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We model the competition over mining resources and over several cryptocurrencies

as a non-cooperative game. Leveraging results about congestion games, we establish

conditions for the existence of pure Nash equilibria and provide efficient algorithms for

finding such equilibria. We account for multiple system models, varying according to the

way that mining resources are allocated and shared and according to the granularity at

which mining puzzle complexity is adjusted. When constraints on resources are included,

the resulting game is a constrained resource allocation game for which we characterize

a normalized Nash equilibrium. Under the proposed models, we provide structural

properties of the corresponding types of equilibrium, e.g., establishing conditions under

which at most two mining infrastructures will be active or under which no miners will have

incentives to mine a given cryptocurrency.

Keywords: competition, mining, bitcoin, blockchain, game theory

1. INTRODUCTION

The blockchain is a distributed synchronized secure database containing validated blocks of
transactions. A block is validated by special nodes called miners and the validation of each
new block is done via the solution of a computationally difficult problem, which is called the
proof-of-work puzzle. The miners compete against each other and the first to solve the problem
announces it, the block is then verified by the majority of miners in this network, trying to
reach consensus. After the propagated block reaches the consensus, it is successfully added to the
distributed database. The miner who found the solution receives a reward either in the form of
cryptocurrencies or in the form of a transaction reward.

Due to the huge energy requirement necessary to be the first to solve a puzzle, blockchain
mining is typically executed in specialized hardware. In Zhang et al. (2016) an Edge computing
Service Provider (ESP) is introduced to support proof-of-work puzzle offloading by using its edge
computing nodes. In Xiong et al. (2017) a game is formulated between the miners in the presence
of a single ESP and then a Stackelberg game is used to compute the pricing that maximizes the
revenue of the ESP.

Our work addresses the following two questions:

1) Given a single blockchain, how should rational users contribute to the mining process, possibly
counting on third-party ESPs or mining pools to offload infrastructure costs?

2) Given multiple blockchains, e.g., in a multi-cryptocurrency ecosystem, how should rational
users distribute their monetary and/or computational budget toward mining?
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In this paper, we focus on the competition between miners while
addressing the two questions above. We model the competition
between miners, who have to choose which ESP to use and
which blockchains to mine, as a non-cooperative game. Note that
each ESP corresponds to a separate mining infrastructure, and
each blockchain corresponds to a different cryptocurrency. Then,
we specialize our results to two instances of the general game,
showing properties of the Nash equilibrium.

In the first game, there is a single blockchain (e.g.,
cryptocurrency) and any of the M ESPs (or mining pools) can
be used by the miners to solve the puzzle. In the second game,
we consider K opportunities, each of which corresponding to
another blockchain. At each time slot of duration T (which
corresponds to a new puzzle to be solved) each of the miners
decides which of K puzzles to solve. We formulate both
games and establish conditions for the existence of a pure
Nash equilibrium for the association problem between miners
and ESPs, providing an efficient algorithm for solving it. We
summarize our contributions as follows:

Congestion game for mining competition: we model the
competition among users searching for a solution to the mining
puzzle as a game (section 3). In essence, as the number of users
willing to mine increases, the chances that a given user is the
first to succeed in solving the mining puzzle and wins a reward
decreases (i.e., the system becomes congested). In particular,
we assume that users can count on third-parties to offload
infrastructure costs, and can mine multiple cryptocurrencies.
Under the assumption that such third-parties are roughly
indistinguishable, we further show that when there is one single
cryptocurrency of interest the congestion game admits a simple
equilibrium accounting for users that must decide whether to
mine or otherwise not join the system (section 4).

Analysis of multi-cryptocurrency ecosystem: we analyze the
congestion game involving multiple cryptocurrencies. In that
case, miners compete against those that decide to mine the same
cryptocurrency (section 5) and we show that the proposed game
admits a potential.

Continuous actions and physical bounds on resources: we
consider two extensions of the proposed games. First, we consider
continuous actions, wherein miners can split their budget
across multiple ESPs and multiple cryptocurrencies (section 7.1).
Second, we allow for physical bounds on resources, such as
energy, which can be consumed by the whole system (section 7.2).

Paper outline The remainder of this paper is organized as
follows. Sections 2, 3 present background on mining competition
and the general game framework considered in this paper to
characterize such competition. Then, section 4 specializes to
the setup wherein there is only one single cryptocurrency,
and section 5 accounts for multiple cryptocurrencies. The
general game accounting for multiple ESPs and multiple
cryptocurrencies is considered in section 6. Extensions to
account for continuous actions and physical bounds on resources
are introduced in section 7. Discussion and related work
follow in sections 8, 9, and section 10 concludes. Appendices
contain supplementary material, including a discussion on
positive and negative mining externalities (Appendix A), a
technical proof (Appendix B) and the analysis of the setup

wherein ESPs continuously use their resources at maximum
capacity (Appendix C).

2. MINING COMPETITION

In this section we discuss two key aspects pertaining mining
competition. First, we indicate how the granularity of the
adjustment of mining difficulty impacts the nature of the
competition (section 2.1). Then, we relate the granularity of the
mining difficulty adjustment to the horizon at which competition
takes place (section 2.2). In the appendix we further indicate
more broadly how competition and cooperation play important
roles in blockchain systems.

2.1. Granularity of Adjustment of Mining
Complexity
The goal of adjusting the mining complexity is to find a difficulty
point at which the network mines a block containing outstanding
transactions every xminutes. In Bitcoin, we have x = 10minutes.
By decreasing (resp., increasing) difficulty, the Bitcoin protocol
also decreases (resp., increases) the amount of time, processing
power, and electricity required to solve a block.

Next, we discuss the implications of the granularity at which
mining complexity is adjusted. Bitcoin’s difficulty adjustment, for
instance, is naturally adjusted by the system every 2016 blocks.
This adjustment probabilistically averages to 2 week intervals
between adjustments.

In this paper, we consider two extreme cases with respect to
the granularity of adjustment of mining complexity:

Fine grained adjustment of mining complexity: under the
fine grained adjustment of complexity, every time a miner joins
or leaves the network the mining complexity is correspondingly
adjusted. In this case, the mean time to solve a puzzle by the
network is independent of the number of miners. From the
perspective of each miner, however, the mean time to solve a
puzzle increases as the number of miners grows.

Coarse grained adjustment ofmining complexity: under the
coarse grained adjustment of complexity, the number of miners
may vary inbetween the adjustment of mining complexity. In that
case, the mean time to solve a puzzle decreases as the number of
miners grows.

In section 3 we introduce the general game, accounting for
the two scenarios described above. Then, we present specialized
results to the two instances in the upcoming sections.

2.2. Horizon of Competition
The horizon of competition among miners depends on the
granularity at which the adjustment of mining complexity takes
place. Under the fine grained adjustment of mining complexity,
competition occurs both at a short term and long term horizon.
This is because as the number of miners increases, the difficulty of
the puzzle grows and the competition becomes more aggressive.
Under the coarse grained adjustment of mining complexity, in
contrast, competition occurs only at the short term horizon. In
essence, miners still compete to decide who will be the next to
mine the upcoming block (see Figure 1).
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FIGURE 1 | The difficulty of the puzzle varies as a function of the number of users in the system. Under the fine grained adjustment of difficulty level, the aggregate

rate at which the population solves puzzles remains constant over time. A larger number of users in the system leads to competition and smaller rate reward per user.

In scenario 1, we have a few miners in the system and low puzzle difficulty level. In scenario 2, we have additional miners in the system and increased puzzle difficulty

level (smaller rate reward per user). Under the coarse grained adjustment of difficulty level, the increase in the number of miners may not immediately reflect in

adjustment of difficulty level. In scenario 3, miners still compete in the short term, to determine who will be the next to mine the upcoming block.

3. BLOCKCHAIN COMPETITION GAME

3.1. Basic Concepts
Miners, mining servers, and puzzles.We consider a population
of M ESPs and a set of K cryptocurrencies, where each
cryptocurrency is associated to its blockchain. We denote by
N = {1, 2, . . . ,N} the set of miners, also referred to as users.
There is a finite population of miners, and if a miner changes his
strategy this will cause a change in the utilities of otherminers. Let
K = {1, 2, . . . ,K} be the set of puzzles, each of which associated
with a different cryptocurrency that theminers are trying to solve.
We assume that each cryptocurrency corresponds to exactly one
puzzle. Let M = {1, 2, . . . ,M} denote the ESPs, also referred to
as mining servers, that miners can rely on. A special virtual ESP
with index 0 corresponds to an always idle ESP, whose service rate
is zero.Miners join ESP 0 when they decide not to join themining
game. Notation is summarized in Table 1.

Strategies. Set Si ⊂ K × M denotes the set of ordered pairs
(puzzle, ESP), corresponding to ESPs that miner i can rely on to
solve puzzles of a given type. The set Si can differ across miners
due to political or economic restrictions. For instance, certain
countries do not allow investment in certain cryptocurrencies.
Alternatively, the set of available ESPs for two different miners
may not be the same. A strategy for miner i is denoted by
si ∈ Si, corresponding to the puzzle (cryptocurrency) which
the miner intends to solve using a given infrastructure. Strategy
si = (k,m) corresponds to user i using ESP infrastructure m to
mine cryptocurrency k. A strategy vector s = (si)i∈N produces
a load vector ℓ = (ℓk,m)k,m, where ℓk,m denotes the number of
miners using ESPm to mine cryptocurrency k.

Mining complexity. We denote by µk,m,i the service rate
from ESP m requested by miner i to solve puzzle k. We assume
µk,m,i > 0 when m 6= 0, and µk,0,i = 0, for k = 1, . . . ,K and
i = 1, . . . ,N. For convenience, the service rate is measured:

• In rate of hashes computed per time unit (trials to solve
the puzzle per time unit), when accounting for the fine
grained adjustment of mining complexity, wherein the average
number of puzzles solved per time unit for the whole
population is fixed and given, and

TABLE 1 | Table of notation.

Variable Description

K Number of blockchains (cryptocurrencies)

M Number of edge service providers (ESPs)

N Number of miners (willing to mine using ESPs)

Uk,m(ℓ) Utility of user mining blockchain k at ESP m

γk,m Mining cost associated to blockchain k at ESP m

µk,m Service rate from ESP m requested by each miner to solve

puzzle k

Action space and corresponding variables

Si ⊂ K×M Set of ordered pairs (puzzle, ESP),

Corresponding to ESPs that miner i Can use to mine k

ℓk,m Number of users mining blockchain k at ESP m

ℓ Strategy profile, ℓ = (ℓ1,1, ℓ1,2, . . . , ℓk,m, . . . , ℓK,M )

(discrete action space, all sections except section 7)

Control variables

si si = (k,m) if user i mines blockchain k at ESP m

(discrete action space, all sections except section 7)

xm Amount bid by ESP m, proportional to the load invested by

ESP m for mining

(continuous action space, section 7)

Metrics

pk,m(ℓ) Probability that user is first to mine a block

• In rate of puzzles successfully solved per time unit, when
accounting for the coarse grained adjustment, so as to simplify
notation1.

Let ηk be the load of miners across all ESPs toward
cryptocurrency k. Then,

ηk =
∑

m′∈M

∑

i′∈N

µk,m′,i′ . (1)

1Alternatively, the service rate could be uniformly set in units of hashes per time

unit, but in that case one would need to introduce and additional parameter to

relate the number of hashes computed per time unit and the fraction of those that

translate into successful mining.
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FIGURE 2 | Graph characterizing the selection of cryptocurrencies and ESPs by users: (A) general system representation; (B) bipartite graph representing the system

accounting for symmetries considered throughout this work.

TABLE 2 | Granularity of difficulty adjustment.

Average time between Average time between Probability of Time horizon

two blocks mined, for two blocks mined, success to grant rewards

whole population per miner by time T to given player

(Tk) (qk ) (T)

Fine grained Variable, depends Large, compared

adjustment of Fixed and given on ηk , for fixed against puzzle

mining µk,m ≈ 1 complexity

complexity adjustment

Coarse grained Variable, depends Small, compared

adjustment of on ηk , for fixed Fixed and given, against puzzle

mining µk,m for fixed µk,m 1− exp(−Tηk ) complexity

complexity adjustment

In the remainder of this paper, except otherwise noted, we assume
that a user who selects a given (ESP, cryptocurrency) pair is
allocated a given hash power by the ESP2. Figure 2 illustrates the
considered setup. Then, (1) simplifies to:

ηk =
∑

m′∈M

ℓk,m′µk,m′ . (2)

Note that (2) is obtained from (1) by lumping the state space: for
symmetric users it suffices to track the number of users selecting
each of the available (ESP, cryptocurrency) pairs rather than
their identities.

Let Tk be the time it takes for the first miner, across all ESPs, to
solve puzzle k. Let qk be the probability that puzzle k is solved by
time T since the last puzzle of cryptocurrency k was solved. Note
that under the fine grained adjustment of mining complexity, Tk
and qk are functionally independent of ηk, as far as the number of
miners of cryptocurrency k is positive. Without loss of generality,

2To account for non-symmetric users, one may add additional virtual users and/or

virtual (ESP, cryptocurrency) pairs representing different service level agreements

offered by a given ESP to users.

we assume that the time horizon of interest, T, is set to a large
enough value, independent of ηk, so that qk ≈ 1. Under the coarse
grained adjustment of mining complexity, in contrast, Tk and qk
depend on ηk as the time it takes for a block of cryptocurrency k
to be successfully mined is a function of the load ofminers toward
k (Table 2).

Under the coarse grained adjustment of mining complexity,
Tk depends on the number of miners in the system. In that
case, we denote by Rk,m,i the amount of service time from ESP
m required by miner i to solve puzzle k. As we assume that
users are symmetric, the random variables Rk,m,i are independent
and identically distributed, for i = 1, . . . ,N, with each Rk,m,i

being exponentially distributed with rate µk,m. Thus, if there are
ℓk,m miners associated to ESP m mining currency k, the time it
takes for the fastest of them to solve the puzzle corresponding
to currency k is exponentially distributed with rate ηk =
∑

m µk,mℓk,m. Then,

Tk ∼ Exp(
∑

m

µk,mℓk,m) (3)

qk = 1− exp(−Tηk). (4)
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Note that in this case if T is set to a large enough value, dependent
on ηk, we also have qk ≈ 1 as in the previous paragraph.

Rewards and costs. Let p̃k,m denote the probability that a
miner using ESPm is the first to solve puzzle k at state ℓ. Then,

p̃k,m(ℓ) = qk
ℓk,mµk,m

ηk
. (5)

Throughout this paper, 0/0 = 0. In the expression of p̃k,m, for
instance, if ηk = 0 and ℓk,m = 0, then p̃k,m = 0/0 = 0.

Under strategy profile ℓ, the probability that a given miner
using ESPm is the first to solve puzzle k is:

pk,m(ℓ) = 1ℓk,m>0
qkµk,m

ηk
, (6)

where 1c equals 1 if condition c holds and 0 otherwise.
We denote by γk,m the cost of mining blockchain k at ESP

m. Under the fine grained adjustment of puzzle complexity, γk,m
is measured in cost per time unit. Under the coarse grained
adjustment of puzzle complexity, γk,m is the cost incurred by
users to reserve mining resources during the time horizon T
of interest.

Utilities. Let Uk,m(ℓ) denote the utility to a miner who tries to
find the solution of puzzles associated to cryptocurrency k, using
ESPm. The utility is given by rewards minus costs. Thus,

Uk,m(ℓ) =

{

pk,mρ − γk,m ifm > 0,
0 otherwise.

(7)

Under the fine grained adjustment of puzzle complexity, ρ is
the rate reward granted to successful miners, which is fixed and
given. Therefore, to simplify presentation we let ρ = 1, and γk,m
is adjusted accordingly. Under the coarse grained adjustment of
puzzle complexity, in contrast, if users are still interested in the
long term rewards they need to account for a rate reward that is
a function of the users actions. This is because under the coarse
grained adjustment of puzzle complexity, the larger the number
of users mining a given cryptocurrency, the larger the rate at
which blocks are mined. Alternatively, motivated by Bissias et al.
(2019) we assume that users under the coarse grained adjustment
of puzzle complexity are greedy and myopic, as detailed next.

Whereas under the fine grained adjustment of puzzle
complexity users are interested in maximizing a long term
average rate reward, under the coarse grained adjustment they
are interested in maximizing the reward collected by time T,
assuming that during that time horizon the chances that more
than one user collects rewards are negligible. In that case, users
are granted a reward if and only if they are the first to successfully
mine by the time horizon of interest, T. We let ρ = 1 and
γk,m characterizes the cost of reserving mining resources to mine
during slot T.

Note that under the fine grained adjustment of puzzle
complexity, a new mining interval starts immediately after
a successful mining event occurs. Under the coarse grained
adjustment of puzzle complexity, in contrast, we assume that
mining resources are reserved for a mining interval T, and even

if a success occurs before T miners pay for resources allocated up
until T. In both cases, the utility reduces to:

Uk,m(ℓ) =

{

pk,m − γk,m ifm > 0,
0 otherwise.

(8)

User i utility is Ũi(si, s−i) =
∑

(k,m)∈Si
1si=(k,m)Uk,m(ℓ), where

s−i = (s1, s2, . . . , si−1, si+1, . . . , sN) is the vector of strategies
of all miners except miner i. Given the ingredients above, the
blockchain competition game is characterized by C = 〈N ,K ×

M, (Si)i∈N , (Uk,m)(k,m)∈K×M〉. In sections 4 and 5 we analyze
two special instances of this game.

3.2. Summary of Terminology
We summarize the basic terminology used throughout this paper.

Edge Service Providers (ESPs) continuously try to solve
blockchain puzzles, by allocating hash power for that purpose.

Hash power dedicated to a given blockchain by a given ESP
is the number of hashes computed per time unit by that ESP to
solve puzzles from the corresponding blockchain.

Service rate dedicated to a given blockchain by a given
ESP equals the corresponding hash power. Under the coarse
grained adjustment of puzzle complexity, it is more convenient to
measure the service rate in number of successful puzzles solved
per time unit, noting that in this case the number of successful
puzzles solved per time unit equals the hash power times a
constant multiplicative factor smaller than one.

Miners pay to ESPs in order to solve blockchain puzzles.
Active miners participate in the mining game, by paying

a strictly positive amount to ESPs in order to solve blockchain
puzzles. Inactive miners decide not to actively join the mining
game. They receive no rewards, and incur zero costs.

Rewards are granted tominers once the contracted ESP solves
the corresponding puzzle.

Costs are incurred by miners to contract ESPs.
Revenue corresponds to rewards minus costs incurred by

each miner.

3.3. Congestion Games and Potentials
Next, we briefly introduce some basic background on congestion
games, crowding games and potentials. Such background is
instrumental in the analysis of the blockchain competition game
that follows.

Congestion games were introduced by Monderer and Shapley
(1996) and are equivalent to routing over an arbitrary graph,
when all routed objects have the same size, and are non splittable.
The cost of using an edge is the same for all players. Crowding
games proposed by Milchtaich (1996) are congestion games with
more restricted topology (parallel links) but more general costs
(user dependent).

In our setup, the routed object is the mining power. The
network has a bipartite topology, where one side consists of
mining users (end users) and the other side consists of ESPs
that mine according to mining users requests. A virtual ESP
corresponds to the option of not mining. The cost incurred by
a user who decides to mine through a given ESP is the cost of an
edge between the user and the ESP (see Figure 3).
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FIGURE 3 | Graph characterizing the selection of ESPs by users: (A) bipartite graph representation; (B) alternative representation wherein the option of not mining is

represented through a separate node and (C) simplified representation where M ESPs are aggregated into a single route that represents the choice of mining and the

option of not mining is represented by a second route.

A congestion game without player specific payoff functions
is guaranteed to admit a standard potential and a pure
equilibrium (see Monderer and Shapley, 1996). A game that
does not admit a standard potential may still admit an ordinal
potential. A game with an ordinal potential can have any
finite subset of actions available to a player, still admitting a
pure equilibrium.

Milchtaich (1996) proves the existence of a pure Nash
equilibrium given user dependent costs in crowding
games. In this paper, we are interested in user dependent
strategy sets. Nonetheless, one can show an equivalence
between user dependent costs and user dependent
strategy sets, and henceforth we use interchangeably the
two notions.

4. ESP CONNECTION GAME

In this section, we introduce the ESP connection game and
analyze some properties of its equilibria. We consider the
special case where we have only one cryptocurrency, which we
denote by ⋆.

4.1. Coarse Grained Adjustment of Mining
Difficulty
In this section we consider the coarse grained adjustment of
mining complexity under a scenario wherein there is a single
cryptocurrency. First, we consider the simplest setting wherein
all miners are symmetric (section 4.1.1). Then, we relax our
assumptions and show conditions under which the mapping
between ESP connection games and potential games still holds,
posing a conjecture on the extent at which the assumptions can
be further relaxed (section 4.1.2).

4.1.1. To Mine or Not to Mine? A Simple Congestion

Game Accounting for Symmetric ESPs
In this section, our goal is to illustrate the relationship between
the games considered in this work and congestion games. To
that aim, we assume ESPs are symmetric, i.e., µ⋆,m = µ⋆ and
γ⋆,m = γ⋆ for all m. Although the scenario is very simple, it
already serves to appreciate the sort of analysis considered in
the remainder of this work. In the following section, we relax
those assumptions.

Let ℓ⋆ be the number of miners that decide to associate to an
ESP,

ℓ⋆ =

M
∑

m=1

∑

i∈N

1s∗i =(⋆,m). (9)

Then, N − ℓ⋆ is the number of users that decide not to mine.
When all µ⋆,m are equal we denote them by µ⋆. Then,

Equation (6) reduces to:

p⋆(ℓ⋆) = 1ℓ⋆>0
1− exp(−Tµ⋆ℓ⋆)

ℓ⋆

, (10)

where p⋆ is the probability that a user that decides to connect
to an ESP is the first to solve the puzzle. The utility for a miner
associating to ESPm is given by (8).

THEOREM 1 (no player-specific strategies). If for all i and j,
Si = Sj, the Nash equilibrium is given by the solution of the
following optimization problem,

argmaxℓ⋆

ℓ⋆
∑

l=1

(p⋆(l)− γ⋆) (11)

subject to: ℓ⋆ ≤ N, ℓ⋆ ≥ 0, (12)
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where ℓ⋆ solution of (11)-(12) is the number of users that decide
to mine. Equation (11) is the game potential function. The
optimization problem (11)-(12) is equivalent to a bin-packing
problem with concave costs. Therefore existence and uniqueness
is guaranteed.

PROOF: This is a congestion game in the sense of Rosenthal
(1973) and therefore has a potential. Indeed, in this game each
player can decide to associate or not with an ESP. Thus all
connections to theM ESPs can be aggregated to a single route that
represents the choice of mining and the option of not associating
represents the second route (see Figure 3). �

THEOREM 2 (player-specific strategies). If Si depends on the
identity of user i, the game may not admit a standard potential,
but still admits pure Nash equilibria.

PROOF: The game is a crowding game, and the result follows
fromMilchtaich (1996, 1998). �

4.1.2. Existence of Equilibrium Under General

Conditions
Next, our goal is to illustrate results on the existence of
equilibria. To that aim, we generalize the conditions considered
in the previous section, allowing for multiple non-symmetric
ESPs, and indicate how the considered game still relates to
congestion games.

THEOREM 3 (existence). If γ⋆,m = γ⋆,m′ for all m′ and m,
µ⋆,m 6= µ⋆,m′ for all m and m′ such that m 6= m′, and Si = Sj

then:

1. a pure Nash equilibrium exists
2. miners will only rely on ESP m∗, with m∗ = max{m : µ⋆,m ≥

µ⋆,m′ ∀m′} and
3. the Nash equilibrium is given by the solution of the following

optimization problem,

argmaxℓ⋆,m∗

ℓ⋆,m∗
∑

l=1

(p⋆,m∗ (l)− γ ) (13)

subject to: ℓ⋆,m∗ ≤ N, ℓ⋆,m∗ ≥ 0. (14)

PROOF: Let l′⋆,m be the number of users, except one, mining the
unique cryptocurrency using ESPm. l′⋆,m needs not to be at Nash
Equilibrium. The player that did not take his decision is facing
the following optimization problem:

max

{

max
m

{

µ⋆,m(1− exp(−T(µ⋆,m +
∑

m′ l′⋆,m′µ⋆,m′ )))

µ⋆,m +
∑

m′ l′⋆,m′µ⋆,m′

}

, γ

}

.

(15)
Let us define the function f such that:

f (x) =
x(1− exp(−T(x+

∑

m′ l′⋆,m′µ⋆,m′ )))

x+
∑

m′ l′⋆,m′µ⋆,m′
. (16)

f (x) is strictly increasing for x > 0. Therefore, for all
∑

m′ l′⋆,m′µ⋆,m′ :

max
x

f (x) = f (µ⋆,m∗ )

=
µ⋆,m∗ (1− exp(−T(µ⋆,m∗ +

∑

m′ l′⋆,m′µ⋆,m′ )))

µ⋆,m∗ +
∑

m′ l′⋆,m′µ⋆,m′
, (17)

withm∗ = max{m : µ⋆,m ≥ µ⋆,m′ ∀m′}. It follows that the utility
of a player at equilibrium will be:

max

{

µ⋆,m∗ (1− exp(−T(µ⋆,m∗ + l′⋆,m∗µ⋆,m∗ )))

µ⋆,m∗ + l′⋆,m∗µ⋆,m∗
− γ , 0

}

. (18)

To summarize, the best-response of any player to any l′⋆,m is such
that miners will only rely on ESPm∗, withm∗ = max{m : µ⋆,m ≥

µ⋆,m′ ∀m′}. Moreover, let us assume that each player is now only
focusing on the ESP m∗. In this case, the ESP connection game
is a congestion game, in the sense of Rosenthal (1973). The rest
of the proof follows as a special case of Theorem 1. In a network
congestion game, the time it takes to travel (expected number of
trials to be the first to mine) on any road (ESP) is an increasing
(payoff decreasing) function of the number of people (miners)
selecting that road (ESP). Then, by the theorem 1 from Rosenthal
(1973) there exists pure Nash equilibrium. �

4.1.2.1. Illustrative examples
Consider 4 miners and 3 ESPs, N = 4 and M = 3. Let µ⋆,m

equal 0, 0.2, 0.4 and 0.6 for m = 0, 1, 2, 3, respectively. Let T = 1
and γ = 0.3. Then, the game admits 6 pure equilibria, where
6 =

(4
2

)

. In each equilibrium, two of the players adopt strategy 0
and the other two players adopt strategy 3. The players adopting
strategies 3 and 0 have corresponding utilities of 0.049 and 0,
respectively, where m∗ = 3. In addition, p⋆,m∗ (l) − γ equals
0.15, 0.049, –0.02, and –0.09 for l = 1, 2, 3, 4, indicating that
∑ℓ⋆,m∗

m=1 (p⋆,m∗ (l) − γ ) is maximized for ℓ⋆,m∗ = 2 which is in
agreement with the fact that 2 users are active in equilibrium
[see (13)].

Consider now the following additional example, which is out
of the scope of Theorem 3, wherein 4 miners compete over 3
ESPs, N = 4 and M = 3. Let µ⋆,m equal 0, 0.24, 0.45, and
0.6 for m = 0, 1, 2, 3, respectively. Let γ⋆,m equal 0, 0.147, 0.26,
and 0.46 for m = 0, 1, 2, 3, respectively. Note that Theorem 3
assumes γ⋆,m to be the same across all ESPs, which is not the case
in the current setup. This game admits 19 pure Nash equilibria:
12 equilibria correspond to permutations of the strategy profile
(0,1,1,2), 6 equilibria correspond to permutations of the strategy
profile (0,0,2,2) and the last equilibrium equals (1,1,1,1). Note
that strategy 3, which corresponds to the highest rate, does not
appear in any of the equilibrium profiles. This is in stark contrast
with the previous setup, wherein the strategy with highest rate
was the only candidate to be an element in the equilibrium.
In addition, note that users adopting different strictly positive
rates may together comprise the equilibrium. This motivates the
following conjecture.

CONJECTURE 4. If (i) µ⋆,m 6= µ⋆,m′ whenever m 6= m′, (ii)
γ⋆,m ≥ γ⋆,m′ implies that µ⋆,m ≥ µ⋆,m′ , and (iii) Si = Sj then:
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TABLE 3 | Assumptions throughout sections.

Section ESPs Symme- Users can Puzzle Multiple Multiple Atomic Conti-

tric decide not complexity ESPs crypto miners nuous

ESPs to mine adjustment actions

4.1.1 One or more Yes Yes Coarse Yes No Yes No

4.1.2 One or more No Yes Coarse Yes No Yes No

4.2 One or more No Yes Fine Yes No Yes No

5 One No Yes Coarse No Yes Yes No

6 One or more No Yes Fine Yes Yes No No

or coarse

7 One or more No Yes Fine Yes No Yes Yes

1. a pure Nash equilibrium exists
2. at equilibrium, across the set of active miners there will be

connections to at most two ESPs, denoted by m′ and m′′ and
3. when m′ 6= m′′, the Nash equilibrium is given by the solution to

the following optimization problem,

argmax(ℓ⋆,m′ ,ℓ⋆,m′′ )

ℓ⋆,m′
∑

l′=1

ℓ⋆,m′′
∑

l′′=1

p⋆,m′ (ℓ)− γ⋆,m′ + p⋆,m′′ (ℓ)− γ⋆,m′′ (19)

subject to: ℓ⋆,m′ + ℓ⋆,m′′ ≤ N, ℓ⋆,m′ ≥ 1, ℓ⋆,m′′ ≥ 1, (20)

where ℓ = (N − l′ − l′′, l′, l′′) denotes a strategy profile wherein
N − l′ − l′′ miners are inactive, l′ miners adopt ESP m′ and l′′

miners adopt ESP m′′.

To illustrate the last part of the conjecture above, consider
again the previous numerical result. Let m′ = 1 and
m′′ = 2, and let the lumped strategy profile be a vector
(n0, n1, n2, n3) which corresponds to a profile wherein
ni users adopt ESP i. Then, the lumped strategy profiles
(2, 1, 1, 0), (1, 1, 2, 0), (0, 1, 3, 0), (1, 2, 1, 0), (0, 2, 2, 0), and
(0, 3, 1, 0) evaluate the objective function (19) to 0.0914,
0.0961, 0.0345, 0.1336, 0.1055 and 0.1333 indicating that the
equilibrium with strategy profile (0, 1, 1, 2) found in the previous
paragraph, which corresponds to the lumped strategy profile
(1, 2, 1, 0), is in agreement with the conjecture. In section 6.2 we
prove a result inspired by the conjecture above, under the setup
of non-atomic games.

4.2. Fine Grained Adjustment of Mining
Difficulty
Next, we consider the fine grained adjustment of mining
difficulty. To that aim, we assume qk = 1, i.e., we do not include
the exponential term in the definition of qk (Equation 4). Recall
that the exponential term captures the probability that the puzzle
is not solved by time T, which we assume to be negligible (i.e.,
much smaller than 1), for large enough T (see Table 3).

4.2.1. Best Response Dynamics and Convergence

Under M-concave Potential
Consider any better response learning scheme. In particular, the
best response learning scheme is one of such schemes. Note that
for a player to update its response it only needs to have access
to the total load across all ESPs. Note also that for a player to

compute its response, without previous knowledge of historical
responses, it needs to know the overall load generated by all the
miners over each ESP.

Since the utility is concave we may expect the potential to
converge to a global optimum in finite time under any standard
best response strategy or better response policy. However, the
concave function is defined only on integers, which is not a
convex compact set. In this case, some modifications of the
definition of concavity and convex sets are needed in order to
guarantee that any local extremal point of the function is a global
extremal point. These modifications are called M-concavity and
M-convex set, respectively (see Lebeau et al., 2019 and references
therein). Then, the key result of this section follows.

THEOREM 5. The ESP competition game under fine grained
adjustment of mining difficulty admits a potential.

PROOF: It is shown in Lebeau et al. (2019) that the social
medium selection game is a congestion game. We have already
shown that the ESP selection game is a congestion game and
that there exists a potential. The potential function for the social
medium selection game is also a potential function for the ESP
selection game. Moreover, Theorem 2 from Lebeau et al. (2019)
shows that the potentials are M-concave functions defined over
anM-convex set. �

5. CRYPTOCURRENCY ASSOCIATION
GAME

In this section, we introduce the multiple cryptocurrencies game
and derive structural properties of the associated set of equilibria.
As in section 4.1, we assume a coarse grained adjustment
of difficulty level. In addition, we assume that there are K
cryptocurrencies. We consider a single ESP, and drop subscript
m from all variables.

For a given load vector ℓ, the time it takes till the fastest
puzzle to be solved is exponentially distributed with expectation
1/(µkℓk). Thus, the probability that a miner is the first to solve
the puzzle is:

pk(ℓk) =
1− exp(−Tµkℓk)

ℓk
. (21)

Note that pk = 0 if ℓk = 0 (recall that we assume 0/0 = 0
throughout this paper). The utility of a tagged miner to mine
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a cryptocurrency k when there are ℓk miners associated with
the same cryptocurrency (including the tagged miner) is given
by (8), where:

Uk(ℓk) = pk − γk. (22)

We add to it the constraint that a miner does not participate
in solving the puzzle if its utility is negative. In that case the
equilibrium is characterized by the condition

∑

k ℓ∗
k

≤ N,
with ℓ∗

k
≥ 0, for k = 1, . . . ,K. This game is referred to as

an elastic game. Alternatively, we can consider an additional
cryptocurrency, indexed by 0, with corresponding utility being
constant equal to 0. Then,

Uk(ℓk) =

{

pk − γk, if k > 0,
0, otherwise.

(23)

This game is referred to as the non-elastic game equivalent to
the elastic game above (Figure 3 illustrates the elastic and non-
elastic instances of the ESP connection game). If the equilibrium
vector ℓ∗ saturates the constraint in the elastic game (

∑

k ℓ∗
k
=

N, ℓ∗
k
≥ 0, k = 1, ...,K) or, alternatively, if ℓ∗0 = 0 in the non-

elastic game, then for each k for which ℓ∗
k

> 0, and each k′,
Uk(ℓ

∗
k
− 1) ≥ Uk′ (ℓ

∗
k′
+ 1).

Similar theorems as those presented in the previous
section establishing the existence of pure Nash equilibria
and characterizing the equilibria still hold under the
blockchain association game. The statements of the
theorems and the proofs are similar to those in the previous
section, and are omitted for conciseness. Recall that in
Theorem 1 for all i and j, Si = Sj. Then, in this case
the number of miners associated to each cryptocurrency
ℓ∗
k

=
∑

i∈N 1s∗i =k is now the solution of the following
optimization problem,

argmaxℓ

∑

k∈K

ℓk
∑

l=1

(pk(l)− γk) (24)

subject to:
∑

k∈K

ℓk ≤ N, ℓk ≥ 0. (25)

Theorem 1 holds replacing (11)-(12) by the equations
above.

6. NON-ATOMIC MINERS FOR THE
MULTIPLE ESP’S AND MULTIPLE
CRYPTOCURRENCIES GAME

We will now study a mean-field approximation of the
cryptocurrencies game. This approximation is instrumental to
provide additional insight concerning the multiple ESPs/multiple
cryptocurrencies game.

6.1. Wardrop Equilibrium Basics
6.1.1. Problem Formulation
We assume that the miners are non-atomic. In this case,
for a given load vector ℓ, a miner solves the following

optimization problem:

max

{

max
k,m

{

Uk,m(ℓ)
}

, 0

}

, (26)

where,

Uk,m(ℓ) =
µk,m

∑

m′ µk,m′ℓk,m′
qk

(

∑

m′

µk,m′ℓk,m′

)

− γk,m. (27)

If the miners were atomic, the mining decision of a given miner
(assuming that the rest of the miners will not modify their
strategies) would impact the load vector ℓ. However, under the
assumption that the miners are non-atomic, the deviation of one
miner will not modify the load vector ℓ and therefore the miner’s
best-response to a given load ℓ is given by the arg max of (26).

This assumption is valid in two cases: (1) when miners do not
realize that their mining decisions will impact utilities Uk,m(ℓ)
for all k and all m or (2) when the number of miners is
large and γk,m and µk,m are small. Haurie and Marcotte (1985)
were the first to prove that the non-atomic equilibrium (also
known as Wardrop equilibrium) is the limit of many players
of Nash equilibrium, under strict diagonal concavity conditions
established by Rosen (1965). Altman et al. (2011, 2019) showed
that for a game equivalent to the one considered in the section,
under the fine grained adjustment of puzzle complexity, i.e., when
qk = 1, the strict diagonal concavity conditions hold. In this
case, the assumption that miners do not account for the impact
of their decisions on the actions of the others is referred to as a
mean-field approximation.

6.1.2. Equilibrium Characterization
A non-atomic equilibrium load vector ℓ∗ satisfies:

Uk,m(ℓ
⋆) = Uk′′ ,m′′ (ℓ⋆), (28a)

if ℓ∗k,m > 0, ℓ∗k′′,m′′ > 0, ∀m,m′′, k, k′′,

Uk,m(ℓ
⋆) ≥ Uk′′ ,m′′ (ℓ⋆), (28b)

if ℓ∗k,m > 0, ℓ∗k′′,m′′ = 0, ∀m,m′′, k, k′′,

Uk,m(ℓ
⋆) ≤ 0, if ℓ∗k,m = 0, ∀m, k, (28c)

∑

k,m

ℓ⋆
k,m ≤ N. (28d)

Before studying the properties of such equilibria, we provide
some intuition for the rationale behind Equations (28a)–(28d).
For an in depth analysis of non-atomic equilibria, we refer the
reader to Roughgarden (2005) and Wan (2012).

Can aminer be interested in deviating from ℓ∗? To answer that
question, let SA(ℓ

∗) be the set of all pairs (k,m) corresponding to
active miners under equilibrium ℓ∗,

SA(ℓ
∗) : = {(k,m) | ℓ∗k,m > 0, ℓ∗k,m solution of (28a)− (28d)}.

(29)
Equation (28a) implies that for all pairs in SA(ℓ

∗) the utility is
the same. Therefore, if a miner is interested in deviating from
ℓ∗, arg max of (26) must be a pair (k′′,m′′) /∈ SA(ℓ

∗). However,
an investment, say, in (k′′,m′′) /∈ SA(ℓ

∗), must be suboptimal
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according to (28b). Therefore, aminer will always choose (k,m) ∈
SA(ℓ

∗), which naturally implies that ℓ∗ satisfying (28a)-(28d) is an
equilibrium strategy.

By studying (28a)-(28d), we will give some basic insights about
the structure of any equilibrium. For now, we will assume that an
equilibrium ℓ∗ always exists. Later in this section, we will study
the existence and uniqueness of ℓ∗.

6.2. Miners Invest at Maximum in Two ESPs
for a Given Cryptocurrency
Next, we show that under equilibriumminers invest at maximum
in two ESPs for a given cryptocurrency. To that aim, we start with
the following definition.

DEFINITION 6. Two pairs of ESPs (m,m′) and (m′′,m′′′), such
thatµk,m < µk,m′ andµk,m′′ < µk,m′′′ , are said to be colinear with
respect to cryptocurrency k if:

µk,m − µk,m′

γk,m − γk,m′
=

µk,m′′ − µk,m′′′

γk,m′′ − γk,m′′′
. (30)

Intuitively, two pairs of ESPs are colinear when their difference
in capacities and costs can be linearly aligned. The following
theorem establishes our main structural result for this section.

THEOREM 7. If no two pairs of ESPs are colinear with respect to
cryptocurrency k, then at equilibrium miners invest at maximum
in two ESPs for that cryptocurrency.

PROOF: The proof of this statement is based on a contradiction
argument. Let us assume, without loss of generality, that
ℓk,m, ℓk,m′ , ℓk,m′′ > 0. Then we have the following system:

µk,m − µk,m′

∑

n µk,nℓ
∗
k,n

qk(
∑

n

µk,nℓ
∗
k,n) = γk,m − γk,m′ (31)

µk,m − µk,m′′

∑

n µk,nℓ
∗
k,n

qk(
∑

m′

µk,nℓ
∗
k,n) = γk,m − γk,m′′ (32)

which leads to the following contradiction
µk,m−µk,m′′

γk,m−γk,m′′
=

µk,m−µk,m′

γk,m−γk′ ,m′
, concluding the proof. �

6.2.1. When Will Miners Invest in Only One ESP for a

Given Cryptocurrency?
Next, we further establish sufficient conditions for miners to
invest in only one ESP for a given cryptocurrency.

THEOREM 8. If, for a given cryptocurrency, the costs are the
same across all ESPs (γk,m = γk,m′ for all m,m′), and service rates
are different from each other (µk,m 6= µk,m′ for any m 6= m′), then:
(1) only one ESP will be used, and (2) the ESP that will be used will
be the one with the highest service rate.

PROOF: Let us assume that for a given cryptocurrency, say k,
the cost for using each ESP is the same (γk,m = γk,m′ for all
m,m′), and the service rate associated to each ESP is different
(µk,m 6= µk,m′ for all m,m′). Let us assume that there exists at
equilibrium ℓ∗ two elements ℓk,m and ℓk,m′ such that ℓ∗

k,m
> 0

and ℓ∗
k,m′ > 0, for a pair of ESPs (m,m′), with m 6= m′. Then,

according to (28a) µk,m = µk,m′ , which by a contradiction
argument implies (1). Moreover, if miners invest only in one ESP,
then according to (28b), that ESP will be the one with the highest
µk,m, establishing (2). �

Note that Theorems 7 and 8 are the mean field results equivalent
to Conjecture 4 and Theorem 3. It is often the case that
structural results are easier to be derived under the mean
field approximation, as further illustrated through the following
additional structural results.

6.3. Blockchain Mining Collapse
Next, we characterize conditions under which the mining costs
preclude miners from investing their computational resources
into the mining game.

DEFINITION 9. A given cryptocurrency k dies under
equilibrium ℓ∗ if ℓ∗

k,m
= 0 for 1 ≤ m ≤ M.

THEOREM 10. If no two pairs of ESPs are colinear with respect
to cryptocurrency k, and:

max
m : 1≤m≤M

{

qk
(

µk,mN
)

N
− γk,m

}

< 0 (33)

then cryptocurrency k dies under all equilibria.

PROOF: Equations (28a)-(28d) imply that if:

Uk,m(ℓ) < 0, for allm ∈ {1, . . . ,M} and ℓ such that
∑

m

ℓk,m ≤ N

(34)
then cryptocurrency k dies. Condition (34) is satisfied if:

max
m

{

max
∑

m′ ℓk,m′≤N
Uk,m(ℓ)

}

< 0. (35)

Next, we further characterize the solution of the fractional
pseudo-concave optimization problem:

max
∑

m′ ℓk,m′≤N
Uk,m(ℓ) (36)

We denote by ℓ⋆(k,m′) the optimal load vector for the previously
defined optimization problem, for a given pair (k,m′), where
1 ≤ m′ ≤ M. The first order optimality conditions that must
be satisfied by the solution ℓ⋆(k,m′) of the problem above entail
the existence of λ(k,m′) ∈ R such that:

µk,m′qk

(

∑

m′′

µk,m′′ℓ⋆
k,m′′ (k,m

′)

)

= λ(k,m′), if ℓ⋆
k,m′′ (k,m

′) > 0, (37)

µk,mqk

(

∑

m′′

µk,m′′ℓ⋆
k,m′′ (k,m

′)

)

≤ λ(k,m′), if ℓ⋆
k,m′′ (k,m

′) = 0. (38)
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Equations (37) and (38) together with the fact that no two pairs
of ESPs are colinear with respect to cryptocurrency k imply that
the optimal load is given by,

ℓ⋆
k,m′′ (k,m

′) =

{

N, ifm′′ = m′

0, otherwise.
(39)

Therefore, Uk,m′ (ℓ⋆(k,m′)) =
qk(µk,m′N)

N − γk,m′ , which together
with (35) concludes the proof. �

Then, we consider the most extreme scenario, wherein miners
have no incentives to mine any of the existing cryptocurrencies.

DEFINITION 11. Blockchain mining collapses if there is an
equilibrium under which all cryptocurrencies die.

COROLLARY 12. If, for each k, there are no two pairs of ESPs that
are colinear with respect to cryptocurrency k, and if for all m and
k,

1− exp(−Tkµk,mN))− Nγk,m < 0, (40)

then blockchain mining collapses. Note that there exists an N such
that for every N > N the condition above is satisfied. Moreover, if
Nγk,m > 1 for all k and m, the condition above also holds.

PROOF: The proof follows directly from Theorem 10. Indeed,
blockchain mining collapses if:

max
m

{

qk
(

µk,mN
)

N
− γk,m

}

< 0,∀k. (41)

The condition above is equivalent to:

qk
(

µk,mN
)

N
− γk,m < 0,∀(m, k), (42)

which concludes the proof. �

6.4. Existence and Uniqueness of
Equilibrium
Concerning the existence and the uniqueness of the equilibrium,
we will restrict to the scenario wherein for each cryptocurrency
k, the cost across all ESPs are the same (γk,m = γk,m′ for all
m,m′), and the service rate associated to each ESP is different
(µk,m 6= µk,m′ for all m,m′). As shown in Theorem 8, under
equilibrium, for each cryptocurrency, at most one ESP will be
used to actively mine. Let m(k) : = maxm′ µk,m′ . ESP m(k) is the
only candidate to be actively used for mining cryptocurrency k.
Therefore, the equilibrium conditions (28a)-(28d) simplify to:

Uk,m(k)(ℓ
⋆) = Uk′′ ,m(k′′)(ℓ

⋆), (43a)

if ℓ∗k,m(k) > 0, ℓ∗k′′ ,m(k′′) > 0, ∀k, k′′,

Uk,m(k)(ℓ
⋆) ≥ Uk′′ ,m(k′′)(ℓ

⋆), (43b)

if ℓ∗k,m(k) > 0, ℓ∗k′′ ,m(k′′) = 0, ∀k, k′′,

Uk,m(k)(ℓ
⋆) ≤ 0, (43c)

if ℓ∗k,m(k) = 0, ∀k,
∑

k

ℓ⋆
k,m(k) ≤ N. (43d)

THEOREM 13. The non-atomic game under symmetric costs
considered in this section admits at most one interior equilibrium,
which is the solution to the following optimization problem:

argmax

K
∑

k=1

∫ ℓk,m(k)

ǫ

qk(µk,m(k)x)

x
dx− γk′ℓk,m(k), (44)

subject to
∑

k

ℓk,m(k) ≤ N, ℓk,m(k) ≥ ǫ (45)

PROOF: First, note that if there exists an interior solution to
the optimization problem (44)-(45), i.e., if each load is strictly
greater than ǫ, then the first-order optimality conditions of the
posed optimization problem are given by (43a)-(43d), which
implies a one-to-one correspondence between the solution to
the optimization problem and an equilibrium of the non-atomic

game. In addition, note that for all k and m,
qk(µk,m(k)ℓk,m(k))

ℓk,m(k)
is

a decreasing function in ℓk,m(k) > 0. Therefore the function
∫ ℓk,m(k)

ǫ

qk(µk,m(k)x)

x
dx − γk′ℓk,m(k) is strictly concave and the

optimization problem posed above has a unique solution, as all
the functions are strictly concave. �

7. PARALLEL COMPUTATIONS: AUCTIONS
AND CONTINUOUS ACTIONS

The models studied so far assumed that a puzzle to be solved by
a miner is sent entirely to a single ESP both in the context of
competition over ESPs (section 4) as well as for the competition
over cryptocurrencies (section 5). In this section we consider a
game in which each miner can decide how much to bid for the
computation power proposed by the ESP. The load on an ESP
need not be a multiple of its service rate anymore.

Assumptions In this section we assume qk = 1. This
corresponds to a fine grained adjustment of puzzle complexity
(see section 2.1 and Table 1). In addition, we consider a one-
to-one correspondence between miners and ESPs and a single
cryptocurrency, i.e., K = 1. Then, ℓ⋆,m = 1 form = 1, . . . , M.

Let xm denote the value bid by the miner corresponding to
ESP m. We have a minimum constraint xm ≥ ǫ for all m. We
also assume that the service rate from ESPm requested by miner
m, µ⋆,m, equals the value bid by miner m, xm, i.e., µ⋆,m = xm.
Then, (2) reduces to:

η =

M
∑

j=1

xj. (46)

7.1. Basic Model
The probability that minerm is the first to solve the puzzle is:

Pm =
xm

η
=

xm
∑M

j=1 xj
, (47)

which is the miner expected gain that can be contrasted
against (6). The total cost for miner m is xmγ , where γ is a
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constant. The utility for playerm is thus:

Um(x) =
xm

∑M
j=1 xj

− xmγ . (48)

The utility above gives rise to the following
UNCONSTRAINED GAME,

UNCONSTRAINED GAME: max
xm

xm
∑M

i=1 xi
− xmγ (49)

The main result of this section establishes the uniqueness of the
Nash equilibrium of the UNCONSTRAINED GAME.

THEOREM 14 (continuous actions). (i) For any strictly positive
value of γ , the above game has a unique Nash equilibrium and (ii)
Um is concave in xm.

PROOF: This was established in Altman et al. (2016) using a
modification of the diagonal strict concavity property. �

The game presented above was introduced and studied
in Dimitri (2017). In what follows, we extend the results
from Dimitri (2017) to account for physical constraints on the
resources consumed by the population of miners.

7.2. Normalized Equilibrium: Physical
Bounds on Resources and Shadow Prices
The games we have seen so far involved orthogonal constraints.
By that we mean that the actions that a miner can use do not
depend on the actions of other miners. We next introduce a
capacity constraint. Formally, for some constantV which bounds
the total service rate from all ESPs, we introduce the following
game with capacity constraints. For each playerm,

CONSTRAINED GAME: max
xm

xm
∑M

i=1 xi
(50)

M
∑

j=1

xj ≤ V (51)

Note that in the game above we assume that each player
maximizes the probability of being the first to successfully solve
the puzzle, Pm, under constraints on the total amount bid by all
players. Recall that the amount bid by a player is proportional to
the amount of resources invested by that player to mine.

Capacity constraints may represent physical bounds on
resources, such as bounded power, or resources that are bounded
by regulation. For example, legislationmay impose bounds on the
power consumption. With the additional capacity constraints,
the Nash equilibrium is no more unique and there may in fact
be an infinite number of equilibria. We call this the game with
capacity constraints.

Let y be an equilibrium of the CONSTRAINED GAME and let
y[−m] denote the action vectors of all miners other than m. Note
that for eachm, Um is concave in ym. Then, by the KKT theorem,

there is a Lagrange multiplier λm(y[−m]) such that ym maximizes
the Lagrangian:

Lm(ym) =
ym

∑M
j=1 yj

− λm(y[−m])





M
∑

j=1

yj − V



 (52)

and

λm(y[−m])





M
∑

j=1

yj − V



 = 0. (53)

The last condition is referred to as complementarity property. We
call the game with utilities given by LagrangiansLm as the relaxed
game or Lagrangian game.

GENERAL RELAXED GAME:

maxxm Lm(xm) =
xm

xm+
∑M

j=1,j 6=m yj

−λm(y[−m])
(

xm +
∑M

j=1,j 6=m yj − V
)

(54)

A simplified version of the GENERAL RELAXED GAME will be
instrumental in the upcoming section to prove properties about
the CONSTRAINED GAME.

7.2.1. Shadow Prices and Normalized Equilibrium
The Lagrange multipliers can be interpreted as shadow prices:
if a price is set on miner m such that when other players
are at equilibrium, the miner pays ymλm(y[−m]) for its use
of cryptocurrency, then y is an equilibrium in the game with
capacity constraints. Yet this pricing is not scalable since for the
same use of the resources the price may vary from user to user
and it further depends on the chosen equilibrium. For billing
purposes one would prefer λm not to depend on y nor on m, but
to be a constant.

Does there exist a constant Lagrange multiplier λ independent
of strategies of the payers and of the identitym of the player, along
with an associated equilibrium y for the corresponding relaxed
game? If the answer is positive then y is called a normalized
equilibrium (Rosen, 1965; Ghosh et al., 2015; Altman et al.,
2019). Then, λ is the Lagrange multiplier corresponding to the
normalized equilibrium.

The CONSTRAINED GAME admits an infinite number of
equilibria. Nonetheless, as will be shown in the sequel, it admits a
unique normalized equilibrium. To prove that claim, we translate
global constraints from the CONSTRAINED GAME into local
penalties (associated to the Lagrange multipliers) in a simpler
version of the GENERAL RELAXED GAME, referred to as the
RELAXED GAME.

RELAXED GAME: max
xm

Lm(xm) =
xm

xm +
∑M

j=1,j 6=m yj

−λ



xm +

M
∑

j=1,j 6=m

yj − V



 (55)

Whereas the actions of the players are coupled through hard
constraints in the CONSTRAINED GAME, the local penalties (and
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corresponding Lagrange multipliers) allow us to decouple the
actions of the players in the RELAXED GAME.

DEFINITION 15. A symmetric game is a game wherein the
functional dependency of the utility with respect to the actions
is the same for all players.

Note that the RELAXED GAME is a symmetric game, whereas the
GENERAL RELAXED GAME is not. In the former, the constant λ

that appears in the utility function is fixed and given, whereas in
the latter it is player-dependent.

Let E0 and E1 be the set of equilibria of the
GENERAL RELAXED GAME and of the RELAXED GAME,
respectively (see Table 4 and Figure 4). As mentioned
earlier, E0 in general contains multiple elements, i.e., the
CONSTRAINED GAME admits multiple equilibria. Then, our
initial aim was to establish necessary and sufficient conditions
for E1 to be a singleton, i.e., for the CONSTRAINED GAME to
admit a single normalized equilibrium. However, we were only
able to establish those conditions for a symmetric normalized
equilibrium to the CONSTRAINED GAME. For this reason,
in the upcoming section we restrict to symmetric equilibria
of the RELAXED GAME and the corresponding symmetric
normalized equilibria of the CONSTRAINED GAME, and refer to
the corresponding set as E2. We will show that E2 is a singleton,
and we leave the necessary and sufficient conditions for E1 to be
a singleton as subject for future work.

7.2.2. Existence and Uniqueness of Symmetric

Normalized Equilibrium
Next, we establish the existence and uniqueness of the normalized
equilibrium. We start by showing a condition under which the
game admits a symmetric equilibrium.

DEFINITION 16. A symmetric equilibrium ỹ⋆ is an equilibrium
wherein yi = ỹ⋆ for all i, i = 1, . . . ,M.

THEOREM 17 (symmetric equilibrium). If

γ =
M − 1

MV
(56)

where V is a constant, fixed and given, then

ỹ⋆ =
V

M
=

M − 1

M2γ
(57)

is the unique symmetric equilibrium to the
UNCONSTRAINED GAME.

PROOF: We replace xm by ỹ⋆ in equation (48) to obtain:

Um(ỹ
⋆) =

ỹ⋆

ỹ⋆ +
∑M

j=1,j 6=m xj
− ỹ⋆γ . (58)

The symmetric equilibrium is obtained by differentiating (58)
with respect to ỹ⋆ and equating the resulting expression to 0,

1

ỹ⋆ +
∑M

j=1,j 6=m xj
−

ỹ⋆

(

ỹ⋆ +
∑M

j=1,j 6=m xj

)2
−

M − 1

MV
= 0 (59)





M
∑

j=1,j 6=m

xj



−
M − 1

MV



ỹ⋆ +

M
∑

j=1,j 6=m

xj





2

= 0 (60)

Noting that the same argument holds for all players, we conclude
that ỹ⋆ = V/M is a symmetric equilibrium. Indeed, setting
xm = V/M form = 1, . . . ,M equation (60) is satisfied. �

It is worth noting that (57) corresponds to a special case of
equation (4) in Dimitri (2017), and the proposition above follows
from the main proposition in Dimitri (2017). Indeed, starting
from equation (4) in Dimitri (2017) and replacing R, n, c(n) and
ci by 1,M, γM and γ we obtain (57). In what follows, we extend
the analysis of Dimitri (2017), which encompasses unconstrained
games, to the setup wherein constraints are active.

COROLLARY 18 (normalized equilibrium). If

λ =
M − 1

MV
(61)

where V is a constant, fixed and given, determining the system
constraints, then:

ỹ⋆ =
V

M
=

M − 1

M2λ
(62)

is an equilibrium to the RELAXED GAME and a normalized
equilibrium to the CONSTRAINED GAME.

PROOF: The proof follows by noting that the equilibrium
corresponding to (58) in the proof of Theorem 17 is also
an equilibrium corresponding to the utility function (52)
of the RELAXED GAME. This is because the utility of the
RELAXED GAME can be obtained from (58) replacing γ , ỹ⋆ and
xj by λ, ym and yj, respectively, for j 6= m, and adding a
term −λ(

∑

j 6=m yj − V). Note that after adding this term, the

equilibrium of the original UNCONSTRAINED GAME is also an
equilibrium of the modified game since the new utility differs
from the previous one by terms that do not depend on y⋆ = ym,
the action of playerm. �

Next, we establish the main result of this section. Figure 5
summarizes the proof strategy. The proof follows by relating
the symmetric equilibrium to the UNCONSTRAINED GAME

into an equilibrium to the RELAXED GAME and a normalized
equilibrium to the CONSTRAINED GAME.

THEOREM 19 (normalized equilibrium). There exists a unique
symmetric normalized equilibrium to the CONSTRAINED GAME,
i.e., the set E2 is a singleton.
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TABLE 4 | Normalized and symmetric equilibria.

Set of

equilibria

Description Specific description

E0 General equilibria General equilibria to GENERAL RELAXED GAME,

to general game satisfying complementarity conditions, i.e.,

general equilibria to CONSTRAINED GAME

E1 General equilibria General equilibria to RELAXED GAME,

to symmetric game satisfying complementarity conditions, i.e.,

normalized equilibria to CONSTRAINED GAME

E2 Symmetric equilibria Symmetric equilibria to RELAXED GAME,

to symmetric game satisfying complementarity conditions, i.e.,

symmetric normalized equilibria to

CONSTRAINED GAME

FIGURE 4 | In this paper, we focus on symmetric equilibria to a symmetric

game (set E2 above). General equilibria to symmetric or general games (sets

E1 and E0, respectively) may not be unique, whereas E2 is a singleton.

Proof idea. The proof is presented in Appendix B, and
the proof idea is summarized in Figure 5. We know that
for any γ there is a unique Nash equilibrium y(γ ) to the
UNCONSTRAINED GAME (Theorem 14). We show that this
defines a unique symmetric equilibrium to the RELAXED GAME

with Lagrange multiplier λ(γ ). We further show that there
is a unique γ ⋆ for which the capacity constraints hold with
equality. This implies that y(γ ⋆) is a normalized equilibrium
to the CONSTRAINED GAME where λ(γ ⋆) is the corresponding
Lagrange multiplier. �

We have just shown that the symmetric equilibrium to the
CONSTRAINED GAME is unique, i.e., E2 is a singleton. It remains
to show the conditions under which the general equilibrium
(symmetric or asymmetric) to the CONSTRAINED GAME is
unique. What are the necessary and sufficient conditions under
which E1 is also a singleton?

The fact that there does not exist asymmetric equilibria to
certain class of symmetric games was shown in Orda et al. (1993).
If we were able to establish conditions under which the symmetric
CONSTRAINED GAME admits only symmetric equilibrium, we
would also be able to guarantee uniqueness across general
equilibra. However, the conditions of Orda et al. (1993) to show
that certain symmetric games admit only symmetric equilibria
do not hold in our games. In particular, the sufficient conditions

FIGURE 5 | Relationship between UNCONSTRAINED GAME, RELAXED GAME,

and CONSTRAINED GAME. Arrows indicate that equilibrium of a game implies

equilibrium of the other. Theorem 19 establishes that the uniqueness of the

equilibrium to the UNCONSTRAINED GAME implies the uniqueness of the

symmetric equilibrium to the RELAXED GAME and uniqueness of the symmetric

normalized equilibrium to the CONSTRAINED GAME.

established by Orda et al. (1993) state that the utility must be
decreasing in the aggregated actions of all players and in the
action of each of the players. In the CONSTRAINED GAME, in
contrast, given player j, the utility is decreasing in the actions of
the others players, but increasing in the action of player j. The
probability that j is the first to solve the puzzle is given by,

Pj =
yj

yj +
∑

i6=j yi
(63)

As yj increases, the probability that j is the first to solve the puzzle
increases, as the numerator increases, and the utility of player j
correspondingly increases. Correspondingly, the probability that
any other player i is the first to solve the puzzle decreases, as the
denominator in Pi increases as yj grows.

The analysis in this section implies that players have less
incentives to invest in blockchain mining when constraints are
more stringent (BBC News, 2019). Indeed, as V decreases, i.e., as
constraints are more stringent, shadow prices γ ⋆ grow and the
investments in blockchain mining, reflected by y⋆, decrease (see
equation (57)). We further discuss general aspects related to the
blockchain ecosystem in section 8.

7.2.3. Global Constraints and Local Costs
In section 7.2.2 we considered the setup wherein each player m
maximized a utility whose value increases as its bid, xm, increases.
The players were restricted by global constraints.

Next, we consider the general setup wherein players are
constrained both by global constraints, as in the previous
section, as well as local constraints. Then, players face the
CONSTRAINED GAME WITH LOCAL COSTS. The constrained
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game with local costs accounts for both global constraints
(through a hard constraint) and local costs (through a term that
penalizes large values of xm in the utility function),

CONSTRAINED GAME WITH LOCAL COSTS:

max
xm

xm
∑M

i=1 xi
− γ xm (64)

M
∑

j=1

xj ≤ V (65)

The Lagrangian of the CONSTRAINED GAME WITH LOCAL COSTS

is given by:

Lm(xm) =
xm

∑M
j=1 xj

− γ xm − λ

(

∑

k

xk − V

)

(66)

In particular, note that if γ = (M − 1)/(MV) the
equilibrium presented in Corollary 18 is also a normalized
equilibrium to the CONSTRAINED GAME WITH LOCAL COSTS.
Nonetheless, for arbitrary values of γ the conditions for
existence and uniqueness of the normalized equilibrium to the
CONSTRAINED GAME WITH LOCAL COSTS remain open. We
envision that the argument presented in the previous section
regarding existence and uniqueness of normalized equilibrium
can be adapted to this setup, but leave the proof as subject for
future work.

8. DISCUSSION

Positive and negative externalities. In the models proposed in
this paper, we assumed that users who contribute to the system by
mining cryptocurrencies generate negative externalities toward
their mining peers. Indeed, the competition among miners is a
very fundamental aspect of the mining process (Dimitri, 2017).
Nonetheless, by incorporating more miners, the blockchain
becomes more robust (Garay et al., 2015). Such robustness, in
turn, may translate into an increase in the real value of the
cryptocurrency under consideration (Shah and Zhang, 2014; Prat
and Walter, 2018; Raval, 2018; Biais et al., 2019). Therefore, by
increasing the pool of miners, each miner is also contributing
with positive externalities toward the system, and we leave such
aspect as subject for future work (Pashigian and Gould, 1998;
Pretty et al., 2001; Hassin and Haviv, 2003; Morris, 2018).

Mining pools. Mining pools play a key role in todays’
public blockchain systems (Eyal, 2015; Wang et al., 2019)3. The
competition analyzed in this paper applies to mining pools under
two scenarios. First, from the perspective of the mining pool,
it can use cloud resources for mining purposes. Therefore, the
mining pools assume the role of players as considered in this
work. Alternatively, the players are the end users, who contract
mining pool services. Then, mining pools assume the role of
ESPs. In the first case, we consider competition among mining
pools, at the macro level, and in the latter case, we consider the
micro-competition among end-users.

3For instance, https://miningpoolhub.com/.

FIGURE 6 | Bitcoin hashrate distribution as of 24 October, 2019.

Figure 6 illustrates the hashrate distribution over Bitcoin, as
of 24 October 20194. Note that a significant portion of the
hashrate is originated from four mining pools. According to
Conjecture 4 and Theorem 7, the proposed model suggests that
only two major mining pools would have a role in the network. A
discrepancy betweenmodel predictions and hashrate distribution
over Bitcoin may occur if the market is not stabilized, or agents
are not fully rational. In addition, note that the proposed model
only accounts for the competition among miners, and does not
take into consideration the positive externalities produced by
the miners (see Appendix A). Such positive externalities may
motivate a longlasting equilibrium wherein four mining pools
take place, as positive externalities naturally serve as incentives
for multiple pools to coexist. Our work serves as a plausible
model to justify the relatively small number of mining pools,
which we posit as being due to the competition among those
(Gervais et al., 2014; Arnosti and Weinberg, 2018; Gencer et al.,
2018; Bai et al., 2019; Cong et al., 2019; Leshno and Strack, 2019).

Multi-cryptocurrency ecosystem. In the cryptocurrency
ecosystem, large mining pools typically decide, dynamically,
which blockchain to mine. Such decisions are made based on
different thresholds related to the value of the cryptocurrencies
and the costs for mining (mining complexity). The churn of
computational power across blockchains is a well-known source
of price volatility, and different mechanisms have been developed
to counteract migrations of miners across platforms (Ulrich,
2017). One of those mechanisms is referred to as emergency
difficulty adjustment (EDA), which reduces the difficulty of the
puzzle when there are not many miners in the system, preventing
the blockchain from dying.

Puzzle complexity. In Bitcoin, puzzle difficulty (complexity)
is dynamically adjusted so that the time to mine a block varies
between certain pre-established time bounds. Bitcoin target block
generation rate is of 10 min. In theory, due to the dynamic
adjustment of puzzle complexity, Bitcoin throughput (number of

4https://www.blockchain.com/pools
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blocks generated per time unit) does not depend on the number
of miners. An increase in the number of miners increases the time
between generation of blocks per miner (Meshkov et al., 2017;
Wisdom, 2018). In Huberman et al. (2017), the authors argue in
favor of adjusting the frequency at which blocks are generated as
a function of the congestion in the network.

Users fees.Users pay fees to have their blocks mined. Such fees
impact the competition amongminers, as they serve as incentives
for mining. The higher the fees offered by users, the larger the
expected number of miners. In this paper, we have not accounted
for the role of blockchain users in the competition amongminers.
We envision that the interplay between users and miners leads
to complex dynamics, which should be studied in light of the
tension between positive and negative externalities discussed in
Appendix A.

9. RELATED WORK

There is a vast literature investigating game theoretical aspects of
blockchain systems (Kiayias et al., 2016; Huberman et al., 2017;
Abdellatif and Abdelmouttalib, 2018; Ma et al., 2018; Papadis
et al., 2018; Spiegelman et al., 2018; Azouvi and Hicks, 2019;
Goren and Spiegelman, 2019; Liu et al., 2019a,b; Wang et al.,
2019). Nonetheless, the literature on congestion games applied
to such systems is scarce. In particular, to the best of our
knowledge, there is no prior work investigating the competition
at the network edge among miners as a congestion game, and its
connection to multi-cryptocurrency markets.

Congestion games have been applied in the field of
networking to account for security aspects (Maillé et al., 2011),
link congestion (Johari and Tsitsiklis, 2003) and pricing of
infrastructures and users (Hassin andHaviv, 1997). In Huberman
et al. (2017), the authors study Bitcoin as a congestion game,
where the congestion occurs due to an increase in the number
of transaction requests from users. In particular, the authors
abstract away from several aspects of the competition between
miners. In this paper, in contrast, we focus on the competition
between miners.

Spiegelman et al. (2018) adopted the framework of congestion
games to model competition between miners of multiples
cryptocurrencies who try to maximize utilities by choosing which
puzzle (cryptocurrency) to mine (the work was then extended
at Goren and Spiegelman, 2019). The authors prove that there
is no standard potential function for the game they propose,
but that an ordinal potential always exists, implying that best
response converges to a pure Nash equilibrium. Our work
captures different aspects of the problem, and is complementary
to Spiegelman et al. (2018). An important similarity between
the two works consists of establishing conditions under which
pure Nash equilibria exist even when the game does not
admit a standard potential function. The major differences
between our work and (Spiegelman et al., 2018) are: (1) in
the modeling of the probability to succeed in solving a puzzle
(see section 8); (2) in the ESP decision, which is out of the
scope of Spiegelman et al. (2018); (3) in the action space
(mining power), which is continuous in Spiegelman et al. (2018),

precluding the use of crowding game results, and discrete in this
paper (except in section 7), allowing us to rely on Milchtaich
(1996) to prove existence of pure Nash equilibria. We refer
the reader to Spiegelman et al. (2018) and Ulrich (2017) for
additional references on the multi-cryptocurrency ecosystem and
its security challenges.

Sánchez (2019) initiates a preliminary study on the so-called
price of crypto-anarchy based on the models introduced here. In
this paper, in contrast, we focused on the distributed competition
among miners, and have not assessed the loss of efficiency due to
the absence of a central controller to perturb the competition.We
envision that a more in-depth study of the loss of efficiency due
to the lack of controllers, and a study of the role of authorities
in regulating the crypto-market, e.g., as indicated in section 7.2
(see also BBCNews, 2019 and Fernández-Villaverde and Sanches,
2019), is an important open aspect, and leave that topic as subject
for future work.

10. CONCLUSION

Competition among miners is at the core of public blockchain
systems. Competition is one of the most fundamental elements
ensuring that miners will strive to reach a consensus about
the current state of the blockchain. We modeled the
competition over several ESPs and over several blockchains
characterizing multiple cryptocurrencies as a non-cooperative
game. Then, we specialized our game to two cases: the
ESP connection game and the cryptocurrency selection
game. For each game, we showed properties of the Nash
equilibrium. In particular, leveraging results about congestion
games, we establish the existence of pure Nash equilibria and
characterize such equilibria through problems that admit efficient
algorithmic solutions.

We believe that this work opens up a number of interesting
directions for future work. In particular, we did not account
for strategic decisions related to punishment and cooperation
between miners over repeated games. Those games naturally
emerge in the sequential solution of multiple puzzles. The study
of those is left as subject for future work.
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