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Human decision making is often prone to biases and irrationality. Group decisions
add dynamic interactions that further complicate the choice process and frequently
result in outcomes that are suboptimal for both the individual and the collective. We
show that an implementation of a Blockchain protocol improves individuals’ decision
strategies and increases the alignment between desires and outcomes. The Blockchain
protocol affords (1) a distributed decision, (2) the ability to iterate repeatedly over a
choice, (3) the use of feedback and corrective inputs, and (4) the quantification of
intrinsic choice attributes (i.e., greed, desire for fairness, etc.). We test our protocol’s
performance in the context of the Public Goods Game. The game, a generalized version
of the Prisoner’s Dilemma, allows players to maximize their own gain or act in ways
that benefit the collective. Empirical evidence shows that participants’ cooperation in
the game typically decreases once a single player favors their own interest at the
expense of others’. In our Blockchain implementation, “smart contracts” are used to
safeguard individuals against losses and, consequently, encourage contributions to the
public good. Across different tested simulations, the Blockchain protocol increases both
the overall trust among the participants and their profits. Agents decision strategies
remain flexible while they act as each other’s source of accountability (which can be
seen as formalized distributed “Ulysses contract”). To highlight the contribution of our
protocol to society at large we incorporated an entity that represents the public good.
This benevolent independent beneficiary of the contributions of all participants (e.g.,
a charity organization or a tax system) maximized its payoffs when the Blockchain
protocol was implemented. We provide a formalized implementation of the Blockchain
protocol and discuss potential applications that could benefit society by more accurately
capturing individuals’ preferences. For example, the protocol could help maximize profits
in groups, facilitate democratic election that better reflect the public opinion, or enable
group decision in circumstances where a balance between anonymity, diverse opinions,
personal preferences and loss-aversion play a role.
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1. INTRODUCTION

Among the fundamental assumptions of traditional economic
theory is the belief that individuals act to maximize the utility
they receive from the decisions they make (Smith, 1776). Any
deviation from that behavior is considered irrational. However,
contrary to the traditional economic theory, years of research in
behavioral economics have shown that people frequently behave
irrationally (Thomas, 1993; Ariely, 2008). Examples for such
irrational behaviors are seen in marketing, healthcare, dating, the
legal system, and numerous other domains (Levy et al., 2010; Cerf
et al., 2015; Mentovich et al., 2016).

One explanation for the reason individuals deviate from an
optimal, utility maximizing, economic decision making model
is the bias that emerges from psychological and sociological
attributes of the decision. For example, individuals are likely to
be influenced by the decisions of others around them, adhere to
social norms, or conform to with a group majority despite their
better judgment of a certain decision (Asch and Guetzkow, 1951;
Cialdini and Goldstein, 2004). Whether a person manages to
save money or eat healthily, for example, is not only determined
by their mere rationality but also by the decisions made by
those around them (Christakis and Fowler, 2007). Furthermore,
people’s decisions are typically influenced by context, by their
emotional state, or by situational factors. For example, people
are more easily persuaded to behave in ways that violate their
normal personality traits when they are in a good mood (Bless
et al., 2001), or, on online dating platforms, are more likely to
display preference toward users whose name sound like theirs,
despite stating explicitly that their decisions were not biased
(Levy et al., 2010).

Decision making is particularly prone to group influence if the
decisions of individuals interdependently impact the outcomes of
the entire group. Such decisions include elections, the division
of shared resources, or contributions to public goods. Research
has shown that individuals are more altruistic when cooperation
benefits the public good rather than other individuals (Gächter
et al., 2017). This is true for resources that are socioeconomic (i.e.,
a shared financial resources; Levin, 2014), ecological (i.e., climate
change; Ostrom, 2010), or even at the level of micro-organisms
(Nadell et al., 2008). Group effects such as spite, competitiveness,
retribution, alongside compassion, prosociality and altruism have
all been shown to alter the magnitude of adherence to norms in
the context of decisions that cater toward a public good (Levin,
2014). Finally the likelihood of altruistic behavior (i.e., higher
contributions to public goods) is Increased when decisions are
not made Individually but as a team (Coxb and Stoddard, 2016).
Altogether, prior works point to a delicate balance between the
individual’s self-interest of maximizing their utility and their
desire to adhere to social norms that signal cooperation.

A key component that influences individual decision making
in a broader social context is trust. Individuals establish trust
in order to form agreements, navigate personal relationships,
create alliances, and maintain functioning societies (Gambetta,
1988; Fukuyama, 1995; Jones and George, 1998; Leana and
van Buren, 1999). For example, numerous sovereign institutes
rely on citizens’ trust in the governing body to enable a

collective pooling of resources to aid the community as a whole.
Governments collect taxes and use those taxes to build roads,
subsidize healthcare or fund education. The citizens contribute
their income to the collective pool via the taxation system with
an implied trust that the government will make use of the
funds to help the community. Similarly, people pay insurance
companies regularly with the belief that if they encounter grave
circumstances those insurance companies will use the money
collected to pay for their needs. The core idea behind such
systems is that social life can be managed more efficiently when
resources are pooled rather than exploited individually.

In line with this proposition, empirical evidence shows that
decision making at various social structures (e.g., companies or
countries) becomes more efficient when these structures show
greater levels of trust among individuals (e.g., employees, or
citizens). For example, research has demonstrated that high levels
of trust between business partners or firms is associated with a
more pronounced focus on long-term relationships, higher levels
of cooperation, and higher relationship satisfaction (Fukuyama,
1995; Coxb and Stoddard, 2016). Likewise, higher levels of trust
on a country-level are related to a higher likelihood of citizens
complying with the country’s laws (Jones, 2015), higher levels
of prosociality (Zak and Knack, 2001), as well as higher GDP
(Bjørnskov, 2012).

Contrary, the absence of trust can severely undermine the
quality of decision making. Individuals in countries where the
level of trust in the sovereign institutions is low are more likely
to make decisions that are detrimental to their own long-term
wellbeing (Jachimowicz et al., 2017). For example, if people do
not trust that the money they deposited in a bank will be available
to them in the future then they are unlikely to deposit it in the
first place. This, in turn, leads to an increased likelihood that
they will spend the money on impulsive immediate gratification
rather than long-term goals, which often leads to shortage of
income in dire times.

Despite the benefits of trust for both individuals and society
at large, empirical evidence shows that trust is fragile and
easily deteriorates (Schweitzer et al., 2006). All it takes is one
single instance in which trust has been broken for individuals
to make generalizations about the trustworthiness of others.
At the same time, once trust is broken, it is difficult – and
sometimes impossible – to repair (Johnson et al., 2001; Schweitzer
et al., 2006; Smith and Freyd, 2014). Countries that suffer from
systemic corruption tend to remain corrupt without intervention
(Bjørnskov, 2012; Jachimowicz et al., 2017), negotiations that
uncover a deceptive party often lead to retribution and a failure to
reach an agreement (Johnson et al., 2001; Schweitzer et al., 2006),
and couples who experience a betrayal in the form of cheating
frequently end up in separation (Perel, 2017).

This led behavioral economists and researchers in psychology
to suggest various scenarios that can model breakage of trust –
allowing for the study of its antecedents and consequences
(Gunnthorsdottir et al., 2007). A number of those scenarios
involve a game played over multiple rounds [e.g., a multiple-
iteration Prisoners Dilemma game, the Trust Game (Berg et al.,
1995), or the Public Goods game; Ledyard, 1995; Hauert and
Szabo, 2003; Camerer and Fehr, 2004; Levitt and List, 2007].
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Typically, those games have two conceptual states of equilibria:
complete trust and complete distrust (Hauert and Szabo, 2003).
Empirical evidence, however, shows that while players typically
initiate their behavior with complete trust (i.e., do not defect in
the Prisoners Dilemma game on the first iteration), the games
tend to converge toward a state of complete distrust (Levitt
and List, 2007; McGinty and Milam, 2013). This is because a
breakage of trust frequently leads to a loss for the players who
were suffering the consequences. As a quid-pro-quo those players
tend to become more cautious and less trusting in future rounds,
which, in turn, leads the remaining players to become cautious
too. The resulting decay toward the equilibrium of complete
distrust is rapid and nearly impossible to reverse.

To withstand the challenges that emerge from lack of trust
various protocols have been suggested to enforce a collective
rule, to prevent trust breakage or to minimize the likelihood
of dishonesty (Buterin et al., 2019). Those protocols rely on
mathematics, cryptography and anonymized majority-rule to
enable complete accountability by all participants. That is, each
player acts as other players’ checks-and-balances and is able to
call-out departure from the norm rapidly. One such protocol is
Blockchain (Tapscott and Tapscott, 2016).

1.1. Blockchain
Blockchain is a protocol by which individuals are able to use
an anonymized ledger to code, sign, and timestamp decisions.
The individuals can generate contracts that incorporate a set
of conditions which can revoke and nullify a commitment
based on pre-determined criteria (Tapscott and Tapscott, 2016).
For example, person A can state publicly within a shared
ledger that they commit to giving person B an amount of
money only if person C gives them a sum of money prior. All
parties code the contract and honor it only if evidence for all
transactions occur and are shared across the ledger. As such,
Blockchain can function as mechanism by which all parties act
as the others’ regulators. Consequently, Blockchain protocols can
be used to improve the collective outcomes of all individual
decision makers.

As a simple illustration of a Blockchain protocol, one can
imagine the baggage claim belts at airports. While no single entity
checks that arriving passengers only claim their own suitcase
and not others’, the fact that all suitcases arrive together and
that all suitcase-owners are looking for their personal belongings,
effectively generates a way by which every person claims only
their own luggage.

While Blockchain protocols have been used primarily in
the financial domain (e.g., in the form of cryptocurrencies) the
effective use of the protocol can go beyond the monetary
use (Camerer and Fehr, 2004). Indeed, some groups
have formed alliances that rely on Blockchain to enable
collective decision making in the form of voting, supply-
chain management, transportation management, and more
(Hauert and Szabo, 2003).

Here we show an implementation of Blockchain protocol
to allow multiple players in a generalized version of the
Prisoner’s Dilemma, known as the “The Public Goods” Game
(PG) (Camerer and Fehr, 2004). We first replicate the classical

behavioral results of the PG game using a computer simulation.
That is, we show that the game deteriorates to a state of complete
and permanent distrust in nearly all conditions. Following, we
test two hypotheses. First, we propose that the inclusion of a
Blockchain protocol in the PG enables a recovery of trust after
a violation by a defector (Hypothesis 1). Second, we propose
that the Blockchain implementation yields a higher gain for a
third-party entity that represents the public good (Hypothesis 2).

Across multiple simulations, we demonstrate that an
implementation of the anonymous Blockchain protocol enables
agents to regain trust in one another, generate higher payoffs,
and increase the overall contribution to a collective pool.
Additionally, we show that optimizing the Blockchain model –
while allowing individuals to maximize their own interests –
yields an increased reward for all agents as well as an independent
3rd-party beneficiary. That is, adding a representation of
individuals’ personal preferences, while keeping within the reigns
of the trust protocol, leads to an increase in trust even following
a momentary betrayal. We suggest that the protocol effectively
allows for a democratic decision making process that maximizes
all individuals benefit while contributing to the public goods in
an optimal fashion.

2. MATERIALS AND METHODS

2.1. The Public Goods Game
To illustrate the conditions of our work, we first describe the
protocol of the PG game. The PG game is typically portrayed
in the context of a scenario where n players are working in a
village and receive equal daily wages (w) for their work, every
morning. For example, each of 10 players may receive a wage of
$10. The total amount earned by all the players is then n x w (10
x $10 = $100).

Each player can decide, each morning, whether to keep their
income, or to put it in a shared account (e.g., a collective
savings account with fixed interest, or a bond that yields a
static increase). Over the course of the day the shared account
multiplies by a fixed amount (e.g., 600%). Once the day is over,
the money in the shared account is divided equally among all
players. Importantly, all players receive their dividend regardless
of whether they contributed to the public good or not. The
same procedure is repeated daily, and each player is free to
decide every day whether or not to contribute their wages to the
shared account. In the standard PG game protocol, all players can
only contribute the full amount or nothing, and the decision is
anonymous such that no player known who may have betrayed.
This scenario is often seen as analogous to a taxation system,
a shared mutual fund or pension plan, an insurance, or other
systems that collect money from a group and use it to promote
everyone interests equally.

In the outlined scenario (see Appendix 1 for complete
breakdown of the game), if all players contribute their wages the
shared account will end up having $600 ($100× 600%) at the end
of the day, and each of the 10 players will receive a cut of $60.
This condition is termed “complete trust.” Complete trust is a
state of equilibrium where players have no immediate incentive
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to change the status quo and would benefit from continuous
contribution to the shared account. However, each player may
increase their payoff if they chose to betray the public good. This
can happen by electing to independently not share their wages
with the remaining players. For example, in a scenario where
one player chooses to not share their wages only nine players
will contribute their wages and the shared account will hold 9
x $10 = $90. Multiplied by the interest, the daily total will be
$540. This money would then be equally split among all the
players, including the one who did not contribute. Each of the
nine contributing players will receive $54 while the one player
that betrayed the community would end up with $64 ($10 of the
wages they kept, along with $54 from the joint contributions of
everybody else).

Similar versions of the game have been developed, which
highlight specific attributes of the overall experience. A version
of the game with only a single iteration focuses on the behavior
of individuals without the opportunity to engage in norm-
enforcement and long-term planning (Gunnthorsdottir et al.,
2007). Other versions force players to play without the veil of
anonymity, thereby forcing transparent disclosures and group
dynamics effects (i.e., emergence of group leaders, or increase
in cooperation due to public shaming of defectors) (Rege
and Telle, 2004). Other versions allow for alteration of the
contributed amount by agents, asymmetry in the dividend
yielded, asymmetry in punishment for defection, sequential
versus simultaneous contributions, and the reframing of the
public good’s meaning (i.e., instead of focusing on financial
outcomes, the public goods can be seen as a climate outcome
or a shared water resource) (Willinger and Ziegelmeyer, 1999;
Andreoni et al., 2003; Sefton et al., 2007; Rand et al., 2009;
Gächter et al., 2010). While the plurality of the works mentioned
overwhelmingly replicate the results pertaining to decay in
trust and cooperation, some studies have shown that under
various conditions (i.e., larger groups of players) trust and
cooperation may be restored after a decay (Isaac et al., 1994).
This suggests that some variables of the game could be tuned
to alter the behavior of individuals for prosocial outcomes.
Those works, however, are still the minority. Finally, similar
games such as the single/repeated-trials Prisoner’s Dilemma
and the Trust Game have focused primarily on two-player
interactions and show how an equilibrium of lack of cooperation
and lack of trust are the more frequent outcome under
most experimental conditions (Berg et al., 1995) [despite
some differences in interpretation of the generalization of
those games from two players to n players. See Barcelo and
Capraro (2015) for discussion]. Recent works in neuroscience
have investigated potential neural drivers of the decay in
trust [i.e., in the context of peer influence (Van Hoorn
et al., 2016), political outcomes (Barnett and Cerf, 2018) and
even the view of public goods entities as human or not
(Mentovich and Cerf, 2014)].

2.1.1. Additional Third-Party Beneficiary
We implemented a modified version of the PG game (see Table 1
for experimental parameters) with one additional element to
amplify the fact that a shared account can be seen as a public

TABLE 1 | Simulation parameters.

Parameter (symbol) Value

Number of players (n) 10

Number of iterations (N) 1,000

Amount of wages earned by an
individual in each iteration (w)

$10

Fund multiplier 6x

Amount donated to the C-3PO 1/6 of the fund’s total

good. We added an independent, benevolent entity that only
stands to gain from the contribution of all players without
the ability to hurt or be hurt by anyone. That is, in addition
to dividing the total amount generated by the shared account
among all the players we introduced an additional third-party
beneficiary that receives a cut from the total amount without
contributing. This third-party can be seen as representing a
taxation body, a charity receiving donations, or fund manager
receiving fees for their clever investments that yield the daily
interests. We term the third-party beneficiary: Charity/3rd-Party
Organization (C-3PO).

In our implementation the C-3PO receives 1/6 of the funds
generated in each round (which is equal to the amount
contributions by all players in the round). The remaining 5/6 of
the funds are equally distributed among all n players. The game
setup is illustrated in Figure 1. The main focus of our analyses
will be the amount the C-3PO generates from the game after N
consecutive iterations. This is a proxy of the overall utility of all
players and the ability of the group to maximize profits.

We define the game properties “parameters” and keep those
constant (see Table 1) across all simulations.

To test the effect of the Blockchain protocol on the system and
demonstrate that the performance is improved irrespective of the
game conditions we test various experimental variables (Table 2).
Our performance measures are the amount of money earned
by the C-3PO at the end of N iterations and the average trust
among all players. Specifically, we test the increase in earnings
following the introduction of the Blockchain protocol and the
optimal conditions that enable maximum increase in trust. All
the codes for the simulations are available online at http://www.
morancerf.com/publications.

2.1.2. Nomenclature
For ease of reading we used the following nomenclature
throughout the work. For a complete list of all
variables/parameters symbols used in the study, see Appendix 2.

- Simulation: one of four conditions we manipulate (i.e.,
Blockchain condition, Realistic condition).

- Game: a single N-iterations (i.e., 1,000 iteration) test with a
fixed set of variables.

- Parameters: fixed arguments used in this work (i.e.,
number of participants).

- Variables: manipulated arguments tested in this work.
- Participants/players/subjects/people/persons: human

individuals in a game.
- Agents: simulation/modeled individuals in a game.
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FIGURE 1 | Illustration of the Iterative Public Goods Game with a Charity/3rd-Party Organization. Left: agents either contribute their wages into the shared account,
or anonymously defect. The amount in the shared account is multiplied during the day. Center: A cut of the total yield is donated to Charity (/3rd-Party), and the rest
(right) is divided equally among all players (including the defecting ones).

- Nodes: individual clients in the Blockchain
implementation.

- Trial/iteration/round: a single step, t, out of
N, in each game.

2.2. Experimental Variables in the
Simulations
We manipulated multiple decision making parameters to
simulate how different levels of trust and personal variables
impact the collective outcome (measured, primarily, as the
dividend for the C-3PO) after N iterations of the adapted
PG game in both a regular condition as well as three
Blockchain conditions.

Recent empirical work investigating the behavior of agents in
PG games identified four factors that contribute to an individual’s
decision making in the game: self-interest, the behavior of others,
the reaction to rewards, and the reaction to punishment (Dong
et al., 2016). Of those four, financial rewards and punishments
show the weakest effects. Consequently, we incorporated into

TABLE 2 | Simulation variables.

Variable (symbol) Value

Initial trust (iT ) ∈ 15%..95%

Trust decrease due to betrayal (η1) ∈ 15%..95%

Trust increase due to cooperation (η1) ∈ 15%..95%

External reasons for betrayal (ε)
∈ B[0,1]
p(1) ∈ {90%}

Internal reasons for betrayal (ρ)
∈ B[0,1]
p(1) ∈ {70%}

our model elements that correspond to the following drivers of
a decision: self-interest, group dynamics (the behavior of others),
and external circumstances.

2.2.1. Trust
The main experimental variable we manipulated was individuals’
trust (T). Agents’ initial level of trust was set to a number ranging
from 100% (complete trust) to 0% (no trust).

In each iteration an agent’s level of trust was calculated as a
function of two variables:

(1) η1,s - the level of decay in trust by agent s in response to
betrayal by other agents in the previous iteration (t-1).

(2) η2,s - the level of increase in trust in response to an increase
of collective trust from trial t-2 to t-1.

The second variable, η2, corresponds to an increase in trust
by an individual in response to a gradual creation of trust in the
group. Therefore, as agents see that others are contributing to the
game, they, too, will update their priors with respect to the group’s
likelihood to trust one another.

Additionally, we varied the initial level of trust each agent
had as the game started (iT). Effectively, an agent’s trust in each
iteration, T, is modeled as a Bayesian Markov chain where each
iteration depends on the previous one, starting with iT.

Notably, although we separated the decrease in group trust
following a betrayal from the increase in group trust following
a collective renewed belief in the system, the two variables can
be observed as a single argument labeled as “change in trust”
(η) corresponding to the sum of the two. This is because at any
given trial either a decrease or increase in trust occurs – but
not both. We elected to use two variables in our model since:
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(1) prior experimental data were shown to have dynamic ratio
between people’s decrease in trust and increase in trust, and
(2) because this closely aligns with the literature’s view of trust
as a process that involves decrease and increase that are not
necessarily identical in magnitude. Based on empirical evidence
suggesting that individuals show a higher decline in trust after
a betrayal than an incline after trust recovery (ηs,1 >> ηs,2) we
modeled the parameters to reflect these conditions.

Trust in each iteration can therefore be operationalized as:

Tt = Tt−1 + η (1)

where, T1 = iT, η = η2 ∨ η1 and t is the iteration number ∈
[1,1000]

In our simulations we varied the values of η1 and η2 from 95%
(nearly complete trust) to 15% in decrement of 5%.

In each game we allocated the three variables to each of the
n agents using a random distribution centered around the value,
with standard deviation of 1%. That is, if in a certain game iT was
set to 95%, then all n agents’ initial trust values were assigned from
a normal distribution with mean 95% and standard-deviation 1%.

This decision simplifies the computations but is not mandated
by the model. More complicated models can use different
distributions thereby increasing the model’s degrees of freedom.
Notably, given the large number of iterations compared to the
number of agents starting with such distributions typically does
not affect the results. Multiple tests using the same random
selections should converge to the same trust values.

To give the reader an intuition about the effects of η1/η2
ratios on the trust outcome we illustrate three combination
of values (Figure 2). When η1 is notably bigger than η2
the decrease following a betrayal is large, dropping the trust
altogether to 0 rapidly. Lower levels of initial trust suggest
a higher likelihood of betrayal by an agent, and therefore a
faster decrease in trust as well. Effectively, the lower the initial
trust, the faster the game will converge to complete distrust.
Games that end with total distrust make for the plurality

of empirical data (Ledyard, 1995; Hauert and Szabo, 2003;
Camerer and Fehr, 2004). We, therefore, deem this condition the
“realistic” scenario.

When η1 is proportional to η2 trust converges to 0 as well.
This is because the effect of even a single betrayal is a decrease
in trust, whereas increase in trust requires multiple participants
to elect to contribute their wages. Therefore, not only do games
with η1 > η2 converge to complete distrust, but also games with
similar sized η values. Same-sized η values games take more
iterations to converge to 0. We name the scenario depicted in
η1 ∼ η2 games the “reciprocal” scenario.

Finally, when participants are playing in conditions where
η2 is notably bigger than η1 they manifest a scenario where
they do not see betrayal as a devastating behavior or a
violation of trust. Participants are therefore likely to recover
trust irrespective of prior trials. This scenario is uncommon in
most situations of human relationship and reflect a uniquely
psychological characteristic. This may be attributed to “lovers”
who choose to confide in their partner despite momentary
breakage of trust. This Ghandi/Jesus-like approach of “turning
the other cheek” is not observed frequently in empirical data
from the PG game. However, we can imagine situations by
which it is the norm, primarily in places where trust is so
fundamental and strong that even a momentary failure is
seen as an anomaly. Nevertheless, even in those conditions,
over time, the overall trust is likely to converge to a state of
complete distrust, albeit over numerous iterations and while
potentially demonstrating momentary increases in trust. The
reason this scenario, too, converges to 0 is similar to reason
in the “reciprocal” scenario: the number of opportunities for
a betrayal to occur is approximately n times higher than the
number of opportunities for random honesty of multiple players.
Therefore, the small decreases in trust happen more frequently
and are unlikely to be balanced by the infrequent increases in
trust unless the ratio of η1/η2 is greater than n (i.e., a betray
leads to a drop of 6% in trust, but a sign of honesty leads to
a 60% increase).

FIGURE 2 | Illustration of three scenarions depicting ratios of η1/η2 in the PG game. While the three conditions show different styles of operation, “realistic” (left),
“reciprocal” (middle), and “lovers” (right), all scenarios typically ultimately converge to a state of complete distrust. This is because of the disproportional
opportunity for η1 (decrease in trust) to occur compared to η2 (increase in trust). The initial trust (iT ) simply determines the speed of decay. Lower values of iT lead to
faster convergence to distrust. Lines illustrate different trust trajectories across games.
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2.2.2. Betrayal Due to Lack of Trust
To implement an agent’s decision to betray the public good in a
given trial due to lack of trust we randomly selected a number
between 0–100% from a uniform distribution, U (0, 100) , (i.e.,
66%). If the random number was higher than the current trust
level for the agent [i.e., T(3,21) = 60%, for the trust level of agent
3 in iteration 21] then we deemed the agent a “betrayer” on that
trial. If the number was lower – the agent would not betray due to
trust issues. Therefore, higher levels of trust would yield a likely
selection to contribute the wages. Lower levels of trust are likely
to lead to a withholding of the wages. This function of trust,
f(T), ultimately yields a number, 0/1, indicating whether the agent
chooses to betray, or not.

2.2.3. Betrayal Due to Reasons Independent of Trust
Participants can choose to not include their wages in the
shared account for reasons outside of lack of trust. These
reasons can be driven by external circumstances (i.e., a person
may get ill and need to pay for his healthcare) or internal
preferences (i.e., the person chooses to not contribute their
wages despite the loss of profit in order to engage in norm-
enforcement; behavioral economics suggest that such behavior
plays significant role in people’s decision making Fehr et al., 2002;
Fehr and Fischbacher, 2004a).

2.2.3.1. Betrayal due to external reasons
A person might be forced (rather than decide) to not contribute
because an external circumstance does not allow them to do so.
For example, a person could be forced to keep their initial wages
because of an immediate need for liquid cash (e.g., the need to
pay a mortgage in the morning may lead to an inability to wait a
full day for the funds to multiply).

We incorporated in the model the ability for agents to manifest
those external factors using a single variable, which we term
“external reasons for betrayal” (ε). The value of ε is either 0
or 1, and is selected from a binomial distribution, B. We set
the probability to betray as a result of external reasons to 10%.
Importantly, the outcome of this variable does not depend on an
agent’s level of trust. The value is calculated in each trial.

2.2.3.2. Betrayal due to internal reasons
In addition to external reasons over which the person has no
control, there might also be internal reasons that result in a
person deciding to not contribute. For example, a person might
trust the other people in the game to contribute their wages,
but decide against doing so themselves because he/she dislikes
the other players. This could lead a player to make a decision
that intentionally harms the other players in the game even if
it comes at a personal cost. Similarly, people may consider not
contributing their wages as a way to signal to other agents that
they are willing to withstand an immediate financial loss as a
way to elicit norm-enforcement (Fehr et al., 2002). In addition,
people might simply make a mistake in their decision due to an
incorrect estimate of anticipated payoffs. All of those options lead
to a behavior that does not obey the classical utility functions, but
incorporate psychological factors into the decision.

We incorporated these factors into the model as a term we
call “internal reasons for betrayal” (ρ). Similar to the external

reasons, the value of ρ is either 0 or 1 and is selected from a
binomial distribution, B. The value of ρ is independent of the
agent’s level of trust. Corresponding to the external factors, we
set the probability to betray as a result of external reasons to 30%.

Altogether, our experimental variables are, show in Table 2.

2.3. Decision to Contribute in “Regular”
Game
The equations determining the decision to contribute the wages
in each iteration in a regular game are:

Ts,t = Ts,t−1 + ηi (2)

where s is the agent number ∈ [1,n] and t is the trial ∈ [1,N]

i =



1 (decay),
n∑

s=1
Es,t−1 ≤

n∑
s=1

Es,t−2

2 (increase), (
n∑

s=1
Es,t−1 =

n∑
s=1

Es,t−2 = n)∨

(
n∑

s=1
Es,t−2 >

n∑
s=1

Es,t−2)

Es,t = f
(
Ts,t

)
∧ ε ∧ ρ (3)

where Es,t ∈ [0,1] indicates whether agents will betray (0) in trial
t, or not (1).

f (Ts,t) = 1 if Ts,t > U(0,100), such that U(0,100) is a random
number generated uniformly between 0-100.

The process of deciding whether to contribute can be
described in the following way:

(1) First, an agent determines whether there are external
circumstances that would force them to not contribute to
the coming trial, ε. If the answer is “yes” [p(0) = 10%] then
the agent does not contribute.

(2) Following, the agent determines whether they have personal
internal reasons to not participate,. If the answer is “yes”
[p(0) = 30%] then the agent does not contribute.

(3) Following, the agent determines whether they should
contribute to the trial based on their trust in the group. This
is determined according to their current value of T. If their
current level of trust is higher than the randomly generated
number, the agent does not contribute.

Consequently, for an agent to contribute in a given trial, three
conditions need to be met simultaneously: The agent cannot have
(1) external or (2) internal reasons for not playing, and they have
to have (3) sufficiently high levels of trust. At the end of each
trial all agents update their trust values based on the outcomes
(number of agents betraying/contributing) of the previous trial.
An increase in number of agents contributing in the previous trial
(or maintenance of the maximal number of agents contributing
in the previous trial) would yield an increase in trust, whereas a
decrease in the number (or equal number that is lower than n)
would yield a decrease in trust.
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Our study is aimed at identifying the optimal combination of
variables, in each condition that yield the highest profit for the C-
3PO (an independent entity that cannot betray anyone, does not
contribute to the shared account, and is perceived as benevolent
by all other participants). Importantly, we sought a protocol that
is realistic against the backdrop of real-world decision making
and enables the participants to exert their “free will” (their
individual independent decision making process) during each
choice iteration (i.e., one can still elect to not contribute their
wages in a trial for personal reasons).

2.4. Blockchain Protocols
The Blockchain implementation of the model adds a certification
system that is monitored by all agents in the following way:
a “smart contract” (a commitment to act in a certain way,
Es,t , that is logged in a ledger shared by all players) is created
in each trial, t, by each agent, s, such that the agent states,
anonymously their intent to invest their wages in the fund. Every
agent can then see how many of the n agents have committed to
contribute (

∑n
s=1 Es,t) in the trial. The contract is executed only

if a minimum number of agent, µ have agreed to contribute their
wages. The value of µ is fixed, for each agent, throughout a game.
See section “Discussion” for details on the Blockchain protocol’s
implementation).

We test the Blockchain protocol under three different
scenarios that vary in their level of resembles of real-world
decision making and complexity:

2.4.1. Blockchain (Homo Economicus)
The first scenario assumes that the agents’ only goal in the game is
to optimize their monetary utility from the game. That is, the goal
of each agent is to leave the game with as much money as possible.
This implies that participants are willing to accept contracts
in which their payoff is bigger than their initial wage even if
others are making a higher profit. In this “Blockchain – homo
economicus” scenario, the threshold for executing the contract,
µ, is equal to the lowest number of agents that need to contribute
in order to yield a positive revenue for each contributing agent.
The value of µ is similar for all agents.

For the parameters used in our simulations, µ = 3 is that lower
cutoff. If at least 3 agents participated, the payoff at the end of
the day is $15 (3 players x $10 wages x 600% interest - $30 C-
3PO cut; divided by all 10 players), which is higher than the
initial $10 wages.

Formalized, the equation to compute the minimal cutoff for
agent to accept the contract is:

µ = argmin
x

x·w·[interest]
n

> w (4)

The homo economicus Blockchain protocol guarantees that
no agent will lose money. If the minimal number of agents needed
for the contract to be fulfilled is not reached, the contract is voided
and none of the rows in the ledger are executed.

In this model, the certification system acts as an insurance
against loss. Trust becomes less instrumental for the choice as
one can participate in each trial with the assurance that no

money is lost. However, the experience of trust T is still updated
continuously as it is an indicator of the group dynamics. For
example, low trust values signal that other agents may need liquid
cash and cannot contribute to the public good, or that they are
malevolent. Therefore, one may lower their trust in the group.

Practically, the model incentivizes agents to contribute their
wages in every trial because it offers a safeguard against losing
money. If agents elect not to do so they are likely driven
by personal reasons, both internal (ρ) or external (ε). This
shared understanding among all agents makes the collective trust
increase over time even after a betrayal has occurred.

Equations 2–3 in the Blockchain model are, therefore,
identical to the ones in the “regular” case. However, f (Ts,t) = 1
since trust is no longer affecting the decisions to contribute and
there is no risk of losing money.

2.4.2. Blockchain (Homo Reciprocans)
The homo economicus Blockchain model assumes that the goal
of players is to maximize their financial gains. If a player earns
more than their initial wage (w = $10) they should be willing
to accept the executed contract if they contributed their wages.
However, as we have outlined in the introduction, prior research
suggest that people make decisions that are not fully rational
and that do not follow the logic of maximizing one’s economic
utility (Dohmen et al., 2009). More so, research in behavioral
economics argues that a rational actor in a repeated trials game
may deliberately engage in a behavior that results in an immediate
loss but maximizes long-term gain. Specifically, behavior that
signals to other agents that some behavior is not tolerated may
lead to norm-enforcement and future gains at the expense of a
momentary loss (Fehr et al., 2002).

In the context of smart contracts facilitated by Blockchain
technology, it is reasonable to assume that not everybody
would be willing to accept the conditions put forward in the
rational Blockchain model. That is, even though people stand
to gain more than their initial wages if they contribute to
a trial and are willing to execute a contract with only two
other players, they might have moral standards that require
the number of other people contributing to the game to
be higher. These moral standards can be thought of as a
person’s individual sense for fairness (Wang et al., 2010),
for example. Fairness is known to be a fundamental human
need that may place constraints on profit seeking (Wang
et al., 2009; Perel, 2017). That said, the extent to which
people desire and strive for fairness can vary (Dohmen et al.,
2009). Having a relatively low sense of fairness might lead a
person to accept a contract in which other participants benefit
from free-riding the system (making more money than those
contributing to the shared account). In contrast, a person with
a higher sense of fairness might reject any contract that has
less than maximum contributors – even they stand to lose
potential payoff.

This more realistic homo reciprocans Blockchain scenario,
in which people might forsake monetary gains in a trade-off
against fairness, is implemented by varying the threshold between
agents. That is, each agent is assigned a random variable, µs,
ranging between µ and n (3–10 in our case) to reflect the
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TABLE 3 | Fairness simulation variable.

Variable (symbol) Value

Fairness (µ) ∈ U(w, n)

degree to which they value fairness versus personal monetary
gains (Table 3). Given that this threshold is considered to be a
fundamental individual disposition, µs remains constant across
all trials for each agent.

Effectively, this means that we add an additional variable to
our model. We assign this variable randomly to each agent at the
beginning of each game.

The result of this additional constraint is that both the levels of
trust as well as the levels of payoffs to the C-3PO are expected to
drop compared to the homo economicus Blockchain condition.
This is because the additional constraint makes it less likely
for the contract to be executed due to personal preferences.
However, it is expected to outperform the regular model (without
Blockchain) both with regards to trust and C-3PO payoffs.
Additionally, it is expected to be more realistic in its depiction
of human behavior. We term this model the “homo reciprocans”
Blockchain model.

2.4.3. Blockchain (Optimized Homo Reciprocans)
While the homo reciprocans model provides a more realistic
picture of human decision making, it also lowers both the trust
and the profits compared to the homo economicus model. While
still higher than the regular simulation, it may not benefit the
public good in an optimal way. In order to optimize the yield of
the public good, while offering individuals a chance to increase
their yield and trust, we suggest an optimized version of the homo
reciprocans model. In this model we include an intervention
mechanism that benefits from the Blockchain implementation.
This optimization allows agents to update their decision in each
iteration (before the contract is executed) based on information
on “what the market looks like” (i.e., the decisions of all the other
agents, which determine the expected payoffs in each round).
Effectively, this allows agents to keep updating their beliefs
after all other participants have declared anonymously their
intentions, in a way that maximizes profits and increases trust.

To illustrate the optimization we depict an agent that has
decided to not contribute to the particular round due to internal
reasons (ρ). The agent might wish to update their decision if they
found out that 8 other agents are participating in the current
round. They might change their mind since they learn that
the group’s trust is increasing (more participants are willing to
contribute their wages), that they may have made an irrational
choice in not contributing (as others do not align with their
preference to defect), or simply because the wave of support for
the C-3PO by others may be contagious.

Either way, this update should depend on people’s personal
standards and their sense of fairness (µs). If a person generally
does not accept contracts with less than 8 people, they are unlikely
to change their opinion if a given round has, say, 7 people
contributing their wages. However, if a person generally accepts
contracts with only 4 people playing, but was about to betray,

they might change their mind if they see that 7 other players
elected to contribute their wages. The person might be inclined
to change their mind and contribute their wages as it both
signals higher than expected levels of trust in the community, and
yields higher profit.

Intuitively this means that the information on how many
people choose to contribute to a round should update the person’s
internal beliefs, manifested in our model as ρ. The higher the
difference between one’s fairness level and the group’s willingness
to express trust, the more likely the individual to change their
mind, for example.

Operationalized, this is reflected in the following equation:

ρ∗s,t =
n · ρs,t +

((∑n
s=1 Es,t

)
− µs

)
n+

((∑n
s=1 Es,t

)
− µs

) (5)

Simplified, this is equivalent to taking the difference between
each agent’s fairness level, the group’s current willingness-to-
participate, and updating the probability ρ both in the numerator
and denominator.

As an example, let us use ρ = 7
10 and agent s’s fairness level

of µs = 6. If, in a certain trial, 8 other agents are willing to
contribute their wages (

∑n
s=1 Es,t = 8), then agent s will update

their rationality value to ρ∗s =
7+(8−6)

10+(8−6) =
9

12
ρ∗s,t is embedded in equation 3 in each trial and returns to the

initial value, ρs, before re-calculating the next iteration.
As this optimization suggests, agents are able to revisit

their decisions repeatedly via the public ledger. The Blockchain
therefore enables an anonymous update of the decision
process such that agents maximize the alignment between their
preferences and the outcomes.

Practically, this means that agents are allowed to repeatedly
add rows to the ledger with updated information within a single
iteration until all choices converge to a state that satisfies all
participants. In our example the update happens only once (from
ρs,t → ρ∗s,t).

3. RESULTS

We examine each model separately with the same fixed
parameters (Table 1) and alternating variables (Table 2).

To illustrate the trust trajectory in the game we selected, first,
a subset (n = 510) of all combinations of η1,η2, iT such that they
focus on the realistic conditions that are reflected in behavioral
games. The values reflect situations where, η1>>η2 and ones
with, η1≈η2 which align with individuals’ tendency to decrease
their trust after a betrayal and increase their trust in response to
cooperation. This combinations selection corresponds to 10.38%
of all 4,913 possible combinations of η1,η2, iT (17 x 17 x 17).

The η1,η2 pair combinations were selected from the following
three options:

(1) both η1,η2 reflect small changes in trust (i.e., η1,η2 ∼

15%).
(2) both η1,η2 reflect big changes in trust (i.e., η1,η2 ∼ 90%).
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FIGURE 3 | Simulation of regular PG games with varying values for η1 and η2. (Top) across 1,000 iterations, the trust (see equation 2) decays in all games and
converges to 0, irrespective of the initial value (iT) and the ratio between η1 and η2. (Middle) Average trust across all games in the top panel. (Bottom) For each of
the games and combinations of iT, η1,η2 we calculated the cumulative sum generated by the C-3PO (blue line). While the initial trials typically yield a steady revenue
for the C-3PO, once trust breaks and converges to 0 no payoff is received by the C-3PO. Value of $164 correspond to the average scenario where in the first trial all
agents contributed to C-3PO ($100 payoff to the C-3PO), followed by a few trials (ranging between 1 to 5 trials) where the income drops because of lower trust by
participants, until the payoff decreased to 0 and remains 0 perpetually. Blue bar on the right axis depicts the range of income values generated by the C-3PO across
all simulations ($0 – $1,020). Red dashed line marks the optimal cumulative sum if all agents maintained trust throughout the game.

(3) the values of η1,η2 are of different magnitude (i.e., η1 ∼

70%, η2 ∼ 15%).

We used the remaining possible combinations in following
robustness checks. The probability of betraying due to external
reasons (ε) was kept constant at p (1) = 90% .

We used the same η1/η2 combinations in all four models to
demonstrate their effect on trust and on the income generated
by the C-3PO across conditions. After depicting the results for
subsets of the data, for ease of visualization (Figures 3–7), we
show the broader case with all combinations of η1/η2 (Figure 8).

3.1. Simulating a Regular Game
The standard model (i.e., model with no Blockchain) reflects the
performance in a regular version of the PG game. Importantly,
the results of this model resemble the results shown in empirical
behavioral data (Ledyard, 1995; Hauert and Szabo, 2003; Camerer
and Fehr, 2004). That is, in all combinations of η1 and η2 the trust
converged to 0 (Figure 3). The decay in trust depended on the
ratio between η1 and η2 and the initial trust (iT) of all agents.
Values of η1 greater than η2 sped up the converge to 0, whereas
η1 proportional to η2 slowed down the decay.

The average decay to 0 happened within 9 iterations for
η1 >> η2, and within 41 iterations when η1 ≈ η 2 .

Given that the C-3PO benefits from the public good only
when agents contribute to the shared account, the yield in a
regular game is low. Averaging the ultimate C-3PO payoff in 510
η1,η2, iT combinations after 1,000 iterations, yielded an income
of $164 ± 116 (mean ± s.d.; Figure 3 Bottom). The slope of
cumulative increase in revenue for the C-3PO is 0.16, compared
to 100 in the ideal “full trust” condition.

3.1.1. Robustness Check
As a robustness check, we ran the model with alternative values of
ρ [p(1) = 60, 80, 90%]. The average amount of money generated
by the C-3PO in those cases is $139 ± 109, $188 ± 145, and
$222 ± 114, respectively. The monetary gains for the C-3PO is
affected by the level of different values ofρ, but these remain low
compared to the values in the Blockchain cases. The maximum
gain shown was $1,020 (1% of the ideal case). See Table 4 for
summary of the results.

3.2. Simulating a Game With Blockchain
Adding a certification system in the form of a Blockchain
contract allows agents to lower their reliance on trust and
enable a steady payoff. Operationalized, the decision to
contribute in a specific iteration still depends on one’s personal
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FIGURE 4 | Simulation of Blockchain games with varying values of η1 and η2. (Top) Depiction of two examples of games with η1 >> η2 and η1 ≈ η2 ratios.
(Middle) Trust (see equation 2) decays in 59% of games to a value lower than the mean (34%), irrespective of the initial trust and the ratio between η1 and η2 (black
line in the Top, Middle). Green line corresponds to the average of all trials that ended with trust values above the mean. A histogram of all final trust values is shown
on the right. While high trust values have broader range, convergence to 0 trust is still dominant. This, however, has no effect on the individual/C-3PO income.
(Bottom) Blue line corresponds to the average cumulative sum in the Blockchain games. The total cumulative sum generated by the C-3PO is $62,878. Red
dashed line depicts the optimal (“Full trust”) revenue that the C-3PO could generate if all 1,000 trials were played with maximum payoff (1,000 × $100). Thin blue
rectangle on the right axis corresponds to the upper/lower boundaries of income generated by the C-3PO, across all games. The values are stable and range
between $61,000 and $64,330.

preferences and external drivers, ε and, ρ but not on their
trust, T.

Agents effectively create a binding contract that minimized
the likelihood of a betrayal by others. If at least two other
players participate – then agent s is contributing, as the
total of three players will yield a revenue for all agents (see
equation 4). If less than three players declare their willingness
to contribute their wages on the ledger then no deposit into the
shared account is done by anyone. While trust itself fluctuates
in response to the group dynamic in each trial, it is more
likely to increase. This increase is due to the safety network
provided by the Blockchain insurance, which allows agents to
focus on their desire to maximize profits while assuming that
others do the same.

The average ultimate trust (average of trust value on the
1,000th iteration) in a Blockchain game is 34% ± 36%. This is
significantly different than the average trust in a regular game
[Figure 4 Top; t(509) = 21.34, CI = (31 38), p < 10−10, t-test;
Cohen’s D: 1.34]. Similarly, the income generated by the C-
3PO is 383.4 times higher ($62,878 ± 516; Figure 4 Bottom)
than in a regular game. The C-3PO, therefore, benefits from
the agents’ desire to profit. While defections still lead to drop
in income for the C-3PO, the chances of a contract with at

least three people being executed is 99.2% [with ε = 90% and

ρ = 70%; p(k ≥ 3), B(10, 90
100 ,

70
100 );

∑10
k=3(

10
k
) ( 90

100 ·
70

100 )
k(1−

90
100 ·

70
100 )

10−k]. Therefore, the expected payoff for the C-3PO in
1,000 iterations is $64,480 (992 iterations x $65 average yield per
iteration — with minimum yield of $30 and maximum $100). Our
results are within 2.4% of the expected estimate.

Overall, C-3PO is generating a steady increase in revenue
(slope of 62.8) in a Blockchain-moderated game, suggesting that
within up to three iterations the C-3PO can match the amount of
money yielded in a regular game across the entire 1,000 iterations.
That is, adding the Blockchain certification helps the C-3PO
and the players increase their revenue and allows the group to
increase their trust in one another.

3.2.1. Robustness Check
Similar to the robustness checks in the regular game, we ran
the Blockchain model with alternative values of ρ [p(1) = 60,
80, 90%; Table 4]. The average amount of money generated by
the C-3PO in those cases is $53,454 ± 564, $72,004 ± 426, and
$81,017 ± 377, respectively. Altogether, the elasticity of ρ is
therefore 117 (that is, an increase in 1% in rationality, ρ, increases

Frontiers in Blockchain | www.frontiersin.org 11 March 2020 | Volume 3 | Article 13

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/
https://www.frontiersin.org/journals/blockchain#articles


fbloc-03-00013 March 30, 2020 Time: 17:31 # 12

Cerf et al. Blockchain in Behavioral Economics

FIGURE 5 | Simulation of reciprocans Blockchain games with varying values of η1 and η2. Top: depiction of two examples of games with η1 >> η2 and η1 ≈ η2

ratios. Middle: trust (see equation 2) decays in 86% of games to a value lower than the mean (7%), irrespective of the initial trust and the ratio between η1 and η2

(black line in the middle/top panels). Green (/black) line corresponds to the average of all trials that ended with trust values above (/below) the mean. A histogram of
all final trust values is shown to the right. While high trust values have broader range, convergence to 0 trust is still dominant. This, however, has no effect on the
individual/C-3PO income. Bottom: Blue line corresponds to the average cumulative sum in the games. The total cumulative sum generated by the C-3PO is
$10,341. Red dashed line depicts the optimal (“Full trust”) revenue that the C-3PO can generate if all 1,000 trials were played with maximum payoff (1,000 × $100).
The blue rectangle on the right axis corresponds to the upper/lower boundaries of income generated by the C-3PO, across all simulations. The values range
between $256 and 52,435.

the yield for the C-3PO by $117 dollars). Put differently, an
increase of 1% in rationality in the Blockchain-enabled game is
nearly equivalent to all the money generated by the C-3PO in the
average regular game.

3.3. Simulating a Homo Reciprocans
Blockchain Scenario
As expected, implementing a more realistic homo reciprocans
model in which agents may elect to not contribute to a trial
for reasons outside of profit, shows a drop in the financial
performance and in trust. Here, agents are able to exhibit internal
reasoning for betray and exercise a sense of fairness thereby
foregoing profit (they may do so to signal that they are dissatisfied
with the trust in the group, or because they may not be motivated
purely by the financial gains). While trust may still recover after
a betrayal it is overall lower than in the regular Blockchain
implementation (7% ± 21%; Figure 5). Only 14% of the trials
end up with a trust value above the mean. The mean trust itself
is significantly lower than the one in the regular Blockchain
simulation [t(509) = 14.27, CI = (23 31), p< 10−10, t-test; Cohen’s

D: 0.91]. While the majority of games ended up with 0 trust,
even those show an occasional, momentary recovery of trust.
Accordingly, the income generated by the C-3PO is significantly
higher (by an order of magnitude) compared to the regular
game without Blockchain [t(509) = 21.84, CI = (9,164 10,975),
p < 10−10, t-test; Cohen’s D: 1.37]. The financial performance is
also significantly different than the yield in the regular Blockchain
game [t(509) = 113.92, CI = (51,734 53,550), p < 10−10, t-test;
Cohen’s D: 7.15].

3.3.1. Robustness Check
Similar to the previous specifications, we ran the model with
alternative values of ρ [p(1) = 60, 80, 90%; Table 4]. The
average amount of money the C-3PO yields is $4,586 ± 6,109,
$18,913 ± 14,993, and $32,193 ± 19,378, respectively. The only
trials where the yield for the C-3PO is not $100 happen when
agents do not contribute due to personal reasons. That is, from
the C-3PO perspective, the model performs best when agents
exert more utility maximizing decision making and have no
external demand for the wages (ε). The Blockchain model still
yields higher trust values and higher financial yield for the public
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FIGURE 6 | Simulation of optimized Blockchain games with varying values of η1 andη2. Top: depiction of two examples of games with η1 >> η2 and η1 ≈ η2

ratios. Middle: trust (see equation 2) decays in 87% of games to a value lower than the mean (5%), irrespective of the initial trust and the ratio between η1 and η2

(black line in the middle/top panels). Green line corresponds to the average of all trials that ended with trust values above the mean (Black: below the mean).
A histogram of all final trust values is shown to the right. While high trust values have broader range, convergence to 0 trust is still dominant. Bottom: The total
cumulative sum generated by the C-3PO is $10,390. Red dashed line depicts the optimal (“Full trust”) revenue that the C-3PO can generate if all 1,000 trials were
played with maximum payoff (1,000 × $100). Blue rectangle on right axis corresponds to the upper/lower boundaries of income generated by the C-3PO, across all
simulations. The values range between $462 and $67,895.

goods than the regular game, across all ε, ρ values. As a metric
for the influence of personal reasons on the income we used
the elasticity (increase of 1% in rationality’s effect on the C-3PO
revenues). A quadratic fit of the ρ values (best fit for the data,
with a norm of residuals of 422.8) shows that the differential
value is 214. That is, while the regular Blockchain shows a higher
income for the C-3PO than the reciprocans one, the effect of
ρ in the regular Blockchain is smaller. Put differently, in the
reciprocans case, an increasing tendency to maximize monetary
utility by an agent helps the public good more than in the regular
Blockchain model.

3.4. Simulating an Optimized Homo
Reciprocans Blockchain Scenario
Finally, we tested a Blockchain simulation that not only protects
agents from losing money, but also enables a dynamic updating of
preferences and therefore a more effective recovery of trust based
on common interests in maximizing profits.

Trust in the optimized Blockchain model is above 0 in
13% of trials (5% ± 17%, Figure 6). The C-3PO profit
here is similar in magnitude compared to the one in the

previous homo reciprocans Blockchain model. While trust in
the optimized model is significantly different than in the regular
game [t(509) = 7.29, CI = [4 7], p< 10−10, t-test; Cohen’s D: 0.46]
and the regular Blockchain simulation [t(509) = 15.94, CI = (25
33), p< 10−10, t-test; Cohen’s D: 1.02] the regular and optimized
homo reciprocans models are not significantly different from one
another [t(509) = 1.63, CI = [0 4], p = 0.1, t-test]. However, with
respect to the C-3PO yield, the ultimate maximum values for the
optimized games are higher than the reciprocans ones. Some of
the extreme values surpass even the regular Blockchain maximal
values (Figures 6, 7).

3.4.1. Robustness Check
Running the model with alternative values of ρ shows similar
improvement as in the previous models (see Table 4). p(1) = 60%
yields an income of $5,180 ± 7,546 to the C-3POT. p(1) = 80%,
yields $20,184± 17,780. And p(1) = 90% yields $35,566± 22,228.
Fitting the values of ρ here (best done with a quadratic equation
that minimizes the norm of residues to 224.5) shows that the
elasticity is 195. That is, an increase of 1% in rationality yields
an increase of $195 for the C-3PO.
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Although the optimized version of the homo reciprocans
model does not substantially increase the trust, it yields higher
payoffs for the C-3PO. This suggests that the optimized model
is less sensitive to individual agents’ decisions and maintains an
overall higher profit across all games.

FIGURE 7 | Profit generated by the C-3PO in each simulation condition. Red
bar depicts the maximum possible payoff in a 1,000-iteration game with full
trust, where each agent contributes all their wages to the shared account
(1,000 × $100). Dots reflect the ultimate outcome of a game played with the
simulation variables. "No trust” (left) yields $0 for the C-3PO. Regular games
(black) yield low gains compared to the Blockchain (green), Reciprocans and
Optimized (blue) implementations.

3.5. Identifying an Optimal Set of
Variables
Comparing all the models (Figure 7) illustrates that the
regular Blockchain model shows the highest financial gain for
the C-3PO. The financial gain is not only higher but also
most stable compared to the two other Blockchain models.
However, as the two other models are more reflective of
real-world human behavior (i.e., the desire for fairness) we
suggest that improvement and optimizations of all three
models should incorporate the identification of common
levers that drive and influence such desired outcomes (both
trust and payoffs).

To that effect we tested the various combinations of all
manipulated variables to identify configurations that enabled
ultimate trust recovery. That is, we observed the combinations
of trust decay/increase values that yield maximal trust across all
models (Figure 8).

The optimal conditions for our experimental variables
(η1,η2, iT) were fixed for 4,913 combinations, with µs randomly
selected for all n = 10 agents. For each combination of variables,
we examined the final value of trust after 1,000 iterations in all the
four models (regular, Blockchain, reciprocans Blockchain, and
optimized Blockchain; Figure 8). We varied η1,η2, iT from 15
to 95% in steps of 5% (17 conditions each).

Trust in the regular game converges to 0 for all variable
combinations (regardless of the initial trust and ratio between η1
and η2). The incorporation of Blockchain shows an improvement
in mean trust throughout the game. The outcome is driven
by the ratio of η1/η2. When η2 is notably higher than η1 (a
large increase in trust following a cooperative game, and a small
decay following a betray, which we termed earlier the “lovers”

FIGURE 8 | Ultimate trust value in all games for all variables. Each cell corresponds to the final trust value (after 1,000 iterations) in a simulation with a mix of the
variables: iT, η1,η2, and µ. Left: ultimate trust value in the average of 4,913 (17 η1 × 17 η2 × 17 iT combinations) of regular games. Second from left: ultimate trust
value in 4,913 conditions with regular Blockchain simulation. Second from Right: ultimate trust values in a reciprocans Blockchain condition. Rightmost panel:
ultimate trust values in an optimized Blockchain simulation. The upper-left triangle in the “Blockchain,” “Reciprocans” and “Optimized” simulations are nearly same in
their value. As these triangles correspond to a more realistic trust scenario (see Figure 2, left) we suggest that trust is increasing similarly in all conditions (albeit less
frequently in the simulations that allow fairness as a variable). In games with “lovers” conditions (η2 >> η1) all the trust outcomes are different that the norm, as is
often the case with love.
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TABLE 4 | Summary of results pertaining to trust and financial gains
in all the models.

Type Trust (%) Payoffs ($)

Ideal

100 100,000

Regular

ρ


p(1) = 60%

p(1) = 70%

p(1) = 80%

p(1) = 90%

0 ± 0 139 ± 109 [0 – 1,040]

164 ± 116 [0 – 1,020] (Figure 3)

188 ± 145 [0 – 2,490]

222 ± 114 [0 – 610]

Regular Blockchain

ρ


p(1) = 60%

p(1) = 70%

p(1) = 80%

p(1) = 90%

36 ± 37 53,455 ± 564 [51,670 – 55,090]

34 ± 36 62,878 ± 516 [61,000 – 64,330] (Figure 4)

34 ± 35 72,004 ± 426 [70,560 – 73,150]

40 ± 38 81,017 ± 377 [79,760 – 82,080]

Reciprocans Blockchain

ρ


p(1) = 60%

p(1) = 70%

p(1) = 80%

p(1) = 90%

3 ± 14 4,586 ± 6,109 [58 – 36,984]

7 ± 21 10,341 ± 10,404 [256 – 52,435] (Figure 5)

10 ± 24 18,913 ± 14,993 [2,758 – 62,766]

16 ± 28 32,193 ± 19,378 [9,965 – 80,079]

Optimized Blockchain

ρ


p(1) = 60%

p(1) = 70%

p(1) = 80%

p(1) = 90%

3 ± 13 5,180 ± 7,546 [57 – 42,028]

5 ± 17 10,390 ± 11,384 [462 – 67,895] (Figure 6)

11 ± 24 20,184 ± 17,780 [2,560 – 86,562]

19 ± 31 35,566 ± 22,228 [10,064 – 92,545]

setting) the ultimate trust is highest. This is replicated in all three
Blockchain implementations.

Manipulating ε across all four conditions shows that the
optimal combination of η1, η2 emerges always when η2 > > η1
(the typical scenario for regular games with no Blockchain) and
that external reasons do not alter the results in a robust way.

4. DISCUSSION

4.1. Summary
We incorporated a Blockchain smart contract into a simulation
of the Public Goods game. We show that the smart contracts help
agents improve their decision making, and, in turn, the outcomes
of the decision (in terms of financial gains, fairness, cooperation
and trust). We tested multiple implementations of the Blockchain
protocol and varied the degree to which they reflected the real
world. The outcomes were compared to a simulation of empirical
behavioral data from humans playing the PG game.

To explicitly estimate the improvement of our model we
investigated two main outcomes: (1) the level of trust among
the group members, and (2) the financial profits yielded by a
3rd-party that was defined as independent and benevolent.

Our results show that, overall, the implementation of a
Blockchain smart contract in the game leads to a recovery of
trust after a betrayal and significantly higher payoffs for the
3rd-party entity. In all Blockchain implementations the ultimate
payoffs were two orders of magnitude higher than in the regular
game. This is primarily driven by the fact that the Blockchain

protocol removes the risk of losing money. The model that
yielded the highest levels of trust and payoffs was a Blockchain
model in which people accept any contract that allows them
to make a profit. This model (“homo economicus”) yielded an
over 38,000% increase in payoff for the public good compared
to the regular model without Blockchain. When introducing
additional constraints that reflect the fact that people are not
always maximizing immediate gains, and, at times, forsake
monetary utility to fulfill their desire for norm-enforcement or
fairness (termed: “homo reciprocans” model; Fehr and Schmidt,
1999), the levels of trust and payoffs dropped, but still remained
significantly higher than those observed in the regular game.
Specifically, the “homo reciprocans” Blockchain model yields
a 6,305% increase in payoff for the public good compared to
the regular model without Blockchain. However, given that this
model incorporates human decision making that is not driven
by a desire to maximize monetary utility, it inevitably falls
short compared to the initial Blockchain model. The payoffs
for the 3rd-party are over six times lower, and the trust is
converging to 0 in 86% of the games, compared to 59% in the
standard Blockchain.

In an attempt to recover some of this drop in trust and
profits, we implemented an optimized Blockchain model that
allows agents to update their own preferences as a function of
how profitable and “trusting” the market seems in each round.
Allowing such feedback loops within each trial results in a model
that yields 6,335% higher payoffs for the public good than the
regular model without Blockchain. While the average payoffs are
similar to the ones in the regular “homo reciprocans” model,
the breadth of outcomes (standard deviation) is higher, with
some tests outperforming even the regular Blockchain model.
Effectively, the optimized model adds to the regular “homo
reciprocans” model a property that allows agents to benefit from
a key feature of the repeated games – the ability to norm-enforce
and adapt the agent’s behavior to the group. Repeated trial games
typically engage with such norm-enforcing and adaptive behavior
across trials (i.e., agents act in trial t in behaviors that respond
to action in trial t − 1 in hopes of changing the behavior of
others in trials t+1). The benefit of the optimized model is
that it allows for such signaling and adaptive behavior within a
single trial. The combination of the fairness variable (intrinsic
property of the agent that does not change, but responds to group
behavior), with trust (changes based on behavior in previous
trials), and the anonymity afforded by the Blockchain protocol
enable agents to maximize their benefit while signaling to others
about their preferred outcomes. The unique property of the
Blockchain’s smart contract mechanism allows for an effective
communication under the veil of anonymity. This, we argue, is
an improvement upon existing protocols that either: (1) limit
the communication and signaling to ones that happen across-
trials, or (2) force agents to not be anonymous in order to engage
in norm-enforcing behavior, or (3) require a dynamic alteration
of the fairness variable to align with the groups’. Effectively,
the optimized model allows for the group’s behavior to stabilize
within a trial. It allows agents to defect or to increase their
contribution to the public good in response to a combination of
fairness and utility maximization. The rational, purely economic
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and utility-maximizing behavior, that is often exhibited in single
trial games differs from the one shown in multi-trial games. An
optimized Blockchain model serves as a way to allow the benefits
or signaling and dynamic group adaptations that are seen in
repeated trials games even within a single trial.

Finally, we see that in all Blockchain implementations trust
can increase even after it converged to 0.

In short, adding a Blockchain implementation to a public
goods function (1) contributes to the likelihood that a multi-
player system will recover its trust after a betrayal, and (2)
increases the rewards yield by a public goods entity (charity,
income tax, etc.). While various models have shown improved
mechanisms for increased financial gains, recovery of trust after
a breach of honesty is rare.

4.2. Recovery of Trust
Prior research on trust has shown that it is a challenge to
restore trust after a betrayal (Schweitzer et al., 2006). The
main methods shown to increase trust after a breach of
honesty involve: (1) apologizing, (2) accepting blame, and (3)
demonstrating consistent honest behavior over long periods
of time (Schweitzer et al., 2006). Importantly, while accepting
blame is helpful in restoring trust, studies have shown that this
only works if the breach of trust is framed as the outcome of
an incompetence rather than dishonesty or immoral behavior
(Kim et al., 2004). Given that the first two trust-recovery
methods require communication between the parties, these
methods cannot always be implemented (i.e., in situations where
signaling or communication between all parties are difficult to
accomplish). Consequently, the Blockchain protocols suggested
in this paper could provide a new alternative to recover
trust that does not rely on any of the previously suggested
mechanisms. The protocol makes it easier for collective trust
to recover as the systemic nature of Blockchain technology
partially replaces the need for individual accountability. It is
noteworthy that the Blockchain implementation allows for trust
increase while maintaining full anonymity of the individuals.
This is important as recent discussion on mechanisms to improve
trust have raised debates on whether transparency is useful for
trust increase (Walker, 2016). While longstanding belief among
researchers was that increased transparency leads to increased
trust (Grimmelikhuijsen, 2012b), some works argue that indeed
the opposite is true (Grimmelikhuijsen, 2012a). Countries where
transparency is opaque (i.e., China) actually show high levels
of trust in the government among citizens (Edelman trust
barometer, 2019). It is suggested that this is because of the fact
that the break of trust is not disclosed to the citizens (Edelman
trust barometer, 2019). Similarly, countries where transparency
is high (i.e., the United States) has also exposed its citizens to a
plethora of fake news and misinformation that are fueled by lack
of rein on exposure.

4.3. Contributions to the Scientific
Literature
Our findings contribute to the existing scientific literature in
a number of ways.

First, our findings contribute to the literature on trust and
decision making while introducing a technological solution
to collectively align individual’s interests more efficiently. The
Blockchain implementation assures high levels of trust among
a particular population. These trust levels supersede the current
existing best-case scenarios for trust recovery in the literature.

While the public goods game has been studied for decades and
resulted in a substantial body of work exploring the antecedents
and consequences of trust in collaborative-competitive decision
making contexts (Levitt and List, 2007; Cerf, 2009) the vast
majority of these works show that a breakage of trust usually leads
to a downward spiral with potentially devastating consequences
for both individuals and groups (Boles et al., 2000; Kim et al.,
2004; Schweitzer et al., 2006; Wang et al., 2009). Against
this backdrop of decades of research, our findings suggest
that technological solutions such as Blockchain technology can
positively impact trust through an assurance that one cannot be
exploited by others. This might open the door to a new line of
research that investigates ways in which human decision making
in a context that is both competitive and cooperative can be
facilitated by similar technologies.

Second, our findings contribute to the growing literature
on Blockchain. Specifically, they highlight an application of
this technology which could have a tremendous positive
impact on individuals, societies and groups. We show that
interventional model (the “optimized” model, where individuals
are able to repeatedly reflect on their preferences) improves
upon models that do not allow for iterative optimization. The
optimized model uses the Blockchain not just as a passive
database that collects historical data, but rather a signaling
mechanism for all participants on the status of the collective.
It allows participants to improve their estimates pertaining
to the group dynamics. More complex implementations of
such signaling mechanism (i.e., additional corrective steps
within each iteration) could optimize the performance of the
Blockchain usage further.

Therefore, the elucidation of the specific levers for trust
increase should be investigated further, and our work offers a first
brick in this exploration.

4.4. Practical Implementation of
Blockchain in Interdependent Decision
Making Contexts
We implement the suggested Blockchain models using an
architecture akin to the ones featured in Ethereum and in
probabilistic collaborative decision making (Salman et al., 2018).

The key functionality used by those architectures is the smart
contract, which allow each node to apply the set of rules suggested
in a transaction and execute the transaction.

A complete transaction works in the following way:

(1) Each node in the architecture operates a client that, first,
executes the internal processing of the agent’s decision
to contribute. An agent uses their own internal/external
reasons to betray, their fairness level, and their trust state
to decide whether they are interested in contributing the
coming trial. (note: in an architecture with n users, there
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TABLE 5 | Example of transaction details in the Blockchain implementation.

User Contribute
I

Fairness
(µ)

Time-
stamp

Counter Last String

03a177d92cc29f 1 6 227376000 3 1 “. . .”

would be n+2 nodes, including one node pertaining to the
shared account – the recipient of the daily wages, before
they multiply – and another node for the C-3PO).

(2) After an agent’s decision is made, they initiate a transaction
that is communicated over the Blockchain protocol (peer-
to-peer) to all other nodes. The transaction details are
(Table 5):

(3) The smart contract is then implemented. This may include
multiple iterations, depending on the model executed. In
the “reciprocans” model only one iteration occurs. In the
“optimized” model a repeated back and forth between the
agents and the clients enables all nodes to ensure that their
entry logic is applied.

(4) Note that our implementation includes only the entry
decision, E, and fairness, µ, as variables of the transaction.
More complicated models may include also the exact
amount of money contributed (i.e., instead of a fixed $10
amount one may select a different number), a punishment
mechanism applied toward a specific node, or even a
string that can be used to communicate and signal desired
behaviors directly.

(5) Once the smart contract was validated by all nodes, the
“block” that includes the final entry/contribution decisions
is being sent to a validator to sign. Signing implies working
through all the final transactions and ensuring that all
nodes indeed have the funds needed for the transaction.
Effectively, this moves from the “logical implementation”
(the smart contract) to the transaction validation.

(a) A block can have as little as n entries (in the regular
game implementation) and as many as allowed by the
optimization algorithm. If the algorithm allows, for
example, for multiple updates by nodes based on their
updates the block may have multiple entries from each
user. The final entry – based on timestamp – is the one
that is used by the validator.

(b) If the model is implemented with a “timeout” rather
than a finite set of iterations within a trial, then all
transactions which arrived by the timeout are included.
Transactions that did not arrive by the time are
considered as E = 0.

(c) To avoid errors on noisy networks, the transaction can
add a field: “last” ( = 1/0) where a user can indicate
whether they are still iterating or are ready to seal their
entry decision. Similarly, a “counter” field can be used
to maintain the agreed number of iterations.

(6) Once the validator receives the entries block, they go
over the ledger and check that all users indeed have the
funds and are part of the network. This ensures that no
double spending is occurring and that all users are indeed
legitimate players. The validator is selected from within

the participating nodes based on the contribution amounts
(“Proof of Stake”). That is, users that contributed the most
in the last x trials has the highest probability of becoming
the validator. The choice of validator occurs randomly from
within the top y players. In our implementation we selected
x as 50 (i.e., whoever contributed the most in the last 50
trials has the highest probability of becoming the validator
in each trial) and y = 10 (i.e., all players may become
validators). The numbers x,y should be selected either based
on the number of iterations expected, or as a function of the
desired time for each round.

(7) Once the validator has approved the block, they send to
all nodes a transaction that includes the payoffs for each
user (in our case – equal amount), and the hash of the
block. All users update their ledger with the corresponding
hash. Validators receive a fee from the total as an additional
reward, z (i.e., 1% of the value of the iteration). This
incentivizes users to desire becoming the validators, which
in turn incentivizes contribution to the shared account. If
the validator does not sign the block (either stating that the
block contains invalid transactions or fails to sign by the
specified timeout) the block is not included in the ledger
and the trial restarts.

(8) [boundary condition]: as the first transaction(s) (before
the x transaction) may not have enough contributions to
determine who should be the validator, the shared account
acts as the constant validator of all rounds. Once a stake
has been established – the validation happens by the
contributing nodes.

Note that the user ID in our implementation corresponds
to the username, however, the Blockchain implementation
allows for anonymous user names (using public key rather
than plain names).

4.4.1. Selection of Parameters
Our Blockchain implementation incorporates a number of
decisions that require explanation.

First, we chose “Proof of Stake” as our consensus algorithm (as
opposed to other algorithms such as “Proof of Work,” where all
nodes act as each other’s validators). This choice was driven by
the following reasons:

(1) Efficiency and speed. A single validator rather than n
validators means that less computation power and energy
(and with those, environmental burdens) are exerted.

(2) Encourages contribution. Given that validators receive
a small fee for signing the block, there is an incentive
to become the validator. The validator is chosen among
the top y highest contributors and, accordingly, users are
encouraged to increase the contribution. This, in turn, also
increases the yield for the C-3PO.

(3) Encourages participation. Given that the validator receives
a fee from the entire contribution in each iteration, they
have an incentive not only to validate the iteration, but also
to increase the number of nodes. More participants mean
higher total contribution (n x w). And since the validator
fee, z, is a percentage of the total contribution all nodes
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would presumably be interested in convincing new agent
to join. This, too, yields higher income for the C-3PO.

(4) Scalability. The consensus algorithm is invariant to the
size of the network. A single validator out of x (a fixed,
small, predetermined number) is selected in each iteration
irrespective of the number of nodes. This means that
larger n will not slow down each transaction and the
implementation can maintain a fixed time. The choice of
time (τ), and number of candidate validators (y) can ensure
an efficient transaction.

Second, our transactions are noted by username rather than
agent’s name (using public key as identifiers rather than full
name/IP Address). This implementation allows for anonymity of
the agents and of their strategies.

Third, given our desire to anonymize not only the user identity
but also their strategy, we further incorporate an IPFS hash
Blockchain. That is, nodes do not keep the full transactions ledger,
but rather a chain of hashed blocks. Only one user (the validator)
sees the actual transactions in each block. This means that no user
can easily work out other users’ transactions behavior by reading
the ledger. This is implemented in the following way: if user A
(“Bob”) is validating the 4th block in a chain for the first time,
then their ledger would include the transactions pertaining to the
specific block but not others. Their ledger would therefore be:
Hash1→ Hash2→ Hash3→ Block4 data. Once Bob validates
the transaction, he sends all other users only the hash of the 4th

block (“Hash4”). Other users (i.e. “Alice”) incorporate the hash
into their ledger. Alice’s ledger would, therefore, be: Hash1 →
Hash2→ Hash3→ Hash4. If in the next iteration Alice is acting
as the validator, then Bob’s ledger would show: Hash1→ Hash2
→ Hash3→ Block4 data→ Hash5, while Alice’s will be: Hash1
→ Hash2 → Hash3 → Hash4 → Block5 data. Accordingly,
neither Bob nor Alice can derive the full ledger’s history and all
users’ contribution strategies. The hashed ledger is also smaller in
size and, therefore, more efficient in handling, size and processing
power (/energy).

Fourth, our architecture does not favor existing players
inherently in their chances of earning the additional fees. This is
because: (1) the validators are chosen based on the contribution
in the last x iterations alone (i.e., if a new user joined the network
at iteration 500 and contributed most between iterations 500–
550 they are more likely to become the validator than users who
contributed a large amount prior to iteration 500). This makes
the architecture fairer and more balanced toward incoming
participants rather than favoring large contributors overall. The
choice of x can be larger/smaller based on the desire to encourage
more new entrants (lower x) or favor stable validators (higher x).

In line with the second and fourth points, our architecture
does not require any information on new participants other than
a proof that they have the funds (i.e., are recipients of the daily
wages). This, too, enables total anonymity and encourages natural
strategies that benefit from such anonymity.

Fifth, the choice of architecture requires a calibrated balance
between the variables: x (number of iterations to integrate toward
the choice of validator), y (number of ranked validators within
the × iterations to consider), and z (reward for validation).
The choice of those variables, alongside the number of allowed

corrections within each iteration, the number of nodes, n, and
the time allotted for each iteration, τ, determine the efficiency
of the network. If users want faster iterations, then lower values
of x, y,τ should be used. Alternatively, higher value of z may
encourage users to dedicate more resources to the validation and
increase speed. In our implementation with n = 10 all those
values were negligible and the bottleneck was always in the client
entry decision calculation end. Lower values of τ or a fixed
number of corrections within a trial would force users to speed
up this calculation.

Finally, our architecture benefits from all the traditional
advantages of Blockchain platforms: (1) it is immutable, (2)
it yields high performance with low overhead, (3) it surpasses
geographical boundaries (users can be remote and participate),
(4) it allows for micro-transactions (e.g., of less than a cent) given
the digital nature of the currency, which opens the architecture
to low-income contributors as well, and (5) it allows for complex
contracts that are not easily possible in classical PG games (for
example, an agent can indicate that they want to contribute only
if another specific agent does so – even without knowing the other
agent’s identity).

Taken together, we believe that this architecture offers a
realistic, efficient and improved way to implement the PG game –
with the added advantages that benefit all users and the C-3PO.

4.5. Limitations
Our work suffers from a number of limitations. First and
foremost, besides the choice of parameters that is arbitrary
(despite being grounded in the science of decision making), we
recognize that our implementation of the public goods game is
specific to certain conditions that may be limited. The public
goods game can have numerous additional variants that we did
not incorporate into the model. For example, some variants
of the game incorporate only a single iteration games and
thereby amplify the importance of one’s initial choice. Alternative
implementations make the game fully transparent, where players
see one another. This transparency is known to change behavior
dramatically such that people are less likely to betray (Fiala
and Suetens, 2017). Yet, other implementations allow players to
choose how much of their wages to allocate rather than forcing
them to contribute the entire sum or not contribute anything
(and, in doing so, to generate internal safety mechanisms), or to
enable post-trial punishments, where betrayers can be costly to
the betraying individual (Andreoni et al., 2003).

All of these deviations have been shown to impact
trust and payoffs in real-world scenarios. Therefore, our
implementation may not speak to those alternative cases. Real-
world implementations of taxation, for example, are different
than ours since the government has the ability to identify
tax-evaders and punish them. Consequently, our model is not
necessarily generalizable to cases outside of iterative decision
making processes such as charitable donations or collective
fund management.

Second, our work lacks human behavioral verification. While
the choice of parameters in the regular game replicates the
outcomes of empirical studies, we do not have data that speaks to
the behavior of subjects in natural settings under the Blockchain
implementations. We cannot rule out a scenario where the

Frontiers in Blockchain | www.frontiersin.org 18 March 2020 | Volume 3 | Article 13

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/
https://www.frontiersin.org/journals/blockchain#articles


fbloc-03-00013 March 30, 2020 Time: 17:31 # 19

Cerf et al. Blockchain in Behavioral Economics

introduction of the Blockchain settings will alter key variants of
the behavior of humans and shift the outcomes outside of the
theoretical framework we laid out. For example, existing work in
decision making during behavioral economics games have shown
that saliency of information and outcomes may drive choices
more than purely strategic reasoning (Einhäuser et al., 2009;
Wang et al., 2010).

Third, while our work argues for Blockchain as a mechanism
for trust recovery, it is noteworthy that, as we suggest earlier,
most of the established methods for trust recovery involve direct
communication (i.e., in the form of an apology or reframing of
the dishonest act as a mistake). Blockchain’s anonymity makes
such mechanisms challenging. That is, the resulting increase in
trust is a product of collective optimization of interests rather
than genuine forgiveness or confidence in one another. While one
can argue that in some situations where collective distrust is grave
this may be the optimal solution our test did not pit those options
against one another and cannot speak to that.

4.6. Future Work
Besides additional tests related to the outlined limitations –
primarily the need for actual behavioral experiments testing the
Blockchain implementations – we would like to highlight one
key direction for future work that has applications beyond the
context of trust and public good: the adaptation of the optimized
Blockchain model for iterative decision making.

In our implementation, we allowed players to correct their
decision, following the exposure of information about the group
preferences (“optimized homo reciprocans” model). Players
could maximize their profit after learning about the group
selection. We constrained our implementation by forcing players
who already elected to contribute their wages to remain in the
contract and by allowing others to reverse a decision to betray.
Once the update has happened all the contracts were executed.

However, the model does not mandate that the update to
the ledger can only happen once. One could offer repeated
updates to allow for more optimal convergence. That is, one can
establish an iterative process by which the ledger gets updated
with a secondary choice and, once those choices are revealed,
a third choice, and so on. This process can continue until all
choices are settled, or until a set threshold of time/iterations
has been reached.

The tradeoff in repeated updates is that between
efficiency/speed and higher alignment of preferences. That
is, every iteration of updates may increase the alignment
between the players’ preferences and the outcomes, but will take
longer and require more changes of the ledger. Future works
can therefore offer: (1) an incorporation of a fixed counter
which will enable a set number of repeated optimization steps,
or (2) a counter that will dynamically adjust the number of
iterations allotted for a decision (presumably, proportional to
the number of players, n, or the payoff generated by the C-3PO),
or a (3) time-dependent counter. Notably, a time-dependent
counter (one that allows updates in a certain, fixed, period of
time; i.e., 10 min of updates for each iteration) resembles the
implementation of coin minting in Bitcoin implementation. In
this implementation, a new coin is minted every set fixed of
minutes (i.e., 10 in regular Bitcoin, compared to 2.5 in Litecoin).

The timing is proportional to the number of nodes on the ledger,
the overall CPU power of all nodes, and the time it took for the
last coin to be Hashed (Nakamoto, 2008). Similar implementation
may render the decision making process optimal.

Finally, additional work could investigate the effect of the
C-3PO’s inclusion on trust, independent of the Blockchain
implementation. Our work focused on the inclusion of the
Blockchain protocol and did not model any additional effects of
the benevolent recipient on the agents’ behaviors. The agents in
our simulations effectively acted as if there is no C-3PO in their
decision making strategies. Prior works looking at the change in
dynamics due to the introduction of 3rd party recipient show
that the external party often alters the game dynamics (i.e.,
in 3rd party dictator game, 3rd party prisoner’s dilemma, 3rd
party punishing agents, or games with observers/audience the
inclusion of a 3rd party typically changes the group behavior,
Fehr and Fischbacher, 2004b). Testing of the effect of the C-
3PO alone would help understand the weighted contribution of
the Blockchain implementation and the tuning levers that drive
agents to behave differently in their contribution merely because
of their (dis)interest in helping the benevolent benefactor.

4.7. Managerial and Policy Implications
The abovementioned implementation of optimized Blockchain
with repeated updates has bearing in reality as some processes
of collective decision making involve such iterative updates.
Below we highlight some of those. These are all real-world
cases which can be seen as field-studies supporting the
theoretical ideas proposed in the work, or as suggestions for
improvements of existing frameworks that may benefit from an
implementation of the models.

4.7.1. Caucuses Voting
One case we suggest is that of Primary elections using Caucuses.
In those elections (implemented currently in various countries
such as Australia, New Zealand, Canada, Nepal, United States,
and South Africa) a group of voters are gathered at a certain
time/place to vote on a topic (i.e., select a candidate out of a
number of options in a U.S. state such as Iowa). Initially, each
voter makes their decision (implemented, at times, by physically
standing next to their preferred candidate’s sign). Once voters
see that other candidates may have more votes, or as they are
called by their peers to join their ranks, they gradually update
their selection. Over time, candidates with low voter counts
dwindle down and the voters gradually move to other locations,
thereby converging toward the winner. This iterative process
yields a candidate selection over multiple rounds of decision and
through group dynamics.

One challenge of this method of voting, which is frequently
used as a criticism of the method, is that it removes the anonymity
of the process and therefore is subject to external influence (i.e.,
individuals with more power may drive the voting decisions of
ones with less power against their interest). In addition, caucuses
often require people to be in the same place physically and
spend a considerable amount of time during the process of
continuous updates.

Our Blockchain implementation can resolve this in an efficient
manner that does not require voters to be in the same location,
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and allows anonymity. The ledger will include all the details of
each step, and voters would be able to update their preferences
based on current data (or submit a ranking of their candidates
ahead of time) without the need to disclose their identity.

4.7.2. Stokvel
Stokvel are clubs of, typically, about dozen people, who
are prevalent primarily among low-income individuals in
South Africa. Stokvels allow a group of people to increase their
financial power by aggregating and pooling the resources of all
members (Schulze, 1997). Effectively, the Stokvel operates such
that in every fixed period of time (e.g., monthly) all members
give a fixed sum of money to one member who uses the fund
as they please. That is, every member gets a boost in income
once every couple of months. This is used as a mechanisms to
exert peer pressure to save (as individuals who do not have the
money to donate are scrutinized by the other members), yields
higher purchasing-power by the individual who has the collected
money, and creates a sense of community among all participants
(Schulze, 1997). The implementation of Stokvel, however, is often
technically challenging and is therefore frequently limited to
communities that are able to physically meet. This means that
individuals that are more isolated geographically, or are not as
social, suffer greatly from their inability to join a Stokvel. Our
Blockchain implementation could be used as a technological
way to generate Stokvels outside of a geography and even
across countries.

4.7.3. Negotiations
In negotiations, making the first offer can be an advantage
or a disadvantage. One the one hand, making the first offer
anchors the other side and sets the tone for the remainder of
the conversation (Kristensen and Gärling, 1997; Galinsky and
Mussweiler, 2001). On the other hand, it can result in less than
optimal outcomes, if one does not have enough information
about how much the other side values a particular item or issue
(Maaravi and Levy, 2017). A Blockchain implementation in the
context of negotiations could act as an “escrow” that allows all
parties (two or more) to submit their initial offer independently
and have all the offers either be revealed simultaneously, or even
updated iteratively across players in a fashion similar to the one
we depicted in the optimized Blockchain model.

4.7.4. General Election
Finally, the protocol can facilitate truly democratic elections
that reflect the group preferences in an optimally democratic
way. That is, we suggest that the optimized Blockchain
implementation can be generalized to the context of voting.
Whereas in many elections the decision by a voter is done in an
isolated moment, and is independent of the choice of others, the
protocol suggested here can offer a way to calibrate the outcomes
to the group preferences in a gradual process.

Imagine the following scenario: a voter in California believes
that, based on historical data on prior Presidential elections in
the U.S., the state will end up with a majority for the Democratic
candidate. Although she is a supporter of the Democratic party,
she decides to skip the voting altogether and stay at home (e.g.,
because she is ill and prefers not to vote given that she is certain

of the outcome). At the close of the ballots in the evening she
learns that numerous voters acted similarly, and that the low
turnout of the Democrats has led to a majority of Republicans
in California. The state, to many voters’ surprise, ends up with
a Republican electorate. Had the voter known that this was the
case, she tells herself, she would have surely voted. However,
her choice cannot be exercised anymore as the current voting
system does not allow for correction after the ballots are closed.
An alternative Blockchain-based implementation of voting can
afford voters “conditional decisions.” That is, the voter can indeed
behave as she did before, but if the outcomes are different
than those expected, she can post-hoc alter her decision and
exercise her vote to help tilt the decision toward her preferred
candidate. This suggest that, once the results fully converge, with
no more changes (or: a small enough number of changes by
the entire group, a timeout, or a number of alterations that is
lower than a fixed threshold) the outcome will reflect more of
the public opinion.

Polling data from the so-called “Brexit” vote in England
suggest that a similar situation have led to the outcome of “Leave”
vote. The majority of voters did not exercise their voting right,
with the assumption that the “Remain” vote will win (polling
data supported this belief). The outcome was a surprise to
those voters. If they had the option to reverse their decisions
to not vote, they would have exercised the right and may have
altered the outcome.

Similarly, one can imagine a conditional vote where a
constituent in a certain location wishes to exercise a protest vote
(i.e., vote for a candidate with a low probability of winning; say,
Jill Stein in Michigan during the 2012 U.S. Presidential election).
The voter engages in the protest vote with the underlying belief
that the state will end up with a majority that aligns with the polls
(in the specific case: an expected significant win for candidate
Clinton). If, to their surprise, the state ends up with a majority
that is different than the one expected (as indeed was the case)
then the voter may say that they wish they were able to “go
back in time” and vote for candidate Clinton. Again, while this
is not possible in current voting conditions a Blockchain system
that resembles the optimized simulation shown here would allow
individuals such conditional voting. The ledger will carry all
options and all voters will act as each other’s’ guarantors of the
stated contract.

Smart voting contracts could enable voters not only to change
their decisions based on outcomes, but also aim for specific voting
proportions (i.e., “I would like to include my vote such that
candidate Macron wins the vote, but does not win by over 60%
majority, so that it does not seem like I have no reservations about
his policies”) and even determine their votes conditionally (i.e., “I
would like to vote like my wife, and do not need to know what I
end up voting for”).

Finally, in countries where proportional representation
methods are used (i.e., Argentina, Turkey, Israel, Hong-Kong,
Germany, or Netherlands) the Blockchain voting mechanism can
be used to ensure that no votes are lost. In those countries a cutoff
is set based on the number of citizens who voted to determine
a bar for entry into the parliament. That is, once all votes are
cast a fixed number is set (proportional to the number of voters)
that indicates what is the least number of votes necessary to be
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included in the parliament. Parties that received a lower number
of votes are disqualified and the votes attributed to them are not
included in the final tally. Here, again, a conditional Blockchain-
driven voting can insert into the ledger a “replacement” choice.
The iterative process can include multiple steps of voting and,
ultimately, an outcome that is more reflective of the democratic
process, the majority decision, and the overall public good.

A number of platforms, such as “FollowMyVote” (a
blockchain venture allowing for secure, anonymous voting),
and “Agora” (a blockchain voting service that was recently
used across 280 polling locations in Sierra Leone’s Wester
District) have demonstrated real-world implementations of
the suggested architecture. Similarly, a concept termed “liquid
democracy” is currently discussed among political technologists
as a mechanism to allow voters to give feedback on policy issues
or pieces of new legislation based on knowledge and availability,
in real time. Under liquid democracy platforms, voters can select
a personal representative who has the authority to be a proxy
for their vote. The proxy can be changed as voter’s interests
change. Additionally, a proxy can have a proxy of their own –
creating a directed network graph that connects multiple voters
to politicians. When a need for a collective decision occurs,
individuals (or their proxies) offer their opinion in the form of
a rapid vote – allowing their representatives to get an accurate
sense of the public opinion.

In alignment with our suggested implementations, voting can
use a smart contract to align one’s ideals with experts that the
agent identifies. The smart contract will ensure that the agent’s
interests are taken into account and provide a signed evidence
for the voter proxy’s decision after it was made. When legislators
are voting on topics that the individual may not have an informed
opinion on, such a system can be used to maximize their utility
and interests-alignment, without the need to engage with every
decision. This, in turn, may yield better representation and more
accurate reflection of the popular view.

In alignment with the voting implementations of our
architecture, recent platforms have been developed also for
healthcare solutions. In these platforms, healthcare ecosystem
allow providers and individuals to access, move and share their
healthcare data over a Blockchain protocol and reach consensus
decision on ideal care outcomes. Users are able to trust unknown
providers and practitioners, get opinions from multiple sources,
share records with various groups in ways that benefit both the
patients but also the collective (i.e., share symptoms and care
outcomes without disclosing the identity of the patient), and
iterate over a decision multiple times if they are not satisfied with
the initial opinion.

Finally, in the context of consumer goods, architectures
similar to the one implemented in this paper were suggested
to allow users to buy/sell tickets for shows/events without the
risk of fraud. The collective interest in honest and trustworthy
exchange of tickets benefits all participants and provides reliable
mechanisms to avoid price hiking and ensure the integrity of
the sale. As an additional benefit, the platform provides higher
accuracy in the data used by event planners with respect to
attendance, audience engagement and customer experiences.
The participants maintain the integrity of all transactions while
the various nodes in the system allow for convergence to

optimal ticket prices, maximizing of the number of tickets used,
and rapid exchange.

Taken together, these recent examples all show that the
suggested Blockchain platform can be used for implementations
beyond the mere allocation of funds toward a third party while
maintaining the agent’s interest, but rather for an interactive
decision making that benefits all parties as well as the collective.

It has not escaped our noticed that the implementation laid
out in the above cases may give rise to an entirely alternative
mechanism for group decision making and public trust recovery.
While the PG game was paralleled to investment groups
(Shane et al., 2019), collective purchase groups, crowd funding
and numerous financial implementations, we see the work as
instrumental in its offering to both increase trust and allow
individuals to better align their preferences with their outcomes.

Given the strong positive correlation between GDP
and trust, and the inverse correlation between trust and
corruption (Edelman trust barometer, 2019) we suggest that
an implementation of Blockchain protocols similar to the one
suggested here can help regain trust in a collective way, even
at the country level. In countries where profit maximization is
valued (i.e., Capitalistic countries such as the United States) the
protocol can help people generate higher individual payoffs.
In countries where shared interests are valued (i.e., Socialistic
countries such as Sweden) the fact that the C-3PO maximizes
the yield would be seen as valuable), and in countries where
corruption is widespread and disbelief in centralized entities
prevails (i.e., Zimbabwe) the protocol can be useful to gradually
rebuild trust in collective institutions.

As measures of trust show a decline in institutional trust
(Edelman trust barometer, 2019), the reliance on mathematics
could provide a reliable remedy for our world. As stated by one
of the pioneers of the Blockchain technology: “who do you trust
more – the governments or mathematics.”
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APPENDICES

Appendix 1
A set of n players (for the sake of the example, we use n = 10) are working in a village and receive equal salary for their work,
daily, in the morning. The daily wage for each player, w, is $10. Therefore, the total money earned by the players is 10 x $10 = $100
(n x $w). Each individual can choose to keep their income or to contribute it to shared account (e.g., a collective savings account
with fixed interest). The shared account generates an interest and multiplies the amount 6x (600%) over the course of the day (note:
prior research investigated the ratio between the number of players and the multiplier shows varying behaviors pertaining to these
proportions. See Gunnthorsdottir et al. (2007).

If all players contributed their wages in the fund ($100), the interest would increase the shared amount to $600 at the end of the day.
Out of the total, an amount equivalent to the total sum contributed by the players initially ($100 out of the $600) is donates to a

3rd party (e.g., a charity, a tax, or a fee collected by a fund manager). The remainder of the sum in the shared account is divided by
all players, regardless of whether they contributed their wages or not. Each player therefore receives 1/n shares of the fund’s total left
after the donation to the charity.

Mathematically, this can be annotated:

dividend =
(total income × interest)− charity

n
The total money earned by each player is then:

player payoff = wages not shared + dividend= wages not shared +
(total income × interest) − charity

n
Players can contribute their wages to the shared account or keep the money and benefit from the wages of their peers.

To illustrate the outcomes of the game, we highlight three scenarios:

(1) Complete trust. If all (n = 10) players contribute their wages to the shared account ($100) then the total amount yielded at the
end of the day would be $600. Of this amount, $100 goes to the charity, and the remaining $500 is divided equally by all players.
Therefore, each player started the day with $10 and ended with $50. This is one equilibrium state.

(2) Complete distrust. If all players do not contribute their wages to the fund ($0) then the total yield at the end of the day is $0.
The charity therefore gets nothing, and the players receive no additional income outside of their initial wages. The total for each
player is then $10.

(3) Betrayal. If, say, one player chooses to betray the public good, while all others still act in “complete trust,” then the shared
account receives $10 × 9 (players) = $90. Multiplied 6 times the total is $540. The charity gets $90 and each player gets ($540 –
$90)/10 = $45. However, the one player who betrayed the public good and did not contribute their wages benefits from receiving
both the dividend and maintaining the original wage. Their total income for the day is therefore $10+ $45 = $55.

Notice, versions of the game exist where players can choose to also contribute part of their money (i.e., only $3 out of their $5).
These are analogous to a version of Ultimatum games.

Below is a table for payoffs to each individual across various scenarios in a game with a charity and n = 10 players.

Non-betrayer income ($) C-3PO income ($) Betrayer(s) income ($)

Full trust
((10− 0)× $10)× 6− ((10− 0) × $10)

10
= 50 100 N/A

1 betrayer
((10− 1) × $10) × 6− ((10− 1) × $10)

10
= 45 90 10 + 45 = 55

2 betrayers 40 80 10 + 40 = 50

3 betrayers 35 70 10 + 35 = 45

i betrayers
((n− i) × $w)× 6− ((n− i) × $w)

n
(n− i)× $w $w+ (n− 1)× $w

7 betrayers 15 30 10 + 15 = 25

8 betrayers 10 20 10 + 10 = 20

9 betrayers
((10− 9)× $10)× 6− ((10− 9)× $10)

10
= 5 10 10 + 5 = 15

Complete distrust N/A 0 10
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Appendix 2

List of all variables/parameters used in the work:

Symbol Meaning Example (in our model)

n Number of players 10

N Number of iterations in a game 1,000

s Single player 1..10

w Wages $10

E Decision by a player to contribute their wages in a trial 0/1

T Trust 0..100%

iT Initial Trust 0..100%

η1 Decrease in trust 0..100%

η2 Increase in trust 0..100%

ρ Personal reason for betrayal 30%

ε External reason for betrayal 10%

µ Number of players under which an agent does not participate in a trial despite foregoing profit (“Fairness”) 3..10

x Number of iteration used to determine the block validator (based on largest contribution in the prior x trials) 50

y Number of candidate nodes eligible to become validator 10 (even for n > 10)

z Validator fee (not implemented in our simulations) 1%

τ Iteration timeout (not implemented in our simulations) 10 s

Blue: variables manipulated. Black: fixed parameters. Red: calculated arguments. Green: Blockchain implementation parameters.
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