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In this paper we introduce a new zero-intelligence framework to analyse price formation in
a cryptocurrency decentralised exchange (DEX) combining agent-based modelling and
real trading history. We shuffle real Uniswap order event data and replay back into the
automatic market maker (AMM) matching mechanism. We study how decomposing real
markets down from bounded rationality to zero-intelligence markets in a controlled
experiment affects liquidity provider’'s impermanent loss, trade slippage and price
efficiency.
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1 INTRODUCTION

Decentralised Finance (DeFi) has recently shown phenomenal growth in the blockchain and
cryptocurrency space. Recognised as an alternative and potential disruptor to traditional
centralised finance, DeFi offers the prospect of higher levels of financial access allowing the
ability for a suite of financial products to be built on permissionless distributed blockchains.
This allows financial products and services to be deployed as code and users can interact with each
other through smart contracts that operates as self-executing code on the blockchain. Participants
thus can interact with each other cutting out the middleman of financial institutions who
traditionally provided the service of intermediation. In addition to providing alternative access
to traditional financial products, DeFi also offers the possibility of unique financial architecture to be
added piecemeal as “money legos” to the financial ecosystem. A novel product that has seen
increasing success are DEXs (decentralised exchanges) that allow users to supply and source liquidity
by interacting through protocols coded as an algorithm that provides an automated market making
function. The study of user behaviour and effects of strategic interaction with the automated market
maker (AMM) mechanism in DeFi is still in a nascent stage as the DEX space is emerging.

Behavioral finance has highlighted many examples which cast doubt on the assumption that
agents make trading and investing decisions in financial markets with perfect rationality [Hirshleifer
(2001); Barberis and Thaler (2003)]. This has led to alternative modelling paradigms, such as agent-
based modelling, in which the detailed nuances of less-than-perfect decision making are
incorporated into models which attempt to tackle the messiness of real-world markets by taking
a bottom-up approach to the modelling problem. One radical approach to modelling rationality is to
drop it entirely from the model. Surprising as it may seem, such zero-intelligence models are often
able to account for empirical features of actual market data, suggesting that many regularities in
economic time-series data can arise from the environment in which agents trade—i.e., the market
microstructure, rather than the particulars of the trading decisions themselves (Gode and Sunder,
1993).

A typical approach to building a zero-intelligence model of a financial market is to build a simple
random simulation model of the order-submission process; in the simplest case, we can use arbitrary
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distributions from which to draw i. i.d. random variables such as
the size and sign of orders. A more subtle approach is to calibrate
the statistical model of order-flow against the statistical properties
of empirical data.

In this paper we present a novel version of a calibrated zero-
intelligence model. We do this by simply taking existing order
flow and shuffling its ordering and then simulating back through
the AMM matching mechanism. We make some adjustments to
liquidity removal actions to ensure liquidity pools can never go
negative. The output of many shuffles is then analysed using two
main market quality metrics used in the AMM space such as
impermanent loss and slippage along with a price efficiency
metric well known in traditional finance. Our simulations
show that a zero-intelligence AMM model has lower
impermanent loss, higher slippage and lower deviation from a
random walk (suggesting higher price efficiency).

For the rest of this section we give a background to the DEX
space within DeFi and related work in the zero-intelligence
literature. In Section 2 we describe the Uniswap V1 protocol
along with the open-source cadCAD Uniswap model that sources
the underlying empirical dataset and digital-twin simulation
platform used before describing how this data is shuffled. In
Section 3 we describe and analyse metrics on impermanent loss,
slippage and price efficiency. Finally we conclude in Section 4
discussing the results and outlying future work.

1.1 Decentralised Exchanges, Automatic
Market Makers, and Cryptofinance

Cryptocurrencies are digital currencies that do not rely on a
central authority such as a central bank or government. The
global cryptocurrency market capitalization is currently $2.29
USD trillion'. Since the maturing of Bitcoin the first peer to peer
cryptocurrency on the bitcoin blockchain, there has been a rapid
growth in decentralised finance (DeFi) applications built on the
Ethereum permissionless blockchain. These DeFi applications
make use of smart contracts that allow pre-existing computer
code to determine the terms between counterparties and be
recorded on the blockchain. The amount of assets or total
value locked (TVL) held in DeFi applications has grown in the
last year from roughly $20.21 USD Billion to $74.63 Billion USD?.
The biggest components of DeFi are lending protocols such as
Aave and Compund and decentralised exchanges (DEXs) such as
Uniswap and Balancer. DEXs offer an alternative way for buyers
and sellers to trade cryptocurrency without going through a
centralised exchange. Traditionally financial exchanges operate
using a limit order book mechanism to match buy offers with sell
offers. Centralised cryptocurrency exchanges such as Coinbase
and Binance also use this mechanism where liquidity is provided
by limit orders and consumed by market orders. In a dealer
market, registered market makers will buy and sell stock regularly
continuously at publicly quoted prices. In these markets the bid-
ask spread compensates the liquidity provision.

'See https://coinmarketcap.com, accessed on 11 October 2021.
*See https://defipulse.com, accessed on 11 October 2021.

A Shuffled Replay of Uniswap

The most popular DEXs use an automatic market maker
(AMM) protocol whereby users can stake and remove
liquidity and interact with users who want to swap one
cryptocurrency for another. A user of an AMM like Uniswap,
can swap token A for token B by depositing token A into the
AMM’s liquidity pool and remove token B. The counterparty is
thus the AMM liquidity pools, which consist of the funds of the
tokenised assets (in this case the fictitious tokens A and B) seeded
by a community of liquidity providers who consist of individuals
and institutions staking their assets. These assets are converted
into a smart contract and the pricing of the tokens are
algorithmically determined that allows traders to transact 24/7.
In return for staking their assets, liquidity providers are issued
with liquidity tokens by the protocol. These liquidity tokens act
like an accounting unit to a claim on their share of the liquidity
pool balances which will benefit from accrued fees paid by users
looking to swap tokens.

Automatic market makers (AMMs) thus offer an automated
way for buyers and sellers to interact. Indeed in more mature
equity and fixed-income markets, algorithmic trading market
making strategies are already a big part of high-frequency trading.
AMMs have been extensively studied as a method of information
discovery in thin prediction markets since it was introduced by
Hanson (2003). In building a blockchain automated market
maker, a smart contract designer sets up a price function that
will buy and sell to all comers at that price. Prices move when
trades occur. Thus market makers do not adjust prices but rather
are dependant on arbitrageurs (typically arbitrage bots) to trade
and readjust token balances to bring prices back to equilibrium.
Any user can be a liquidity provider and stake tokens in a liquidity
pool. Other users can access that liquidity and exchange tokens
based on a pricing function dictated by their relative availability
in the pool. The AMM protocol thus, offers a simplified
decentralised way to automate trading and has the advantage
of being cheaper and faster than an order book to store on a smart
contract. It does have however potential drawbacks of being more
at risk from front-running by miners who validate transactions
on the blockchain (Harvey et al., 2021). In an orderbook, liquidity
provision is compensated by earning the bid-ask spread and faces
the risk of adverse selection. In an AMM, liquidity providers
(LPs) are compensated by fees paid when users looks to exchange
or swap one cryptocurrency token for another. LPs however run
the risk of impermanent loss i.e. the price ratio of staked assets in
a pool changes at the time of withdrawing them from the pool.

1.2 Zero-Intelligence Models

For a comprehensive review of agent based modelling and zero-
intelligence (ZI) modelling in finance see Chakraborti et al.
(2011). In this section we give a an overview of the lineage of
ZI models of financial markets that lead to this work. Early work
in computational economics modelled order flow in a continuous
double-auction market using various types of zero-intelligence
traders which place orders with prices drawn iid. at random from
exogenously-specified marginal supply and demand functions
[Gode and Sunder (1993); Cliff and Bruten (1997)]. This was
extended to a financial markets by Ladley and Schenk-Hoppé
(2009) who showed that a similar model could replicate several of

Frontiers in Blockchain | www.frontiersin.org

July 2022 | Volume 5 | Article 745101


https://coinmarketcap.com
https://defipulse.com
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Palit

the empirically-observed stylized facts of financial time-series.
Within econophysics this approach has been extended to
incorporate the entire life-cycle of an order on a typical
exchange in which both market orders and limit orders are
taken into account, moreover the limit-order cancellation
process is also modelled [Challet and Stinchcombe (2001);
Maslov (2000); Téth et al. (2010)]°. This interplay of random
cancellation and random order-submission is modelled as an
evaporation-deposition process which is able to reproduce fat-
tailed return distributions, long-range correlations and a non-
trivial Hurst exponent of the price signal [Maslov (2000); Preis
et al. (2006, 2007)].

Mike and Farmer (2008) was one of the first models to
introduce calibration of zero-intelligence models using market
data. Using London Stock Exchange (LSE) order placement and
cancellation data to calibrate parameters of their model, they
managed to reproduce realistic spread and volatility dynamics for
a group of LSE stocks. Palit et al. (2012) introduced a zero-
intelligence model where the probability of different event
categories, classified according to their aggressiveness, was
calibrated  against empirically  estimated  conditional-
probabilities. Brandouy et al. (2012) revisited the zero-
intelligence paradigm and found to get a quantitatively
realistic model (i.e. replication of stylised facts) more and
more constraints had to placed on zero-intelligence traders,
and thus concluded although these models had insights into
market microstructure, behavioural considerations were needed
for useful financial engineering and predictive power. In our ZI
approach we look not to replicate stylised facts to show what can
be attributed to the market microstructure, but rather how
market quality metrics are affected by strategic behaviour
when it is removed.

Another strand of financial agent based models look at “weak-
intelligence” models that model the interaction of different types
of strategies for example chartist, noise and fundamental
strategies [LeBaron and Yamamoto (2007, 2008); Chiarella
et al. (2009)]. In the cryptocurrency space, Cocco et al. (2017)
show calibrated simulated interaction between chartists and ZI
traders on an order book can mimic Bitcoin prices. Angeris et al.
(2021) simulate arbitrageurs, convenience traders and LPs
interacting through the Uniswap V1 mechanism and show
protocol prices track reference external prices in a stable
manner through a range of market conditions. In this paper
we take an alternative approach which is to shuffle existing order
data and replay in the matching mechanism. The advantage of
this very simple approach is that it enables a like-for-like
comparison between the zero-intelligence data and the
empirical data. By directly using empirical data as the
underlying data from which to generate the zero-intelligence
dataset and not drawing from preset distributions, we attempt to
avoid making any unwarranted assumptions and play back
realistically calibrated data into the automatic market maker

*Market orders are scheduled for immediate execution at best prices. In contrast
limit-orders are queued on the exchange until a counter-party can be found who is
willing to trade at the pre-specified price limit.

A Shuffled Replay of Uniswap

(AMM) matching mechanism. We study how decomposing
real markets down to zero-intelligence markets in a controlled
experiment affects metrics on the profitability of liquidity
providers, slippage of trades and price efficiency.

2 SIMULATION, DATA, AND SHUFFLING
METHODOLOGY

2.1 The Uniswap Decentralised Finance
Protocol

Uniswap is a constant product AMM smart contract on the
Ethereum blockchain. Uniswap created by Hayden Adams,
launched November 2018 and provides certain liquidity and
price discovery for ERC-20 tokens. ERC-20 is the main
Ethereum based standard that allows fungibility across all
tokens. This standard is a set of commands that allows
integration and interoperability with other ERC-20 token
compliant contracts, wallets and marketplaces.

Instead of an orderbook, Uniswap operates its’ own AMM
with a constant product market built on Ethereum. The constant
product follows the following formula:

xxy =k (1)

where x represents the amount of token A in the pool and y
represents the amount of token B in the pool. The constant
product k is termed the invariant which determines the price of A
in terms of B (and vice versa) dependant on the volume wanting
to be traded. This price formula graphed below in Figure 1 shows
these prices change depending on the amount of a token being
bought. The slope of the curve can be thought of as the spot price
assuming an infinitesimally small amount is bought (or swapped
as the other token is deposited or sold). However as the amount
bought increases the per unit cost increases at an increasing rate
to ensure that Eq. 1 holds. The constant product of the token
balance thus should always equal the invariant. The term
invariant is actually a misnomer as the invariant always
changes slightly every trade as fees are charged for every swap.
For Uniswap V1, 0.3% fees are charged. Also the invariant k
increases when liquidity providers add liquidity to the AMM (i.e
add quantities of both tokens to the pool) and decreases when
they remove their liquidity (withdraw quantities of both tokens
from the pool). Thus liquidity providers add/remove liquidity to/
from both pools and liquidity takers remove liquidity in one pool
in exchange for adding to another. Although Uniswap V1 and V2
is a constant product market maker (CPMM), its V3 instance
launched May 2021 adds extra features e.g. the ability to submit
liquidity within custom ranges that are similar to limit orders in
an orderbook (Adams et al., 2020). Indeed other AMMs use
variations such as constant mean market maker (CMMM),
constant sum marker maker (CSMM) and constant product
market maker (CPMM) pricing. This opens the door to
AMMs functioning using a myriad of various hybrids amongst
these pricing functions. Mohan (2022) shows these different
pricing functions and various permutations can be unified in a
framework as a homogeneous family of pricing functions.
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FIGURE 1 | The Uniswap constant product pricing function (x*y = k).

2.2 Simulations of Uniswap in cadCAD

Our simulations are run in cadCAD a Python package designed
by BlockScience to experiment with the interaction of complex
systems and agent behaviours*. We make use of their cadCAD
Uniswap model that imports real data and replicates the
mechanics of a real-world smart contract by replicating the
smart contract Uniswap V1 Vyper code into Python. Thus the
open source cadCAD model can be described as a Python “Digital
Twin” representation of Uniswap that allows experimenting with
historical and/or synthetic transactions’.

In our cadCAD model we make use of the open-source digital
twin repository and use it as a base for our own “Shuffled Replay”
model. Essentially we take the historical data, shuffle the dataset
and replay it back into the Uniswap smart contract. The state
output variables at each event timestep such as ETH tokens, DAI
tokens, UNI supply and invariants can be analysed in each of our
simulation runs. In each of the 100 Monte-Carlo simulations we
shuffle the dataset with a new seed and match the output to the
original timestamps. For all results from the shuffled model, we

*https://block.science/.
*Open source Github repository with code and datatset can be accessed here:
https://github.com/cadCAD-org/demos/tree/master/demos/Multiscale/uniswap.

present a mean value of the calculated metric over the 100 Monte-
Carlo simulations runs in Section 3. We then compare from the
output of the “Digital Twin” model as our representation of the
real-world metrics. We choose to use the “Digital Twin” as the
original dataset exhibits many swaps (trades) with negative
slippage when many events share the timestamp. Timestamps
are only granular to the 1s level i.e. ‘hh:mm:ss’ format. Using the
“Digital Twin” processed data, instances of negative slippage
disappear.

Our model uses data from 2 November 2018 to 31 March 2020
extracted using an ETL (extraction, transformation and loading)
Google big query of ETHDAI Uniswap smart contract data from
the Ethereum Blockchain®. Ether (ETH) is the native
cryptocurrency of the Ethereum platform. DAI is a stablecoin
cryptocurrency which is engineered to keep its value as close to
$1USD. In strategy performance metrics calculated later in
Section 3 we convert to DAI to compare performance. With a
Uniswap ETHDALI pool, liquidity providers deposit ETH and
DAI tokens in the liquidity pool. In exchange they mint UNI
tokens - “shares” of that Uniswap instance. Not to be confused

°The dataset used in this study can be found here: https://www.kaggle.com/
markusbkoch/uniswap-ethdai-exchange/data, accessed on 11 October 2021.
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TABLE 1 | Absolute counts and probabilities of liquidity events.

Event Count Percentage (%)
AddLiquidity 3,389 1.91
Approval 290 0.16
EthPurchase 80,155 45.23
RemovelLiquidity 2,403 1.36
TokenPurchase 85,544 47.71
Transfer 6,420 3.62

Total 177,201 100

with the Uniswap governance token, UNI here refers to the token
that liquidity providers receive when they add liquidity to the
pool - i.e. an accounting unit that represents pool ownership. So
there are three token pools that are maintained ETH, DAI and
UNI at each timestep with a balance and a delta (change from the
previous timestep). Table 1 below shows the breakdown of the
177,201 different events in the dataset with their absolute counts
of occurrences and their percentage share of all events during the
period.

An EthPurchase removes ETH from the ETH pool and adds
an amount of token DAI in exchange to the DAI pool. In the
cadCAD setups (both digital twin and shuffled replay), the
variable taken from the historical dataset is the DAI delta i.e.
how many tokens were sold and added to the DAI pool. This goes
through the Uniswap pricing function and the appropriate
amount (also taking into account of 0.3% fee which reduces
the quantity purchased) of ETH is removed from the pool.
Analogously for TokenPurchase events, the models take the
historical ETH delta i.e. how many ETH were sold and added
to the ETH pool, removing the appropriate amounts of DAI from
the DAI pool.

For an AddLiquidity event, the simulation takes the historical
ETH delta and deposits that to the ETH pool. That same quantity
is converted to DAI (price is the ratio of DAI and ETH balances
states) and is also added to the DAI pool. The same occurs with
the UNI pool and the same amount (ETH delta converted to UNI
tokens again as a ratio of the UNI and ETH current balance
states) is added or rather “minted” (as technically they hitherto
did not exist) to the UNI pool. In the original real data this is
represented with two events: an AddLiquidity event that adds to
the ETH and DAI balances and a Transfer event that mints and
adds the UNI tokens to the UNI pool. In the simulations (both
original digital twin and shuffled ZI) this is all done in the same
step when replaying an AddLiquidity event.

For a RemoveLiquidity event, in the real data both ETH and
DAI are removed from their respective pools. Then a
corresponding Transfer event removes or rather “burns” (as
these coins are technically destroyed) UNI from the pool. In
the simulation models, RemoveLiquidity events are processed
when there is a Transfer event with a negative UNI delta. The
amount of this delta is converted to ETH and DAI amounts which
are also removed from the pool. In the cadCAD “digital twin”
simulations, this is implemented by converting the UNI delta to a
percentage burned amount as a function of the existing UNI
supply. This percentage of ETH and DAI (and UNI) are removed
from the pool. In the Shuffled Replay model, the simulation

A Shuffled Replay of Uniswap

TABLE 2 | Uniswap trade classifier estimation.

Retail precision (4dp) Convenience Arbitrage None
Count 62,069 102,630 12,502
Percentage (%) 35.08 57.92 7.06

maintains a pointer to the original data to access the historical
percentage of liquidity removed i.e. the historical UNI delta as a
percentage of UNI supply at the original timestep. This
percentage liquidity removed is “replayed” (albeit at its
simulated shuffled event timestep) and accordingly UNI, ETH
and DAI balances are removed according to that historical
percentage. This ensures the simulation doesn’t go into a state
of negative balances (i.e. liquidity is removed that is not there due
to the shuffling) as it is always a percentage of available liquidity
that is removed. The total amount of AddLiquidity and
RemoveLiquidity events in the real data is 5,792 events (3,389
+2,403). There is always a Transfer event for each of these events.
There are 6,420 Transfer events. For the remaining 628
(6,420-5,792) Transfer events and 290 Approval events the
real data shows O changes or deltas for ETH, DAI and UNI
balances in the historical data so both in the real data and
simulations there are essentially ineffectual and the simulation
does not change any balances or prices when encountering these
events.To give an idea of the level of arbitrageur strategic
behaviour in the real trading activity we use an algorithm that
attempts to classify Uniswap trades between convenience and
arbitrage trades based on the precision of the amount of coin sold
(DAL for EthPurchase and ETH for TokenPurchase). As ETH
protocol dictates the minimum ETH denomination is one WEI,
which is equivalent to 1E10-18 ETH.” So the more precision the
traders sells tokens with i.e. specifying more ETH up to a
maximum 18 numbers the more likely the trader is an
arbitrage trader as opposed to a convenience trader. The
classifying algorithm we use use is a rule of four ie. if the
trader ETH or DAI delta is in the range we 1E10-1 to 1E10-4
(resp. 1E10-5 to 1E10-18) we classify the trade as a convenience
(resp. arbitrage) trader.® In Table 2 our estimates show that
roughly 35% of events are convenience trades, 58% are arbitrage
trades and 7% are other non swap events (i.e., either
AddLiquidity, Approval or Transfer events). In Figure 2, we
show the counts and percentages on the historical data per block
on the Ethereum blockchain. It shows the level of arbitrage
activity increasing from roughly 40-80% during the sample
period. This is the type of strategic behaviour that is destroyed
by our shuffling experiment and thus we can see the effect it has
when removed. It is worth bearing in mind that it is not just swap/
trade events (EthPurchase and TokenPurchases) that are shuffled

"Written as a full number up to the full 18 decimal places instead of scientific
format one WEI = 0.000000000000000001 ETH.

*The algorithm we use can be found here: https://github.com/neo-empresarial/
uniswap/blob/arbitrage/trade-classification-tests.ipynb - accessed 1 July 2021. The
analysis shows on the same historical dataset that a classifying value of four is an
appropriate value. We thank the developer for making the code open-source.
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FIGURE 2 | Uniswap Trade Classifier Estimation, Retail Precision (4dp) of Convenience and Arbitrage trades in counts and percentages per block.
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but also liquidity providing events as well (AddLiquidity and
Remove Liquidity). Thus both liquidity taking and provision roles
are now acting with ZI traders’.

°To examine whether our shuffled order flow results are sensitive to the shuffling of
liquidity events, we repeat the analysis in this paper comparing unshuffled (Digital
Twin) and shuffled (Shuffled Replay) with every liquidity event (AddLiquidity,
RemoveLiquidity, Transfer) switched off in the simulations (both Digital Twin or
Shuffled Replay). This means when a liquidity event is encountered, all token
balances are unaltered (ETH, DAI and UNI deltas are zero) and UNI token supply
remains constant throughout. These Supplementary Tables show economically
similar results and are available on request. We thank a reviewer for suggesting this
robustness check.

3 RESULTS

3.1 Liquidity Providers’ Impermanent Loss

We first show some statistical results of three different strategies
measured in token DAI in Table 3. ETH Hodler is calculated by
the price of ETH (in DAI) at every hour and the prices are
sampled every hour and converted into annualized returns by
taking the difference of logarithms of this timeseries and
multiplying by 252*24. The same is done for the UNI price
and a 50:50 strategy whose price is equal weighted between ETH
(in DAI) and DAL Table 3 shows higher returns in the shuffled ZI
treatment possibly due to less value drain from arbitrageurs. The
value of the UNI coin which can be seen as a proxy for the returns

Frontiers in Blockchain | www.frontiersin.org

6 July 2022 | Volume 5 | Article 745101


https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Palit

TABLE 3 | Stylised Facts of hourly price returns.

A Shuffled Replay of Uniswap

Treatment Strategy Mean Std dev Skewness Kurtosis Jarque-bera
Digital Twin ETH Hodler -0.208 65.174 —0.896 41.312 862,728
UNI Hodler 0.048 32.584 -0.795 41.343 863,649
50:50 Hodler —0.093 29.483 -0.962 25.683 334,663
Shuffled ETH Hodler —0.005 534.233 0.321 325.657 72,027,592
UNI Hodler 0.217 267.122 0.368 325.682 72,040,885
50:50 Hodler 0.020 275.924 2.529 434.736 139,141,563
TABLE 4 | Token balance and invariance growth.
Token Growth (digital twin) Growth (shuffled) Growth
(shuffled) 95% C.I
DAl 1,949 15,935 (15,150, 16,720)
ETH 3,007 16,569 (15,762, 17,377)
UNI 1,762 10,408 (9,914, 10,902)
Invariant 63,562 2,824,184 (2,570,309, 3,078,060)
TABLE 5 | Strategy returns and Impermanent Loss.
UNI hodler 50:50 hodler ETH hodler Impermanent
return (%) return (%) return (%) Loss
Digital Twin 10.05 -17.08 -34.05 -2.13
Shuffled 52.91 -1.54 -3.07 -0.17
Shuffled 95% C.I. (50.39,55.42) (-2.65,-0.42) (-5.30,-0.84) (-0.23,-0.11)

from liquidity provision are much higher. The ZI returns are
much more volatile, positively skewed and non-Gaussian.

Table 4 shows the token and invariant percentage growth
from first event to last event. The real data shows phenomenal
growth as can be expected as more people staked liquidity in DeFi
during this period. This shuffled treatment shows an even higher
growth rate again suggesting bigger liquidity pools and less value
drain from arbitrageurs. With 100 Monte-Carlo simulations runs
we can not only calculate a mean metric but a 95% confidence
interval. As the real growth rates in Table 4 are always lower than
the lowest bound in the 95% confidence interval range the result
of higher token growth in the ZI model is robust.

In Table 5 we show the first to last event returns for the three
strategies UNI hodler, 50:50 hodler, ETH hodler along with the
impermanent loss as measured by:

y/price ratio

impermanent loss = 2#——————< —
(1 + price ratio)

2)
where price ratio represents the ratio of the price of ETH, UNI or
50:50 ETH:DAI (in DAI) at the end divided by the price at the
start [see Pintail (2019)]. Table 5 shows much higher
performance in the shuffled treatment for all strategies
especially from UNI hodling. Even the ETH hodling strategy
which lost -34.05% only loses on average -3.07% in the shuffled
experiments. The shuffled treatment shows lower impermanent
loss which is in line with the higher profitability of liquidity
provision in a ZI AMM.

3.2 Slippage

We now investigate slippage as measured as a percentage by

which the effective price exceeds the spot price. It can be

calculated as a function of the amountln traded (4;) ie. the

amount of DAI (resp. ETH) deposited for a EthPurchase (resp.

DAIPurchase) as these two quantities make up the effective price.
We use formulas for slippage used by Martinelli (2020):

0

EP*
S(A) = SP(_; -1 (3)

where EPY is the effective price i.e. the ratio of DAI (resp. ETH)
delta divided by the ETH (resp. DAI) delta for EthPurchases
(resp. TokenPurchases). As in Martinelli (2020) this can be
formalised as:
o_ Ai
EP! = " 4)

where the effective price is the ratio of amount of tokens trader
deposited (amountln: A;) divided by the amount of the other
token they bought in return (amountOut: A,) i.e. essentially the
average price that was actually paid. Note as we are using ETH
and DAI deltas from data already calculated from the trades run
through the protocol (either real or simulated) this already takes
into account the 0.3% fees.

SPY is the spot price which can be thought of the fictitious
price if an infinitesimally small amount is purchased (and does
not incur slippage). This can be calculated as shown in Eq. 5:
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TABLE 6 | Slippage: S(A) = ey -1

Event Slippage (digital twin)
TokenPurchase 0.1211
EthPurchase 0.1291

2
TABLE 7 | Price efficiency: |1 - VR| = |1 5 |

nin
2
‘30mi

Token [1 - VR| (digital [1 - VR| (shuffled) [1 - VR| (shuffled
twin) 95% C.l)
ETH 0.2571 0.0426 (0.0355,0.0498)
UNI 0.2569 0.0426 (0.0355,0.0497)
B; 1
SPY=—". (5)
B, 1- fee

which is the ratio of amount of ETH (resp. DAI) pool balance
divided by the amount DAI (resp. ETH) pool balance for
TokenPurchases (resp. EthPurchases) adjusted up by the 0.3%
fee. Table 6 shows that in the digital twin slippage for
TokenPurchase and EthPurchases (around 0.12%) was lower
than the ZI model slippage (around 0.20%). The slippage
metrics again fall outside the shuffled treatment 95%
confidence levels again showing this difference is significant.
This intuitively makes sense as with the lack of strategic
behaviour in the ZI model, traders are no longer conditioning
their trading decision on the available liquidity and their
immediate price impact. Although in the Shuffled Replay some
trades in the simulation may benefit from randomly larger pools,
the results show on average traders pay higher slippage.

3.3 Pricing Efficiency

Finally in Table 7 we use a common variance ratio (VR) measure
for informational efficiency [see e.g. Comerton-Forde et al.
(2019); Schwartz (2021)]:

O omi
|1 -VR| = ‘1 — —gmin (6)

602

5min

where 02, represents a short term volatility of returns and 0%y,
a longer term volatility of returns. The scaled ratio of these two
volatilities in a random walk (which we assume a perfectly
efficient market follows) would be equal to 1. So in Eq. 6 we
measure the absolute value of the deviation of this scaled ratio
from one and lower numbers for the metric are associated with
more efficiency. Our results show the shuffled ZI Model has
prices closer to a random walk. This is contrast to evidence
showing that feeding ZI flow into order books results in more
short term predictability than real markets despite the random
order flow see (Daniels et al., 2003; Smith et al., 2003). This argues
(Bouchaud et al., 2009) is due to the slow way order books stores
and processes supply and demand.

Of course, we cannot say our ZI model is more informationally
efficient as we are not incorporating information or any

A Shuffled Replay of Uniswap

Slippage (shuffled) Slippage (shuffled

95% C.I)
0.1918 (0.1855%,0.1981%)
0.2031 (0.1963%,0.2098%)

fundamental value in a ZI simulation, but it shows evidence in
the real AMM market that the effect of strategic behaviour also
adds noise and inefficiency to the prices even though in an AMM,
the strategic behaviour of arbitrageurs is assumed primarily to
make prices more informationally efficient. We leave the study of
DEX arbitrageurs on cryptocurrency price discovery for
future work.

4 CONCLUSION

In this paper we have developed a novel type of zero-intelligence
(Z1) model that involves shuffling historical data and feeding it
back into the market matching mechanism. In this case we have
used it to analyse an Automatic Market Maker (AMM) in the
cryptofinance space. ZI analysis allows us to investigate effects of
the mechanism design without strategic behaviour. Traditionally
in the ZI literature replicating realism e.g., observed stylised facts,
is a methodology to link certain attributes of financial markets to
the mechanism design or considerations beyond strategic
behaviour. In the past ZI models have had some success in
replicating some stylised facts. In a universe of a large set of
agents with heterogeneous strategies and responses, the collective
trade generating behaviour could indeed be random. However, it
is intuitive to assume trade actions by specific agents are typically
done in response to specific prices. This is especially so in
cryptocurrency AMMs dependant on arbitrageurs for price
discovery. By showing statistically significant differences
between our ZI model and the real data (i.e. what realism is
removed) we can highlight the effect of strategic behaviour on
important market quality metrics. We have shown evidence that
strategic behaviour/interaction (between LPs, arbitrageurs, and
convenience traders) reduces LP returns, reduces slippage/price
impact and decreases price efficiency.

Extensions to this work could include adding arbitrageur
agents interacting with a historical oracle centralised exchange
(CEX) ETH-USD price feed to analyse in a structured way their
value-drain on an AMM. These arbitrage agents could
strategically enter swaps with calculated amount sizes to move
prices back to a reference price signal. Other extensions could be
to restrict shuffling locally within blockchain blocks or to apply to
other AMM protocols such as a Balancer pool which might have
an uneven weighted (e.g. 80:20) and/or multi-coin pool structure.
The baseline ZI model presented here could also be used to
incorporate a simulation parameter sweep of different fees or
intelligent agents. This could be in the form of genetic algorithms
or reinforcement-learning agents to model the effect of intelligent
agents on the same metrics of impermanent loss, slippage and
price efficiency studied in this paper.
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