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We consider griefing factors, a system for measurement of the cost-effectiveness
of sabotage, which have been used to analyze the attack resistance of blockchain
systems. Attackers are said to “grief” if they accept economic harm to themselves
in order to harm others; the griefing factor is the ratio of the harm done to the
victim to the harm taken on by the attacker. In this work, we study the
mathematical properties of this notion, particularly focusing on how the
presence of players willing to engage in griefs at varying griefing factors
impacts the equilibria present in games.
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1 Introduction

There is a rich body of literature in economics examining strategies that rely on
committing sabotage against other participants in games (Chowdhury and Gürtler,
2015). Indeed, in certain games, such as contests with a fixed prize that is awarded to
one of a finite number of players, strategies based on attempting to reduce the chances of an
opponent in order to improve one’s own can be incentivized (Konrad, 2000). Typically,
existing research on this question adopts an approach that involves attempting to
incorporate the incentives of participants to harm others directly into the payoff
matrices of the games considered.

A related idea, introduced by Buterin (2018b) in the context of analyzing blockchain
systems, defines a “grief” as a strategy that causes harm to both the participant executing this
strategy and other participants in a game. The word “grief” draws upon the slang term used
in video game communities for styles of play that seek to harm others despite not being
useful or indeed being harmful to the player carrying them out (Leonardos et al., 2023).
Buterin additionally provides a measure of the effectiveness of griefs, which he calls the
“griefing factor,” indicating the ratio of the harm that an attack does and its cost to the
attacker (Buterin, 2018b).

To illustrate this concept, we consider a game with two players Alice and Bob whose
payoffs are given in Table 1. It is a (weakly) dominant strategy for each player to play A. If
Alice thus expects Bob to play A, she can nonetheless play B. Playing this strategy requires
Alice to accept a cost: she loses the opportunity to earn $1. However, by accepting this cost to
herself, Alice can inflict even greater economic harm upon Bob, as she prevents him from
receiving $2. Hence, Alice has the ability to grief Bob with a griefing factor of 2.

Griefing factors provide a useful measure in that they allow for identification of the
presence of particularly effective sabotage strategies in a game. As griefing factors can be
calculated in terms of the payoffs of the game, one does not need to know in advance what
rewards an attacker may receive for successful sabotage in order to perform an analysis of
available griefing factors. Thus, when designing a game, a mechanism designer can attempt
to ensure that all of the griefing strategies available in that game have griefing factors that are
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as small as possible, implying that whatever external incentives an
attacker may have would need to be correspondingly large in order
for it to be worthwhile to perform an attack.

In this article, we analyze the mathematical properties of griefing
factors. While this analysis is general, our examples are largely
drawn from the setting of blockchains. Indeed, this notion is perhaps
particularly relevant in the context of blockchain systems due to
their heavy reliance on mechanism design, in consensus algorithms
(Nakamoto, 2008; Buterin, 2014) as well as in applications. We note
several additional reasons that a griefing factor perspective is natural
in the setting of blockchain systems.

• Interactions with different blockchain applications on a smart
contract platform such as Ethereum (Buterin, 2014) can be
linked so that a transaction that attempts to make two
interactions either executes both successfully or has no effect,
permitting novelties such as flash loans (Qin et al., 2021). Thus,
attackers will often have interests that are not well captured by
the internal incentives of the game designed by any given
developer. In Ford and Böhme (2019), it is argued that, for
these reasons, permissionless systems that are designed to be
resistant to attacks by economically rational actorsmust actually
be resistant to attacks by Byzantine actors in order to be secure.
However, if one can show that the griefing factors of any actions
available to an attacker are sufficiently small, then one can
recover useful notions of economic security even in the presence
of external incentives, as long as one can assume some upper
bounds on the external rewards that the attacker can realistically
obtain.

• As the blockchain oracle problem (Beniiche, 2020) limits the
information available to a given blockchain protocol, it can be
difficult to identify parties as attackers and penalize them
accordingly. This is the case in situations of “speaker–listener
equivalence,” where it is observed in Buterin (2017) that there
must always exist griefs with a griefing factor of at least one.

• The culture of current communities of blockchain users
(Gladieux, 2021; Locke, 2021) is such that one might expect
the presence of “trolls”who are willing to suffer small financial
losses in order to grief others for social or ideological reasons,
without necessarily requiring a financial incentive.

2 Related work

An extensive body of literature (Konrad, 2000; Chowdhury and
Gürtler, 2015) considers games in which it is in the interests of

players to cause harm to other participants. Further behavioral
research (Abbink and Sadrieh, 2009) has shown that there are
populations that do not require financial incentives in order to
be incentivized to harm other players in economic games. This
phenomenon is related to psychological studies on “trolls” (March
2019) who exert effort to antagonize others, particular in semi-
anonymous Internet settings.

In defining griefing factors (Buterin, 2017; Buterin, 2018a;
Buterin, 2018b), has provided a measure of a strategy’s
effectiveness in doing harm to other participants relative to its
cost that does not require a priori knowledge of what incentives
participants may have to seek to do this harm. Buterin has discussed
this concept principally in the context of analyzing blockchain
settings. He notes in particular that griefs with griefing factors at
least equal to one must exist in settings where there is
“speaker–listener equivalence” (Buterin, 2017), and in Buterin
(2018a), he considers the impact of a specific grief on economic
equilibria of supply and demand for validators in a simplified model
of a proof-of-stake system. Griefing factors have subsequently been
used to analyze the effectiveness of specific attack strategies in
various other blockchain systems, notably attacks on payment
channels (Mazumdar et al., 2020; Mazumdar et al., 2022).

In Leonardos et al. (2023), griefing in a specific model of proof-
of-work mining is related to a generalized notion of evolutionarily
stable allocations explored in Schaffer (1988) in the context of games
with a fixed reward. In that setting, it can be observed that
participants are incentivized to act “spitefully” to drive
competitors out of the competition. Indeed, Leonardos et al.
(2023) observe that the unique Nash equilibrium in the mining
game is not evolutionarily stable. Instead, evolutionarily stable
allocations have a griefing factor of one with respect to the Nash
equilibrium.

3 Contribution of this work

We expand on the mathematical framework allowing the study
of notions of griefing and griefing factors. In Section 5 we illustrate
these ideas by examining examples of griefs in several prominent
blockchain applications. Notably, we provide a detailed analysis of
various griefs between participants that are possible under the
Ethereum consensus algorithm.

In Section 6.1 we explore questions on how the presence of
players willing to engage in griefing affects the equilibria of a game.
For any game, we define a collection of derived games in which the
players obtain utility from griefing each other. As one varies the
amount of utility that the different players derive from doing one
unit of harm to other players (namely, the griefing factors at which
the players are willing to engage in griefs), the equilibria in the
derived games change. This can be represented geometrically
through diagrams where each point in the diagram represents a
given derived game in which the players are willing to grief at a
given set of griefing factors. On this basis, one can consider the
regions of the diagram where different equilibria are present and
how the equilibria evolve as one moves along a path through the
diagram. In Section 6.2 we present several results concerning the
geometric structure of these regions. For example, we show in
Proposition 4 that the boundaries of the region where a pure Nash

TABLE 1 The payoff table in a game between Alice and Bob. When Alice plays a
strategy corresponding to a given row and Bob plays a strategy corresponding
to a given column, they receive as payoffs the amounts in parentheses in the
cell for that row and that column, with Alice receiving the amount given by the
first coordinate and Bob receiving the amount given by the second coordinate.
If Alice expects Bob to play A, she can play B even though this gives her a lower
payout than playing A in order to grief Bob.

Alice \ Bob strategies A B

A (1,2) (0,0)

B (0,0) (0,0)
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equilibrium is present are defined by hyperplanes, although we see
in Example 5 that the regions where mixed equilibria are present
can have more complicated geometric structures. We consider
examples illustrating how these results apply to blockchain
applications. Notably, in Example 4 we extend results presented
in Leonardos et al. (2023) to consider the equilibria that are present
in the presence of griefers in a mining game that models proof-of-
work systems.

4 Notation and model of actors

We consider games of the form (N, A, u), where.

• N is a finite set of players of cardinality |N| = n;
• for each i ∈ N, Ai is the finite set of actions of cardinality |Ai|
that can be taken by i, andA =A1 ×/ ×An is the set of possible
assignments of an action to each player; and

• u � (u1, . . . , un): A → R is a tuple of utility functions.

We generally denote i’s action as xi ∈ Ai, and we denote the tuple
of actions of the other users by x−i ∈ A−i, consisting of an action xj ∈
Aj for all j ≠ i. Sometimes we condense this by writing x = (xi, x−i).
We can compute the utility of the jth participant given these actions
as uj(x) = uj (xi, x−i) = uj (x1, . . . , xn) for any j ∈ N.

We take

Δi � si � si x( )( )x∈Ai
∈ 0, 1[ ]|Ai |: ∑

x∈Ai

si x( ) � 1
⎧⎨⎩ ⎫⎬⎭

as naturally identified with the set of mixed strategies that the
participant i ∈ N can take; in particular, for si ∈ Δi and x ∈ Ai, we
denote by si(x) the probability that i selects the alternative x while

playing the mixed strategy si. Thus, Δ � ∏n
i�1

Δi corresponds to the set

of tuples of a mixed strategy for each participant.
In Section 6 we consider utility functions that are modified to

depend on the griefing factors at which participants are willing to
perform griefs. Specifically, we will take a set of values (λ1, . . . , λn)
where λi measures the willingness of i to grief. We will also take a
tuple of “base” utility functions u1, . . . , un, and we will present
various formulations in each of which we will have a tuple of derived
utility functions that can depend on u1, . . . , un as well as λ1, . . . , λn,
as described below in Eqs 4, 5. These derived utility functions are
chosen in such a way as to take into account utility that griefing
players derive from causing harm to other players playing the game,
defined by u1, . . . , un. Players in a given game are assumed to be
economically rational in that they seek to maximize their utility as
given by the relevant derived utility functions that include this utility
from griefing. We will suppose that players take actions
simultaneously and independently unless otherwise noted.
Finally, we assume that these rationality, independence, and
simultaneity assumptions, as well as the utility functions
considered (including both the “base” utility functions u1, . . . , un
and the various derived utility functions), are common knowledge.

We fix definitions of griefing factors that follow those of
Leonardos et al. (2023), covering both scenarios in which an

attacker griefs another individual participant and those in which
an attacker griefs the broader set of other participants.
Definition 1.

Let i, j ∈ N. Take x = (xi, x−i) ∈ A assigning an action to each
player, namely, xi ∈ Ai and x−i ∈ A−i. Suppose xi′ ∈ Ai is such that
ui(x) � ui(xi, x−i)> ui(xi′, x−i). Then we define the individual
griefing factor of the action xi′ against j with respect to x as:

GFi,j xi′, x−i( ), x( ) � uj x( ) − uj xi′, x−i( )
ui x( ) − ui xi′, x−i( ) (1)

and the total griefing factor of the action xi′ with respect to x as:

GFi xi′, x−i( ), x( ) � ∑j≠i uj x( ) − uj xi′, x−i( )( )
ui x( ) − ui xi′, x−i( ) . (2)

We can extend these concepts to the case where ui(x) � ui(xi′, x−i),
but uj(x) − uj(xi′, x−i)> 0 for some j or∑j≠i(uj(x) − uj(xi′, x−i))> 0,
by adopting the convention that the corresponding griefing factors are
infinite.

Remark 1.
Note that we assume ui(x)≥ ui(xi′, x−i) in order for the griefing

factor of (xi′, x−i) with respect to x to be defined. If we did not have
this constraint, we would have

GFi,j xi′, x−i( ), xi, x−i( )( ) � GFi,j xi, x−i( ), xi′, x−i( )( )
for all xi′, xi ∈ Ai and x−i ∈ A−i. Then, for example, situations in

which deviation by i from xi to xi′ benefits both herself and j would
result in the same griefing factors as those where i inflicts an
equivalent amount of harm on herself in order to harm j, even
though we think of these two situations as being qualitatively
different. Thus, we simply avoid griefing factor values having such
multiple possible interpretations by restricting the definition of
griefing to situations where players would be accepting in-game
harm to themselves. Indeed, we think of the attacker not receiving
an economic benefit from an attack, in terms of her in-game
incentives, as being an essential aspect of what it means to engage
in a “grief”, and these situations are the focus of this work.

On the other hand, note that Definition 1 still allows for the
possibility that ui(x)> ui(xi′, x−i) but uj(x) − uj(xi′, x−i)< 0, which
results in negative griefing factors. In most of the results of this work,
we will limit ourselves to considering positive griefing factors;
however, the perspective of negative griefing factors may be
relevant to analysis of the behavior of a participant i who is altruistic.

5 Examples of griefs on
cryptoeconomic systems

We further illustrate the notion of griefing factors by calculating
the griefing factors of several griefs on the Ethereum consensus
protocol (Buterin, 2022).
Example 1.

We consider the economic games of the Ethereum Beacon
Chain, as they are implemented after the Paris hard fork (“the
merge”) (Buterin, 2021). In this game, validators perform several
roles. Validators are randomly selected to produce new blocks, and
additionally once per epoch (approximately 6.4 min) each validator
is tasked with attesting to the most recent block in the preceding slot
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(a 1/32 division of an epoch) (Buterin et al., 2022; Bedawala and
Salot, 2023). Also included in attestations are references to previous
blocks, referred to as the “target” and the “source”. The information
on target and source blocks that is provided in attestations is used in
the process of determining when a block is finalized (see Buterin and
Griffith, 2017). The system is calibrated so that if all actors, including
block producers and attestors, perform their roles perfectly then
each participant will earn on average a base reward of B per epoch
(Buterin et al., 2022). This base reward is a function of the number of
active validators, and as such it gradually changes over time as
validators join or leave the network (Buterin, 2022).

In order for the attestation to be eligible for rewards, it must be
“timely” (Buterin et al., 2022): that is, it must be provided in the next
slot to obtain a reward for indicating the preceding block, in the next
32 slots to be rewarded for indicating the target, and in the next
5 slots to be rewarded for indicating the source. Attestors are
rewarded B · 1464 · mn for providing a timely attestation that correctly
identifies the previous block, B · 2664 · mn for providing a timely
attestation that correctly identifies the target, and B · 1464 · mn for
providing a timely attestation that correctly identifies the source.
Here n is the number of validators assigned to produce an attestation
and m is the number of validators who provide timely attestations
correctly identifying the previous block, target, or source,
respectively. The correct previous block, target, and source are
determined by the values that are ultimately finalized. If an
attestor fails to include a timely target or a timely source, she is
penalized B · 2664 or B · 1464, respectively. However, failure to identify the
previous block is exempt from penalties (Buterin et al., 2022). Block
producers are rewarded B

8 · 1454 for including a timely attestation that
correctly identifies the previous block, B8 · 2654 for including a timely
attestation that correctly identifies the target, and B

8 · 1454 for including
a timely attestation that correctly identifies the source. Block
producers are not penalized for the non-inclusion of an attestation.

We analyze several griefs in this system. For all of these analyses,
we assume that the result as to which blocks are finalized does not
ultimately change. We express griefing factors in terms of B, m, and
n. We also provide an approximate value of each griefing factor after
the symbol “≈” based on current typical values for B, m, and n. As of
June 2023, the current number of active validators is approximately
625000 (Bitfly, 2023), so we estimate that the number of participants
in a given slot is n = 625000/32 = 19531. We also take m = 19336 so
that the proportion of validators completing each task is m

n � .99,
corresponding to historic averages. Finally, the current value of B is
roughly 14500 Gwei (Bitfly, 2023).

We determine griefing factors with respect to default strategies
of honest participation. Specifically, in the notation of Definition 1,
x−i corresponds to the m attestors other than i providing correct,
timely attestations and block producers other than i providing
blocks that include all possible attestations. The action xi
corresponds to i also providing correct, timely information as an
attestor or as a block producer when applicable, and xi′ is the
alternative action described in each grief.

• The attestor i griefs the block producer and the other attestors
by publishing her attestation beyond the timeliness deadline
for indicating the previous block. This costs the griefer 14B

64
m+1
m

in lost attestation rewards. This deprives the block producer of
a reward of B8; however, a subsequent block producer receives a

reward of B
8(26+14

54 ) for other components of this attestation.
Each of the m other attestors also has their reward reduced
from 14B

64
m+1
m to 14B

64
m
n . Thus, this action by i has a griefing

factor of

GFi �
B
8 − B

8
26+14
54( ) + 14B

64
m+1
n − 14B

64
m
n[ ]m

14B
64

m+1
n

� 4n + 27m
27m + 27

≈ 1.150.

This can also be considered as a grief against the block producer j
individually, noting that the block producer is also an attestor.

GFi,j �
B
8 + 14B

64
m+1
n − 14B

64
m
n[ ]

14B
64

m+1
n

� 4n + 7
7m + 7

≈ .577.

• A block producer i can grief the community of attestors (other
than herself) by not including an attestation from j, hence
causing it to fall beyond the one-slot period for timely
reporting of the previous block. This reduces i’s block-
producer reward by B

8, and the reward for attesting to the
previous block that i and each of the m − 1 other attestors
receive is reduced from 14B

64
m+1
n to 14B

64
m
n . The attestor j is also

deprived of a reward of 14B
64

m+1
n . The next block producer can

include this attestation for rewards related to the target and the
source, receiving B

8(26+14
54 ) additional block-producer rewards.

Thus, this action has a griefing factor of

GFi �
14B
64

m+1
n − B

8
26+14
54( ) + 14B

64
m+1
n − 14B

64
m
n[ ] m − 1( )

B
8 + 14B

64
m+1
n − 14B

64
m
n[ ]

� −80n + 378m
108n + 189

≈ 2.724.

As a grief against the censored attestor j individually, this gives a
griefing factor of

GFi,j �
14B
64

m+1
n

B
8 + 14B

64
m+1
n − 14B

64
m
n[ ] � 7m + 7

4n + 7
≈ 1.732.

We see that the dependence on B can be canceled from the
numerators and denominators of these expressions, so these griefing
factors can be viewed as functions of m and n. Additionally, the two
griefs against individuals are indistinguishable from the point of
view of the consensus algorithm. Thus, they are an example of
speaker–listener equivalence, as discussed in Buterin (2017); hence
their griefing factors are reciprocals and, in particular, one of them
must be at least one.

One can consider other griefs involving attestors not including
correct, timely targets and sources. The griefing factors of these griefs
are stated in Table 2 in terms of n and m and then using the
approximate values of n and m indicated above. Note that under
the current (Buterin et al., 2022) parameters for timeliness, failing to
provide either a correct, timely target or source implies that the attestor
also fails to provide a correct, timely previous block. Hence, the effects
of failing to timely indicate the previous block are included in the
griefing factors in the corresponding columns below. Additionally, note
that block producers can only delay an attestation by one block, so it is
not typically possible for them to prevent its inclusion within the time
limits for timely targets and sources.

Another example of a grief on a cryptoeconomic system is
considered in Leonardos et al. (2023) in the setting of
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proof-of-work mining games. We further consider this game in
Example 4 using the tools that we develop in Section 6.1.

Note that it is also possible to have griefs that do harm that is not
purely monetary.We present brief notes on cryptoeconomic systems
in which griefers can expend resources to cause delays in the normal
operation of the system.
Example 2 (Delay griefs).

• In Arbitrum, if contrasting states of the rollup1 are submitted
by validators, then there is a process designed to prove that at
least one of them is incorrect (Offchain Labs Developers,
2022). As the final states differ, there is guaranteed to be
some specific step in the off-chain computation on which the
two parties disagree. Via an interactive game where parties
progressively commit to points of disagreement in their series
of computations, such a step can be identified and verified on-
chain. Attackers can place malicious stakes that require the
system to use this process and then use the maximum amount
of time they are allowed before responding to each step of the
interactive game, causing delays. The cost of such an attack is
considered in Offchain Labs Developers (2022).

• The payment channels used in Bitcoin’s Lightning Network
(Poon and Dryja, 2016) allow for incremental micro-
payments to be exchanged between parties without the
requirement to issue Bitcoin transactions on-chain for each
micro-payment. For example, if Alice wants to establish a
payment channel to be able to send micro-payments to Bob,
she can create a “funding transaction” that sends some amount
of bitcoin to an address that can be spent by a 2-of-2 multisig
requiring both her signature and Bob’s. Before publishing this

transaction, she ensures that Bob has also signed another
transaction that reimburses her these funds but that is
“timelocked”. Then Alice can send a series of transactions,
each of which deducts progressively more of the locked funds
to be sent to Bob and sends the balance to Alice. None of these
intermediate transactions need to incur the transaction costs
of being published on-chain. If Bob is cooperative, when A.
wants to close the channel he will publish the last of these
transactions, which sends the highest amount to himself.
However, if Bob refuses to cooperate, he can force Alice to
wait until the timelock expires and her original reimbursement
transaction becomes valid. This inflicts a delay on Alice at the
cost to Bob of the funds he was due from the payment channel.
Moreover, if A. wants to send a payment to Charles, with
whom she has not set up a direct link via a funding transaction,
but where there is a path of participants between Alice and
Charles, each participant having set up a channel with the
next, she can use “Hash Timelocked Contracts” to send funds
along this path in such a way that intermediate participants in
the path are unable to steal the funds (Poon and Dryja, 2016).
However, if Charles becomes inactive, he can cause every
participant along the path to have funds locked up until a
timelock expires. Thus, the griefing factor of such a delay
attack scales with the length of the path used, and large attacks
can stress the liquidity of the network. Such attacks are
analyzed in Mazumdar et al. (2020, 2022) and mitigation
approaches are considered in which participants place
collateral that can be taken from griefers and used to
compensate victims of such delay griefs. Similar delay griefs
can also be possible in state channels (Coleman et al., 2018),
which generalize this idea to applications beyond payments.

• In the blockchain-based dispute resolution system of Ast et al.
(2021), small randomly selected groups of users are chosen
from among token holders to provide subjective judgments on
off-chain disputes. There is also an appeal system via which
parties can invoke larger panels that are generally more
statistically representative of the community of crowd-
sourced participants. In the event that a party invokes the

TABLE 2 Griefing factors that attestors and block producers under the Ethereum consensus algorithm can achieve in griefs against each other for actions that
consist of intentionally failing to provide certain consensus algorithm information in a timely fashion as discussed in Example 1. In the first table above, these
values are given in terms of the number of validators participating in a given slot m and the total validators assigned to participate in that slot n. In the second
table, approximate values are calculating using estimates of m =19336 and n =19531, based on current network activity.

Griefer, Victim\Failed task Prev. Block Target Source All

Attestor i vs. block producer j, other attestors 4n+27m
27m+27

540m−116
351n+540m+540

8n+54m
27n+54m+54

4n+27m
20n+27m+27

Attestor i vs. block producer j 4n+7
7m+7

4n+20
13n+20m+20

4n+14
7n+14m+14

4n+27
20n+27m+27

Block producer j vs. attestors −80n+378m
108n+189 NA NA NA

Block producer j vs. attestor i 7m+7
4n+7 NA NA NA

Griefer, Victim\Failed task Prev. Block Target Source All

Attestor i vs. block producer j, other attestors 1.150 604 .764 .658

Attestor i vs. block producer j .577 .122 .192 .086

Block producer j vs. attestors 2.724 NA NA NA

Block producer j vs. attestor i 1.732 NA NA NA

1 Arbitrum is an example of an optimistic rollup. That is, it is a secondary
blockchain network whose state updates are periodically committed to on
a primary, smart-contract-compatible blockchain (see Thibault et al.,
2022). In the case of Arbitrum, this primary blockchain is Ethereum, and
the integrity of state updates is ensured via an interactive validation game
(Offchain Labs Developers, 2022).
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appeal process frivolously, she sacrifices appeal fees to delay
the finalization of the decision in the case.

• Many blockchain-based curated lists, such as James (2021),
make use of a mechanism whereby individuals submit
elements to the list having certain fixed criteria for
inclusion. Submitters include a deposit, and their
submission can be “challenged” by other participants who
also provide a deposit within some fixed period. In the event of
a challenge, some blockchain oracle mechanism (for example,
a vote by holders of some token) decides whether the entry
satisfy the criteria, and either the submitter or the challenger
loses their deposit accordingly. As the process of invoking the
oracle is time-consuming, an attacker can sacrifice a deposit to
frivolously challenge an entry, resulting in delaying its
inclusion in the list.

6 Results

6.1 Equilibria in the presence of griefing

One can adopt the perspective that, if there are situations where
i’s in-game reward is maximized by voting xi, but where she is willing
to receive a lower reward by voting xi′ in order to grief another
player, then she is deriving some form of utility from this grief.
Therefore, we want to construct an adjusted utility function that
takes into account this “griefing utility” by adding it to the units of
utility that each player i derives in-game according to the utility
function ui.

For each i ∈ N, we think of the willingness of player i to grief as
being characterized by a value λi ∈ (0,∞). Then, i should be willing
to engage in a grief if the griefing factor of that grief is at least equal to
λi. Formally, our modified utility functions should have the
following property.
Definition 2.

Let (u1, . . . , un): A → R be a tuple of utility functions and let
(λ1, . . . , λn) ∈ (0,∞)n. Then, a tuple of utility functions
(u1′, . . . , un′): A → R is said to be griefing-compatible with
respect to (u1, . . . , un) and (λ1, . . . , λn) if: for all i ∈ N,
xi, xi′ ∈ Ai, and x−i ∈ A−i such that ui(xi, x−i)> ui(xi′, x−i), it is
the case that

ui′ xi′, x−i( )≥ ui′ xi, x−i( )5GFi xi′, x−i( ), xi, x−i( )( )≥ λi
and

ui′ xi′, x−i( )≤ ui′ xi, x−i( )5GFi xi′, x−i( ), xi, x−i( )( )≤ λi.

Here the griefing factors are defined as in Definition 1 using the
utility functions u1, . . . , un.

Note, however, that we can rearrange the inequality
GFi((xi′, x−i), (xi, x−i))≥ λi to give

ui xi, x−i( )≤ ui xi′, x−i( ) + λ−1i ·∑
j≠i

uj xi, x−i( ) − uj xi′, x−i( )( ). (3)

It is natural to think of λ−1i · ∑j≠i(uj(xi, x−i) − uj(xi′, x−i)) as the
extra “griefing utility” that i can derive by playing the griefing
strategy xi′, which she adds to the in-game payoff of ui(xi′, x−i)
when she is deciding whether to pursue this strategy.

Take (x̃1, . . . , x̃n) ∈ A. We extend this idea to define a utility
function for each i ∈ N given by:

u+
i,x̃i ,λi

xi, x−i( ) � ui xi, x−i( ) + λ−1i ·∑
j≠i

uj x̃i, x−i( ) − uj xi, x−i( )( ) (4)

for any xi ∈ Ai, x−i ∈ A−i. As our notion of griefing in Definition
1 always compares two alternatives for a player i, we need the values
of x̃i in order to specify the base points to which the griefs whose
utility is being captured by this function are being compared. Indeed,
when we calculate u+

i,x̃i ,λi
(xi, x−i), we use information related to

participants’ utilities for the two profiles (xi, x−i) and (x̃i, x−i). Note
that u+i,xi,λi(xi, x−i) and u+i,xi,λi(xi′, x−i) give the values of the left-hand
side and right-hand side of Inequality 3, respectively.
Proposition 1.

Let (u1, . . . , un): A → R be a tuple of utility functions, let (λ1, . . .
, λn) ∈ (0,∞)n, and let (x̃1, . . . , x̃n) ∈ A. Then the tuple of utility
functions (u+

1,x̃1 ,λ1
, . . . , u+

n,x̃n,λn
) is griefing-compatible with respect to

(u1, . . . , un) and (λ1, . . . , λn).

Proof. Let i ∈ N, xi, xi′ ∈ Ai, and x−i ∈ A−i such that
ui(xi, x−i)> ui(xi′, x−i). Then,

u+
i,x̃i ,λi

xi, x−i( ) � ui xi, x−i( ) + λ−1i ·∑
j≠i

uj x̃i, x−i( ) − uj xi, x−i( )( )
and

u+
i,x̃i ,λi

xi′, x−i( ) � ui xi′, x−i( ) + λ−1i ·∑
j≠i

uj x̃i, x−i( ) − uj xi′, x−i( )( ).
Thus, we see that

u+
i,x̃i ,λi

xi′, x−i( )≥ u+
i,x̃i ,λi

xi, x−i( )
5ui xi′, x−i( ) − ui xi, x−i( ) + λ−1i ·∑

j≠i
uj xi, x−i( ) − uj xi′, x−i( )( )≥ 0

5λi ≥
∑j≠ uj xi, x−i( ) − uj xi′, x−i( )( )

ui xi, x−i( ) − ui xi′, x−i( ) � GFi xi′, x−i( ), xi, x−i( )( ),
where we adopt the assumption that ui(xi, x−i)> ui(xi′, x−i) for the

last equivalence and for the fact that the griefing factor is defined. The
case where u+

i,x̃i ,λi
(xi′, x−i)≤ u+i,x̃i ,λi(xi, x−i) can be handled similarly.

We now consider the equilibria that arise in these modified
games where each participant i is willing to engage in griefs with a
griefing factor of at least λi.
Definition 3.

Take x̃i ∈ Ai and λi > 0 for each i ∈N. Then we define the (λ1, . . . ,
λn)-Nash-equilibria to be the equilibria induced by the utility
functions u+

i,x̃i ,λi
given by Equation 4.

Another related utility function we will consider is the following,
in which i derives negative utility proportional to the utilities of
other players:

u−
i,λi

xi, x−i( ) � ui xi, x−i( ) − λ−1i ∑
j≠i

uj xi, x−i( ) (5)

for xi ∈ Ai, x−i ∈ A−i. We see that these utility functions give the same
equilibria as u+

i,x̃i ,λi
.

Proposition 2.
The (λ1, . . . , λn)-Nash-equilibria are independent of the choices

of x̃i and are hence well-defined. Moreover, these are the same Nash
equilibria that are induced by the utility functions u−i,λi of Equation 5.
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In particular, even though the definition of griefing factors in
Definition 1 makes reference to two profiles of participants’ actions
in A, and Eq. (4) implicitly incorporates this comparison between two
profiles (xi, x−i) and (x̃i, x−i), we see that the equilibria generated by the
utility functions of Eq. (4) do not depend on the choices of x̃i. To prove
Proposition 2, we use the following standard result, whose proof we
include for completeness (cf. Lemma 2.1 of Heyman, 2019).
Lemma 1. Consider two tuples of utility functions u �
(u1, . . . , un): A → R and u′ � (u1′, . . . , un′): A → R. Suppose that
for all i ∈ N and x−i ∈ A−i there exist constants (with respect to xi)
c1,x−i ∈ R>0 and c2,x−i ∈ R such that

ui′ xi, x−i( ) � c1,x−iu xi, x−i( ) + c2,x−i

for all xi ∈ Ai. Then u and u′ induce the same (pure and mixed)
N. equilibria.

Proof. of Lemma 1.
Note that, for all x−i ∈ A−i,

argmax
xi∈Δi

E u′ xi, x−i( )[ ] � argmax
xi∈Δi

E c1,x−iu xi, x−i( ) + c2,x−i[ ]
� argmax

xi∈Δi

E u xi, x−i( )[ ],

where the expected value is taken over the potentially mixed
strategies of other players.

We now have the tools to show the independence of the (λ1, . . . ,
λn)-Nash-equilibria of a game with respect to the choices of x̃i.

Proof. of Proposition 2.
We note that, for all xi ∈ Ai, x−i ∈ A−i:

u+
i,x̃i ,λi

xi, x−i( ) − u−
i,λi

xi, x−i( ) � λ−1i ∑
j≠i

uj x̃i, x−i( ).

However, the right-hand side of this equation is independent of
xi. Thus, by Lemma 1, u+

i,x̃i ,λi
and u−i,λi induce the same (λ1, . . . , λn)-

Nash-equilibria. In particular, as u−i,λi(xi, x−i) is independent of x̃i,
so are the (λ1, . . . , λn)-Nash-equilibria. □

We denote the set of (λ1, . . . , λn)-Nash-equilibria by NE (λ1, . . . ,
λn). By representing the (λ1, . . . , λn)-Nash-equilibria for each choice of
(λ1, . . . , λn) ∈ Rn

>0 geometrically, we obtain a diagram showing how
the equilibria change as the attackers’ willingness to grief varies. Note
that this approach of labeling the space with different qualitative
behaviors that indicate the state of a system at a given point is
reminiscent of phase diagrams in chemistry (Papon et al., 2002) and
phase portraits in differential equations (Strogatz, 2000); here, the

qualitative behavior that is being represented is the equilibria present
when participants’ willingness to grief is given by (λ1, . . . , λn), rather
than the state of matter of a substance under varying conditions or the
asymptotic behavior of a system.
Example 3.

Consider the payoff table given in Table 3 (above)
corresponding to some utility functions u1, u2 and the
transformation of this payoff table that includes utility from
griefs corresponding to utility functions u−1,λ1 , u

−
2,λ2

(below). This
yields the diagram of equilibria presented in Figure 1.

We can identity these diagrams as subsets of
Rn

>0 × Δ ⊆ Rn
>0 × [0, 1]∑i∈N

|Ai | consisting of

λ1, . . . , λn, s( ) ∈ Rn
>0 × Δ: s ∈ NE λ1, . . . , λn( ){ }.

This framework allows us to consider equilibria in games with
attackers who have sabotage incentives, building on the work of
Chowdhury and Gürtler (2015) and Konrad (2000), by giving us a
tool to consider attackers with varying external incentives
simultaneously.

Next, we consider the mining game studied in Leonardos et al.
(2023) and Arnosti and Weinberg (2022), allowing us to develop upon
the results of Leonardos et al. (2023) on griefs in proof-of-work mining.
Example 4 (Mining game).

Suppose that there exist c1, . . . , cn ∈ R>0 that represent the per-
unit cost of producing a given unit of hashing power. Then, we take a
simple model of miner rewards that distributes a fixed total mining
reward proportional to hash power and deducts the cost of hash
power. Specifically, for any x � (x1, . . . , xn) ∈ Rn

>0, we take ui: A �
Rn

>0 → R given by

ui x( ) � xi∑kxk
− cixi

for each i ∈ N.
Then, a modified utility function as in Equation 5, reflecting

the idea that a miner can grief other miners by spending
additional energy to mine in excess of her natural equilibrium
level, is given by

u−
i,λi

x( ) � xi∑kxk
− cixi − λ−1i ∑

j≠i

xj∑kxk
− cjxj( ).

TABLE 3 The table on the above gives payoffs in a game between Alice and
Bob, similar to Table 1. The table on the below gives the transformation of
these payoffs to include utility from griefs as in Eq. 5.

Alice \ Bob strategies L R

U (1,1) (0,0)

D (0,0) (0,0)

Alice \ Bob strategies L R

U (1 − λ−11 , 1 − λ−12 ) (0,0)

D (0,0) (0,0)

FIGURE 1
Diagram of equilibria in Example 3.
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Following a generalization of the proof of Theorem 1 in Arnosti
and Weinberg (2022) that considers the varying values of λ1, . . . , λn,
we compute the equilibria of this game. Denote by

ri x( ) � xi∑kxi

thepercentageofminingpowercorrespondingtoi foragivenprofilex.
Note that, for any i, the profiles givenbyxi= ϵ>0andxj=0 for all j≠ i are
not equilibria. Indeed, in these cases u−i,λi(x) � ui(x) � 1 − cixi, and i
can unilaterally increase her rewards by playing xi = ϵ/2.

Next, note that u−i,λi(x) is differentiable in xi for each i such that∑k≠ixi > 0. Moreover, we compute

∂

∂xi
u−
i,λi

x( ) � 1 + λ−1i( ) 1 − ri x( )∑kxk
( ) − ci.

Then, as we note that ∂2

∂2xi
u−i,λi(x)≤ 0 for xi > 0, ui′(x) is

maximized either when

∂

∂xi
u−
i,λi

x( ) � 05ri x( ) � 1 − ci
1 + λ−1i

∑
k

xk

or when xi = 0. However, if ∑k≠i xi > 0, then xi = 0 5 ri(x) = 0.
Given that the case where xj = 0 for all j ≠ i is excluded, we deduce that
there is a Nash equilibrium if and only if

ri x( ) � max 1 − ci
1 + λ−1i

∑
k

xk, 0
⎧⎨⎩ ⎫⎬⎭

for all i ∈ N.
As the proportions of hash power sum to 1, in equilibriumwe have

1 � ∑
i

ri x( ) � ∑
i

max 1 − ci
1 + λ−1i

∑
k

xk, 0
⎧⎨⎩ ⎫⎬⎭,

which implies by Lemma 1 of Arnosti andWeinberg (2022) that
1+λ−1i∑k

xk
� c*, where c* ∈ R>0 is a constant that is independent of i and

of the values λi (but can depend on the choices of c1, . . . , cn). Hence,
in equilibrium,

xi � ri x( )∑
k

xk � 1 + λ−1i
c*

max 1 − ci
c*
, 0{ }( ).

Thus, the diagram of (λ1, . . . , λn)-Nash-equilibria is

λ1, . . . , λn, x1, . . . , xn( ) ∈ Rn
>0 × Δ:{

xi � 1 + λ−1i
c*

max 1 − ci
c*
, 0{ }( )∀i ∈ N}.

That is, it consists of a single equilibrium that varies continuously
in λi ∈ R>0.

Note that when λi = n − 1 for all i, corresponding to the case of
individual griefing factors of 1 for all participants against all other
participants, we recover the allocation of Theorem 2iii of Leonardos
et al. (2023).

6.2 Structure of diagrams of equilibria

In this section, we explore several results that limit the structure
of the diagrams of equilibria introduced in Section 6.1. These results

can provide a mechanism designer with insight into how a system
may respond to griefs.

An initial result considers situations in which the diagram of
equilibria is constant with respect to the willingness of actors to grief.
Proposition 3.

Consider a constant-sum game. The (pure and mixed) equilibria
of this game are constant for all values of (λ1, . . . , λk).

Proof. Let s be the constant value of the sum of payoffs. Hence,

∑
j

uj x( ) � s

for all x ∈ A. In particular, for all i ∈ N,

ui x( ) � s −∑
j≠i

uj x( ).

On the other hand, the utility function given by Eq. (5) is
given by:

u−
i,λi

x( ) � ui x( ) − λ−1i ∑
j≠i

uj x( ).

Rearranging, we obtain

u−
i,λi

x( ) � ui x( ) − λ−1i s − ui x( )[ ] � 1 + λ−1i( )ui x( ) − λ−1i s

for all x ∈ A. Then, for any given choice of (λ1, . . . , λn), by
Lemma 1, u−i,λi has the same equilibria as ui.

Of course, while we have shown that constant-sum games have
equilibria that are constant with respect to actors’willingness to grief
and hence provide ease of analysis for a mechanism designer, this
constant equilibrium may nevertheless be an attack or otherwise
undesirable.

Next, we analyze the possibilities of the boundaries in these
diagrams between regions with different equilibria. For all values (x1,
. . . , xn) ∈ A, we denote the regions where (x1, . . . , xn) is a (pure)
Nash equilibrium by:

R x1 ,...,xn( ) � λ1, . . . , λn( ): x1, . . . , xn( ) ∈ NE λ1, . . . , λn( ){ }.
Proposition 4.

For all values (x1, . . . , xn) ∈A, the boundaries of regionsR(x1 ,...,xn)
consist of a finite union of hyperplanes: ∪kHk, where each hyperplane
Hk is of the form

Hk � λ1, . . . , λn( ): λik � ck{ }
for some ik ∈ 1, . . . , n{ } and ck ∈ R.

Proof. Note that x* � (xi′, x−i* ) ∈ A is a pure Nash equilibrium of
the game defined by the utility functions u−i,λi given in Eq. (5) if and
only if

u−
i,λi

xi, x−i*( )≤ u−
i,λi

x*( ) (6)

for all i ∈ N and xi ∈ Ai. However, Inequality 6 can be rewritten as

ui xi, x−i*( ) − λ−1i ∑
j≠i

uj xi, x−i*( )≤ ui x*( ) − λ−1i ∑
j≠i

uj x*( ).

If ui(x*) � ui(xi, x−i* ), then this inequality either holds or does
not hold for all λi. In other cases, Inequality 6 can be solved for λi,
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noting whether ui(x*) − ui(xi, x−i* ) is positive or negative, to see
that x* ∈ A is a Nash equilibrium if and only if

max
xi∈Ai : ui x*( )> ui xi,x−i*( )

∑j≠iuj x*( ) − uj xi, x−i*( )
ui x*( ) − ui xi, x−i*( ) ≤ λi

≤ min
xi∈Ai : ui x*( )< ui xi,x−i*( )

∑j≠iuj xi, x−i*( ) − uj x*( )
ui xi, x−i*( ) − ui x*( ) .

However, these boundary conditions are of the form of those in
the statement.

Hence, the rectilinear boundaries of the regions observed in
Figure 1 are typical of the regions where a given pure equilibrium is
present. On the other hand, we note in the following example that
regions in which mixed equilibria have a given support do not
necessarily have boundaries given by hyperplanes.
Example 5. We consider a three-player coordination game in which
A � c, n{ } consists of a cooperation strategy c and a non-cooperation
strategy n. Under this system, we take

ui xi, x−i( ) �
2, if xj � c∀j � 1, 2, 3
1, if xi � n
0, if xi � c but ∃j such that xj � n

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭ (7)

for each i = 1, 2, 3.
Then, transformed under the perspective of Equation 5, this gives

a payoff table as shown in Table 4.
We notice that.

1. (n, n, n) is a pure Nash equilibrium for all λi.

Furthermore, noting that 2 − 4λ−1i ≥ 15λi ≥ 4, we observe that.

2. (c, c, c) is a pure N. equilibrium if and only if λi ≥ 4 for all i =
1, 2, 3.

Next, we can compute all mixed equilibria of this game by
exhaustively considering each possible choice of support. This gives.

3. Amixed equilibrium of( 1
2−4λ−12 c + 1−4λ−12

2−4λ−12 n, 1
2−4λ−11 c + 1−4λ−11

2−4λ−11 n, c) if
λ1 ≥ 4

λ2 ≥ 4

λ3 ≥ 4

1

2 − 4λ−11
( ) · 1

2 − 4λ−12
( ) 2 − 4λ−13( )≥ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

4. Amixed equilibrium of( 1
2−4λ−13 c + 1−4λ−13

2−4λ−13 n, c, 1
2−4λ−11 c + 1−4λ−11

2−4λ−11 n) if
λ1 ≥ 4

λ2 ≥ 4

λ3 ≥ 4

1

2 − 4λ−11
( ) · 1

2 − 4λ−13
( ) 2 − 4λ−12( )≥ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
5. A mixed equilibrium of (c, 1

2−4λ−13 c + 1−4λ−13
2−4λ−13 n, c, 1

2−4λ−12 c + 1−4λ−12
2−4λ−12 n) if

λ1 ≥ 4

λ2 ≥ 4

λ3 ≥ 4

1

2 − 4λ−12
( ) · 1

2 − 4λ−13
( ) 2 − 4λ−11( )≥ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
and.

6. A mixed equilibrium of (z1, z2, z3), where

• z1 �
�����������

2−λ−11
(2−4λ−12 )(2−4λ−13 )

√
c + (1 −

�����������
2−λ−11

(2−4λ−12 )(2−4λ−13 )

√
)n

• z2 �
�����������

2−λ−12
(2−4λ−11 )(2−4λ−13 )

√
c + (1 −

�����������
2−λ−12

(2−4λ−11 )(2−4λ−13 )

√
)n, and

• z3 �
�����������

2−λ−13
(2−4λ−11 )(2−4λ−12 )

√
c + (1 −

�����������
2−λ−13

(2−4λ−11 )(2−4λ−12 )

√
)n if

λ1 ≥ 4

λ2 ≥ 4

λ3 ≥ 4

1

2 − 4λ−11
( ) · 1

2 − 4λ−12
( ) 2 − 4λ−13( )≤ 1

1

2 − 4λ−11
( ) · 1

2 − 4λ−13
( ) 2 − 4λ−12( )≤ 1

1

2 − 4λ−12
( ) · 1

2 − 4λ−13
( ) 2 − 4λ−11( )≤ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
We provide a visualization of these regions in Figure 2.
We see that there are richer possibilities for the structures of

regions where a given mixed equilibrium is present than for those of
pure equilibria. Further analysis of the geometry of these diagrams
could provide additional insight into what constraints do or do not
exist on the available griefs against a given game and is a potentially
interesting avenue for future work.

TABLE 4 The modified payoff tables that correspond to the utility functions u−i,λi in a three-player game where ui are as in Eq. 7. The first, second, and third
coordinates of the values in parentheses give the payoffs for Players 1, 2, and 3, respectively.

Player 3 plays c Player 1 \ player 2 strategies c n

c (2 − 4λ−11 , 2 − 4λ−12 , 2 − 4λ−13 ) (−λ−11 , 1,−λ−13 )

n (1,−λ−12 ,−λ−13 ) (1 − λ−11 , 1 − λ−12 ,−2λ−13 )

Player 3 plays n Player 1 \ player 2 strategies c n

c (−λ−11 ,−λ−12 , 1) (−2λ−11 , 1 − λ−12 , 1 − λ−13 )

n (1 − λ−11 ,−2λ−12 , 1 − λ−13 ) (1 − 2λ−11 , 1 − 2λ−12 , 1 − 2λ−13 )
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7 Conclusion

We have considered a variety of griefs, particularly those relating
to blockchains and decentralized systems. Moreover, we have noted
reasons that griefing might be particularly relevant in this setting. In
order to gain insight into how the presence of griefing players can
affect a given game, we have introduced a new geometric tool in the
form of diagrams of (λ1, . . . , λn)-Nash-equilibria. We have shown
that these diagrams are well-defined and that their structures obey
certain basic constraints. Moreover, these diagrams should be able to
provide mechanism designers with global insight into how stable a
given game is with respect to griefing behaviors.
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