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Over the last decade, strong evidence is emerging from multiple disciplines of
scientific inquiry ranging from behavioral psychology to clinical medicine that many
published scientific studies are not reproducible. The best-known retrospective analyses
from psychology (Rahal and Open Science Collaboration, 2015) and cancer biology
(Begley and Ellis, 2012) report staggeringly low replication rates of 40 and 20%,
respectively. This has led to the phenomenon of a “reproducibility crisis” where
a significant amount of funding, research effort and even public policy has come
to depend on non-reproducible research (Goodman et al., 2016). In this perspective
article, I outline how the blockchain can be used to power a decentralized peer-
review system for digital health applications. This is followed by a discussion of how
such a system impacts the broader issue of scientific reproducibility, and how existing
blockchain protocols can help alleviate the barriers to reproducibility.
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INTRODUCTION

In 2005, Dr. John Ioannidis of Stanford University published a report in PLoS Medicine titled
“Why Most Published Research Findings Are False,” which eventually became a cornerstone of
discussion regarding interpretation of statistical significance testing and the value it provides to
the claims of a report (Ioannidis, 2005). In 2011, the Center of Open Sciences launched a project
to replicate 100 different studies that were published in 2008 from the field of psychology (Rahal
and Open Science Collaboration, 2015). The results of this initiative were published in 2015, and
demonstrated that even though 97% of the original results claimed statistically significance, this
was only recapitulated in 36% of the replication attempts (Rahal and Open Science Collaboration,
2015). This theme of non-replication was also brought to light by Dr. Lee Ellis from MD Anderson
who wrote a similar article in 2012 on cancer biology titled “Raise standards for preclinical cancer
research” reporting that only 10% of published preclinical studies could be validated to enter
clinical trials (Begley and Ellis, 2012). Clinical data is a particularly sensitive instrument in the
sense that it is prone to perturbations and noise introduced by a variety of sources ranging from
investigator bias or errors related to experimental design and statistical analysis of the collected
data. To that end, digital medicine provides robust statistical tools that subject the current research
processes to intensive scrutiny, and allow for earlier interventions into the data-collection process.
In addition, next generation digital health technologies, particularly distributed ledgers can offer
a solution (in the form of audit trails and data quality control through smart contracts) needed
to address reproducibility problems and the peer-review process – given sufficient funding and
regulatory support. However, this cannot be accomplished by replicating the current research
processes and just transforming them from paper to digital form. Rather, a complete re-thinking
and re-engineering of the peer-review process with a focus on reproducibility using blockchain
protocols is needed (Goodman et al., 2016). Here, I present a digital medicine use-case where
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machine learning powers a clinical application, and discuss how
a new type of blockchain-based peer-review system that can help
reduce the burden of reproducibility.

In a recent study, Tomašev et al. (2019) reported the use of
a machine learning approach called recurrent neural networks
to identify impending acute kidney injury, 1 or 2 days in
advance of the diagnosis made using the standard of care
clinical tests. The authors applied this methodology to data
collected from more than 700,000 adults treated in hospitals
and outpatient clinics run by the United States Department
of Veterans Affairs and published their results. However, the
codebase used to develop the trained recurrent neural network
was not made open-source due to use of proprietary libraries
and licensing. Instead, the authors provided extensive data from
testing their machine learning model against training data in
the supplementary information (Tomašev et al., 2019). This data
provided insights into the framework behind the neural network,
the training phases, results from supervised learning, prediction
capabilities in the final model, and the kind of test data used for
training (Tomašev et al., 2019). Ultimately, the data was used
as a surrogate for sharing the code behind the network, and the
quality control of validation was on the shoulders of the authors.

Increased use of machine learning models for clinical decision
support has brought about a paradigm shift in handling
the immense amounts of data generated by quantitative and
qualitative measurements of physiological parameters. The two
areas in evidence-based medicine that may benefit heavily from
the application of machine learning techniques are diagnosis
and outcome prediction (Kononenko, 2001; Darcy et al., 2016;
Beam and Kohane, 2018; Zhang, 2019). A common end-
point for machine learning algorithms in diagnostic medicine
is to build a classifier: a predictive function that can map
variables from an input stream onto discrete output categories.
Classifiers can aid a highly skilled worker in the decision-
making processes, for instance triaging a data-set containing new
actionable observations (Kononenko, 2001; Beam and Kohane,
2018). However, the development and validation (peer-review)
of machine learning classifiers for clinical applications require a
few special considerations in order to help increase the chances
of eventually having patient contact and improving patient
outcomes (Darcy et al., 2016; Beam and Kohane, 2018; Zhang,
2019). The opportunities for monetization of classifiers built on
top of private libraries are off-set by the cost of “black-boxing”
parameters that are hidden and therefore not replicated and
verified rigorously. We need to approach this problem in the
context of burden of reproducibility – a standardized mechanism
for peer-review of digital medicine apps and proprietary machine
learning tools is needed. More precisely, one that involves authors
of the study, provides a public interface for testing the tools
in a secure environment with new data, and reports the final
recommendations back to a public forum.

A constant pressure to publish high-impact work, selective
reporting of results, poor use of statistics [including p-hacking
(Head et al., 2015)], and unsophisticated protocols can all
contribute to reducing overall replication potential of an
experiment. Researchers can also be hampered by the technical
difficulties involved in replicating a complex experiment that

requires multiple difficult lab techniques, poorly described
methods and incompletely reported setbacks from data (Head
et al., 2015). Funding agencies and publishers are stepping in to
reduce these problems. Funding agencies such as the National
Science Foundation (NSF) and the National Institutes of Health
(NIH) have changed grant requirements and have awarded grants
to design classes aimed at improving statistical literacy (Stodden
et al., 2014). Journals are designing policies that help address
inadequate documentation and supporting technologies that
facilitate data-sharing (Stodden et al., 2014). In addition, many
high-impact journals are raising the data-standards by requesting
authors to deposit more experimental data, and making it
publicly available. Presently, the use of commercial machine
learning applications is nascent in clinical medicine, private
libraries can accelerate research and development by providing
monetization opportunities. Any code built upon private libraries
is not submitted to open-source repositories due to licensing
dependencies, and this leads to a built-in assumption: if the
authors of a given study provide sufficient indirect data and
insight into the black-box model, the results from the study
will be reproducible. There is a conscious effort from the entire
scientific enterprise to increase data transparency, but the burden
of reproducibility weighs heavily on the authors of a study.
The broader question remains: Can we create a standardized
peer-review approach where the authors of a study (in digital
medicine) get involved in demonstrating the generalizability of
their models?

Reproducibility crisis has become well recognized by
researchers in many fields of science (Chalmers et al., 2014;
Chan et al., 2014; Glasziou et al., 2014; Ioannidis et al., 2014;
Macleod et al., 2014; Salman et al., 2014; Begley and Ioannidis,
2015). For our discussion, we define reproducibility of a study
as the property of obtaining the same results from conducting
an independent study of a published experiment, as long as
the methods are closely matched to the original study (Chan
et al., 2014; Glasziou et al., 2014; Ioannidis et al., 2014; Macleod
et al., 2014). The burden of reproducibility increases with new
computational tools as commercial development essentially
limits how much of the internal operations can be divulged
in an open-source format (Macleod et al., 2014). In the era of
digital medicine, the usual barriers of peer-review and statistical
analysis are not enough – this holds true especially for machine
learning-type classifiers where the end-product is built on private
libraries (Blockeel et al., 2013; Lemley, 2019; Lu, 2019; Stupple
et al., 2019). The blockchain provides a unique approach to this
problem by serving as an immutable recording device whereby
a sandboxed container can interface with a new classifier, apply
new testing data to verify this classifier, and publish the results
along with the methods to a shared data layer (Stupple et al.,
2019). A group of established validators can reference these
published results, quantify them into numerical reputation
points, and make their final recommendations available to
a publicly accessible data layer. The reputation points can
stratify reliability within the network (Stupple et al., 2019). Of
note, the technical components necessary for this new form
of peer-review have already been deployed in practice among
different blockchain implementations. For instance – Quorum
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and the Golem Network are two distributed ledger protocols
that have the operational infrastructure to support payload
privacy and sandboxed off-chain computations, respectively. In
this article, the salient features necessary for a blockchain based
peer-review are reviewed from three protocols: a reputation
system, off-chain computations, and private transaction states.
The operational principles and design considerations behind
these implementations are reviewed in order to highlight how
peer-review can be a pertinent use-case. The article is organized
as follows: I begin with an introduction to reputation systems
by discussing Augur, a prediction-markets powered reputation
system built on the Ethereum blockchain. This is followed by a
review of sandboxing and support for off-chain computations
available in the Golem Network. Finally, the article ends with
a brief overview of the dual public/private transaction states in
Quorum, with a focus on how the dual states can be applied
to a peer-review of private classifiers. The goal throughout
this article is to highlight how existing components can be
repurposed for peer-review and scientific validation of digital
health applications.

Augur Network: Reputation Tokens
To understand how reputation parameters embed and propagate
through a blockchain network, let us begin with a brief overview
of Augur. A decentralized predictions system requires four
fundamental components: a platform for participating members
to submit predictions for an outcome, a mechanism to reward
points for accurate predictions, a consensus framework to
consolidate reward points into a longer-standing parameter such
as reputation, and a group of validators that maintain the
integrity of the network. Augur is an ERC-20 token built on
top of the Ethereum blockchain as a platform for prediction
markets (Peterson et al., 2015). Augur is powered by a token
called Reputation (REP), which is used by members for event
reporting. By owning REP, and participating in the accurate
reporting on the outcomes of events, token holding members
of the network receive a portion of the settlement fees from the
platform. The incentive structure is such that accurate reporting
of outcomes has the highest return on investment for REP token
holders (Peterson et al., 2015). The more REP a reporter owns,
and reports correctly with, the more fees they will earn for
their work in maintaining the integrity of the platform (Peterson
et al., 2015). There is no monetary value associated with REP,
these tokens only propagate reputation across the network, and
act as a multiplier for return on network rewards. The market
outcome settled by a majority of the reporters is validated against
the canonical outcome from the external world, a consensus is
reached and REP tokens are rewarded for accurate predictions
(Peterson et al., 2015). Augur has an oracle that can migrate
information on external events to a blockchain without having
to rely on a trusted intermediary. The validators can use this
oracle to adjudicate any reputation conflicts that arise on the
network (Peterson et al., 2015). Over time, a record of continuous
change in REP of token holders and internal validation lead to a
market of reliable set of users with a high reputation and long-
standing history of accurate predictions network-wide (Peterson
et al., 2015). In this setting, reputation becomes the backbone of

long-term reliability and users with high REP can be attached to
editorial and reviewer positions.

Golem Network: Decentralized
Computation Farm
Golem is a peer-to-peer network that connects providers with
computing power to requestors who submit computationally
heavy tasks for processing. The network functions as a
Platform-as-a-Service and provides computational resources in
a decentralized fashion in return for payment in tokens. Golem
has three main players: the suppliers of computational resources
(providers), requestors who submit tasks to be computed by the
network, and finally software developers who add new features to
the network (Wood, 2014; The Golem Project, 2016).

In Golem, one of the most crucial components of the
decentralized ecosystem is the Application Registry. It provides
developers with tools to deploy software running on the
Ethereum blockchain, and toolkits to monetize use cases (Wood,
2014). The main functions of the registry include giving
developers a platform to publish applications, give requestors
a directory to search and request specific tools for their tasks,
and to give providers a mechanism to control the code they
execute for security concerns. Golem allows requesters to execute
the code of an application on a host computer, but this code is
sandboxed and executed with the minimal required privileges
(Wood, 2014; The Golem Project, 2016). The process of off-chain
computing involves running an application on a host machine
linked to the blockchain, once the computational task is finished,
the host machine submits the results to the blockchain along
with the processing time. In order to protect the host from
executing malicious code, the application runs in a sandboxed
environment within a container designed to limit any external
access. At present, the only application configured for off-
chain computation with sandboxing is decentralized animation
rendering developed by Golem, but more microservices are
planned (Wood, 2014; The Golem Project, 2016).

Due to the halting problem, it remains technically infeasible
to evaluate a segment of code and heuristically determine
whether any malicious components are present. To that end,
the Application Registry has three classes of access control:
authors, validators, and providers. Authors publish applications
to the registry, validators review and certify applications as
trustworthy by adding them to a whitelist (The Golem Project,
2016). Now these applications are considered sanctioned, and
available to a provider for execution. Providers requisition the
hardware to execute a requestor’s task and are given the right
to choose the applications they want to run, based on the
validators they select (The Golem Project, 2016). A provider
can take advantage of this mechanism, managing her own
whitelist/blacklists, or simply using whitelists of validators she
trusts. Payments between requesters and providers are facilitated
by a transaction framework in Golem (The Golem Project, 2016).
This framework along with the Application Registry make it
possible to seamlessly request hardware from a computational
farm, submit a task, and obtain the final results. In the future,
scientific applications on Application Registry would have the
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potential to operate on a device-agnostic computational farm,
and report on the final outcome of computations along with the
methods (The Golem Project, 2016). This can be bound under a
smart contract, so that no operator intervention is required from
the start of computation till the end with the results submitted
(The Golem Project, 2016).

Quorum: Dual Transaction States
Quorum has native support for transaction privacy, this
manifests in the form of transaction states with public and
private payloads on the network. Broadly speaking, the lifecycle
of a private transaction on Quorum involves two components:
a Quorum node and Tessera (Chase, 2016). A review of
the Quorum node is provided elsewhere (Chase, 2016), the
remainder of this section will focus on the design and
components of Tessera, the privacy engine of Quorum. Tessera
enables the encryption/decryption of payloads and propagation
of private transactions on the network. It in turn has two main
components: a transaction manager and an Enclave (Chase,
2016). Both are presented in the upcoming sections.

Nodes can determine if a transaction is private or public,
one quick method of doing this involves looking at the header
for a parameter called v-value, for instance, a higher v-value
points to a private transaction (Chase, 2016). If the transaction
is deemed private, a node can only process the associated
payload if it has the private keys needed to decrypt and
unpack the payload (Chase, 2016). Nodes who are not party
to the transaction payload will simply skip the transaction, and
therefore not execute the private payload. In order to support
this bifurcation of transaction states, Quorum stores the public
payloads in a common public state that is synchronized globally,
and the private payloads are synchronized locally with the
involved parties (Chase, 2016). Additionally, this model allows
for granular control over modifying the state during the cross-
communication between the public and private contracts. There
are well-specified software locks on the state of a virtual machine
to prevent sync conflicts (Chase, 2016). Here, is an example:
when a private payload refers being executed makes a reference to
external or public information, the virtual machine has software
locks that forcibly enforce a read-only mode. In this manner, if a
call derived from the public-private interaction requests a change
to the internal state of virtual machine, it throws an exception.
In this manner, Quorum limits the number of actors that can
update the internal state, ultimately reducing friction between
subsequent contracts running on the virtual machine (Chase,
2016). Next, a discussion of private payloads and the instrument
used by Tessera for performing encryption and crypto-related
operations is presented.

Tessera Enclave
In network security terms, an Enclave is defined as a secure
computing asset that has no interactions with the remainder
of the network, or any other systems. The main application
of an Enclave in Quorum is to limit network access and
protect information that exists inside of an Enclave from
external malicious attacks (Chase, 2016). Most distributed
ledger protocols rely on cryptographic techniques to maintain

transaction validity, member verification, and the network state
through a chain of cryptographically hashed headers. In order to
achieve real-time performance enhancements for crypto-specific
operations and technical isolation to create a crypto-space,
much of the cryptographic work including public/private key
generation and data encryption/decryption is designated to the
Enclave. It holds the private keys and functions essentially as a
virtual hardware security module on the Quorum network. The
argument for a crypto-specific space becomes relevant in the
context of memory leaks: Enclave works asynchronously with
the transaction manager to help strengthen privacy by managing
the encryption/decryption of operations in an isolated way
(Chase, 2016). This enables sensitive operations to be handled
in a single container with layers of memory protection, without
any demonstrable potential for leakage into areas of execution
memory that may be visible to the remainder of the network.
The Enclave is designed to manage all types of key management
for Quorum, as well as supporting any operations required by
private payloads given that a particular node is participating in
the executing the payload on a virtual machine. In the most
simplistic operational model, each Enclave interacts only with the
transaction manager local to that node, but there is support for
more complex interactions between transaction managers from
different nodes involving multiple Enclaves (Chase, 2016). Let’s
briefly talk about transaction managers next.

Tessera Transaction Manager
In the lifecycle of a private transaction and payloads, the
transaction manager is the central point of communication
and distribution of private payloads (Chase, 2016). It interfaces
with most other components of the network and manages the
directional movement of private data. Transaction manager
provides access to transaction data, exchanges payloads on
Quorum blockchain with transaction managers of other nodes
involving new participants, but does not have access to decode
any sensitive data because it lacks private keys. Even though the
transaction manager has database access, it utilizes the Enclave
for operations involving private key cryptography. This design
principle has been constituted to limit access to an attacker that
may have gained access to a node or a transaction manager from
reaching private keys (Chase, 2016). Additionally, two important
network features of the transaction manager include forming a
peer-to-peer network of transaction managers such that peer/key
information can be broadcasted, and interfacing with the Enclave
for cryptographic tasks even between nodes (Chase, 2016).

A network powered by Tessera that enables private payloads
and dual transaction states has the potential for creating a
special off-chain testing environment specifically for proprietary
software acting as payloads. Only the involved parties will
have access to the payload being tested, and the entire
verification process can be automated by a smart contract.
Once the verification begins, an isolated container can test
new data, publish the results to a blockchain, and then self-
destruct. This ensures no unauthorized access to payloads or
any proprietary software. A panel of validators interested in
proving the reproducibility and generalizability of a classifier
can use the published results from an off-chain test in
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FIGURE 1 | Use-case for blockchain as a peer-review network. The four components dictate how verification of a private payload should be carried out. The model
file would have instructions for how to publish the results along with the methods used. The script will dictate how new data is provided to the classifier. The access
control list dictates user permissions, and finally, the query file contains new data that can be used to test a private machine learning classifier. The results are
published to the blockchain along with a reference to the network validators. The results are reviewed along with the methods by the validators, and final
recommendations are published to a publicly searchable registry. This registry serves as a public interface for searchable results that reference specific blockchain
instances when the trials were carried out.
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making final recommendations. Such a system can pave the
way to development of a standardized peer-review pathway
for verification of digital health applications and proprietary
software leading to an overall reduction of the burden of
replicability on the original developers (Chase, 2016). Figure 1
graphically summarizes this concept. A new blockchain protocol
encompassing these features can lead to a new era of blockchain-
enabled peer-review of scientific studies, particularly in machine
learning for evidence based medicine.

DISCUSSION

The “reproducibility crisis” has come to define a period of error-
correction standards put forth by consortiums, journals, and
grant-awarding institutions (Ioannidis et al., 2014). Designing a
universal verification scheme to enhance experimental methods
is an incredibly challenging task, from a technical standpoint.
In the limited scope of digital medicine and health, blockchain
provides a unique opportunity for a peer-review model that can
be automated and is powered for public testing and reporting.
Moreover, governance structure in the context of Decentralized
Autonomous Organization (DAOs) enabled by blockchain
protocols is another interesting area to explore (Norta, 2016).
A Technical Steering Committee (TSC) elected from the network
can oversee the verification protocols, experimental design
and data reporting. They can provide a collaborative link
with researchers and study authors to ensure the verification
experiments are carried out appropriately. This committee can
further provide recommendations once the testing has been
completed, and award reputation points to research groups that
have been consistently publishing highly reproducible results.

Here, I propose three recommendations that aim to improve
data-storage, communication, and the robustness of research
findings by focusing on specific barriers to reproducible science.
These measures are examples of policies that are already in place
by different projects and organizations. They are not intended
to be exhaustive, but instead, provide examples of practical
approaches to actions that can be implemented by researchers,
journals and funding institutions:

Data storage: Research-data repositories such as Figshare have
RESTFUL APIs that make it very easy to reference data stored on
the platform (Thelwall and Kousha, 2016). These references can
be attached as metadata to a decentralized data structures such a
block on a blockchain. The blockchain allows for the creation of
an immutable metadata trail that contains references to off-chain
locations of data (Thelwall and Kousha, 2016). Although research
data and supplemental information would be stored as tags
attached to the blockchain, the information is hosted externally
to prevent bloating of the blockchain (Thelwall and Kousha,
2016). Journals can require the wallet addresses containing this
metadata and make it publicly available for anyone to verify.
Moreover, new protocols such as IPFS allow for more permanent
storage of data in a decentralized fashion and allow for easy
sharing of files over a peer-to-peer network (Benet, 2014).

Decentralized endorsement: The Academic Endorsement
System (AES) is built on the blockchain as a reputation system

that uses Academic Endorsement Points (AEP) instead of REP
(in case of Augur) to reward scientific work that is worthy
of endorsement (b8d5ad9d974a44e7e2882f986467f4d3, 2016).
This established framework provides a more comprehensive
alternative to existing reputation systems such as Augur, when
applied to scientific research. The amount of AEP credited
to a scientist is based on AEP received for prior work.
In that sense, researchers who have produced significant
endorsed output in the past will have a greater influence on
the community at large (b8d5ad9d974a44e7e2882f986467f4d3,
2016). Additionally, any kind of research can be endorsed,
for instance blog posts, data sets, and even code-segments
(b8d5ad9d974a44e7e2882f986467f4d3, 2016). The adoption of
such a system provides a new set of metrics that can be calculated
by a journal, and presented alongside traditional metrics such as
number of citations and H-index (Jacsó, 2008).

Fluid communication: Journals are rather inflexible and
limited vehicles for post-publication communication with
authors. A blockchain based social media platform called Steem
is creating a space where content creators to be rewarded (in
cryptocurrency) directly by the readers for posting new materials
(Larimer et al., 2016). Built on top of Steem, PEvO (Publish and
Evaluate Onchain) recently emerged as a commenting platform
for scientific papers where readers can communicate with the
authors (Wolf et al., 2016). At the same time, authors can share
updates, reply to comments and integrate constant reviews into
new information extending the paper as a living document –
dynamic features that are lacking in the established peer-review
process (Wolf et al., 2016). The interactions on PEvO such as
likes and comments result in a pay out in tokens to the authors
which incentivizes quality conversations and result sharing (Wolf
et al., 2016). As opposed to traditional commenting platform,
PEvO offers a greater incentive for researchers to engage in
meaningful conversations with readers and answer questions
or provide clarification which may highlight the strengths or
weaknesses of a study.

In this article, we highlighted three key features necessary
for blockchain peer-review: reputation systems necessary for
development of a network-wide index of reproducibility, off-
chain computations for the actual verification protocols, and
private payloads to ensure the safety of intellectual property.
Such a blockchain network is not in practice yet, but this article
serves to highlight a new use-case for existing implementations
such as Quorum or Golem. Ultimately, new forms of peer-
review powered by blockchain are largely design problems: all the
infrastructure needed is already in practice. Can we incentivize
and sustain a network that takes advantage of automation and
reliability provided by blockchain and smart contracts? The very
near future will only present us with more challenges rather than
solutions, but blockchain remains a very promising direction for
building the next generation of peer-review systems.
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