pinto
2005). Ivy follows an imperative paradigm, allowing the user
to specify the redeeming condition as a block of statements
to be executed. Instead, Balzac output scripts are boolean
expressions. Ivy allows multiple clauses within a contract,
which are instead modeled as a disjunction in Balzac output
scripts. Compared with Simplicity, Balzac and Ivy scripts are
more restrictive, as they are bound to be encodable to Bitcoin
scripts; instead, Simplicity scripts are meant as a replacement of
Bitcoin ones. Among the models we have discussed, Uppaal is the
only one which features a procedural language, which is used to
define the various components of the Bitcoin network (including
the participants in the contract). On the one hand, this language
is quite flexible, as it could be used to model Bitcoin extensions;
on the other hand, contract designers must pay special attention
to craft models that can actually be executed in Bitcoin.

All the models presented in this paper (except Ivy) feature a
formal semantics, and they all implement some form of checks on
the code. Both Ivy and Balzac perform some basic type checking;
further, since Balzac provides a view of all the transactions
composing a contract, it also performs some complex sanity
checks, e.g., whether the witnesses satisfy the predicates of
the input transactions. Also Simplicity performs type checking,
but with richer types; further, it features a static analysis to
predict an upper bound to the memory consumption of the
execution of scripts. BitML and Uppaal can also verify complex
contract properties expressed in LTL, bymodel-checking the state
space of the contract. Although this state space is potentially
infinite for BitML, verification is possible through the finite-
state abstraction in Bartoletti and Zunino (2019). Verification of
Uppaal models is possible through the Uppaal model checker
(http://www.uppaal.org); a tool for verifying BitML contracts is
available (Atzei et al., 2019). There also exists a formalization of
BitML in Agda (https://github.com/omelkonian/formal-bitml),
which allows for verifying properties of BitML contracts through
a proof assistant.

A summary of the comparison between the models is
in Table 1.

9. CONCLUSIONS

In this paper we have compared the various languages and
models for Bitcoin contracts. The need for formal modeling
of Bitcoin contracts is motivated by the surprising complexity
that these contracts may exhibit: for instance, the literature
reports the use of Bitcoin to implement financial services,
auctions, timed commitments, lotteries, and a variety of other
gambling games (Atzei et al., 2018a, 2019). Our survey aims
to help programmers to choose the right model for their
contracts, based on the required expressiveness and available
verification tools.

A parallel line of research is that on formal models of smart
contracts running on alternative blockchains. Currently, the
main target of this research is Ethereum, the most widespread
platform for smart contracts so far. Driven by the proliferation
of vulnerabilities of Ethereum contracts (Atzei et al., 2017) which
have caused major money losses, many researchers have studied
models and verification techniques to make Ethereum contracts
more secure (Miller et al., 2018). Several papers focus on EVM,
the bytecode language interpreted by Ethereum clients, as well
as the target of the compilation of high-level contract languages,
like Solidity. Luu et al. (2016) give a partial formalization
of the semantics of EVM, and exploit symbolic execution to
detect some common vulnerability patterns of EVM contracts.
Grishchenko et al. (2018b) and Hildenbrandt et al. (2018)
formalize executable semantics of EVM, validated against the
official Ethereum test suite; these semantics are the basis of
static verifiers of EVM contracts, like e.g., Grishchenko et al.
(2018a). Bhargavan et al. (2016) translate EVM into F∗, and
uses its verification tools to detect vulnerabilities. Hirai (2017)
uses the Isabelle/HOL proof assistant (Nipkow et al., 2002) to
verify the EVM code obtained by compiling a fragment of the
Ethereum Name Service. Sergey et al. (2018) propose a strongly
typed intermediate language for contracts, which are modeled
as Communicating Automata; this richer structure (compared
to EVM) simplifies formal reasoning, making contracts more
amenable to verification.

AUTHOR CONTRIBUTIONS

RZ and MB equally contributed to all parts of the paper.

ACKNOWLEDGMENTS

MB is partially supported by Aut. Reg. of Sardinia projects
Sardcoin and Smart Collaborative Engineering. RZ is partially
supported by MIUR PON Distributed Ledgers for Secure
Open Communities.

REFERENCES

Alur, R., and Dill, D. L. (1994). A theory of timed automata. Theor. Comput. Sci.

126, 183–235. doi: 10.1016/0304-3975(94)90010-8

Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L.

(2014a). “Fair two-party computations via Bitcoin deposits,” in Financial

Cryptography Workshops Vol. 8438 of LNCS (Christ Church: Springer),

105–121. doi: 10.1007/978-3-662-44774-1_8

Frontiers in Blockchain | www.frontiersin.org 10 August 2019 | Volume 2 | Article 8

http://www.uppaal.org
https://github.com/omelkonian/formal-bitml
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-662-44774-1_8
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Bartoletti and Zunino Formal Models of Bitcoin Contracts

Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, Ł. (2014b).

“Modeling Bitcoin contracts by timed automata,” in International Conference

on Formal Modeling and Analysis of Timed Systems (FORMATS), Vol. 8711 of

LNCS (Florence: Springer), 7–22. doi: 10.1007/978-3-319-10512-3_2

Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L. (2014c).

“Secure multiparty computations on Bitcoin,” in IEEE Symposium on Security

and Privacy (Berkeley, CA) 443–458. doi: 10.1109/SP.2014.35

Antonopoulos, A.M. (2017).Mastering Bitcoin: Programming the Open Blockchain,

2nd Edn. (Sebastopol, CA: O’Reilly Media, Inc.).

Atzei, N., Bartoletti, M., and Cimoli, T. (2017). “A survey of attacks on Ethereum

smart contracts (SoK),” in POST, Vol. 10204 of LNCS (Uppsala: Springer),

164–186. doi: 10.1007/978-3-662-54455-6_8

Atzei, N., Bartoletti, M., Cimoli, T., Lande, S., and Zunino, R. (2018a).

“SoK: unraveling Bitcoin smart contracts,” in POST , Vol. 10804 of LNCS

(Thessaloniki: Springer), 217–242. doi: 10.1007/978-3-319-89722-6

Atzei, N., Bartoletti, M., Lande, S., Yoshida, N., and Zunino, R. (2019).

“Developing secure Bitcoin contracts with BitML,” in ESEC/FSE (Tallinn).

doi: 10.1145/3338906.3341173

Atzei, N., Bartoletti, M., Lande, S., and Zunino, R. (2018b). “A formal

model of Bitcoin transactions,” in Financial Cryptography and Data Security,

Vol. 10957 of LNCS (Santa Barbara: Springer). doi: 10.1007/978-3-662-

58387-6

Banasik, W., Dziembowski, S., and Malinowski, D. (2016). “Efficient zero-

knowledge contingent payments in cryptocurrencies without scripts,”

in ESORICS, Vol. 9879 of LNCS (Heraklion: Springer), 261–280.

doi: 10.1007/978-3-319-45741-3_14

Bartoletti, M., Cimoli, T., and Zunino, R. (2018). “Fun with bitcoin smart

contracts,” in ISoLA (Limassol), 432–449. doi: 10.1007/978-3-030-03427-6_32

Bartoletti, M., and Zunino, R. (2017). “Constant-deposit multiparty lotteries on

Bitcoin,” in Financial Cryptography Workshops, Vol. 10323 of LNCS (Sliema:

Springer). doi: 10.1007/978-3-319-70278-0

Bartoletti, M., and Zunino, R. (2018). “BitML: a calculus for Bitcoin smart

contracts,” in ACM CCS (New York, NY: ACM). doi: 10.1145/3243734.3243795

Bartoletti, M., and Zunino, R. (2019). “Verifying liquidity of bitcoin contracts,” in

POST, Vol. 11426 of LNCS (Cham: Springer).

Behrmann, G., David, A., and Larsen, K. G. (2004). “A tutorial on Uppaal,”

in Formal Methods for the Design of Real-Time Systems, Vol. 3185 of LNCS

(Bertinoro: Springer), 200–236. doi: 10.1007/978-3-540-30080-9_7

Bentov, I., and Kumaresan, R. (2014). “How to use Bitcoin to design fair protocols,”

in CRYPTO, Vol. 8617 of LNCS (Santa Barbara, CA: Springer), 421–439.

doi: 10.1007/978-3-662-44381-1_24

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,

Kobeissi, N., et al. (2016). “Formal verification of smart contracts,” in PLAS

(Vienna).

Bitcoin wiki (2012). BitcoinWiki - Contracts. Available online at: https://en.bitcoin.

it/wiki/Contract

Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and Felten,

E. W. (2015). “SoK: Research perspectives and challenges for Bitcoin and

cryptocurrencies,” in IEEE Symposium on Security and Privacy (San Jose, CA),

104–121. doi: 10.1109/SP.2015.14

Cunha, A., and Pinto, J. S. (2005). Point-free program transformation. Fundam.

Inform. 66, 315–352. Available online at: https://content.iospress.com/articles/

fundamenta-informaticae/fi66-4-02

Grishchenko, I., Maffei, M., and Schneidewind, C. (2018a). “Foundations and

tools for the static analysis of Ethereum smart contracts,” in CAV, Vol.

10981 of LNCS (Oxford, UK: Springer), 51–78. doi: 10.1007/978-3-319-

96145-3_4

Grishchenko, I., Maffei,M., and Schneidewind, C. (2018b). “A semantic framework

for the security analysis of ethereum smart contracts,” In POST, Vol. 10804

of LNCS (Thessaloniki: Springer), 243–269. doi: 10.1007/978-3-319-8972

2-6_10

Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D.,

et al. (2018). “KEVM: A complete formal semantics of the Ethereum Virtual

Machine,” in IEEE Computer Security Foundations Symposium (CSF) (Oxford,

UK: IEEE Computer Society), 204–217. doi: 10.1109/CSF.2018.00022

Hirai, Y. (2017). “Defining the Ethereum Virtual Machine for interactive theorem

provers,” in Financial Cryptography Workshops, Vol. 10323 of LNCS (Sliema:

Springer), 520–535. doi: 10.1007/978-3-319-70278-0_33

Klomp, R., and Bracciali, A. (2018). “On symbolic verification of Bitcoin’s

script language,” in Workshop on Cryptocurrencies and Blockchain

Technology (CBT), Vol. 11025 of LNCS (Barcelona: Springer), 38–56.

doi: 10.1007/978-3-030-00305-0_3

Kumaresan, R., and Bentov, I. (2014). “How to use Bitcoin to incentivize

correct computations,” in ACM CCS (Scottsdale, AZ), 30–41.

doi: 10.1145/2660267.2660380

Lombrozo, E., Lau, J., and Wuille, P. (2015). Segregated Witness (Consensus Layer)

BIP 141. Available online at: https://github.com/bitcoin/bips/blob/master/bip-

0141.mediawiki

Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. (2016).

“Making smart contracts smarter,” in ACM CCS (Vienna), 254–269.

doi: 10.1145/2976749.2978309

Maxwell, G. (2016). The First Successful Zero-Knowledge Contingent Payment.

Available online at: https://bitcoincore.org/en/2016/02/26/zero-knowledge-

contingent-payments-announcement/

Miller, A., and Bentov, I. (2017). “Zero-collateral lotteries in

Bitcoin and Ethereum,” in EuroS&P Workshops (Paris), 4–13.

doi: 10.1109/EuroSPW.2017.44

Miller, A., Cai, Z., and Jha, S. (2018). “Smart contracts and opportunities for

formal methods,” in ISoLA, Vol. 11247 of LNCS (Cham: Springer), 280–299.

doi: 10.1007/978-3-030-03427-6_22

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Available

online at: https://bitcoin.org/bitcoin.pdf

Nicollin, X., and Sifakis, J. (1991). “An overview and synthesis on timed process

algebras,” in CAV (Aalborg), 376–398. doi: 10.1007/3-540-55179-4_36

Nipkow, T., Paulson, L. C., andWenzel, M. (2002). Isabelle/HOL: A Proof Assistant

for Higher-Order Logic, Vol. 2283 (Berlin: Springer Science & Business Media).

O’Connor, R. (2017). “Simplicity: A new language for blockchains,” in PLAS

(Sliema). doi: 10.1145/3139337.3139340

Sergey, I., Kumar, A., and Hobor, A. (2018). Scilla: a smart contract intermediate-

level language. CoRR abs/1801.00687

Szabo, N. (1997). Formalizing and securing relationships on public networks.

First Monday 2. Available online at: https://firstmonday.org/ojs/index.php/fm/

article/view/548/469-publisher=First

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Bartoletti and Zunino. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Blockchain | www.frontiersin.org 11 August 2019 | Volume 2 | Article 8

https://doi.org/10.1007/978-3-319-10512-3_2
https://doi.org/10.1109/SP.2014.35
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-319-89722-6
https://doi.org/10.1145/3338906.3341173
https://doi.org/10.1007/978-3-662-58387-6
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-030-03427-6_32
https://doi.org/10.1007/978-3-319-70278-0
https://doi.org/10.1145/3243734.3243795
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-662-44381-1_24
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://doi.org/10.1109/SP.2015.14
https://content.iospress.com/articles/fundamenta-informaticae/fi66-4-02
https://content.iospress.com/articles/fundamenta-informaticae/fi66-4-02
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-030-00305-0_3
https://doi.org/10.1145/2660267.2660380
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://doi.org/10.1145/2976749.2978309
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://doi.org/10.1109/EuroSPW.2017.44
https://doi.org/10.1007/978-3-030-03427-6_22
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/3-540-55179-4_36
https://doi.org/10.1145/3139337.3139340
https://firstmonday.org/ojs/index.php/fm/article/view/548/469-publisher=First
https://firstmonday.org/ojs/index.php/fm/article/view/548/469-publisher=First
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

	Formal Models of Bitcoin Contracts: A Survey
	1. Introduction
	2. Background
	3. Balzac
	4. Ivy
	5. Simplicity
	6. Uppaal
	7. BitML
	8. Discussion
	9. Conclusions
	Author Contributions
	Acknowledgments
	References

