
Review of Automated Vulnerability
Analysis of Smart Contracts on
Ethereum
Heidelinde Rameder, Monika di Angelo* and Gernot Salzer

Faculty of Informatics, TU Wien, Vienna, Austria

Programs on public blockchains often handle valuable assets, making them attractive
targets for attack. At the same time, it is challenging to design correct blockchain
applications. Checking code for potential vulnerabilities is a viable option to increase
trust. Therefore, numerous methods and tools have been proposed with the intention to
support developers and analysts in detecting code vulnerabilities. Moreover, publications
keep emerging with different focus, scope, and quality, making it difficult to keep up with
the field and to identify relevant trends. Thus, regular reviews are essential to keep pace
with the varied developments in a structured manner. Regarding blockchain programs,
Ethereum is the platform most widely used and best documented. Moreover, applications
based on Ethereum are entrusted with billions of USD. Like on similar blockchains, they are
subject to numerous attacks and losses due to vulnerabilities that exist at all levels of the
ecosystem. Countermeasures are in great demand. In this work, we perform a systematic
literature review (SLR) to assess the state of the art regarding automated vulnerability
analysis of smart contracts on Ethereum with a focus on classifications of vulnerabilities,
detection methods, security analysis tools, and benchmarks for the assessment of tools.
Our initial search of the major on-line libraries yields more than 1,300 publications. For the
review, we apply a clear strategy and protocol to assure consequent, comprehensive, and
reproducible documentation and results. After collecting the initial results, cleaning up
references, removing duplicates and applying the inclusion and exclusion criteria, we retain
303 publications that include 214 primary studies, 70 surveys and 19 SLRs. For quality
appraisal, we assess their intrinsic quality (derived from the reputation of the publication
venue) as well as their contextual quality (determined by rating predefined criteria). For
about 200 publications with at least a medium score, we extract the vulnerabilities,
methods, and tools addressed, among other data. In a second step, we synthesize
and structure the data into a classification of both the smart contract weaknesses and the
analysis methods. Furthermore, we give an overview of tools and benchmarks used to
evaluate tools. Finally, we provide a detailed discussion.

Keywords: systematic literature review, taxonomy, security, tools, vulnerability, analysis, benchmark

Edited by:
Giovanni Meroni,

Politecnico di Milano, Italy

Reviewed by:
Raimundas Matulevicius,

University of Tartu, Estonia
Claudio Di Ciccio,

Sapienza University of Rome, Italy

*Correspondence:
Monika di Angelo

monika.di.angelo@tuwien.ac.at

Specialty section:
This article was submitted to

Smart Contracts,
a section of the journal
Frontiers in Blockchain

Received: 14 November 2021
Accepted: 24 January 2022
Published: 24 March 2022

Citation:
Rameder H, di Angelo M and Salzer G

(2022) Review of Automated
Vulnerability Analysis of Smart

Contracts on Ethereum.
Front. Blockchain 5:814977.

doi: 10.3389/fbloc.2022.814977

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149771

REVIEW
published: 24 March 2022

doi: 10.3389/fbloc.2022.814977

http://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2022.814977&domain=pdf&date_stamp=2022-03-24
https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977/full
https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977/full
https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977/full
http://creativecommons.org/licenses/by/4.0/
mailto:monika.di.angelo@tuwien.ac.at
https://doi.org/10.3389/fbloc.2022.814977
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2022.814977

1 INTRODUCTION

Smart contracts, as blockchain programs are called, extend
blockchains from a platform for financial transactions to an
all-purpose utility. With their distinguishing features
observability, tamper evidence, and automatic enforcement,
they are the protagonists of trustless computation. As such,
they promise to advance application domains like supply
chain management, medical services, and especially
(decentralized) finance. However, Wang Z. et al. (2020) warn
that “any successful breach, particularly those that are highly
publicized, can impact the community’s belief in smart contracts,
and hence its usage.”

Tolmach et al. (2021) observe that “the adoption of
blockchains and smart contracts is also accompanied by severe
attacks, often due to domain-specific security pitfalls in the smart
contract implementations.” As one of the reasons for
vulnerabilities, Singh et al. (2020) state that “writing secure
and safe smart contracts can be extremely difficult due to
various business logics, as well as platform vulnerabilities and
limitations”. Furthermore, Vacca et al. (2020) point out that
“smart contracts and blockchain applications are developed
through non-standard software life-cycles, in which, for
instance, delivered applications can hardly be updated or bugs
resolved by releasing a new version of the software.”

Currently, Ethereum is the major platform for decentralized
applications (dApps) and decentralized finance (DeFi). Its
ecosystem consists of the underlying blockchain, a large
variety of smart contracts deployed on it, a wide range of
valuable assets (most notably fungible and non-fungible
tokens managed by smart contracts), and the Ethereum
Foundation, which coordinates the efforts of an enthusiastic
community and of supporting companies like ConsenSys.
While developers go to great lengths to avoid security
issues, even experts introduce or overlook major
vulnerabilities. Not surprisingly, Ethereum is confronted
with high-stake attacks and losses, thus actual and potential
vulnerabilities are a major concern.

This situation motivates researchers and practitioners to
devise methods and tools for the development of secure smart
contracts to avoid pitfalls from the outset, and for screening smart
contracts for vulnerabilities. These efforts include the
documentation of vulnerabilities, the collection of best
practices, and the automated detection of issues. To date,
more than 100 tools have been presented that either support
the development of blockchain programs or help to analyze them
once created. The number of publications detailing the methods
and comparing the approaches seems overwhelming. Therefore,
surveys aim at systematizing the contributions and summarizing
the state of the art.

Among the many aspects of smart contract, our systematic
literature review focuses on studies related to vulnerabilities and
their automated detection. We assess the publications with
respect to the following questions:

• Which vulnerabilities are mentioned? How are
vulnerabilities classified?

• Which methods do automated tools use to detect
vulnerabilities?

• Which vulnerabilities are addressed by the tools?
• How are the tools evaluated?
• What are the open challenges of automated detection?

Starting from an initial list of 1300+ related publications, we
apply a carefully documented process to select and evaluate 303
studies of immediate relevance, and to distill current trends and
open challenges. Our contributions are

• a list of high quality publications, with the selection based on
clear criteria,

• an overview and taxonomy of vulnerabilities, methods and
tools,

• a discussion of the state of the art with respect to automated
analysis, and

• the identification of gaps and challenges.

The paper is structured as follows. Section 2 describes the search
for and the selection of 303 publications, the criteria for quality
appraisal, and the structure of the publications found. In Sections
3–7, we give a synthesis of the extracted data. Section 3 summarizes
eight related systematic literature reviews, while Section 4 classifies
the vulnerabilities we found. Section 5 gives an overview of the
methods used in the automated analysis of smart contracts, whereas
Section 6 concentrates on the tools implementing them. Test sets
and benchmarks, required for the evaluation of tools, are
summarized in Section 7. Section 8 is devoted to the discussion
of our findings, before we conclude with Section 9.

The extensive Supplementary Material contains a description
of all vulnerabilities, organized in a consolidated taxonomy, an
overview of the 140 tools we found, and the quality appraisal or
surveys and primary studies.

2 SYSTEMATIC REVIEW

For the literature review, we apply a rigorous protocol to ensure
comprehensive and reproducible results as suggested in several
guidelines (Brereton et al., 2007; Kitchenham and Charters, 2007;
Okoli, 2015; Snyder, 2019). This section documents the initial
search, the first selection and classification, as well as the quality
appraisal. In subsequent sections, we discuss the extracted data in
form of a synthesis, focusing on the aspects: related work (Section
3), vulnerability taxonomies (Section 4), analysis methods
(Section 5), tools (Section 6), and benchmark sets (Section 7).

2.1 Search and Selection
2.1.1 Initial Search
In accordance with our research questions, we choose the primary
search term smart contract and a disjunction of the terms security,
vulnerability, bug, analysis, detection, verification and tool. One of
the lessons learned in (Brereton et al., 2007) is the necessity to
query several databases, as in the domain of information systems,
there is not a single source containing all relevant papers. The
initial search was conducted at the end of January 2021 and

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149772

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

yielded a total of 1326 results, with 546 contributed by Google
Scholar, 229 by IEEE Xplore, 199 by ScienceDirect, 178 by TU
Wien CatalogPlus, and 174 by ACM Digital Library.

Table 1 lists the database queries. Using blockchain code/
program as synonyms for smart contract does not increase the
number of results. In general, we search the titles of publications
as well as their meta-information, including keywords and
abstracts. For Google Scholar, we have to limit the search to
titles, as an unrestricted search yields more than 50 000 hits, most
unrelated to smart contracts. To make up for the brevity of titles,
we add Ethereum as an alternative to smart contract in this case.

2.1.2 Exclusion and Inclusion Criteria
Exclusion Criteria: We exclude search results if the work is 1) not
written in English, 2) a patent, blog entry or other grey literature,
3) not accessible on-line via the library network of TU Wien, 4)
published before 2014, and 5) unrelated to Ethereum.

The last exclusion criterion is debatable for an academic review,
as it restricts our attention to a specific technology. However, within
the area of smart contracts, Ethereum clearly dominates the public
blockchains with respect to the diversity of applications, the market
cap, and the size of its community. An increasing number of
entrepreneurs and visionaries propose new business models,
which prompts developers to design languages and to implement
tool chains for this platform. The financial values involved make
Ethereum an attractive target for attackers, leading in turn to
research on vulnerabilities and counter-measures. This self-
reinforcing spiral lead to a situation where the amount of
literature on Ethereum smart contracts vastly exceeds the one on
other platforms, which seems to justify our focus.

Inclusion Criteria: We include search results if it is clear from
title and abstract that the work is related to 1) smart contract

security bugs or vulnerabilities, 2) smart contract vulnerability
detection, analysis or security verification tools, or 3) automated
detection or verification methods.

2.1.3 Selection and Classification
After removing 299 duplicates and excluding 724 articles
according to the criteria above, we group the remaining 303
studies into three classes:

• Systematic Literature Reviews (SLRs),
• Surveys including surveys or review studies of smart
contract security analysis tools, methods, approaches or
vulnerabilities, and

• Primary Studies including research on the development of
smart contract security analysis and vulnerability detection
tools, methods or approaches.

Figure 1 breaks down the publications by class and venue.

2.2 Quality Appraisal
In the next step, we read the selected literature in detail. Besides
extracting various data, we assess the quality of the papers. If a
work does not meet minimum standards, it is excluded from the
subsequent literature review (Okoli, 2015). Similarly to Varela-
Vaca and Quintero (2021), we apply the intrinsic and contextual
data quality metrics described in Strong et al. (1997).

2.2.1 Intrinsic Data Quality
Intrinsic data quality (IDQ) assesses the accuracy, objectivity,
credibility, and reputation of the publication venue. We map the
SCImago Journal Ranking (SCImago, 2021), the CORE Journal or
Conference Ranking (CORE, 2021), and the Scopus CiteScore

TABLE 1 | Query strings on different search engines.

Database Query

ACM DL Title: (“smart contract” OR “smart contracts”) AND AllField: (vulnerability OR vulnerabilities OR bug OR bugs OR tool OR
security OR analysis OR detection OR verification)

Google Scholar allintitle: (“smart contract” OR “smart contracts” OR Ethereum) AND (vulnerability OR vulnerabilities OR bug OR bugs OR
security OR analysis OR detection OR tool OR verification)

IEEE Xplore “All Metadata”: (“smart contract”OR “smart contracts”) AND (vulnerability OR vulnerabilities OR bug OR bugs OR tool) AND
(security OR analysis OR detection OR verification)

Science Direct Title, abstract, keywords: “smart contract” AND (vulnerability OR vulnerabilities OR bug OR tool OR security OR analysis OR
detection OR verification)

TU Wien CatalogPlus title contains (“smart contract” OR “smart contracts”) AND Subject contains (security OR vulnerability OR vulnerabilities OR
bug OR bugs Or analysis OR detection OR tool OR verification)

FIGURE 1 | Distribution of publication venues per publication class.

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149773

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

percentile ranking (Scopus, 2021) to a score between 0 and 1
(Table 2). In the case of multiple rankings we take the highest
score as IDQ. If a journal or conference has not (yet) been ranked for
the year under consideration, we consider the most recent ranking.

Figure 2 breaks down the IDQ score of the 303 initially
selected publications per publication class. A total of 126
publications (41.6%) is rated at the highest IDQ score of 1.0,
while 44 publications (14.5%) are rated at 0.8 and 27 (8.9%) at 0.5.
At the lower end, we find 56 publications (18.5%) with a score of
0.4 and 50 (16.5%) with a score of 0.2.

Figure 3 shows the IDQ scores within the three publication
classes. Most SLRs (15 out of 19, 78.9%) have been published in
highly reputable venues, compared to only 17 of 70 (24.3%)
surveys scoring at 1.0. Overall, the quality of surveys is the lowest,
with 36 (51.4%) scoring 0.4 or 0.2. Of the selected primary studies,
126 of 214, almost 60% score 0.8 or 1.0.

2.2.2 Contextual and Final Data Quality
Contextual data quality (CDQ) assesses the relevance, added value,
timeliness, completeness and amount of data, and thus depends on the
context of the evaluation, like the purpose of the systematic review, the

research questions, and the data to extract and analyze. We devise two
questionnaires, Tables 3, 4, to evaluate the CDQ of primary and
secondary studies. The CDQ score is the arithmetic mean of the
answers to the questions, each answer being a number between 0 and 1.

CDQ � sumof answers
number of questions answered

The final data quality (FDQ) is a combination of IDQ and
FDQ. We compute the FDQ score as the arithmetic mean of the
other two scores. It is thus also a number between 0 and 1.

FDQ � IDQ + CDQ
2

For the sake of readability, and ease of classification, we map
CDQ and FDQ to a three point Likert scale, by calling a score low if it
is below 0.5, high if it is at least 0.8, and medium otherwise. We
exclude a study from the survey if its CDQ or FDQ is low. The
rationale for considering CDQ twice, once explicitly and once as part
of the FDQ score, is to retain work of medium CDQ that has not
been published yet but is available from public repositories (resulting
in a low IDQ and FDQ score). We could achieve a similar effect by
weighting CDQ in the computation of the FDQ score.

2.2.3 Quality Appraisal of Systematic Literature
Reviews
The questionnaire for measuring CDQ (Table 3) is based on the
DARE criteria suggested in (Kitchenham and Charters, 2007).
The quality appraisal for the systematic literature reviews (19
initially and one subsequently identified) is presented in Table 5.
The table includes the IDQ score, the answers of the CDQ
questionnaire, CDQ and FDQ score, and the corresponding
CDQ and FDQ values. Of the 20 reviews, we reject nine due

TABLE 2 | Mapping from popular venue rankings to our unified intrinsic data
quality (IDQ).

SCImago CORE Scopus CiteScore IDQ score

Q1 A*, A > 75 percentile 1.0
Q2 B > 50 percentile 0.8

Q3, Q4 C ≥ 25 percentile 0.5
not indexed, but pub. by IEEE, ACM, Springer 0.4

< 25 percentile 0.2
otherwise, e.g. arXiv, preprints, theses, reports 0.2

FIGURE 2 | Number of publications per IDQ score, by publication venue.

FIGURE 3 | Distribution of IDQ scores per publication class.

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149774

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

to low CDQ or FDQ and reclassify three as surveys. Eight reviews,
summarized in Section 3, remain for data extraction.

2.2.4 Quality Appraisal of Surveys
The Supplementary Material of this article contains a table similar
to Table 5 that assesses the quality of 70 initially selected surveys,
four additional surveys subsequently identified, and three
publications reclassified from SLR to survey. Figure 4 gives an
overview. Of the 77 publications, we reclassify six as primary study
and remove two duplicates.We reject 31 surveys due to low CDQ or
FDQ and retain 38 for data extraction.

2.2.5 Quality Appraisal of Primary Studies
The assessment of primary studies focuses on the identification of
tools for the automated analysis of security issues (see the
questionnaire in Table 4). We consider 224 primary studies,
including six studies initially classified as survey and four studies
identified only subsequently. Based on the quality appraisal in the
Supplementary Material, we reject 75 publications because of low
CDQ or FDQ, and retain 149 for further data extraction (Figure 5).

2.3 Data Extraction
After quality appraisal and reclassification, we are left with 8
systematic literature reviews, 38 surveys and 149 primary studies

for data extraction. Figure 6 aggregates the number of studies by
the year of publication. Apparently, the research in the field grows
rapidly, with the primary studies jumping from 3 in 2017 to 40 in
2018 and the number of SLRs and surveys nearly tripling from
2019 to 2020. Next, in Sections 3–7, we give a synthesis of the
extracted data.

3 RELATED WORK

In this section, we summarize the eight SLRs of high contextual or
final data quality that we identified in our initial search. We list
them in chronological order and discuss their relation to
our work.

3.1 Summary of SLRs With High Quality
Liu and Liu (2019) focus on smart contract verification and
select 53 publications, with 20 addressing security assurance
and 33 correctness verification. For security assurance, the
authors identify the three categories environment security,
vulnerability scanning and performance impacts, whereas
correctness verification is subdivided into program
correctness and formal verification. The paper mentions
various tools in each category, but does not compare them

TABLE 3 | Criteria for assessing the contextual data quality (CDQ) of SLRs and surveys.

Q1: Is the methodology and literature search of the review systematic and documented? Are all relevant studies at the time likely to be covered?
1.0 = Yes, in comprehensive detail, systematic and good quality. To be (re)classified as SLR.
Not Graded = No, to be (re)classified as survey
Q2: Does the study focus on work about smart contact vulnerabilities, detection tools, or approaches to automated detection or verification?
1.0 = Yes, the research topic closely related and covers major parts of this work
0.6 = It covers related topics, but important areas differ or are missing
0.3 = Some similar areas are covered
0.0 = The review focuses on different research topics, only a very small part is related
Q3: Does the study cover the evaluation of smart contract vulnerabilities?
1.0 = Yes, the work includes a survey, evaluation and detailed description of vulnerabilities including classifications
0.6 = Descriptions or classifications of certain vulnerabilities are given, but it is not a major focus of the work
0.3 = Some vulnerabilities are superficially listed or mentioned
0.0 = No, the focus is not on the survey of vulnerabilities
Q4: How many tools or analysis/verification methods does the review identify, classify, compare or evaluate?
1.0 = more than 12, 0.6 = 8 to 12, 0.3 = 4 to 7, 0.0 = less than 4
Q5: Did the author(s) assess and compare the quality/validity of tools or automated detection/verification approaches in detail?
1.0 = Yes, in detail and high quality, including practical experiments or comprehensive/in-depth coverage and classification
0.6 = Yes, compared/evaluated in some detail, but only theoretically
0.3 = Only superficial description
0.0 = No
Q6: Is a set of smart contract benchmarks provided?
1.0 = Yes, Not Graded = No
Q7: How current is the review?
1.0 = 2020/21, 0.6 = 2019, 0.3 = 2018, 0.0 = 2017 and older

TABLE 4 | Criteria for assessing the contextual data quality (CDQ) of primary studies.

Q1: Is the primary study referenced in a selected SLR or survey? How often is it cited according to Google Scholar?
1.0 = referenced in selected SLR or Survey, or cited more than 12 times according to Google Scholar
0.6 = 8 to 12 citations, 0.3 = 4 to 7 citations, 0.0 = less than 4 citations
Q2: Is the primary study related to an executable tool or to a framework for verifying security properties or identifying vulnerabilities of Ethereum smart contracts?
1.0 = Yes, 0.0 = No

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149775

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

directly. The authors conclude that methods for formally
verifying correctness are an effective way to ensure smart
contract credibility and accuracy.

Rouhani and Deters (2019) conduct a systematic review
regarding the security, performance and applications of smart
contracts, finally considering 90 papers. They describe the

TABLE 5 | Quality appraisal of systematic literature reviews. Q6 does not apply to this type of publications.

systematic literature review IDQ CDQ FDQ Selected

score Q1 Q2 Q3 Q4 Q5 Q7 score value score value

Ante (2021) 1.0 1.0 0.3 0.0 0.3 0.0 1.0 0.43 low 0.72 med ✘

Chen et al. (2020a) 1.0 reclassified as survey
Coblenz et al. (2019) 1.0 0.0 0.0 0.0 0.0 0.6 0.12 low 0.56 med ✘

Guo et al. (2021) 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.33 low 0.67 med ✘

Gupta et al. (2020) 0.8 reclassified as survey
Hu et al. (2021) a 0.2 1.0 1.0 0.3 1.0 0.6 1.0 0.82 high 0.51 med ✓
Kim and Ryu (2020) 0.4 1.0 0.6 0.6 1.0 0.6 1.0 0.80 high 0.60 med ✓
Leka et al. (2019) 0.4 0.3 0.3 0.0 0.0 0.6 0.24 low 0.32 low ✘

Liu and Liu (2019) 1.0 1.0 0.6 0.0 0.6 0.3 0.6 0.52 med 0.76 med ✓
Macrinici et al. (2018) 1.0 1.0 0.3 0.6 0.0 0.0 0.3 0.37 low 0.68 med ✘

Rouhani and Deters (2019) 1.0 1.0 0.3 0.3 0.6 0.3 0.6 0.52 med 0.76 med ✓
Singh et al. (2020) 1.0 1.0 1.0 0.0 1.0 0.6 1.0 0.77 med 0.88 high ✓
Sanchez-Gómez et al. (2020) 1.0 1.0 0.3 0.0 0.0 0.0 1.0 0.38 low 0.69 med ✘

Taylor et al. (2020) 1.0 1.0 0.3 0.0 0.0 0.0 1.0 0.38 low 0.69 med ✘

Tolmach et al. (2020) 0.2 1.0 0.6 0.6 1.0 0.6 1.0 0.80 high 0.50 med ✓
Tovanich et al. (2019) 1.0 1.0 0.0 0.0 0.0 0.0 0.6 0.27 low 0.63 med ✘

Vacca et al. (2020) 1.0 1.0 0.6 0.0 1.0 0.6 1.0 0.70 med 0.85 high ✓
Varela-Vaca and Quintero (2021) 1.0 1.0 0.3 0.0 0.0 0.0 1.0 0.38 low 0.69 med ✘

Zeli Wang et al. (2020) 1.0 1.0 0.6 0.6 0.6 0.3 1.0 0.68 med 0.84 high ✓
Zhang et al. (2020) 1.0 reclassified as survey

aIdentified subsequently.

FIGURE 4 | Quality appraisal of surveys.

FIGURE 5 | Quality appraisal of primary studies.

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149776

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

security issues and present methods and tools to analyze them.
The authors identify four major security problems, namely
transaction order dependence, timestamp dependence,
mishandled exceptions, and reentrancy. They evaluate nine
vulnerability analysis tools and summarize methods for formal
verification as well as for the detection of effective callback free
objects.

Zeli Wang et al. (2020) systematically survey the literature on
the security of Ethereum smart contracts, published between July
2015 and July 2019. The main contributions relevant to our work
are a systematic mapping and a taxonomy of security problems
including counter-measures, with the three major categories
“abnormal contract”, “program vulnerability” and “exploitable
habitat”. The methods for detecting vulnerabilities are described
at a high level, divided into static analysis (including symbolic
execution and formal verification), dynamic analysis and code
similarity. The authors describe individual tools, but neither
perform a comprehensive evaluation nor map vulnerabilities
to the detection methods.

Singh et al. (2020) analyze work published between 2015
and July 2019, synthesizing a final set of 35 research papers on
formal approaches to avoid vulnerabilities in smart contracts.
The most common approach is the verification of security
properties by theorem proving, whereas symbolic execution
and model checking are frequently used to establish
functional correctness. Further formal techniques comprise
formal modeling, finite state machines, logic based
approaches, behavioral modeling, formal reasoning and
formal specification languages. The authors provide a
mapping between formal techniques and the addressed
issues in smart contracts. Moreover, they identify 15 formal
tools and frameworks and relate them to the formal
methods used.

Tolmach et al. (2020) give a comprehensive survey of the
methods for formally specifying and verifying smart contracts,
based on 202 papers published from September 2014 to June
2020. They present a taxonomy of formal approaches, with the
main categories being modeling formalisms, specification
formalisms, and verification techniques. Modeling formalisms
are contract-level models, such as process algebras, state-
transition systems and set-based methods, as well as program-

level models, like abstract syntax tree analysis, control-flow
automata and program logics. Specification formalisms are
divided into formal specifications such as contract and
program-level specifications, as well as properties by domain,
like security, privacy, finance, social games and asset tracking.
The verification techniques comprise model checking, theorem
proving, program verification, symbolic and concolic execution,
runtime verification, and testing. In total, the survey describes 34
verification tools and frameworks and associates them with the
respective formalism. In their conclusion, the authors state that
there is still a lack in clear approaches and standards with respect
to secure development and analysis techniques. Furthermore,
they argue that different blockchains and smart contract
platforms often require different approaches to security
analysis. Recently, this survey has been published as (Tolmach
et al., 2021).

Kim and Ryu (2020) give a survey of the analysis of smart
contract for various blockchains, based on 67 out of 391 initial
papers. Of these, 24 papers use static analysis for vulnerability
detection, 24 static analysis for program correctness, and 19 use
dynamic analysis. The approaches are further subdivided
according to specific methods like symbolic execution, abstract
interpretation, machine learning, fuzzing, runtime verification,
and concolic testing. The authors evaluate 27 tools regarding the
ability to detect one or more of 19 vulnerabilities. They point out
unsolved challenges such as program behavior and language
ambiguities, and highlight promising research directions such
as the design of new languages and type systems, and the use of
machine learning.

Hu et al. (2021) review papers from the period 2008–2020 that
focus on design paradigms, tools for developing secure smart
contracts, and systems to improve privacy or efficiency, selecting
finally 159 studies and twelve related surveys. The parts most
relevant to our work are the evaluation and classification of
analysis methods and tools. The authors identify, describe, and
classify 40 tools that are able to detect and analyze vulnerabilities.
Of these, 15 focus on the detection of specific vulnerabilities,
while the others have a broader scope like identifying multiple
vulnerabilities, verifying custom properties, or alerting to
potential security risks. Additionally, the review presents 20
auxiliary tools, including frameworks and high level languages.

FIGURE 6 | Publication trend per year for SLRs and surveys as well as primary studies.

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149777

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

In their conclusion, the authors state that many tools are
inefficient and require specific knowledge for defining security
properties. They also notice a trade-off between accuracy and the
coverage of multiple vulnerabilities.

Vacca et al. (2020) focus on current challenges, techniques and
tools for smart contract development. The survey is based on 96
articles, published between 2016 and 2020, on the analysis and the
testing of smart contracts, on metrics for and security of smart
contracts, on Dapp performance and on blockchain applications.
The work summarizes the properties and application areas of 26
tools for the automated analysis of smart contracts. Moreover, the
review describes experimental datasets and 18 empirical
validations. The authors emphasize the need for guidelines
and further research regarding the development and testing of
smart contracts.

3.2 Relation to Our Work
The SLRs above focus on the development of smart contracts, on
analysis methods, on formal methods, and on security issues.
Automated analysis is covered in varying degrees, but is not at the
center. Vulnerabilities are described in one review, a taxonomy is
suggested by two. Most SLRs include a description of the methods
found, but usually without indicating the vulnerabilities that can
be tackled by the methods. Tool descriptions are more often
included than not, while comparisons of tool properties are less
frequent. The conclusions of the SLRs portray an immature field,
in particular with respect to standards and guidelines, program
behavior, tool efficiency, and testing. This situation and the
marked increase in publications warrants regular reviews of
the state of the art.

Naturally, our review includes more recent research, up to
January 2021, as it was conducted later than the other SLRs.What
sets our work apart is its specific scope, its breadth, and rigor. Our
main focus is automated vulnerability detection, including tools,
taxonomies and benchmarks. Starting from 1300+ initial search
results, we assessed the relevance and quality of 303 publications
in detail, applying clearly defined criteria (cf. Section 2). For the
chosen scope, our review with a Supplementary Material of 70+
pages can be regarded as a comprehensive overview of the state-
of-the-art at the beginning of 2021.

4 CLASSIFICATIONS OF VULNERABILITIES

In this section, we give an overview of classification schemes. We
start with our consolidated taxonomy of the vulnerabilities
identified in the body of literature. Then we summarize
classifications by scholars and present two community
taxonomies. Finally, we present a mapping of our consolidated
taxonomy to the community classifications.

In the reviewed literature, the term vulnerability is used in a
broader sense than is common in computer security. It refers to a
weakness or limitation of a smart contract that may result in
security problems. A vulnerability allows for the execution of a
smart contract in unintended ways. This includes locked or stolen
resources, breaches of confidentiality or data integrity, and state
changes in the environment of smart contracts that were not

anticipated by developers or users and that put some involved
party at an advantage or disadvantage.

4.1 Consolidated Taxonomy
In total, we extracted 54 vulnerabilities from the collected papers. The
Supplementary Material contains a short description for each,
including references. Our consolidated classification in Table 6
consists of 10 classes of vulnerabilities. It is based on 17
systematically selected surveys (as documented in the supplement)
and two popular community classifications presented below.

4.2 Academic Classifications
Of the early, frequently cited papers on smart contract
vulnerabilities, only some present a novel classification scheme
or refine an existing one.

Luu et al. (2016) describe Ethereum smart contract
vulnerabilities, such as transaction-ordering dependence
(TOD), timestamp dependence and mishandled exceptions
and reentrancy, without additional grouping. They define the
vulnerabilities and present code snippets, examples of attacks,
and affected real live smart contracts. To fix some problems, they
propose improvements to the operational semantics of Ethereum,
namely guarded transactions (countering TOD), deterministic
timestamps and enhanced exception handling.

Atzei et al. (2017) create one of the first taxonomies for
vulnerabilities. At the top, vulnerabilities are classified according to
where they appear: in the source code (usually Solidity), atmachine level
(in the bytecode or related to instruction semantics), or at blockchain
level. A mapping to actual examples of attacks and vulnerable smart
contracts completes the taxonomy. Although this work is referenced in
several other papers, we have found some issues and inconsistencies
regarding the classification of concrete vulnerabilities. For example, the
vulnerability type called unpredictable state is illustrated by an example
that is viewed in most other work as an instance of transaction order
dependency. At the same time another example for problems associated
with dynamic libraries is assigned to the same class. It can be argued that
these two examples exhibit different vulnerabilities, as the underlying
causes are inherently different. Dika (2017) extends the taxonomy of
Atzei et al. (2017) by adding further vulnerabilities and assessing the
level of criticality.

Grishchenko et al. (2018) present a formal definition of the
semantics of the EVM as well as of the security properties call
integrity, atomicity, independence of the transaction environment
and independence of a mutable account state. If a bytecode satisfies
such a property, it is provably free of the corresponding
vulnerabilities. As the properties usually are too complex to be
established automatically, the authors consider simpler criteria that
imply the properties. E.g., the safety property Single Entrancy
implies call integrity and precludes that a contract suffers from
the reentrancy vulnerability (Schneidewind et al., 2020).

4.3 Classifications by Community Based
Projects
4.3.1 DASP Top 10
The Decentralized Application Security Project (DASP), initiated
by the private organization NCC Group (2018), identifies ten

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149778

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

groups of smart contract vulnerabilities. The project neither
defines the listed vulnerabilities nor explains how the
vulnerabilities were selected and ranked. Several studies like
Durieux et al. (2020) use DASP Top 10 as basis, but note that
the ten categories are not sufficient.

4.3.2 SWC Registry
The Smart Contract Weakness Classification Registry (SWC
Registry, 2018) relates smart contract vulnerabilities to the
Common Weakness Enumeration (CWE) typology (MITRE
Corp, 2006) and collects test cases. Currently, the registry
holds 36 vulnerabilities, with descriptions, references,
suggestions for remediation and sample Solidity contracts.

4.4 Mapping of Vulnerability Classifications
Different taxonomies are difficult to map to each other when
based on complementary aspects. While several taxonomies build
on the early classification of Atzei et al. (2017), the extensions
diverge with respect to the dimensions they consider, like the level
where vulnerabilities occur (protocol layer vs. EVM vs. Solidity)
or cause vs. effect of vulnerabilities. So far, none of the taxonomies
has seen wide adoption. Tools without a vulnerability
classification of their own usually refer to DASP or the SWC
registry.

Our consolidated taxonomy is compatible with the ones of
DASP and SWC. Table 7 maps our ten classes, omitting
vulnerabilities that have no counterpart in the other
taxonomies. We find a correspondence for 34 vulnerabilities,
while 20 vulnerabilities documented in literature remain
uncovered.

The mapping is not exact in the sense that categories in the same
line of the table may overlap only partially. For example, DASP 1
covers both “reentrancy” and “call to the unknown”, while SWC only
mentions “reentrancy” in 107 but not “call to the unknown”, and our
taxonomy lists them separately. Moreover, some categories in our
taxonomy list several SWC entries or split up categories from DASP.

With only nine genuine categories and one “catch-all”, DASP
is comparatively coarse. SWC covers a range of 36 vulnerabilities,
but 22 of our categories are missing. Both community
classifications seem inactive: SWC was last updated in March
2020, and the DASP 10 website with the first iteration of the
project is dated 2018.

TABLE 6 | Consolidated taxonomy of vulnerabilities of smart contracts on
Ethereum.

Code Vulnerability

1 Malicious Environment, Transactions or Input
1A Reentrancy
1B Call to the unknown
1C Exact balance dependency
1D Improper data validation
1E Vulnerable DELEGATECALL

2 Blockchain/Environment Dependency
2A Timestamp dependency
2B Transaction-ordering dependency (TOD)
2C Bad random number generation
2D Leakage of confidential information
2E Unpredictable state (dynamic libraries)
2F Blockhash dependency

3 Exception & Error Handling Disorders
3A Unchecked low level call/send return values
3B Unexpected throw or revert
3C Mishandled out-of-gas exception
3D Assert, require or revert violation

4 Denial of Service
4A Frozen Ether
4B Ether lost in transfer
4C DoS with block gas limit reached
4D DoS by exception inside loop
4E Insufficient gas griefing

5 Resource Consumption & Gas Issues
5A Gas costly loops
5B Gas costly pattern
5C High gas consumption of variable data type or declaration
5D High gas consumption function type
5E Under-priced opcodes

6 Authentication & Access Control Vulnerabilities
6A Authorization via transaction origin
6B Unauthorized accessibility due to wrong function or state variable visibility
6C Unprotected self-destruction
6D Unauthorized Ether withdrawal
6E Signature based vulnerabilities

7 Arithmetic Bugs
7A Integer over- or underflow
7B Integer division
7C Integer bugs or arithmetic issues

8 Bad Coding and Language Specifics
8A Type cast
8B Coding error
8C Bad coding pattern
8D Deprecated source language features
8E Write to arbitrary storage location
8F Use of assembly
8G Incorrect inheritance order
8H Variable shadowing
8I Misleading source code
8J Missing logic, logical errors or dead code
8K Insecure contract upgrading
8L Inadequate or incorrect logging or documentation

9 Environment Configuration Issues
9A Short address
9B Outdated compiler version

(Continued in next column)

TABLE 6 | (Continued) Consolidated taxonomy of vulnerabilities of smart
contracts on Ethereum.

Code Vulnerability

9C Floating or no pragma
9D Token API violation
9E Ethereum update incompatibility
9F Configuration error

10 Eliminated/Deprecated Vulnerabilities
10A Callstack depth limit
10B Uninitialized storage pointer
10C Erroneous constructor name

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 8149779

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

5 METHODS USED IN AUTOMATED
ANALYSIS

In this section, we give an overview of the methods used to detect
vulnerabilities in smart contracts. For other summaries, differing
in breadth and depth, see the surveys (Almakhour et al., 2020;
Huasan Chen et al., 2020; di Angelo and Salzer, 2019; Garfatta
et al., 2021; Hu et al., 2021; Kim and Ryu, 2020; López Vivar et al.,
2020; Praitheeshan et al., 2020b; Samreen and Alalfi, 2020; Singh
et al., 2020; Tolmach et al., 2021).

We discuss four groups of methods: static code analysis,
dynamic code analysis, formal specification and verification,
and miscellany. The distinction between static analysis and
formal methods is to some extent arbitrary, as the latter are
mostly used in a static context. Moreover, methods like symbolic
execution regularly use formal methods as a black box. A key
difference is the aspiration of formal methods to be rigorous,
requiring correctness and striving for completeness. In this sense
abstract interpretation should be rather considered a formal
method, but it resembles symbolic execution and therefore is
presented there.

5.1 Static Code Analysis
Static code analysis inspects code without executing it in its
regular environment. The analysis starts either from the source
or the machine code of the contract. In most cases, the aim is to
identify code patterns that indicate vulnerabilities. Some tools
also compute input data to trigger the suspected vulnerability and
check whether the attack has been effective, thereby eliminating
false positives.

To put the variousmethods into perspective, we take a closer look
at the process of compiling a program from a high-level language like
Solidity to machine code (Aho et al., 2007; Grune et al., 2012). The
sequence of characters first becomes a stream of lexical tokens
(comprising e.g. the letters of an identifier). The parser
transforms the linear stream of tokens into an abstract syntax
tree (AST) and performs semantic checks. The subsequent phases
receive the AST in the form of an intermediate representation (IR).
Now several rounds of code analysis, code optimization, and code
instrumentationmay take place, with the output in each round again
in IR. In the final phase, the IR is transformed into code for the target
machine, like the EVM in the case of Ethereum. This last step
linearizes any hierarchical structures left, by arranging code
fragments into a sequence and by converting control flow
dependencies to jump instructions.

5.1.1 Control Flow Graphs
For code analysis, a graph representation of the code is preferable,
as it provides access to the program structure and the control
flow, and eliminates irrelevant details like variable naming or
register allocation. Such representations are readily available
when starting from source code, as AST and IR are by-
products of compilation. E.g., some tools search the AST for
syntactic patterns characteristic of vulnerable contracts. This
approach is fast, but lacks accuracy if a vulnerability cannot be
adequately characterized by such patterns.

Recovering a control flow graph (CFG) from machine code is
inherently more complex. Its nodes correspond to the basic blocks
of a program. A basic block is a sequence of instructions executed
linearly one after the other, ending with the first instruction that
potentially alters the flow of control, must notably conditional
and unconditional jumps. Nodes are connected by a directed edge
if the corresponding basic blocks may be executed one after the
other. The reachability of code is difficult to determine, as indirect
jumps retrieve the target address from a register or the stack,
where it has been stored by an earlier computation. Backward
slicing resolves many situations by tracking down the origins of
the jump targets. If this fails, the analysis has the choice between
over- and under-approximation, by either treating all blocks as
potential successors or by ignoring the undetectable successors.

Some tools go on by transforming the CFG (and a specification
of the vulnerability) to a restricted form of Horn Logic called
DataLog, which is not computationally universal, but admits
efficient reasoning algorithms (see e.g. (Soufle, 2016)).

Starting from the CFG, decompilation attempts to reverse also
the other phases of the compilation process, with the aim to
obtain source from machine code. The result is intended for
manual inspection by humans, as it usually is not fully functional
and does not compile.

5.1.2 Symbolic Execution
Symbolic execution is a method that executes the bytecode like a
regular machine would do, but with symbols as placeholders for
arbitrary input and environment data. Any operation on such
symbols results in a symbolic expression that is passed to the
next operation. In the case of a fork, all branches are explored,
but they are annotated with complementary symbolic conditions
that restrict the symbols to those values that will lead to the execution
of the particular branch. At intervals, an SMT (Satisfiability Modulo
Theory) solver is invoked to check whether the constraints on the
current path are still simultaneously satisfiable. If they are
contradictory, the path does not correspond to an actual
execution trace and can be skipped. Otherwise, exploration
continues. When symbolic execution reaches code that matches a
vulnerability pattern, a potential vulnerability is reported. If, in
addition, the SMT solver succeeds in computing a satisfying
assignment for the constraints on the path, it can be used to
devise an exploit that verifies the existence of the vulnerability.

The effectiveness of symbolic execution is limited by several
factors. First, the number of paths grows exponentially with
depth, so the analysis has to stop at a certain point. Second,
some aspects of the machine are difficult to model precisely, like
the relationship between storage and memory cells, or complex
operations like hash functions. Third, SMT solvers are limited to
certain types of constraints, and even for these, the evaluation
may time out instead of detecting (un)satisfiability.

Concolic execution interleaves symbolic execution with phases
where the program is run with concrete input (concolic = concrete
+ symbolic). Symbolic execution of the same path then yields
formal constraints characterizing the path. After negating some
constraint, the SMT solver searches for a satisfying assignment.
Using it as the input for the next cycle leads, by construction, to

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497710

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

the exploration of a new path. This way, concolic execution
achieves a better coverage of the code.

Taint analysis marks values from the input, the environment
or from storage with tags (“taints”). Propagation rules define how
tags are transformed by the instructions. Some vulnerabilities can
be identified by inspecting the tags arriving at specific code
locations. Taint analysis is often used in combination with
other methods, like symbolic execution.

5.1.3 Abstract Interpretation
Most static methods for vulnerability detection are neither sound
nor complete. They may report vulnerabilities where there are
none (false positives, unsoundness), and may fail to detect
vulnerabilities present in the code (false negatives,
incompleteness). The first limitation arises from the inability
to specify necessary conditions for the presence of vulnerabilities
that can be effectively checked. The second one is a consequence
of the infeasibly large number of computation paths to explore,

and the difficulty to come up with sufficient conditions that can
be checked.

Abstract interpretation (Cousot and Cousot, 2004) aims at
completeness by focusing on properties that can be evaluated
for all execution traces. As an example, abstract interpretation
may split the integer range into the three groups zero, positive, and
negative values. Instead of using symbolic expressions to capture
the precise result of instructions, abstract interpretation reasons
about how the property of belonging to one of the three groups
propagates with each instruction. This way it may be possible to
show that the divisors in the code always belong to the positive
group, ruling out division by zero, for any input. The challenge is to
come up with a property that is strong enough to entail the absence
of a particular vulnerability, but weak enough to allow for the
exploration of the search space. Contrary to symbolic execution
and most other methods, this approach does not indicate the
presence of a vulnerability, but proves that a contract is definitely
free from a certain vulnerability (safety guarantee).

TABLE 7 | Mapping of classifications for vulnerabilities.

Class Vulnerabilty DASP SWC Consolidated

1 Reentrancy 1 107 1A
Call to the unknown 1 1B
Strict balance equality 132 1C
Untrusted delegatecall 2 112 1E

2 Timestamp dependence 8 116 2A
Transaction order dependence 7 114 2B
Bad random number gen 6 120 2C
Confidential info leak 136 2D
Block hash dependency 120 2F

3 Unchecked return value 4 104 3A
DOS with failed call 5 113 3B
Gasless send 134 3C
Assert/require violation 110, 123 3D

4 DOS block gas limit 5 128 4C
Insufficient gas griefing 5 126 4E

6 Auth. with tx.origin 2 115 6A
Wrong visibility 2 100, 108 6B
Unprotected selfdestruct 5 106 6C
Unprotected send/withdraw 105 6D
Signature issues 117, 121, 122, 133 6E

7 Over/underflow 3 101 7A

8 Coding error 129 8B
Deprecated Solidity 111 8D
Arbitrary storage write 124 8E
Arbitrary jump 127 8F
Incorrect inheritance order 125 8G
Variable shadowing 119 8H
malicious code 130 8I
logical error or dead code 131 8J

9 Short address 9 9A
Outdated compiler version 102 9B
Floating pragma 103 9C

10 Uninit. memory, storage 109 10B
Constructor 118 10C

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497711

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

5.2 Dynamic Code Analysis
Dynamic code analysis checks the behavior of code, while it
processes data in its “natural” environment. The most common
method is testing, where the code is run with selected inputs and
its output is compared to the expected result.

Fuzzing is a technique that runs a program with a large
number of randomized inputs, in order to provoke crashes or
otherwise unexpected behavior.

Code instrumentation augments the program with additional
instructions that check for abnormal behavior or monitor
performance during runtime. An attempt to exploit a
vulnerability then may trigger an exception and terminate
execution. As an example, a program could be systematically
extended by assertions ensuring that arithmetic operations do not
cause an overflow.

Machine instrumentation is similar to code instrumentation,
but adds the additional checks on machine level, enforcing them
for all contracts. E.g., an extended EVM might check for
overflows at every arithmetic operation. Some authors go even
further by proposing changes to the transaction semantics or the
Ethereum protocol, in order to prevent vulnerabilities. While
interesting from a conceptual point of view, such proposals are
difficult to realize, as they require a hard fork affecting also the
contracts already deployed.

Mutation testing is a technique that evaluates the quality of test
suites. The source code of a program is subjected to small
syntactic changes, known as mutations, which mimic common
errors in software development. For example, a mutation might
change a mathematical operator or negate a logical condition. If a
test suite is able to detect such artificial mistakes, it is more likely
that it also finds real programming errors.

5.3 Formal Specification and Verification
Programmers prefer high level programming languages over
assembly, as it allows them to express the program logic in a
more abstract way, reducing the rate of errors and speeding up
development. Modeling smart contracts on an even higher level
of abstraction offers additional benefits, like formal proofs of
contract properties. The core logic of many blockchain
applications can be modeled as finite state machines (FSMs),
with constraints guarding the transitions. As FSMs are simple
formal objects, techniques like model checking can be used to
verify properties specified in variants of computation tree logic.
Once the model is finished, tools translate the FSM to
conventional source code, where additional functionality can
be added.

The high cost of errors and the small size of blockchain
programs makes them a promising target for formal
verification approaches. Unlike testing, which detects the
presence of bugs, formal verification aims at proving the
absence of bugs and vulnerabilities. As a necessary
prerequisite, the execution environment and the semantics of
the programming language or the machine need to be formalized.
Then functional and security properties can be added, expressed
in some specification language. Finally, automated theorem
provers or semi-automatic proof assistants can be used to
show that the given program satisfies the properties.

F* is a functional programming language with a proof assistant
for program verification. Bhargavan et al. (2016) develop a F*
framework that translates both, Solidity source code and EVM
bytecode, to F* in order to verify high- and low-level properties.
Grishchenko et al. (2018) use F* to specify the small-step
semantics of the EVM.

KEVM is a formal specification of the EVM in the specification
language K (Hildenbrandt et al., 2018). From the specification,
the K framework is able to generate tools like interpreters and
model-checkers, but also deductive program verifiers.

Horn logic is a restricted form of first-order logic, but still
computationally universal. It forms the basis of logic-oriented
programming and is attractive as a specification language, as
Horn formulas can be read as if-then rules.

5.4 Miscellany
Like in many other areas, methods from machine learning gain
popularity also in smart contract analysis. Techniques like long-
short term memory (LSTM) modeling, convolution neural
networks or N-gram language models may achieve high test
accuracy. A common challenge is to obtain a labeled training
set that is large enough and of sufficient quality.

5.5 Usage of Methods in Tools
Figure 7 shows the number of tools using one of the methods
above. Formal reasoning and constraint solving is most frequently
employed, due to the many tools integrating formal methods as a
black box, like constraint solvers to prune the search space or
Datalog reasoners to check intermediate representations. Proper
formal verification, automated or via proof assistants, is rare, even
though smart contracts, due to their limited size and the value at
stake, seem to be a promising application domain. This may be due
to the specific knowledge required for this approach.

Next in popularity are the construction of control flow graphs (46,
32.9%), symbolic execution (44, 31.4%), and the use of intermediate
representations and specification languages (37, 26.4%).

6 TOOLS FOR AUTOMATED SECURITY
ANALYSIS

The 24 SLRs and surveys as well as the 149 primary studies we
finally selected describe a total of 140 tools for analyzing the
security of Ethereum smart contracts, with 83 published open
source. In the Supplementary Material, we describe the tools and
list their functionalities and methods.

6.1 Functionalities
Figure 8 shows the prevalence of the functionalities provided by
the tools.

Code level. More than half of the tools analyze Solidity code
(86, 61.4%) or bytecode (73, 52.1%), while a few (19, 13.6%) work
at both levels.

Aim. Next to the detection of vulnerabilities, security analysis
comprises the verification of correctness of code, gas/resource
analysis, decompilation and disassembly, and correct-by-design
approaches.More than half of the tools (79, 56.4%) aim at detecting

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497712

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

vulnerabilities, almost a third (42, 30.0%) is concerned with
proving the absence of vulnerabilities, and 17 (12.1%) analyze
resources.

Interaction. Some tools go the extra length of verifying the
vulnerabilities they found by providing exploits or suggesting
remedies. Almost a third (41, 29.2%) allows for full automation or
bulk analysis, while 27 (19.2%) are aimed at manual analysis or
development support.

Analysis Type. The vast majority of tools (113, 80.7%) employs
static methods, about a third (43, 30.7%) uses dynamic methods,
and several (16, 11.4%) use both.

6.2 Publication Trends
Figure 9 shows a break-down of the tools by the year of publication.
The development of new tools has increased rapidly since 2018, with
more than half of them published open source. Over a third of the
open source tools (25) received updates in 2020, while 19 tools were
updated within the first 7 months of 2021.

6.3 Maintenance of Tools
Tools that are not open source are difficult to assess, hence we
only consider open source tools when taking a closer look at their
maintenance status.

Many tools were developed as a proof-of-concept for a method
described in a scientific publication, and have not been
maintained since their release. While this is common practice
in academia, potential users prefer tools that are maintained and
where reported issues are addressed in a timely manner.

Table 8 lists twenty tools that have been around for some
time, are maintained, and are apparently used. More precisely,
we include a tool if it was released in 2019 or earlier, shows
continuous update activities, and has some filed issues that
were addressed by the authors of the tool. We exclude newer
tools, since they have not yet a substantial maintenance
history.

7 BENCHMARKS AND TEST SETS

In this section, we give an overview of the benchmarks and test sets
for smart contract analysis that we identified in SLRs, surveys and
primary studies. For each of them, Table 9 lists the publication, the
project name and a link to a repository (if available). The number of
contracts per test set (fourth column) varies between 6 and 47541.
More than half of the projects also include contracts that were
manually verified to be true or false positives with respect to some
property, in order to serve as a ground truth. Their number is given
in the fifth column. Flags indicate the availability of analysis results,
source code, bytecode, and deployment addresses on Ethereum’s
main chain. Three collections additionally provide exploits, marked
in the last column.

The first group in the table refers to collections of vulnerable
contracts written in Solidity. They are not associated with any tool
and provide neither analysis results, nor corresponding
bytecodes, nor deployment addresses for Ethereum’s main chain.

The second group in this table comprises projects aimed at the
analysis of vulnerabilities, but without accompanying tool. They

partially provide Ethereum addresses, Solidity sources, and
analysis results.

The third and largest group consists of tools that provide test
data. Most provide Solidity sources and/or Ethereum addresses,
four of them also bytecode. Two tools, VerX and Zeus, offer only
analysis results, but neither the bytecode, the source code nor the
deployment address of the contracts analyzed, which makes it
hard to verify the results.

8 DISCUSSION

In this section, we present our observations regarding the
vulnerabilities, methods, tools, and benchmarks we found in
the literature.

8.1 Vulnerabilities
8.1.1 Coverage
We collected 54 vulnerabilities documented in literature. While
reentrancy is an early and well analyzed vulnerability, most others
have received significantly less attention. This uneven coverage is
also reflected in the tools, which address vulnerabilities in diverse
combinations, with reentrancy being the most prominent one.

8.1.2 Taxonomies
The Ethereum ecosystem still lacks a coordinated process for
collecting and structuring vulnerabilities. Collaborative efforts
like the SWC registry are valuable resources, but as plain
collections lack structural information and usability. We find
several proposals from the community and from scholars
regarding Ethereum-specific taxonomies, none of which can be
considered established. Despite the narrow scope, blockchain and
Ethereum, we do not perceive a convergence of taxonomies. In
fact, the proposed taxonomies often are complementary rather
than extensions or refinements. This makes it difficult to map the
different taxonomies to each other and leaves room for
discussion.

One reason may be the continued rapid development on all
levels, including blockchain protocols and blockchain
programming. Another one are the different angles for
categorizing vulnerabilities. For detection, it is natural to
consider the causes of vulnerabilities, as this is what tools can
search for, like storage locations accessible to anyone. A second
dimension are the effects of vulnerabilities, like denial of service
or unauthorized withdrawal. Different causes can result in the
same effect, while a technical cause may contribute to various
effects. A third perspective looks at the motives of a potential
attacker, like economic incentives or the demonstration of skill
and power, relevant e.g. when trying to assess the severity of
vulnerabilities. Authors of tools have their own perspective; the
employed methods determine how vulnerabilities are defined and
related.

Taxonomies mixing cause, effect and attacker intentions may be
comprehensive, but are difficult to use when the aim is, for instance,
to compare tools or to match suitable test sets with tools, as the
vulnerabilities cannot be clearly assigned. A hierarchical, multi-level
classification without overlaps, on the other hand, may be too strict

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497713

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

to cater for multi-faceted vulnerabilities. Altogether, we see the need
for more work on differentiating and systematizing vulnerabilities as
well as on assessing their severity.

8.2 Methods
Searching for vulnerabilities, in source code or on machine level, is
not limited to blockchains. Static and dynamic program analysis are
as old as programming, and most methods we found are well-
established in program analysis at large. Early on, researchers on
program analysis demonstrated thatmethods like symbolic execution
are able to detect vulnerabilities of smart contracts and to generate
exploits. What makes blockchain programs a particularly attractive

domain, is their limited size and the drastic consequences bugs may
have. The former results in search spaces that are small compared e.g.
to those of desktop programs, which makes approaches feasible that
rely on the exploration of the entire search space. Thus, the
application of known methods within the specific context of
Ethereum may also lead to new insights and refinements outside.

Researchers from the blockchain community, on the other
hand, occasionally present prototypes for their approaches that
disregard the state of the art in program analysis. This is not
always apparent from the publication, where the authors may
state in a side note that their algorithm works on control flow
graphs or extracts the entry points of the contract as starting

FIGURE 7 | Number of analysis tools employing a particular method.

FIGURE 8 | Number of analysis tools providing a particular functionality.

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497714

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

point. Only when checking the code it becomes apparent whether
the tool is a proof-of-concept with heuristics tied e.g. to a
particular version of the Solidity compiler, or whether the tool
performs thorough code analysis.

Publications surveying the methods used by the tools,
classify them along familiar lines, like static vs. dynamic
analysis, probabilistic/heuristic vs. deductive analysis, but
hardly go beyond. A technical in-depth comparison of
detection approaches is still lacking, as it is beyond the
scope of pure surveys. It would be desirable 1) to scrutinize
which methods are suited to which extent for detecting
particular vulnerabilities, or inversely, 2) to determine for
each vulnerability, which methods can detect it to which
degree or under which conditions.

8.3 Tools
With 140 tools released until January 2021, it is difficult to decide,
which tools to consider for a particular purpose.

8.3.1 Vulnerabilities Addressed
The tools address differing subsets of the 54 vulnerabilities, with
most tools tackling fewer than ten. There are some frameworks
that combine several tools with a unified interface to harness the
power of many.

Claim vs. achievement. Each tool advertises a list of
vulnerabilities that it purportedly detects. Due to the variety of
methods employed, different tools may classify contracts
differently, even when they seemingly address the same
vulnerability. Moreover, tools may refer to incompatible
taxonomies of vulnerabilities or introduce their own definition,
which makes it difficult to compare the tools.

Warnings vs. confirmed vulnerabilities vs. security
guarantees. Many vulnerabilities are ‘detected’ by rather
simple heuristics. As an example, contracts are commonly
reported as depending on block data, if they contain any of the
instructions accessing such information. While this warning is
not wrong per se, it does not imply that the flagged contract is

FIGURE 9 | Publication and maintenance of tools. The numbers for 2021 include the first 7 months only.

TABLE 8 | Tools published in or before 2019 that are maintained and in use.

Tool Published Public repository at github.com

ContractLarva 2019–08 gordonpace/contractLarva
Ethersplay 2018–05 crytic/ethersplay
Gigahorse 2019–01 nevillegrech/gigahorse-toolchain
ILF 2019–11 eth-sri/ilf
KEVM 2019–07 kframework/evm-semantics
KEVM Verifier 2018–10 runtimeverification/verified-smart-contracts
MadMax 2018–09 nevillegrech/MadMax
Manticore 2017–02 trailofbits/manticore
Mythril 2017–10 ConsenSys/mythril
Oyente 2016–01 enzymefinance/oyente
PASO 2019–09 aphd/paso
Remix-IDE 2014–11 ethereum/remix-project
Securify 2018–09 eth-sri/securify2
Slither 2018–10 crytic/slither
SmartBugs 2019–10 smartbugs/smartbugs
SmartCheck 2018–05 smartdec/smartcheck
SOLC-VERIFY 2019–07 SRI-CSL/solidity/blob/0.7/SOLC-VERIFY-README.md
Solhint 2017–10 protofire/solhint
teEther 2019–02 nescio007/teether
Vertigo 2019–08 JoranHonig/vertigo

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497715

Rameder et al. Automated Vulnerability Analysis

http://github.com
https://github.com/gordonpace/contractLarva
https://github.com/crytic/ethersplay
https://github.com/nevillegrech/gigahorse-toolchain
https://github.com/eth-sri/ilf
https://github.com/kframework/evm-semantics
https://github.com/runtimeverification/verified-smart-contracts
https://github.com/nevillegrech/MadMax
https://github.com/trailofbits/manticore
https://github.com/ConsenSys/mythril
https://github.com/enzymefinance/oyente
https://github.com/aphd/paso
https://github.com/ethereum/remix-project
https://github.com/eth-sri/securify2
https://github.com/crytic/slither
https://github.com/smartbugs/smartbugs
https://github.com/smartdec/smartcheck
https://github.com/SRI-CSL/solidity/blob/0.7/SOLC-VERIFY-README.md
https://github.com/protofire/solhint
https://github.com/nescio007/teether
https://github.com/JoranHonig/vertigo
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

actually vulnerable, as there are safe uses of block data.
Consequently, most tools are neither correct nor complete:
They may report contracts as vulnerable, even though they are
not, and vice versa. Since large numbers of false positives
diminish trust, some tools verify their findings by constructing
exploits and checking that these indeed work. Single tools
choose a complementary approach by showing that the
contract under consideration satisfies a security property
that provably precludes a specific vulnerability.

8.3.2 Comparison and Evaluation
Apart from vulnerabilities addressed and detection methods
employed, the tools differ regarding maturity and
maintenance. For open source tools, the latter can be assessed
by checking information on last updates and number of
contributors in the respective repositories (see the
Supplementary Material for an overview). An evaluation of
tools, however, requires to install and run them on some
samples, at a minimum. To our knowledge, there is no

comprehensive evaluation of this type. This leads to the
unsatisfactory situation that surveys and related work sections
include tools that actually do not exist or are otherwise of poor
quality. As an example, students envisionedDappGuard as part of
an assignment, but did not implement it; the repository contains
just a script for collecting some data from the chain. Apparently
the students did an excellent job, as their technical report,
accessible on the webpage of the course, is taken by many
researchers as sufficient proof for the existence of the tool.

Regarding the proper evaluation of tools, we see a wide spectrum.
On the one end, we find tool descriptions with a few test runs, where
neither tool nor test data are accessible. Most evaluations compare
the new tool to some previously published ones on selected smart
contracts. The validity of such evaluations is limited, though, as the
presence or absence of vulnerabilities is determined by other tools
that have not been fully validated either. There are some laudable
exceptions, where the authors first compile a ground truth that
consists of smart contracts manually checked by one or more
persons, before using it to evaluate tools.

TABLE 9 | Benchmarks/test sets for smart contracts without accompanying tool.

Publication Project/tool Repository no.
contracts

Ground
truth

Analysis
results

Solidity Bytecode Addresses Exploits

Trail of Bits (2020) (Not So) Smart
Contracts

url 25 25 ✓ ✓

SWC Registry (2018) SWC Registry url 122 122 ✓
– EVM Analyzer url 38 38 ✓
– Ethernaut url 21 (✓) ✓
– Capture the Ether url 17 (✓) ✓
Jiachi Chen et al. (2020) – url 587 587 ✓
Gupta (2019), Gupta et al. (2020) – – 40 40 ✓
Praitheeshan et al. (2020a) – url 49 ✓ ✓ ✓
Ye et al. (2019a),Ye et al. (2019b) – – 3884 (✓) ✓ ✓ ✓
Zhang et al. (2020) JiuZhou url 146 146 ✓
Zhou et al. (2020) – url 2 949 ✓ ✓
Jiang et al. (2018); Mei et al. (2019) ContractFuzzer url 416 416 ✓ ✓
Hartel and van Staalduinen (2019) ContractVis url 1 112 ✓ ✓ ✓
Haijun Wang et al. (2019), Haijun Wang
et al. (2020)

ContraMaster/
Vultron

url 21 ✓ ✓ ✓

Chen et al. (2021) DefectChecker url 581 581 ✓ ✓ ✓
Liu et al. (2018) Ether* (S-gram) url 1 500 ✓ ✓
Kolluri et al. (2019) ETHRACER url 8 139 82 ✓ ✓
Liu et al. (2020) FAIRCON url 17 17 ✓ ✓ ✓ ✓
Yang et al. (2020) MSgram analysis url 7 124 ✓ ✓
Shuai Wang et al. (2019) NPCHECKER url 50 50 ✓ ✓
Luu et al. (2016) OYENTE url 17 554 ✓ ✓
Albert et al. (2019) SAFEVM url ~ 10 000 ✓ ✓
Rodler et al. (2018) Sereum url 6 6 ✓ ✓ ✓
Nguyen et al. (2020) sFuzz url 46 186 350a ✓ ✓ ✓
Durieux et al. (2020); Ferreira et al.
(2020a),Ferreira et al. (2020a)

SmartBugs url 47 541 143 ✓ ✓ ✓

Akca et al. (2019) SolAnalyser url 1 839 ✓
Liao et al. (2019) SoliAudit url 17 980 ✓ ✓
Marescotti et al. (2020) Solicitous url 28 590 ✓ ✓
Ghaleb and Pattabiraman (2020) SolidiFI url 350 350 ✓ ✓
Zhang et al. (2019) SolidityCheck url 1 363 ✓ ✓ ✓
Hegedus (2018) SolMet url 10 206 ✓ ✓ ✓
Permenev et al. (2020) VerX url 13 ✓
Kalra et al. (2018) ZEUS url 1 524 ✓
aground truth taken from project SolidiFi.
(✓) size of ground truth unclear

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497716

Rameder et al. Automated Vulnerability Analysis

https://github.com/crytic/not-so-smart-contracts
https://swcregistry.io/
https://github.com/ConsenSys/evm-analyzer-benchmark-suite
https://ethernaut.openzeppelin.com/
https://capturetheether.com/challenges/
https://github.com/Jiachi-Chen/TSE-ContractDefects
https://github.com/ppraithe/on-chain-wallet-contracts
https://github.com/xf97/JiuZhou/
https://drive.google.com/file/d/1xLssDxYWyKFCwS5HUrQaSex0uwJRSvDi/view
https://github.com/gongbell/ContractFuzzer/tree/master/examples
https://github.com/pieterhartel/Truffle-tests-for-free
https://github.com/ntu-SRSLab/vultron
https://github.com/Jiachi-Chen/DefectChecker/
https://github.com/njaliu/sgram-artifact
https://drive.google.com/file/d/1190VXwu502M-vgT8yyuFp0lFUVlxnMhO
https://doi.org/10.1145/3410249
https://github.com/yz1019117968/MSgramDataset
https://www.dropbox.com/sh/90tm5drmeep9bqy/AAB0jKxkIevNct2eIvsYb7Oqa
https://github.com/oyente/benchmarks
https://github.com/costa-group/EthIR/tree/master/ethir/test/safevm
https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns
https://github.com/renardbebe/Smart-Contract-Benchmark-Suites
https://github.com/smartbugs/smartbugs/
https://github.com/sefaakca/Dataset
https://goo.gl/UAUpK5/
https://scm.ti-edu.ch/repogit/verify-solidity-contracts.git
https://github.com/smartbugs/SolidiFI-benchmark
https://github.com/xf97/SolidityCheck/blob/master/test%20data%20set.zip
https://github.com/chicxurug/wetseb-2018-data
https://github.com/eth-sri/verx-benchmarks
https://docs.google.com/spreadsheets/d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-of_Za8/edit#gid=1894239238
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

8.4 Benchmarks
Regarding benchmarks and test sets, we find three types in
literature.

• Smart contracts actually deployed, also referred to as in the
wild, that have been obtained 1) from Ethereum’s main
chain (and possibly have a verified source code at
Etherscan1), or 2) from one of the test chains.

• Contracts generated 1) for challenges like Ethernaut, 2) as
illustration ofmishaps, or 3) from a source code by introducing
vulnerabilities systematically by code transformations.

• Contracts that do not possess a known vulnerability (any
more). These include 1) contracts obtained from vulnerable
ones by fixing the issue and that are considered touchstones,
and 2) contracts appearing vulnerable to attackers, but being
actually safe (honeypots).

Several test sets try to establish a ground truth for selected
vulnerabilities, by confirming their existence either informally or
by providing an exploit.

9 CONCLUSION

In this work, we conducted a systematic literature review regarding
the automated analysis of vulnerabilities in Ethereum smart
contracts. We consolidated relevant vulnerability classifications by
structuring 54 vulnerabilities into tenmajor groups. Additionally, we
compiled the properties and methods characterizing the analysis
tools. We identified a total of 140 tools addressing the security of
smart contracts, with 83 published open source. Finally, we gave an
overview of publicly available collections of Ethereum smart
contracts that may serve as benchmarks and tests sets for tool
evaluations.

9.1 New Vulnerabilities and Tools
The body of literature in the field of security analysis of smart
contracts has been extensive in recent years, with a clearly increasing
tendency. The sheer number of publications underpins the fact that
Ethereum currently is the de facto standard with respect to the
research on and the development of smart contracts. Likewise, new
smart contract attacks and vulnerabilities keep emerging.With some
delay, they are addressed by new or extended tools, with new
approaches to vulnerability detection. At the same time, there is
not a single tool that covers all documented vulnerabilities. The
growing number of tools and related publications substantiates the
need for surveys and reviews at regular intervals to guide the
interested audience.

9.2 Open Challenges
We identified challenges in all areas discussed in Section 8. Regarding
vulnerabilities, there is still room for improvement in terms of their
clear delineation, their arrangement in coherent taxonomies and the
classification of their severity. As for the methods, the field would

benefit from an in-depth discussion on the suitability of detection
approaches with respect to specific vulnerabilities. Concerning tools,
the quality assessment is impeded by a lack of established
vulnerability taxonomies and benchmarks. Regarding benchmark
sets, the ground truth is still sparse, and the available test sets
often lack validation in the form of exploits.

9.3 Limitations of Our Review
Threats to the validity of the SLR. The restricted timespan of the
study excludes relevant studies recently published, which poses a
threat to construct and external validity (Zhou et al., 2016). Data
collection and extraction as well as most of the consolidation of
the extracted data were carried out in the course of a master’s
thesis with a tight time budget of six personmonths. Therefore we
did not include a structured snowballing process, which poses
threats to both the internal and conclusion validity. This might
affect the impartiality of the quality evaluation and the validity of
the publication classifications.

Depth. Many naturally arising questions have to remain
unanswered in such an endeavor, as they go beyond a pure
literature review and would require original research. As an
example, the characteristics of a tool, like the vulnerabilities
addressed or the methods used, often cannot be determined
conclusively from the accompanying publication alone, but
would require reading further documentation or the source
code. Likewise, assessing the quality of results, the efficiency of
detection, the actual practicality, or the maturity of a tool requires
additional effort beyond a review. Finally, we did not check the
referenced benchmark sets for quality or duplicates.

Platform selection. We deliberately restricted the review to
publications on Ethereum smart contracts. We selected this
platform for its wealth of documentation, publications,
discussions, use cases, handled assets, and overall market value.
Some aspects are specific to the predominant programming
language Solidity, or to the underlying mechanics of Ethereum
and its virtual machine (EVM). However, many aspects of
taxonomies, methods and tools are also relevant for other
programming languages, virtual machines (like WASM) or even
other smart contract platforms influenced by Ethereum.

AUTHOR CONTRIBUTIONS

HR has elaborated the data collection and extraction as well as
most of the consolidation as a master thesis supervised by MA
who provided critical feedback. MA used parts of the thesis to
draft the manuscript. MA and GS revised all sections, especially
the methods in automated analysis, and added further
consolidations as well as the sections introduction, discussion
and conclusion.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977/
full#supplementary-material1Etherscan.io.

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497717

Rameder et al. Automated Vulnerability Analysis

https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977/full#supplementary-material
https://etherscan.io/
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers: Principles,
Techniques, & Tools 2nd Edn. Boston, MA: Pearson Education.

Akca, S., Rajan, A., and Peng, C. (2019). “Solanalyser: A Framework for Analysing
and Testing Smart Contracts,” in 26th Asia-Pacific Software Engineering
Conference (APSEC) (IEEE), 482–489. APSEC 19. doi:10.1109/APSEC48747.
2019.00071

Albert, E., Correas, J., Gordillo, P., Román-Díez, G., and Rubio, A. (2019). “Safevm:
A Safety Verifier for Ethereum Smart Contracts,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis
(New York, NY, USA: Association for ComputingMachinery), 386–389. ISSTA
2019. doi:10.1145/3293882.3338999

Almakhour, M., Sliman, L., Samhat, A. E., and Mellouk, A. (2020). Verification of
Smart Contracts: A Survey. Pervasive Mobile Comput. 67, 101227. doi:10.1016/j.
pmcj.2020.101227

Ante, L. (2021). Smart Contracts on the Blockchain - A Bibliometric Analysis
and Review. Telematics Inform. 57, 101519. doi:10.1016/j.tele.2020.
101519

Atzei, N., Bartoletti, M., and Cimoli, T. (2017). “A Survey of Attacks on Ethereum
Smart Contracts (Sok),” in International Conference on Principles of Security
and Trus (Berlin Heidelberg: Springer), 164–186. vol. 10204 of POST 2017,
Lecture Notes in Computer Science (LNCS). doi:10.1007/978-3-662-
54455-6_8t

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., et al. (2016). “Formal Verification of Smart Contracts,” in
Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security (New York, NY, USA: Association for Computing
Machinery), 91–96. PLAS 16. doi:10.1145/2993600.2993611

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M. (2007).
Lessons from Applying the Systematic Literature Review Process within the
Software Engineering Domain. J. Syst. Softw. 80, 571–583. doi:10.1016/j.jss.
2006.07.009

Chen, H., Pendleton, M., Njilla, L., and Xu, S. (2021). A Survey on Ethereum
Systems Security. ACM Comput. Surv. 53, 1–43. doi:10.1145/3391195

Chen, J., Xia, X., Lo, D., Grundy, J., Luo, X., and Chen, T. (2021).
“Defectchecker: Automated Smart Contract Defect Detection by
Analyzing Evm Bytecode,” in IEEE Transactions on Software
Engineering, 1. doi:10.1109/tse.2021.3054928

Chen, J., Xia, X., Lo, D., Grundy, J., Luo, X., and Chen, T. (2020). “Defining Smart
Contract Defects on Ethereum,” in IEEE Transactions on Software Engineering,
48, 327–345. doi:10.1109/TSE.2020.2989002

Coblenz, M., Sunshine, J., Aldrich, J., and Myers, B. A. (2019). “Smarter
Smart Contract Development Tools,” in Proceedings of the 2nd
International Workshop on Emerging Trends in Software Engineering
for Blockchain, WETSEB@ICSE 2019 (IEEE), 48–51. doi:10.1109/
WETSEB.2019.00013

CORE (2021). CORE Rankings Portal. Available at: https://www.core.edu.au/
conference-portal (Accessed August 8, 2021).

Cousot, P., and Cousot, R. (2004). “Basic Concepts of Abstract Interpretation,” in
Building the Information Society (Boston, MA, USA: Springer), 359–366. doi:10.
1007/978-1-4020-8157-6_27

di Angelo, M., and Salzer, G. (2019). “A Survey of Tools for Analyzing Ethereum
Smart Contracts,” in IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON) (IEEE), 69–78. DAPPCON
2019. doi:10.1109/DAPPCON.2019.00018

Dika, A. (2017). Ethereum Smart Contracts: Security Vulnerabilities and Security
Tools (Trondheim, Norway: Norwegian University of Science and Technology,
Department of Computer Science). Thesis.

Durieux, T., Ferreira, J. F., Abreu, R., and Cruz, P. (2020). “Empirical Review of
Automated Analysis Tools on 47,587 Ethereum Smart Contracts,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. (New York, NY, USA: Association for Computing Machinery),
530–541. ICSE 20. doi:10.1145/3377811.3380364

Ferreira, J. F., Cruz, P., Durieux, T., and Abreu, R. (2020a). Smartbugs. Available at:
https://github.com/smartbugs/smartbugs (Accessed August4, 2021).doi:10.
1145/3324884.3415298

Ferreira, J. F., Cruz, P., Durieux, T., and Abreu, R. (2020b). “SmartBugs,” in 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE)
(New York, NY, USA: Association for ComputingMachinery), 1349–1352. ASE
20. doi:10.1145/3324884.3415298

Garfatta, I., Klai, K., Gaaloul, W., and Graiet, M. (2021). “A Survey on Formal
Verification for Solidity Smart Contracts,” in Australasian Computer Science
Week Multiconference (New York, NY, USA: Association for Computing
Machinery), 1–10. ACSW 21. doi:10.1145/3437378.3437879

Ghaleb, A., and Pattabiraman, K. (2020). “How Effective Are Smart Contract
Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug
Injection,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis (New York, NY, USA:
Association for Computing Machinery), 415–427. ISSTA 2020. doi:10.
1145/3395363.3397385

Grishchenko, I., Maffei, M., and Schneidewind, C. (2018). “A Semantic Framework
for the Security Analysis of Ethereum Smart Contracts,” in International
Conference on Principles of Security and Trust. Editors L. Bauer and
R. Küsters Lecture Notes in Computer Science (Cham: Springer
International Publishing) vol 10804, 243–269. doi:10.1007/978-3-319-
89722-6_10

Grune, D., van Reeuwijk, K., Bal, H. E., Jacobs, C. J., and Langendoen, K. (2012).
Modern Compiler Design. New York, NY, USA: Springer.

Guo, Y.-M., Huang, Z.-L., Guo, J., Guo, X.-R., Li, H., Liu, M.-Y., et al. (2021). A
Bibliometric Analysis and Visualization of Blockchain. Future Generation
Comput. Syst. 116, 316–332. doi:10.1016/j.future.2020.10.023

Gupta, B. C. (2019). Analysis of Ethereum Smart Contracts - A Security Perspective
(Kanpur: Department of Computer Science and Engineering, Indian Institute of
Technology). Master’s thesis.

Gupta, B. C., Kumar, N., Handa, A., and Shukla, S. K. (2020). “An Insecurity Study
of Ethereum Smart Contracts,” in International Conference on Security, Privacy,
and Applied Cryptography Engineering (SPACE) Lecture Notes in Computer
Science (Cham: Springer) vol. 12586, 188–207. doi:10.1007/978-3-030-
66626-2_10

Hartel, P., and van Staalduinen, M. (2019). Truffle Tests for Free – Replaying
Ethereum Smart Contracts for Transparency. arXiv preprint arXiv:
1907.09208.

Hegedűs, P. (2018). “Towards Analyzing the Complexity Landscape of Solidity
Based Ethereum Smart Contracts,” in 1st IEEE/ACM International Workshop
on Emerging Trends in Software Engineering for Blockchain, WETSEB@ICSE
2018 (New York, NY, USA: Association for Computing Machinery), 35–39.
WETSEB 18. doi:10.1145/3194113.3194119

Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D., et al.
(2018). “Kevm: A Complete Formal Semantics of the Ethereum Virtual
Machine,” in IEEE 31st Computer Security Foundations Symposium (IEEE),
204–217. CSF 2018. doi:10.1109/CSF.2018.00022

Hu, B., Zhang, Z., Liu, J., Liu, Y., Yin, J., Lu, R., et al. (2021). A Comprehensive
Survey on Smart Contract Construction and Execution: Paradigms, Tools, and
Systems. Patterns 2, 100179. doi:10.1016/j.patter.2020.100179

Jiang, B., Liu, Y., and Chan, W. K. (2018). “Contractfuzzer: Fuzzing Smart
Contracts for Vulnerability Detection,” in Proceedings of the 33rd ACM/
IEEE International Conference on Automated Software Engineering (New
York, NY, USA: Association for Computing Machinery), 259–269. ASE
2018. doi:10.1145/3238147.3238177

Kalra, S., Goel, S., Dhawan, M., and Sharma, S. (2018). “Zeus: Analyzing Safety of
Smart Contracts,” in Network and Distributed Systems Security Symposium The
Internet Society, 1–15. NDSS 2018. doi:10.14722/ndss.2018.23082

Kim, S., and Ryu, S. (2020). “Analysis of Blockchain Smart Contracts: Techniques
and Insights,” in IEEE Secure Development (SecDev) (IEEE), 65–73. SecDev
2020. doi:10.1109/secdev45635.2020.00026

Kitchenham, B., and Charters, S. (2007). “Guidelines for Performing Systematic
Literature Reviews in Software Engineering,” in Tech. rep., Software Engineering
Group, School of Computer Science and Mathematics (Keele, England: Keele
University).

Kolluri, A., Nikolic, I., Sergey, I., Hobor, A., and Saxena, P. (2019). “Exploiting the
Laws of Order in Smart Contracts,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (New York, NY,
USA: Association for Computing Machinery), 363–373. ISSTA 2019. doi:10.
1145/3293882.3330560

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497718

Rameder et al. Automated Vulnerability Analysis

https://doi.org/10.1109/APSEC48747.2019.00071
https://doi.org/10.1109/APSEC48747.2019.00071
https://doi.org/10.1145/3293882.3338999
https://doi.org/10.1016/j.pmcj.2020.101227
https://doi.org/10.1016/j.pmcj.2020.101227
https://doi.org/10.1016/j.tele.2020.101519
https://doi.org/10.1016/j.tele.2020.101519
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1145/3391195
https://doi.org/10.1109/tse.2021.3054928
https://doi.org/10.1109/TSE.2020.2989002
https://doi.org/10.1109/WETSEB.2019.00013
https://doi.org/10.1109/WETSEB.2019.00013
https://www.core.edu.au/conference-portal
https://www.core.edu.au/conference-portal
https://doi.org/10.1007/978-1-4020-8157-6_27
https://doi.org/10.1007/978-1-4020-8157-6_27
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1145/3377811.3380364
https://github.com/smartbugs/smartbugs
https://doi.org/10.1145/3324884.3415298
https://doi.org/10.1145/3324884.3415298
https://doi.org/10.1145/3324884.3415298
https://doi.org/10.1145/3437378.3437879
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1016/j.future.2020.10.023
https://doi.org/10.1007/978-3-030-66626-2_10
https://doi.org/10.1007/978-3-030-66626-2_10
https://doi.org/10.1145/3194113.3194119
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1016/j.patter.2020.100179
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.14722/ndss.2018.23082
https://doi.org/10.1109/secdev45635.2020.00026
https://doi.org/10.1145/3293882.3330560
https://doi.org/10.1145/3293882.3330560
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Leka, E., Selimi, B., and Lamani, L. (2019). “Systematic Literature Review of
Blockchain Applications: Smart Contracts,” in International Conference on
Information Technologies (IEEE), 1–3. InfoTech 2019. doi:10.1109/InfoTech.
2019.8860872

Liao, J.-W., Tsai, T.-T., He, C.-K., and Tien, C.-W. (2019). “Soliaudit: Smart
Contract Vulnerability Assessment Based on Machine Learning and Fuzz
Testing,” in Sixth International Conference on Internet of Things: Systems,
Management and Security (IEEE), 458–465. IoTSMS 2019. doi:10.1109/
iotsms48152.2019.8939256

Liu, H., Liu, C., Zhao,W., Jiang, Y., and Sun, J. (2018). “S-gram: Towards Semantic-
Aware Security Auditing for Ethereum Smart Contracts,” in 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE) (New
York, NY, USA: Association for Computing Machinery), 814–819. ASE 18.
doi:10.1145/3238147.3240728

Liu, J., and Liu, Z. (2019). A Survey on Security Verification of Blockchain Smart
Contracts. IEEE Access 7, 77894–77904. doi:10.1109/access.2019.2921624

Liu, Y., Li, Y., Lin, S.-W., and Zhao, R. (2020). “Towards Automated Verification of
Smart Contract Fairness,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (New York, NY, USA: Association for Computing
Machinery), 666–677. ESEC/FSE 2020. doi:10.1145/3368089.3409740

López Vivar, A., Castedo, A. T., Sandoval Orozco, A. L., and García Villalba, L. J.
(2020). An Analysis of Smart Contracts Security Threats Alongside Existing
Solutions. Entropy 22, 203. doi:10.3390/e22020203

Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. (2016). “Making Smart
Contracts Smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA: Association for
Computing Machinery), 254–269. CCS 16. doi:10.1145/2976749.2978309

Macrinici, D., Cartofeanu, C., and Gao, S. (2018). Smart Contract Applications
within Blockchain Technology: A Systematic Mapping Study. Telematics
Inform. 35, 2337–2354. doi:10.1016/j.tele.2018.10.004

Marescotti, M., Otoni, R., Alt, L., Eugster, P., Hyvärinen, A. E. J., and
Sharygina, N. (2020). “Accurate Smart Contract Verification through
Direct Modelling,” in Leveraging Applications of Formal Methods,
Verification and Validation: Applications. Editors T. Margaria and
B. Steffen Lecture Notes in Computer Science (LNCS) (Cham: Springer)
vol. 12478, 178–194. doi:10.1007/978-3-030-61467-6_12

Mei, X., Ashraf, I., Jiang, B., and Chan, W. K. (2019). “A Fuzz Testing Service for
Assuring Smart Contracts,” in IEEE 19th International Conference on Software
Quality, Reliability and Security Companion (IEEE), 544–545. QRS 19. doi:10.
1109/QRS-C.2019.00116

[Dataset] MITRE Corp (2006). Common Weakness Enumeration (CWE): A
Community-Developed List of Software Weakness Types. Available at:
https://cwe.mitre.org (Accessed August 7, 2021).

[Dataset] NCCGroup (2018).Decentralized application security project (DASP) top
10. Available at: https://dasp.co(Accessed August 8, 2021).

Nguyen, T. D., Pham, L. H., Sun, J., Lin, Y., and Minh, Q. T. (2020). “sFuzz,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (New York, NY, USA: Association for Computing Machinery),
778–788. ICSE 20. doi:10.1145/3377811.3380334

Okoli, C. (2015). A Guide to Conducting a Standalone Systematic Literature
Review. Cais 37, 43. doi:10.17705/1CAIS.03743

Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., and Vechev,M. (2020).
“Verx: Safety Verification of Smart Contracts,” in IEEE Symposium on Security and
Privacy (SP) (IEEE), 1661–1677. SP 2020. doi:10.1109/sp40000.2020.00024

Praitheeshan, P., Pan, L., and Doss, R. (2020a). “Security Evaluation of Smart
Contract-Based On-Chain Ethereum Wallets,” in International Conference
on Network and System Security. Editors M. Kutyłowski, J. Zhang, and
C. Chen Lecture Notes in Computer Science (LNCS) (Cham: Springer) vol.
12570, 22–41. doi:10.1007/978-3-030-65745-1_2

Praitheeshan, P., Pan, L., Yu, J., Liu, J., and Doss, R. (2020b). Security Analysis
Methods on Ethereum Smart Contract Vulnerabilities: A Survey. arXiv preprint
arXiv:1908.08605v3.

Rodler, M., Li, W., Karame, G. O., and Davi, L. (2018). Sereum: Protecting Existing
Smart Contracts against Re-entrancy Attacks. arXiv preprint arXiv:1812.05934.

Rouhani, S., and Deters, R. (2019). Security, Performance, and Applications of
Smart Contracts: A Systematic Survey. IEEE Access 7, 50759–50779. doi:10.
1109/access.2019.2911031

Samreen, N. F., and Alalfi, M. H. (2020). “A Survey of Security Vulnerabilities in
Ethereum Smart Contracts,” in Proceedings of the 30th Annual International
Conference on Computer Science and Software Engineering (USA: IBM Corp.),
73–82. doi:10.5555/3432601.3432611

Sanchez-Gomez, N., Torres-Valderrama, J., Garcia-Garcia, J. A., Gutierrez, J. J.,
and Escalona, M. J. (2020). Model-based Software Design and Testing in
Blockchain Smart Contracts: A Systematic Literature Review. IEEE Access 8,
164556–164569. doi:10.1109/ACCESS.2020.3021502

Schneidewind, C., Grishchenko, I., Scherer, M., and Maffei, M. (2020). “Ethor:
Practical and Provably Sound Static Analysis of Ethereum Smart Contracts,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA: Association for Computing
Machinery), 621–640. CCS 20. doi:10.1145/3372297.3417250

SCImago (2021). Sjr - Scimago Journal & Country Rank. Available at: https://www.
scimagojr.com/(Accessed August 7, 2021).

Scopus (2021). Scopus Citescore. Available at: https://www.scopus.com/sources.uri
(Accessed August 7, 2021).

Singh, A., Parizi, R. M., Zhang, Q., Choo, K.-K. R., and Dehghantanha, A. (2020).
Blockchain Smart Contracts Formalization: Approaches and Challenges to
Address Vulnerabilities. Comput. Security 88, 101654. doi:10.1016/j.cose.2019.
101654

Snyder, H. (2019). Literature Review as a Research Methodology: An Overview and
Guidelines. J. Business Res. 104, 333–339. doi:10.1016/j.jbusres.2019.07.039

Soufle (2016). Soufflé: Logic Defined Static Analysis. (Accessed November 1, 2021).
Strong, D. M., Lee, Y. W., and Wang, R. Y. (1997). Data Quality in Context.

Commun. ACM 40, 103–110. doi:10.1145/253769.253804
SWC Registry (2018). Smart Contract Weakness Classification and Test Cases.

Available at: https://swcregistry.io/(Accessed August 8, 2021).
Taylor, P. J., Dargahi, T., Dehghantanha, A., Parizi, R. M., and Choo, K.-K. R.

(2020). A Systematic Literature Review of Blockchain Cyber Security. Digital
Commun. Networks 6, 147–156. doi:10.1016/j.dcan.2019.01.005

Tolmach, P., Li, Y., Lin, S.-W., Liu, Y., and Li, Z. (2020). A Survey of Smart Contract
Formal Specification and Verification. arXiv preprint arXiv:2008.02712.

Tolmach, P., Li, Y., Lin, S.-W., Liu, Y., and Li, Z. (2022). A Survey of Smart
Contract Formal Specification and Verification. ACM Comput. Surv. 54, 1–38.
doi:10.1145/3464421

Tovanich, N., Heulot, N., Fekete, J.-D., and Isenberg, P. (2021). “Visualization
of Blockchain Data: A Systematic Review,” in IEEE Transactions on
Visualization and Computer Graphics, 27, 3135–3152. doi:10.1109/
TVCG.2019.2963018

[Dataset] Trail of Bits (2020). (Not So) Smart Contracts. Available at: https://
github.com/crytic/not-so-smart-contracts (Accessed August 7, 2021).

Vacca, A., Di Sorbo, A., Visaggio, C. A., and Canfora, G. (2021). A Systematic
Literature Review of Blockchain and Smart Contract Development: Techniques,
Tools, and Open Challenges. J. Syst. Softw. 174, 110891. doi:10.1016/j.jss.2020.
110891

Varela-Vaca, Á. J., and Quintero, A. M. R. (2022). Smart Contract Languages. ACM
Comput. Surv. 54, 1–38. doi:10.1145/3423166

Wang, H., Li, Y., Lin, S.-W., Ma, L., and Liu, Y. (2019a). “Vultron: Catching
Vulnerable Smart Contracts once and for All,” in Proceedings of the IEEE/ACM
41st International Conference on Software Engineering: New Ideas and Emerging
Results (IEEE), 1–4. ICSE (NIER) 19. doi:10.1109/ICSE-NIER.2019.00009

Wang, H., Liu, Y., Li, Y., Lin, S.-W., Artho, C., Ma, L., et al. (2020). “Oracle-
supported Dynamic Exploit Generation for Smart Contracts,” in IEEE
Transactions on Dependable and Secure Computing, 1. doi:10.1109/TDSC.
2020.3037332

Wang, S., Zhang, C., and Su, Z. (2019). Detecting Nondeterministic Payment Bugs
in Ethereum Smart Contracts. Proc. ACM Program Lang. 3, 1–29. doi:10.1145/
3360615

Wang, Z., Jin, H., Dai, W., Choo, K.-K. R., and Zou, D. (2020). Ethereum Smart
Contract Security Research: Survey and Future Research Opportunities. Front.
Comput. Sci. 15, 1–18. doi:10.1007/s11704-020-9284-9

Yang, Z., Keung, J., Zhang, M., Xiao, Y., Huang, Y., and Hui, T. (2020). “Smart
Contracts Vulnerability Auditing with Multi-Semantics,” in IEEE 44th Annual
Computers, Software, and Applications Conference (COMPSAC) (IEEE),
892–901. doi:10.1109/compsac48688.2020.0-153

Ye, J., Ma, M., Peng, T., Peng, Y., and Xue, Y. (2019Z). “Towards Automated
Generation of Bug Benchmark for Smart Contracts,” in IEEE International

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497719

Rameder et al. Automated Vulnerability Analysis

https://doi.org/10.1109/InfoTech.2019.8860872
https://doi.org/10.1109/InfoTech.2019.8860872
https://doi.org/10.1109/iotsms48152.2019.8939256
https://doi.org/10.1109/iotsms48152.2019.8939256
https://doi.org/10.1145/3238147.3240728
https://doi.org/10.1109/access.2019.2921624
https://doi.org/10.1145/3368089.3409740
https://doi.org/10.3390/e22020203
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1016/j.tele.2018.10.004
https://doi.org/10.1007/978-3-030-61467-6_12
https://doi.org/10.1109/QRS-C.2019.00116
https://doi.org/10.1109/QRS-C.2019.00116
https://cwe.mitre.org
https://dasp.co
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.17705/1CAIS.03743
https://doi.org/10.1109/sp40000.2020.00024
https://doi.org/10.1007/978-3-030-65745-1_2
https://doi.org/10.1109/access.2019.2911031
https://doi.org/10.1109/access.2019.2911031
https://doi.org/10.5555/3432601.3432611
https://doi.org/10.1109/ACCESS.2020.3021502
https://doi.org/10.1145/3372297.3417250
https://www.scimagojr.com/
https://www.scimagojr.com/
https://www.scopus.com/sources.uri
https://doi.org/10.1016/j.cose.2019.101654
https://doi.org/10.1016/j.cose.2019.101654
https://doi.org/10.1016/j.jbusres.2019.07.039
https://doi.org/10.1145/253769.253804
https://swcregistry.io/
https://doi.org/10.1016/j.dcan.2019.01.005
https://doi.org/10.1145/3464421
https://doi.org/10.1109/TVCG.2019.2963018
https://doi.org/10.1109/TVCG.2019.2963018
https://github.com/crytic/not-so-smart-contracts
https://github.com/crytic/not-so-smart-contracts
https://doi.org/10.1016/j.jss.2020.110891
https://doi.org/10.1016/j.jss.2020.110891
https://doi.org/10.1145/3423166
https://doi.org/10.1109/ICSE-NIER.2019.00009
https://doi.org/10.1109/TDSC.2020.3037332
https://doi.org/10.1109/TDSC.2020.3037332
https://doi.org/10.1145/3360615
https://doi.org/10.1145/3360615
https://doi.org/10.1007/s11704-020-9284-9
https://doi.org/10.1109/compsac48688.2020.0-153
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Conference on Software Testing, Verification and ValidationWorkshops (IEEE),
184–187. ICST Workshops 2019. doi:10.1109/icstw.2019.00049

Ye, J., Ma, M., Peng, T., and Xue, Y. (2019b). “A Software Analysis Based
Vulnerability Detection System for Smart Contracts,” in Integrating
Research and Practice in Software Engineering. Editors S. Jarzabek,
A. Poniszewska-Marańda, and L. Madeyski (Cham: Springer), 69–81. vol.
851 of Studies in Computational Intelligence, SCI. doi:10.1007/978-3-030-
26574-8_6

Zhang, P., Xiao, F., and Luo, X. (2020). “A Framework and Dataset for Bugs in
Ethereum Smart Contracts,” in IEEE International Conference on Software
Maintenance and Evolution (ICSME) (IEEE), 139–150. ICSME 2020. doi:10.
1109/icsme46990.2020.00023

Zhang, P., Xiao, F., and Luo, X. (2019). Soliditycheck: Quickly Detecting Smart Contract
Problems through Regular Expressions. arXiv preprint arXiv:1911.09425.

Zhou, S., Yang, Z., Xiang, J., Cao, Y., Yang, Z., and Zhang, Y. (2020). “An Ever-
Evolving Game: Evaluation of Real-World Attacks and Defenses in Ethereum
Ecosystem,” in 29th USENIX Security Symposium (USENIX Association),
2793–2810. USENIX Security 2020.

Zhou, X., Jin, Y., Zhang, H., Li, S., and Huang, X. (2016). “A Map of Threats to
Validity of Systematic Literature Reviews in Software Engineering,” in 2016

23rd Asia-Pacific Software Engineering Conference (APSEC) (IEEE), 153–160.
doi:10.1109/apsec.2016.031

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Rameder, di Angelo and Salzer. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Blockchain | www.frontiersin.org March 2022 | Volume 5 | Article 81497720

Rameder et al. Automated Vulnerability Analysis

https://doi.org/10.1109/icstw.2019.00049
https://doi.org/10.1007/978-3-030-26574-8_6
https://doi.org/10.1007/978-3-030-26574-8_6
https://doi.org/10.1109/icsme46990.2020.00023
https://doi.org/10.1109/icsme46990.2020.00023
https://doi.org/10.1109/apsec.2016.031
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

	Review of Automated Vulnerability Analysis of Smart Contracts on Ethereum
	1 Introduction
	2 Systematic Review
	2.1 Search and Selection
	2.1.1 Initial Search
	2.1.2 Exclusion and Inclusion Criteria
	2.1.3 Selection and Classification

	2.2 Quality Appraisal
	2.2.1 Intrinsic Data Quality
	2.2.2 Contextual and Final Data Quality
	2.2.3 Quality Appraisal of Systematic Literature Reviews
	2.2.4 Quality Appraisal of Surveys
	2.2.5 Quality Appraisal of Primary Studies

	2.3 Data Extraction

	3 Related Work
	3.1 Summary of SLRs With High Quality
	3.2 Relation to Our Work

	4 Classifications of Vulnerabilities
	4.1 Consolidated Taxonomy
	4.2 Academic Classifications
	4.3 Classifications by Community Based Projects
	4.3.1 DASP Top 10
	4.3.2 SWC Registry

	4.4 Mapping of Vulnerability Classifications

	5 Methods Used in Automated Analysis
	5.1 Static Code Analysis
	5.1.1 Control Flow Graphs
	5.1.2 Symbolic Execution
	5.1.3 Abstract Interpretation

	5.2 Dynamic Code Analysis
	5.3 Formal Specification and Verification
	5.4 Miscellany
	5.5 Usage of Methods in Tools

	6 Tools for Automated Security Analysis
	6.1 Functionalities
	6.2 Publication Trends
	6.3 Maintenance of Tools

	7 Benchmarks and Test Sets
	8 Discussion
	8.1 Vulnerabilities
	8.1.1 Coverage
	8.1.2 Taxonomies

	8.2 Methods
	8.3 Tools
	8.3.1 Vulnerabilities Addressed
	8.3.2 Comparison and Evaluation

	8.4 Benchmarks

	9 Conclusion
	9.1 New Vulnerabilities and Tools
	9.2 Open Challenges
	9.3 Limitations of Our Review

	Author Contributions
	Supplementary Material
	References

