
Formal verification of the pub-sub
blockchain interoperability
protocol using stochastic timed
automata

Md Tauseef Alam*, Raju Halder* and Abyayananda Maiti*

Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, India

In recent times, the research on blockchain interoperability has gained
momentum, enabling the entities from different heterogeneous blockchain
networks to communicate with each other seamlessly. Amid the proliferation
of blockchain ventures, for ensuring the correctness of inter-blockchain
communication protocols, manual checking and testing of all the potential
pitfalls and possible inter-blockchain interactions are rarely possible. To
ameliorate this, in this paper, we propose a systematic approach to model and
formally verify the real-time properties of the pub-sub interoperability protocol,
with a special focus on message communication through API calls among
publishers, subscribers, and brokers. In particular, we use stochastic timed
automata for its modeling, and we prove its correctness with respect to a
number of relevant properties using model checking—more specifically, the
UPPAAL-SMC model checker. To the best of our knowledge, this is the first
proposal of its kind to formally verify the blockchain pub-sub interoperability
protocol using model checking.

KEYWORDS

blockchain, chaincode, interoperability, stochastic timed automata, model checking,
UPPAAL-SMC

1 Introduction

Blockchain technology (Nakamoto, 2008) has dramatically gained momentum within a
decade with its evolutionary transformation from blockchain 1.0 to blockchain 4.0 (Khan
et al., 2019).We are witnessing its adoption at a large scale in almost every sphere of the cyber
technical world, ranging from simple (e.g., gaming and education) to critical systems (e.g.,
finance, healthcare, e-governance, and e-commerce) (Aggarwal et al., 2019; Hewa et al.,
2021). However, the lack of interoperability between heterogeneous blockchain systems is
one of the biggest challenges nowadays. Over the last few years, a number of solutions in this
research direction have been proposed in the literature (Belchior et al., 2021). Among them,
one of the promising solution is the pub-sub interoperability protocol proposed by the Linux
Foundation (Ghaemi et al., 2021), which introduces a blockchain-backed broker/dispatcher
responsible for message communication among various publishers and subscribers’
blockchain systems in the many-to-many setting. This enhances the scalability of the
overall system and makes this solution profitable.

Let us consider a critical scenario where cross-border inter-bank payments and
settlements occur among multi-stakeholders participating in various supply chains and
trade finances. This involves an interaction between the stakeholders from different

OPEN ACCESS

EDITED BY

Kamel Barkaoui,
Conservatoire National des Arts et
Métiers (CNAM), France

REVIEWED BY

Marino Miculan,
University of Udine, Italy
Laid Kahloul,
University of Biskra, Algeria

*CORRESPONDENCE

Md Tauseef Alam,
tauseef_2121cs04@iitp.ac.in

Raju Halder,
halder@iitp.ac.in

Abyayananda Maiti,
abyaym@iitp.ac.in

RECEIVED 27 June 2023
ACCEPTED 23 August 2023
PUBLISHED 14 September 2023

CITATION

Alam MT, Halder R and Maiti A (2023),
Formal verification of the pub-sub
blockchain interoperability protocol
using stochastic timed automata.
Front. Blockchain 6:1248962.
doi: 10.3389/fbloc.2023.1248962

COPYRIGHT

© 2023 Alam, Halder and Maiti. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Blockchain frontiersin.org01

TYPE Original Research
PUBLISHED 14 September 2023
DOI 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/articles/10.3389/fbloc.2023.1248962/full
https://www.frontiersin.org/articles/10.3389/fbloc.2023.1248962/full
https://www.frontiersin.org/articles/10.3389/fbloc.2023.1248962/full
https://www.frontiersin.org/articles/10.3389/fbloc.2023.1248962/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2023.1248962&domain=pdf&date_stamp=2023-09-14
mailto:tauseef_2121cs04@iitp.ac.in
mailto:tauseef_2121cs04@iitp.ac.in
mailto:halder@iitp.ac.in
mailto:halder@iitp.ac.in
mailto:abyaym@iitp.ac.in
mailto:abyaym@iitp.ac.in
https://doi.org/10.3389/fbloc.2023.1248962
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2023.1248962

heterogeneous blockchain platforms that assimilates the pub-sub
blockchain interoperability protocol for intercommunication. To
exemplify it, we assume a stakeholder A, who is already registered in
a central bank digital currency blockchain network X of a country,
wishes to join a supply chain network Y. In this case, A’s know your
customer (KYC) details, which are already verified by X, can be used
to authenticate her in the network Y, allowing her to join Y and to
perform financial trade in Y and payment settlement via X. It is
apparent that, in such situations, any fault in the system (e.g.,
message loss due to a smart contract’s functional error) may lead
to substantial monetary loss. Thus, there is a dire need to verify the
robustness, requirements, and design of such a real-time critical
system.

In the realm of formal verification, model checking (Clarke
et al., 1994) appears as a promising algorithmic approach to
reduce the burden on an expert’s intervention and makes it easier
to detect and fix bugs in the design process. Given a modelM and
a property ϕ, where M represents a system as a state-transition
diagram and ϕ is expressed in some mathematical logic, the
model checking algorithm performs an exhaustive case analysis
on the set of states and determines whether M satisfies ϕ,
i.e., M ⊧ ϕ.

While there have been a number of proposals on formal
verification of various properties confined to individual
blockchain platforms, such as Bitcoin protocols (Chaudhary
et al., 2015; Chaudhary et al., 2020; DiGiacomo-Castillo et al.,
2020), Ethereum smart contracts (Abdellatif and Brousmiche,
2018; Nehai et al., 2018; Osterland and Rose, 2020), and
Hyperledger Fabric chaincodes (Alqahtani et al., 2020; Liu et al.,
2022), researchers have not paid attention to formally verifying the
correctness of the blockchain interoperability protocol as stated in
Tolmach et al. (2021). In this paper, we propose a systematic
approach to model and formally verify the real-time properties of
the pub-sub interoperability protocol, with a special focus on the
message communication through API calls among publishers,
subscribers, and brokers. This is worthwhile to mention that,
even though this protocol can be adopted by any decentralized
applications, we aim to verify only the protocol itself, instead of any
particular application adopting the protocol. In this direction, we
build an abstract stochastic timed automata (STA) model from the
source code of the protocol by extracting relevant information
guided by our properties of interest. In addition to the
verification of real-time properties, we also provide a probabilistic
estimation of various functionalities involved in this complex
protocol. To the best of our knowledge, this is the first proposal
of its kind to model and verify the blockchain pub-sub
interoperability protocol using model checking.

To summarize, our main contributions in this paper are

• Formalization of blockchain smart contracts (chaincodes) in
the form of finite-state transition systems.

• Modeling of the pub-sub interoperability protocol as
stochastic timed automata, describing its construction from
the source codes by analyzing and extracting the call graph and
contextual information.

• Real-time property verification of the pub-sub interoperability
protocol using the UPPAAL-Statistical Model Checker
(UPPAAL-SMC).

• Development of a proof-of-concept Chaincode Analyzer that
generates call graphs from JavaScript chaincodes and extracts
relevant contextual information from each function. The
extracted information and the call graph are then used for
modeling the system as a network of STA in UPPAAL-SMC
using the drag and drop feature.

• Performance evaluation of the Chaincode Analyzer on a set of
representative chaincodes collected from the pub-sub protocol
and Hyperledger official GitHub repository and probabilistic
estimation of various functionalities of the protocol by varying
the throughput of the different publishers and subscribers.

The rest of the paper is structured as follows: Section 2 gives an
overview of related work. Section 3 recalls the basic background
knowledge on timed automaton, stochastic timed automaton, and
UPPAAL-SMC. Section 4briefly describes the pub-sub blockchain
interoperability protocol proposed by the Linux Foundation. Section
5 provides the details of our proposed modeling approach. Section 6
discusses the details of the proof of concept. Section 7.1 reports the
performance evaluation of the Chaincode Analyzer. The verification
results of the protocol with respect to the properties of interest are
shown in Section 7.2. Section 8 presents threats to validity. Finally,
Section 9 concludes this paper.

2 Related work

Although there is no study on blockchain interoperability
verification, there is considerable literature on blockchain and
smart contract verification. These verifications effectively adopt
the model checking approach. The Bitcoin protocol’s UPPAAL
model is illustrated in Chaudhary et al. (2015) to probe the
double-spending attack in a situation with malicious peers. Here,
the authors show the probability analysis of the double-spending
attack based on the number of confirmations. In a similar line, the
analysis of the double-spending attack based on the hash rate is done
in Chaudhary et al. (2020). Fehnker and Chaudhary (2018)
simulated a Bitcoin majority attack in UPPAAL and concluded
that for a share of 20%, the attack will be effective within a few days.
DiGiacomo-Castillo et al. (2020) used UPPAAL-SMC to investigate
Bitcoin backbone protocol features that vary as a function of
concrete parameters in a network where an attacker can
undertake selfish mining. Similarly, Andrychowicz et al. (2014)
proposed a framework to model the Bitcoin contracts employing
the timed automata in the UPPAAL. Eijkel and Fehnker (2019)
modeled the behavior of honest and selfish mining pools in
UPPAAL. It includes network delay but, unlike earlier models in
the literature, does not presume a single view of the blockchain.

Abdellatif and Brousmiche (2018) modeled Solidity smart
contract and blockchain execution protocol along with users’
behaviors to analyze the design vulnerabilities of smart contracts
using a statistical model checking tool. A tool chain is developed in
Osterland and Rose (2020) for translating Solidity smart contracts to
generate an automata-based code representation in PROMELA,
which is verified by the SPIN model checker. Similarly, in Bai
et al. (2018), smart contracts are modeled in PROMELA, and the
SPIN model checker is used to ensure that a contract’s logic is valid.
In Nehai et al. (2018), the behavior of Ethereum blockchain, smart

Frontiers in Blockchain frontiersin.org02

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

TABLE 1 A comparative summary of the existing literature.

Proposals Problem under
consideration

Blockchain
platform

Language under
consideration

Properties under
verification

Specification
language

Tools
used

Andrychowicz et al.
(2014)

Bitcoin contracts Bitcoin Bitcoin script Safety properties TCTL UPPAAL

Chaudhary et al. (2015) Double spending in Bitcoin Bitcoin Bitcoin script Probability of double
spending based on the
depth of the block

MITL UPPAAL-
SMC

Fehnker and
Chaudhary, (2018)

Majority attack analysis and
optimization proposed by
Bitcoin Unlimited

Bitcoin Unlimited Bitcoin script Time analysis for an attack
based on confirmation
depth

MITL UPPAAL-
SMC

Abdellatif and
Brousmiche, (2018)

Ethereum smart contracts Ethereum Solidity Safety along with functional
properties

PB-LTL BIP-SMC

Bai et al. (2018) Smart contracts Generic Generic (i) State accessibility LTL SPIN

(ii) No deadlock

(iii) No livelock

Nehai et al. (2018) Ethereum smart contracts Ethereum Solidity Functional behavioral
properties

CTL NuSMV

Atzei et al. (2018) Bitcoin transactions Bitcoin Bitcoin script (i) Double spending
transactions

Balzac Balzac

(ii) Overall value contained
in blockchain

Eijkel and Fehnker,
(2019)

Selfish mining in Bitcoin Bitcoin Bitcoin script Effects of selfish mining TCTL and MITL UPPAAL-
SMC

Mavridou et al. (2019) Ethereum smart contracts Ethereum Solidity (i) Safety N/A BIP and
NuSMV

(ii) Liveness

(iii) Deadlock freedom

Chaudhary et al. (2020) 51% attack on Bitcoin
network

Bitcoin Bitcoin script Probability of majority
attack varying hash rate

MITL UPPAAL-
SMC

DiGiacomo-Castillo
et al. (2020)

Bitcoin backbone protocol Bitcoin Bitcoin script (i) Chain quality MITL UPPAAL-
SMC

(ii) Common prefix

(iii) Chain growth

Osterland and Rose,
(2020)

Ethereum smart contracts Ethereum Solidity (i) Assertions LTL SPIN

(ii) Deadlock detection

(iii) Liveness properties

Alqahtani et al. (2020) Chaincodes for supply Hyperledger Fabric Go Behavior correctness and
functional requirements

LTL NuSMV

Chain management system

Zhang et al. (2020) CKB block synchronization Nervos Common
Knowledge Base

N/A Correctness and
consistency of the protocol

TCTL and MITL UPPAAL-
SMC

Gu et al. (2022) Raft and PRaft consensus N/A N/A (i) Single leader (ii) Leader
completeness

TLA+ TLC

(iii) Single leader

(iv) Leader completeness

Bertrand et al. (2022) DBFT Consensus Redbelly
blockchain system

N/A (i) Safety LTL ByMC

(ii) Liveness

Afzaal et al. (2022) Blockchain-based
crowdsourcing

N/A N/A Safety, fault tolerance,
trusted leader, and trusted
validator properties

LTL PAT

(Continued on following page)

Frontiers in Blockchain frontiersin.org03

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

contracts, and the execution framework are captured by the three
layers of the model, respectively, and the properties of smart
contracts expressed in computation tree logic (CTL) are verified
by using the model checker NuSMV. Alqahtani et al. (2020) used the
NuSMV model checker to model the Hyperledger Fabric smart
contracts and their interactions with the aim of verifying their
compliance with the systems’ functional requirements.

Mavridou et al. (2019) introduced the VeriSolid framework to
generate the Solidity code from the verified transition system-based
models following the correct-by-design development principle.
Bartoletti and Zunino (2019) compared five formal modeling
techniques, namely, Balzac, Ivy, Simplicity, UPPAAL, and BitML,
for Bitcoin smart contracts based on their expressiveness, usability,
and suitability for verification. Atzei et al. (2018) proposed a formal
model of Bitcoin transactions which is abstract enough to allow for
formal reasoning of the behavior of Bitcoin transactions. However,
as highlighted in Atzei et al. (2018), there are some differences
between the modeling of Bitcoin scripting language and the
blockchain with respect to the actual ones. This is worthwhile to
mention that Palina Tolmach et al. in their survey (Tolmach et al.,
2021) revealed that reasoning about the functional correctness of
smart contracts across all domains is frequently done using a
combination of contract-level models, specifications, and model
checking.

Gu et al. (2022) used the interactive preserving abstraction (IPA)
framework to verify the performance of two blockchain consensus
protocols Raft and PRaft with compositional model checking using
TLA + language. The set of properties verified are as follows: single
leader and leader completeness, singleLeader, and
leaderCompleteness blockchain. Bertrand et al. (2022) holistically
verified the safety and liveness properties of the Democratic
Byzantine Fault Tolerant consensus used in the Redbelly
Blockchain system, a scalable blockchain used in production.
Afzaal et al. (2022) presented blockchain-based crowdsourcing
consensus protocol formal models built using CSP# and verified
using the PAT model checker. Liu et al. (2022) modeled the
Hyperledger Fabric chaincodes for the port supply chain system
as discrete-time Markov chains and validate the properties in PCTL
(Probabilistic Computation Tree Logic) using the PRISM model
checker. The UPPAAL model checker is used in Zhang et al. (2020)

and Park et al. (2022) to formally verify the public descending
auction system (Dutch Auction) and important properties of the
Common Knowledge Base (CKB) block synchronization protocol,
respectively. Nam and Kil (2022) proposed the formal verification of
Solidity smart contracts using the ATL model checker.

A comparative summary of the existing relevant verification
approaches with respect to our proposal is shown in Table 1, where
MITL stands for metric interval temporal logic, TCTL stands for
timed computation tree logic, PB-LTL stands for probabilistic
bounded linear temporal logic, LTL stands for linear temporal
logic, PCTL stands for probabilistic computation tree logic, CTL
stands for computation tree logic, and ATL stands for alternating-
time temporal logic.

3 Timed automata and stochastic timed
automata

Timed automaton (Bengtsson and Yi, 2004) is used
worldwide as a powerful model to specify and verify real-time
systems. It is basically a finite-state machine (FSM) extended with
a finite set of real-valued clocks. Initially, all the clocks of the
system are set to 0 and increase synchronously as time passes by.
The individual clocks can be reset to 0 depending upon certain
transitions taken in the system. Here, the transitions are labeled
by constraints imposed over clock variables (also known as clock-
constraints) to limit the behavior of an automaton. Timed
automaton over a finite set of atomic propositions is formally
defined as follows:
Definition 1 (Guard).AGuard is a finite conjunction of expressions of
the form x ⊕ c or x − y ⊕ c,where x, y ∈X are clocks, c ∈ N is a number,
and ⊕ ∈ {≥, >, = , <, ≤ }
Definition 2 (Timed Automaton). A Timed Automaton T is a tuple
〈L, l0,Σ, X, E, I〉,where (i) L is a finite set of locations, (ii) l0 ∈ L is the
initial location, (iii) Σ = Σi ∪ Σo is the alphabet of actions partitioned
into input(Σi) and output(Σo), (iv) X is a finite set of clocks, and (v) E
is a finite set of transitions edge such that
E ⊆ L × GRD(X) × Σ × 2X × L, where GRD(X) is a guard over
X, and (vi) I : L → GRD(X) assigns an invariant (which could be
empty) to each location.

TABLE 1 (Continued) A comparative summary of the existing literature.

Proposals Problem under
consideration

Blockchain
platform

Language under
consideration

Properties under
verification

Specification
language

Tools
used

Liu et al. (2022) Port supply chain Hyperledger Fabric N/A Safety, reliability, and
reachability

PCTL PRISM

Park et al. (2022) Dutch auction trading
system

N/A N/A Basic principles and
functional requirements

TCTL UPPAAL

Nam and Kil, (2022) Ethereum smart contracts Ethereum Solidity Functional behavioral
properties

ATL MCMAS

Our Proposal Pub-Sub Interoperability Hyperledger
Fabric

JavaScript (i) Reachability TCTL and MITL UPPAAL-
SMC

(ii) Liveness

(iii) Probability estimation
of message interoperability
based properties

Frontiers in Blockchain frontiersin.org04

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

Intuitively, a transition in a location ℓ can evolve either by (1)
delay transition: remaining in the current state by letting time pass,
i.e., incrementing all clocks, provided the invariant I(ℓ) can
continuously be satisfied, or (2) action transition: making a
transition (ℓ, g, a, C, ℓ′) if the conditions g and I(ℓ′) hold,
going to the location ℓ′ and setting the clocks in C to 0.

A stochastic timed automaton (STA) (Cassandras and
Lafortune, 1999) is a timed automaton which incorporates a
stochastic clock structure, an initial state cumulative distribution
function (CDF), and state transition probabilities. The STA is
formally defined as follows.
Definition 3 (STA). An STA STA is a tuple 〈ξ, L, Γ, p, p0, G〉, where (i)
ξ is a set of finite-state transitions (also known as. event set), (ii) L is a
finite set of locations (i.e., state space), (iii) Γ(ℓ) is a set of enabled or
feasible transitions defined for all ℓ ∈ L with Γ(ℓ) ⊆ ξ, (iv) p(ℓ′; ℓ, e′) is
state transition probability defined for all ℓ′, ℓ ∈ L; e′ ∈ ξ, and such
that for all e′∉Γ(ℓ), p(ℓ′; ℓ, e′) = 0, (v) p0(ℓ) is the probability mass
function P[L0 = ℓ], ℓ ∈ L, of the initial state L0, and (vi) G = {Gi: i ∈ ξ}
is a stochastic clock structure, where Gi is a distribution function for
each event i, describing the random clock sequence.

A set of STA running simultaneously, using the same set of
clocks, and communicating via broadcast channels and shared
variables are called Network of Stochastic Timed Automaton
(NSTA). The NSTA is supported by the UPPAAL-SMC tool,
where the communication is limited to broadcast
synchronization. As UPPAAL-SMC deals with probabilistic
property verification, this is a design choice by them in order to
capture a clean semantics of only non-blocked components which
are racing against each other with their corresponding local
distributions. We follow the convention for broadcast
synchronization action as a! and a?, where these notations mean
performing a! triggers a? to be performed (David et al., 2015). We
assume that the NSTAs are input enabled, deterministic, and non-
zero (i.e., time always diverges). Furthermore, we drop clock
constraints (if true), actions (if irrelevant), and reset sets (if ϕ)
from the labels. Let us understand this with an example of a network
of two STAs.

Figure 1 illustrates a network of two STAs portraying
communication between a sender and a receiver. When the
receiver successfully receives a message, it sends an
acknowledgement with some probability. Otherwise, it asks the
sender to resend the message. We use different colors to

distinguish among distinct elements, such as node invariant,
guards, synchronizations, updates, delay transition rate, and
discrete transition rate, of the automata. The dotted lines denote
probabilistic transition. Initially, the sender S and the receiver R both
remain in initial locations Init_s, Init_r, respectively, and their
clocks Cs and Cr are set to 0. The time-delay transition rate 1:
2 associated with the location Init_s indicates that the non-
deterministic choices of time-delay transition are chosen
according to exponential distribution with user-defined rate 1:2
(in the absence of invariant). S waits as per the delay rate and then
triggers send! to move toWait state, thus making R to perform send?
and to move to Transmit state. R waits in this state for at most
20 time units before it can fire ack! or resend! with a probability of 4/
5 or 1/5, respectively. S now waits at least 20 time units before
listening to fired channel and then moves back to the initial position
by resetting the clock Cs to zero. The guards used for the sender and
receiver induce a delay of 10 and 15 time units, respectively, while
taking a transition.

3.1 Property verification using UPPAAL-SMC

UPPAAL-SMC (David et al., 2015) is an extension to the
UPPAAL model-checker toolbox, based on the theory of STA for
analysis of probabilistic performance properties. UPPAAL-SMC
espouses property representation using the following temporal
logics: (a) TCTL for specifying desired properties over the
network of timed automata and (b) MITL for specifying desired
properties over the network of STA. Let ϕ be a path formula that uses
a state formula ψ defined over the clocks and the locations of
automata. The syntax of TCTL and MITL in BNF is defined as
follows.
Definition 4 (TCTL formulas). The temporal logic TCTL is defined by
the following grammar:

ϕ ≔ ∃>ψ | ∃□ψ | ∀>ψ | ∀□ψ | ψ1 → ψ2

ψ ≔ T.s | CC | ¬ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ψ10ψ2

where T.s denotes state s in the timed automaton T; CC is a clock
constrain, the operators¬,∨,∧ and0 are logical negation, disjunction,
conjunction, and implies, respectively; the operators ∃ (There exists), ∀
(For all),□ (Globally) and>(Future) are temporal operators describing
state’s range for which ψmust hold; and ψ1→ ψ2 denotes ψ1 leads to ψ2
defined as ∀□(ψ10∀>ψ2).

FIGURE 1
Network of two stochastic timed automata, modeling a sender (A) and a receiver (B).

Frontiers in Blockchain frontiersin.org05

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

Definition 5 (MITL formulas). The temporal logic MITL with
weighted extension is defined by the following grammar:

φ ≔ AP | ¬ φ | φ1 ∧ φ2 | φ1 ∨ φ2 | ○φ | φ1k
c
#nφ2

where AP is a conjunction of atomic propositions over the state
of the STA, and ○ is the next state operator. The MITL formula
φ1k

c
#nφ2 is satisfied if φ1 is satisfied until φ2 is satisfied in the clock

time limit of n for clock c.
The temporal operators of TCTL can be used to specify

properties under the following categories (Pnueli, 1977;
Behrmann et al., 2004).

• reachability: This class refers to the properties, which answers
the question “is it possible to end up in a given state?”Usually,
they are expressed using the path formula ∃>φ.

• safety: This class of properties ensures that something bad
never happens. We express that φ should be true in all
reachable states with the path formula ∀[]φ.

• liveness: This class of properties ensures something good will
eventually happen. Usually, these are stated as ∀>φ and φ→ ψ.

• fairness: It refers to the properties which address the question
“does, under certain conditions, an event occur repeatedly?”

• functional correctness: This class refers to the properties that
answer the query “does the system do what it is supposed
to do?”

• real-time properties: This class refers to the properties
which acknowledge the question “is the system acting in
time?”

To exemplify, let us express in TCTL two properties of the
network of STA in Figure 1: ∃> S. Wait 0(Cs< 20), which states
that the clock Cs can be less than 20 time units while in locationWait
in S. Similarly, the TCTL formula S.Wait −−> R.Transmit represents
that the location R.Transmit is always reachable if the location
S.Wait is reached.

Given a clock x and a bound C, the statistical algorithms in
UPPAAL-SMC use MITL formulas to answer the following three
categories of queries: (a) probability estimation: it is expressed as
PM(>x#CAP), which answers the following question “what is the
probability of the network of Stochastic Timed Automata M
satisfying property AP within C time limit?” (b) hypothesis
testing: this answers the query “Is the probability PM(>x#CAP)
of the network of Stochastic Timed Automata M greater or lesser
than a specific threshold?” (c) probability comparison: it addresses
the question “Is the probability PM(>x#CAP1) greater than the
probability PM(>y#DAP2)?” An example property in MITL is:
Pr[< � 100] (> R.Resend), which estimates the probability that
receiver R will be requesting to resend the message within 100 time-
units.

FIGURE 2
Architecture of the protocol and message flow (Ghaemi et al., 2021).

FIGURE 3
Generic approach for modeling and verification of chaincodes in the pub-sub interoperability protocol.

Frontiers in Blockchain frontiersin.org06

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

FIGURE 4
Call graph of the pub-sub interoperability protocol.

FIGURE 5
Publisher template.

Frontiers in Blockchain frontiersin.org07

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

4 Publisher–subscriber-based
blockchain interoperability protocol

Given the ever-growing demand to enhance inter-blockchain
communication, a substantial amount of research effort has been
given over the last couple of years. Among them, a notable
solution is proposed by the Linux Foundation, which adopts a
publish–subscribe architecture to establish interoperability, as
depicted in Figure 2. The interoperability among a number of
heterogeneous blockchain platforms, falling under the
Hyperledger umbrella project (Foundation, 2015), is
established by implementing a number of chaincodes in
JavaScript language with the required functionalities and API
calls.

Hyperledger (Foundation, 2015) is an umbrella project with
multiple platform open-source collaborative efforts anchored by the
Linux Foundation. Few of the popular projects include Hyperledger
Fabric, Hyperledger Besu, Hyperledger Aries, and Hyperledger
Sawtooth, where each focuses on solving distinct classes of
problems. Among them, Hyperledger Fabric is one of the most
popular development platforms for distributed ledger solutions
adopted by the business enterprises. The business logic in
Hyperledger Fabric is encoded using smart contracts, also known
as chaincodes, which support generic programming languages such
as Java, Go, and JavaScript. Chaincode is a program that initializes
and oversees the ledger states in a blockchain network with the help
of transactions submitted by applications. In general, a chaincode
can be invoked by end-users either to update or to query the ledger
via a transaction.

Let us now briefly manifest the main components of the pub-sub
interoperability protocol and the flow of information among them as
follows.

1. Publisher blockchain: This is the source blockchain that
participates in the network by implementing an appropriate
connector chaincode to interact with the broker’s blockchain
chaincodes. It enrolls as a publisher to the broker’s connector

chaincode and is responsible for creating and publishing
messages on as many topics as required.

2. Subscriber blockchain: This is the destination blockchain that
participates in the protocol similar to that of the publisher. It
enrolls as a subscriber to the broker’s connector chaincode and
receives the messages whenever a publisher updates the topic to
which it is subscribed through the broker’s topic chaincode.

3. Broker blockchain: This is the critical component of the
architecture responsible for establishing the interoperability of
messages from publishers to subscribers. It has two chaincodes:
connector chaincode, which is accountable for maintaining all
details of the publishers and subscribers in the network, and topic
chaincode, which is responsible for maintaining the details of the
topics, i.e., their publishers, subscribers, and messages.

Every blockchain joining the protocol can act as either a
publisher or subscriber. Publishers can create n number of topics,
and a single topic can have m number of subscribers. This pub-sub
architecture provides primarily six functionalities to ensure the
interoperability among the heterogeneous blockchain platforms.
These functionalities are discussed as follows.

• Register/Enroll: The publisher/subscriber implements the
appropriate connector chaincode for this functionality and
then enrolls to the broker network via the broker’s connector
chaincode. These are shown in steps (1) and (3) in Figure 2.

• Create_Topic: The publisher, after getting registered, may
create a new topic to which a registered subscriber can
subscribe via the broker’s topics chaincode, as shown in
step (2).

• Subscribe_to_Topic: The connector chaincode of a registered
subscriber offers this functionality to subscribe to any new
topic created by a publisher via the broker blockchain, as
shown in step (4).

• Update_Topic and Publish_to_Topic: When updates happen
in the publisher network, the message gets published to the
topic already created by the publisher. The publish-request is

FIGURE 6
Subscriber template.

Frontiers in Blockchain frontiersin.org08

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

then sent to the broker’s topics chaincode, which fetches the
details of the subscribers of the topic from the connector
chaincode. These are depicted in steps (5), (6), and (7).

• Notify: Finally, the broker notifies all the subscribers of a topic
about the updated message, which the subscribers update in
their networks as shown in step (8).

5 Proposed methodology

There have been considerable research studies dedicated to
blockchain interoperability in recent years, resulting in the
emergence of several protocols. The pub-sub interoperability
protocol proposed by the Linux Foundation provides a potential
solution to establish inter-blockchain communication among
different blockchain platforms under the umbrella of Hyperledger
projects. This makes the protocol generic enough to be adopted by
various decentralized applications (e.g., supply chain, healthcare,
trade finance, and cross-border payments) built on the top of
Hyperledger platforms, where one can act as a publisher and
other can act as a subscriber to establish communication among
them. In this section, our main objective is to systematically model
the protocol and to formally verify its real-time properties, instead of
the properties of any particular application adopting it. More
specifically, various decentralized applications which adopt the
pub-sub interoperability protocol to establish inter-blockchain
communication among them generally consist of the following
two classes of chaincodes: (1) application-specific chaincodes,
which perform application-specific tasks and (2) protocol-specific
chaincodes, which perform pub-sub protocol-specific tasks. As our
properties of interest deal with the correctness of only protocol-
specific tasks, our verification approach aims at modeling and
verification of protocol-specific chaincodes, instead of the
application-specific chaincodes. Figure 3 depicts the overall
modeling and verification architecture. Observe that, as the
protocol-specific functionalities focus on the message
communication through API calls among publishers, subscribers,
and brokers, they are independent of the application-specific
activities. This makes our proposed approach applicable to any
protocol-specific chaincodes, irrespective of the applications
adopting the protocol. Let us now explain each of these phases in
detail.

5.1 Formalizing chaincode

In this subsection, we formally model chaincodes written in
JavaScript as an FSM. Our theoretical formalization serves as a
foundation to model any JavaScript chaincode in the form of a state
transition system guided by the properties of interest and the verification
thereof. Here, we consider a subset of JavaScript language statements,
consisting of Identifiers, Types, Supported Statements, Variables, etc., used
in the chaincode. We portray the chaincode as an FSM according to the
following rules (Mavridou et al., 2019).

1. A function is mapped as a transition where the action associated
with the transition corresponds to the set of statements in the
function’s scope.

2. When a transition takes place, the corresponding statements
representing the action are executed.

3. A guard is a premise on variables that must be true to allow the
associated transition.

Definition 6 provides a formal definition of a chaincode in the form
of the FSM.

Definition 6. A chaincode C is defined as a tuple C = (S, s0, F, Σ, a,
δ), where (1) S is a finite set of states which is a subset of valid
identifiers used in the chaincode; (2) s0 is the initial state,where s0 ∈ S;
(3) F is a set of final states,where F ⊆ S; (4) Σ is a set of contract’s typed
variables defined as Σ ⊂ Identifiers × Types; (5) a is an action, where
a ∈ Supported Statements; and (6) δ is a transition relation, where for
each t ∈ δ, there exists the following: (i) transition name id ∈
Identifiers, (ii) source state sfrom ∈ S, (iii) destination state sto ∈ S,
(iv) arguments arg ⊂ Σ, (v) transition guard g, (vi) return variables rt
⊂ Σ, and (vii) action at ⊂ a.

This definition serves as a basis to model the chaincodes of the
pub-sub interoperability protocol as an NSTA, in line with
Definition 3.

5.2 Chaincode analysis

Chaincodes written in JavaScript consist of a number of
functions encoding business logic which, when executed, changes
the state of the blockchain. More precisely, as our objective is to
prove real-time properties about the successful creation/
subscription of topics by publishers/subscribers, seamless message
transmission between entities, successful registration to broker
network, etc., the JavaScript chaincode analyzer extracts relevant
information from the protocol source codes with respect to these
properties of interest. This includes unique identities of various
entities (e.g., topics, publishers, subscribers, and brokers), built-in
functions changing the blockchain state, context-sensitive
information pertaining to various function calls, etc. This allows
the construction of a call graph by identifying all possible function
calls among various chaincodes involved in publishers, brokers, and
subscribers, along with the associated contextual information. This
provides essential information about the inter-procedural control
flow dependencies in the pub-sub protocol. Figure 4 illustrates the
call graph of the pub-sub interoperability protocol. The functions
responsible for API calls or facilitating the API calls are represented
with two different colors in the call graph. In particular, the
blockchain-specific API calls accountable for updating the world
state and ledger of the network are shown in pink, whereas the API
calls which are responsible for interoperability are shown in yellow.

5.3 Modeling of the pub-sub interoperability
protocol

To perform model checking of a system, an essential
requirement is the representation of the system in the form of a
model. Based on the extracted information by the analyzer, we build
a model of the protocol in the form of an NSTA using UPPAAL-
SMC’s drag and drop features in a systematic manner by defining
the states, transitions, guards, invariants, updates, and

Frontiers in Blockchain frontiersin.org09

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

synchronization channels. This guided approach enables us to build
an abstract model of the protocol reflecting similar behavior as of the
source code, disregarding the details which are not relevant with
respect to the targeted properties of interest. In this process, wemake
a number of assumptions, without loss of generality, which consider
hardware dependencies, fairness in channel behavior, absence of
issues stemming from hardware components, etc. Moreover, since
the Hyperledger blockchain networks are matured, we assume the
network to be safe and robust, thus abstracting the block generation
process and consensus algorithm details in our proposed model.

Let us discuss the model generation steps in detail. First, based
on the generated call graph by the analyzer as shown in Figure 4, we
identify a number of synchronization channels required to
communicate among STA in the network. In particular, the
synchronization channels are mapped from the functions
responsible for external function calls. The locations in the
automata are identified during the code analysis phase, which
corresponds to the state change occurring in the pub-sub
interoperability protocol. The state transitions are mapped from
the call graph by identifying the apt function responsible for the state
change. The global variables infused in the model are extracted
during chaincode analysis to facilitate the data exchange among the
NSTA. Along with this, the guard, conditional checks, and updates
are introduced after analyzing the algorithms used in the
chaincodes. Finally, a clock, an important component related to
time, is introduced to model the throughput/latency of the
blockchain network.

We consider throughput as a crucial parameter during the
modeling of the blockchain system. Let txi be the processing time
of the ith transaction, tbi be the ith block commit time in a
blockchain network, and N is the total number of transactions
per block. The throughput (in transaction per second (TPS)) and
latency (in milliseconds (ms)) of the network are defined as follows
(Dreyer et al., 2020):

Throughput � N/∑
N

i

txi, (1)

Latencyi � txi + tbi. (2)
Every blockchain platform has a specific throughput value

indicating the number of successful TPS. Given the throughput
value, we calculate the average time (in seconds) taken by each
successful transaction. The clocks in the model keep track of this
calculated time, which is used as an invariant to reflect the consensus
occurring in the blockchain network. For example, the publisher
blockchain (i.e., Fabric V2) throughput value is 20,000 TPS which
implies the average time for a successful transaction is
50 microseconds, which is incorporated in the consensus state of
the model. In general, the real behavior of the consensus time is
reflected by latency. However, due to its dependence on hardware,
network delay, transaction processing fees, miners, etc., we assume
that the block commit time tbi is negligible in Eq. 2 and thus, we use
only the throughput parameter for modeling the consensus time1 as

discussed previously. After modeling the template, it can be
transformed into an NSTA.

The pub-sub-based solution architecture, described in Section 4,
is classified into four actors and objects: publisher (creator of
content), subscriber (consumer of content), broker blockchain
(keeping track of publisher and subscriber blockchains), and
broker topics (keeping track of topics involved in message
communication). Now, we are in a position to discuss the
detailed specification of these actors, represented in the form of
STA models, which are verified against several properties using the
UPPAAL-SMC model checker2. Figures 5–8 depict various
templates modeled in UPPAAL-SMC, which are elaborated upon
as follows.

5.3.1 Publisher

The primary task of a publisher after enrolling to the pub-
sub interoperability network is to create a new topic and
publish messages over the topic. Furthermore, a publisher
can query about topics created by it and whether it has
already been registered. Accordingly, we identify six unique
states Init, Query, QueryTopic, Registered, TopicCreated, and
Published, depicting the functionalities of the publisher.
Additionally, two states, Consensus1 and Consensus2, reflect
the consensus occurring before a new topic is created and
before a message is published to the topic, respectively. This is
done in order to show the updates occurring in the world state
and the ledger of the publisher network. Moreover, since there
can be two categories of transactions (i.e., query and submit/
invoke), we model their behavior differently. We use the
notion of consensus time only for submit/invoke
transactions as it changes the world state and the ledger of
the blockchain.

Figure 5 shows the template model of the publisher’s
connector chaincode derived from the call graph in Figure 4.
From the call graph, synchronization channels are identified by
examining the API call functions. For example, createTopic()
function in the call graph corresponds to the channel createTopic
[idt], where idt is the unique topic id. We append guard, update,
and invariant over the transitions based on the data extracted
through the chaincode analysis. The publisher from the Init state
makes a transition to the Query state to know whether it is
registered on the broker network. The transition is synchronized
with the broker’s blockchain model via channels qblockchain and
qblockchain_ack parameterized with blockchain id. Here, the
global array variable b_exist represents either enrollment (1)
or non-enrollment (0) of the publisher/subscriber blockchains
with a unique id. The local variable pub_exist copies the value
from b_exist and thus indicates whether the publisher is
registered or not.

To register on the broker network, the publisher makes a
transition to the Registered state synchronized with the broker
blockchain model via the channels createBlockchain and

1 In Hyperledger Fabric, the number of transactions per block is configurable
by configtx.yaml file. 2 https://uppaal.org/

Frontiers in Blockchain frontiersin.org10

Alam et al. 10.3389/fbloc.2023.1248962

https://uppaal.org/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

registered_ack. For inquiring whether a topic is already created or
not, the registered publisher makes a transition to the QueryTopic
state. The transition is synchronized with the broker network via
channels qtopic and qtopic_ack. The local array variable of publisher
Ptopic keeps track of all the topics created by it. So, the registered
publisher for creating a new topic on both the local and broker
networks makes a transition to the TopicCreated state. The
transition is synchronized with the broker topic model via the
channel createTopic parameterized with a unique topic id t_id.
Since the topic information gets updated locally on the publisher
network along with the broker network, hence intermediate
Consensus1 state is introduced at this point.

Any update in a new topic created by the publisher is notified to
the subscribed subscriber. Therefore, for sending the message to the
subscribers’ network with the help of the broker network, the
publisher makes a transition to the Published state. The
transition is synchronized with the broker topic model via
channel publishToTopic parameterized with the unique topic id
t_id. Like before, Consensus2 state is also infused here as the
changes are reflected on the local network. In addition, the global
array variable topicShared is used as a guard to keep track of all the
topics created by the publisher. Finally, the clock t defined for a

publisher is compared against the average time per transaction
PubTmax value computed from the throughput of the publisher
network.

5.3.2 Subscriber

Subscribers primarily perform four functionalities: (a) to query
whether it has enrolled in the protocol, (b) to register itself, (c) to
subscribe to a topic, and (d) to get notified if any updates occur on the
subscribed topic. Accordingly, we identify four states alongwith an initial
state. Figure 6 depicts the template model of a subscriber’s connector
chaincode with five unique states Init, Query, Registered, Subscribed,
and Notified. Similar to the publisher model, the synchronization
channels in the subscriber model are identified from the call graph of
the subscriber’s connector chaincode shown in Figure 4.

The purpose of the transitions from Init to Query and Registered
states are same as that in the case of the publishermodel. To subscribe to
a topic which is already created by a publisher, the subscriber makes a
transition to the Subscribed state. The subscriber does this with the help
of the broker network and is synchronized via the channel
subcribeToTopic parameterized with unique topic id t_id. Here, the

FIGURE 7
Dispatcher/broker connector template.

FIGURE 8
Dispatcher/broker topic template.

Frontiers in Blockchain frontiersin.org11

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

local array variable subscribed keeps a record of all the subscribers for a
particular topic. Moreover, when the publisher updates the data on a
topic, the changes are reflected on the subscribed subscribers with the
help of the broker network, and thus, to simulate this, the subscriber
makes a transition to the Notified state. The transition is synchronized
with the broker’s topic model via the channel updateTopic
parameterized with a unique topic id t_id. As the local array
variable Stopic stores the new updated information of the topic on
the subscriber network, we introduce the Consensus state at this point.

5.3.3 Broker connector

The broker’s connector chaincode keeps a record of all the publisher
and subscriber blockchains participating in the network and facilitates
achieving the interoperability of message communication among them.
Figure 7 shows the model of the broker’s connector chaincode. It initially
stays in the Init state from where it can make a transition to either (a)
QueryBlockchain to provide information about all the blockchains
participating in the network either as publishers or subscribers. It is
synchronized with publisher and subscriber automata via channels

qblockchain and qblockchain_ack parameterized with blockchain id
idx. Here, the local array variable blockchain stores the data about the
blockchains enrolled in the protocol, whose value is further copied to the
global array variable b_exist, or (b) Registered state to register and store
information of the blockchain which is taking part as a publisher or as a
subscriber, where the broker connector is synchronized with it via array
channels createBlockchain and registered_ack parameterized with
blockchain id. Additionally, the clock t3 keeps track of time, which is
compared against the average time per transactionBrokerTmax value and
is used as invariant in the Consensus state.

5.3.4 Broker topic

As the broker’s topic automaton primarily performs four
elemental functionalities, accordingly we identified four states
QueryTopic, TopicCreated, Subscribed, and Published along with
an initial state Init. Figure 8 depicts the template of the broker’s topic
chaincode, which keeps a record of all the topics created, subscribed,
and updated. Similar to the publisher and subscriber models, the
synchronization channels are identified. The broker from the Init

FIGURE 10
Probability comparison result.

FIGURE 9
Cost of call graph construction, in terms of Time (A) and in terms of Memory (B).

Frontiers in Blockchain frontiersin.org12

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

state makes a transition to theQueryTopic state to inform whether a
topic is already created or not on the broker network. The transition
is synchronized with the publisher/subscriber via the channels qtopic
and qtopic_ack parameterized with a unique topic id t_id.
Subsequently, the local array variable Btopic holds the
information of the topics created by the publishers and is copied
to the global array variable topicShared.

When a publisher creates a new topic, the broker network also stores
the information of this new topic and thus gets triggered to the
TopicCreated state. The edge is synchronized with the publisher via the
channel createTopic. Since the topic information gets updated locally on the
broker’s network along with the publisher network, hence the intermediate
Consensus2 state is infused. For storing the details of a topic subscription by
a subscriber, the broker makes a transition to the Subscribed state. The
transition is synchronized with the subscriber model via channel
subcribeToTopic. The local array variable subscribedB used as update
over the transition keeps a record of all the subscribers of a particular
topic. The broker automata helps the publisher send messages to the
subscriber networks by making a transition to the Published state. The
transition is synchronized with the publisher via the channel
publishToTopic and with the subscriber via the channel updateTopic.
Since the changes are reflected on the local network, therefore
Consensus3 and Consensus1 states are infused. In addition, the global
array variable topicShared used as guard over the transition keeps track of
all the topics created by the publisher. Finally, the clock t2 defined for the
automata is compared against the average time per transaction
BrokerTmax value, representing the throughput of the broker network.

In all the aforementioned templates, the delay rate in the absence
of the location invariant is taken as 1:1 because the delay in the
original network is assumed to be uniform. However, one can
change the rate to exponential distribution depending on the
information available about the network a priori. The throughput
values taken in consideration are as follows: (a) 20,000 TPS for
Hyperledger fabric v2, (b) 3,000 TPS for Hyperledger fabric v1.4,
and (c) 3,00 TPS for Hyperledger besu.

6 Proof of concept

The generation of a model from chaincodes involves two phases,
namely, chaincode analysis and STA modeling. To accomplish the
chaincode analysis phase, we have developed a proof of concept
which generates call graphs of chaincodes written in JavaScript and
extracts the relevant contextual information for modeling STA in
UPPAAL-SMC (David et al., 2015). Our Chaincode Analyzer is the
first of its kind to generate a call graph from a chaincode written in
JavaScript. The generated call graph provides insightful information
on how the procedure exchanges information among them,
revealing their relationship in the program. The analysis results
also include auxiliary information about the data within each
procedure and global data shared among procedures.

Despite having several tools available for generating call graphs
from the JavaScript code, such as code2flow (The code2flow tool, 2021),
JavaScript Explorer callgraph (The javascript explorer callgraph tool,
2018), and js-callgraph (The callgraphjs tool, 2014), none of them is
capable of generating a call graph from the chaincode written in
JavaScript. This is due to the added complexity introduced by
blockchain-based functionality that is described using special

keywords in the chaincodes. In general, the existing proposals for
obtaining call graphs typically builds an Abstract Syntax Tree (AST)
using JavaScript compilers like Acron (Acorn, 2014) and Esprima
(Esprima, 2015) However, these compilers cannot generate an AST
in the case of chaincodes due to its distinct blockchain-specific features,
thereby posing a unique challenge. In contrast, our proposal
incorporates and implements the proven and traditional algorithm
proposed by Ryder (1979) for building the call graph. Ryder’s algorithm
computes a precise call graph under the assumption that all call sites are
invoked. One limitation of the algorithm is its inability to analyze
languages that allow recursion, but since chaincodes generally avoid
recursion, the algorithm is perfectly suited to our needs.

The Chaincode Analyzer performs two main functions. First, it
generates an AST from the chaincodes and allows users to visualize
them. Second, it generates the call graph from the given AST.We utilize
the Google Closure Compiler (Bolin, 2010) to generate the AST in dot
format. As the generated AST is not powerful enough to extract
information regarding function calls, we implement Ryder’s
algorithm for generating a call graph which consists of the following
two phases: initialization and construction. It contributes significantly in
three distinct ways. First, the parse of the program builds tables that
describe the functions and their references. Both the initialization and
the construction phase search this information once for each node.
Second, the algorithm inserts edges into the graph, which allows visiting
of nodes in order to update their levels. Finally, it contributes to the
building of function vector sets for all nodes by reference expansion.
The contributions made by the Ryder’s algorithm are proved to be of
immense value in generating a call graph of a program, and its
effectiveness is well-established in the field of program analysis.

The output of the Chaincode Analyzer produces a call graph in svg
format and an AST in dot/pdf format. The source code of the analyzer
and the obtained results can be found at GitHub3. Our Chaincode
Analyzer, which is implemented in Node. js, has dependencies on the
Graphviz library (Ellson et al., 2004), Google Closure Compiler (Bolin,
2010), and JDK. The Graphviz library is utilized for the visualization of
the call graph, while the Google Closure Compiler is responsible for
generating the AST. The output call graph is color-coded for
convenience, with each color carrying a specific meaning. Functions
highlighted in blue denote internal chaincode functions, while orange
represents calls to external chaincode functions. Lastly, yellow is used to
signify blockchain platform-dependent functions. Furthermore, the call
graph of chaincodes of Hyperledger besu written in Solidity language is
obtained using off-the-shelf tool surya (Surya, 2018).

7 Experimental evaluation

7.1 Performance analysis of the Chaincode
Analyzer

We evaluated our tool on a variety of chaincodes written in the
JavaScript language using a Windows-based desktop equipped with
an Intel Core i7 CPU 3.00 GHz and 8 GB RAM. The benchmark
chaincodes, shown in Table 2, include the codebase of the pub-sub

3 https://github.com/mdtauseefalam/JavaScriptChaincodeAnalyzer/

Frontiers in Blockchain frontiersin.org13

Alam et al. 10.3389/fbloc.2023.1248962

https://github.com/mdtauseefalam/JavaScriptChaincodeAnalyzer/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

interoperability protocol, along with sample chaincodes imported
from the Hyperledger project (Foundation, 2015). Observe that the
chaincodes under rows (1)–(4) belong to the pub-sub
interoperability protocol, while the chaincodes under rows
(5)–(10) are few popular chaincodes which are available on the
GitHub repository of the Hyperledger project. In columns 5 and 6,
we report the performance evaluation results of our Chaincode
Analyzer in terms of the time taken and the memory resources
utilized to generate the call graph of the benchmark codes. Figures
9A, B depict the cost of call graph generation in terms of lines of code
(LoC) v/s time and memory, respectively. This is to observe that,
even though call graph generation time and memory usage depend
on LoC, there are other factors, such as the number of functions
present in the contract and the number of function calls, which may
also influence them. For example, memory consumption in case of
“ERC721Token.js” is more than that in “ERC20Token.js,” although
the LoC of the former one is less than that of the latter one.
Furthermore, the number of functions in
“AssetTransferLedger.js” (351 LoC) is more than that of
“ERC20Token.js” (503 LoC) and “ERC721Token.js’ (464 LoC).
However, the execution time and memory consumption of
“AssetTransferLedger.js” are significantly lower than those of
“ERC20Token.js” and “ERC721Token.js”. This is due to the
number of function calls made in the code and the creation of
edges in the corresponding call graph. Notably, the number of
function calls in ERC721Token.js, ERC20Token.js, and
AssetTransferLedger.js is 90, 73, and 49, respectively.

7.2 Properties verification results using
UPPAAL-SMC

For verifying real-time properties, we simulate all these
templates in UPPAAL-SMC where (1) the publisher (Fabric V2)
is defined as Pub; (2) the broker (Fabric V2) has two chaincodes,
connector and topics, which are defined as DispatcherConnector

and DispatcherTopic, respectively; and (3) two subscriber networks
(Hyperledger Fabric V1.4 and Hyperledger Besu) are defined as
SubFabric and SubBesu, respectively. For the properties verified as
follows, we assume that the pub-sub network architecture holds
fairness property (i.e., the channels connecting publisher/subscriber
blockchain to broker blockchain are reliable). We consider the
following set of properties in TCTL for verifying the functional
requirements and in MITL for verifying the non-functional
requirements.

1. A publisher/subscriber will be able to join the protocol
eventually. This property is expressed in TCTL as follows:
(a) publisher joining the broker network: E> Pub.Registered
imply DispatcherConnector.Registered and (b) subscriber
joining the broker network: E> SubFabric.Registered
imply DispatcherConnector.Registered

2. The registered publisher can successfully create a new topic
eventually. This is expressed as follows: E>
Pub.TopicCreated. The property in (2) is not enough to
confirm whether the topic is created on the broker
network. So, we consider the following property in (3).

3. The topic created by the publisher is eventually created on the
broker’s network. This is stated as follows: A>
Pub.TopicCreated imply DispatcherTopic.TopicCreated

4. Messages published to a topic by the publisher are always
received by the subscribers eventually. It is represented as
follows: A> ((Pub.Published and SubFabric.Subscribed)
imply SubFabric.Notified)

5. Creation of duplicate topics by the publisher will eventually lead
to the creation of duplicate topics by the broker. This is stated in
TCTL as follows: A> (Pub.Registered and Pub.TopicCreated
and (Pub.Ptop_id == 0) and

(DispatcherTopic.Btop_id == 0) imply
(DispatcherTopic.TopicCreated and

(DispatcherTopic.Btop_id = = 0)))

Observe that the properties (1) and (2) represent reachability
properties, whereas the properties (3), (4), and (5) represent liveness

TABLE 2 Performance analysis of the Chaincode Analyzer.

Sl.
No.

Chaincode LoC Chaincode functions details Call graph
generation

Memory
usage

Internal
functions

External
functions

Blockchain-
dependent
functions

Total
functions

Time (in
milliseconds)

(In MB)

1 broker.js 276 8 3 4 15 51 0.24

2 pubsub.js 194 4 0 3 7 39 0.11

3 topics.js 152 5 2 3 10 29 0.12

4 topics (F1.4).js 119 5 0 3 8 23 0.09

5 ERC20Token.js 503 16 0 4 20 100 0.77

6 ERC721Token.js 464 19 0 6 25 104 0.79

7 AssetTransfer.js 167 8 0 4 12 44 0.14

8 AssetTransferLedger.js 351 15 0 11 26 54 0.40

9 Abstore.js 138 5 0 4 9 28 0.10

10 FabCar.js 145 5 0 3 8 39 0.09

Frontiers in Blockchain frontiersin.org14

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

properties. The verification results by UPPAAL-SMC demonstrate
that the properties in (1)–(5) are satisfied by the aforementioned
model. These results provide insightful information to the end-users
to decide the adaptability of the protocol in a particular application
depending on its interoperability needs. This is to observe that, in
order to avoid the state explosion issue, we consider five topics in our
model, and we verify these properties against all these five topics.
However, if one wishes to check a property only for a particular
topic, the corresponding topic id should be used in the TCTL
formula4. For example, property (3) can be rewritten as follows:
A> ((Pub.TopicCreated and (Ptopic[0]==true))

imply (DispatcherTopic.TopicCreated and

(Btopic [0] = = true)))
Let us now estimate the probabilities of properties within a

given time span using the following MITL temporal logic:
6. What is the probability of the topic being created on the

publisher network within 45 time units? This is
represented as follows: Pr (>[0, 45]
Pub.TopicCreated). This property is satisfied
with the probability of [0.0990515, 0.199051] with 95%
level of significance in 738 runs.

7. What is the probability of a topic being created on the
broker’s network within 100 time units when it has already
been created by the publisher? This is expressed as follows:
Pr [< � 100] (> Pub.TopicCreated imply

DispatcherTopic.TopicCreated). This
property gives probabilistic estimation of [0.901855, 1]
with 95% level of significance in 29 runs.

8. What is the probability of the subscribers to receive the
messages published by the publisher in the time interval of
10 to 100 time-units? This is stated as follows:
Pr (>[10, 100] (SubBesu.Subscribed &

Pub.Published) imply SubBesu.Notified).
This gives an estimate of the probability in the range
of [0.92019, 1] with 95% level of significance in 738 runs.
This reveals the fact that the protocol may fail to transmit

messages between a publisher and a subscriber with 8%
probability when the throughput of the broker
blockchain is relatively higher than that of both the
publisher and subscriber, within a given time range of
10–100 μs (microseconds). Such information is generally
valuable for the end-users as they make decisions
regarding the adoption of the pub-sub protocol in
hard real-time decentralized applications. Table 3
depicts the verification result of this property by
varying the throughput of the publisher, broker, and
subscriber networks. This is to observe that the
protocol gives a best result when the throughput of the
broker blockchain is comparatively higher than that of
the publisher and the subscriber.

9. Is the probability of publishing (by the publisher) a
message to a topic which gets reflected on the broker
network equal to the probability of publishing a
message (by the broker) to the associated subscribers
within 100 time units? which is expressed as follows:
Pr [< � 100] (> (SubFabric.Subscribed and

Pub.Published) imply Dispatcher

Topic.Published) > � Pr [< � 100] (>
DispatcherTopic.Published imply

SubFabric.Notified). This property aims at
verifying the possibility of message loss within a given
time frame. The verification result of this property yields
the result shown in Figure 10, where 0.5 means both the
probability is the same. Therefore, we conclude that there
is no message loss in the protocol.

8 Threats to validity

Let us first discuss the threats to external validity in our study,
which relate to the generalization of our findings. One major concern
is that certain assumptions we have made may not hold true in a real-
world scenario. Given that Hyperledger blockchain networks are
mature and established, we have assumed that they are safe and
secure, thereby abstracting the block generation process and
consensus algorithm in our proposed model. Additionally, to
mitigate the state space explosion issue, we have limited our

TABLE 3 Probability estimated for message interoperability between the publisher and subscriber blockchains.

Sl.no. Property Throughput (TPS) Probability
estimated

Time in
seconds

Publisher Broker Subscriber

1 Pr (<>[10,100] (Sub.Subscribed And Pub.Published) Imply
Sub.Notified)

20,000 20,000 300 [0.92019,1] 0.019

2 10,000 20,000 20,000 [0.898509,0.998509] 0.018

3 20,000 20,000 20,000 [0.910705,1] 0.017

4 2,000 10,000 3,000 [0.92561,1] 0.016

5 2,500 2,000 3,000 [0.160027,0.260027] 0.015

6 10,000 2,000 20,000 [0.153252,0.253252] 0.015

The bold values Represent highlight the cases where the pub-sub interoperability protocol performs the best (i.e. [0.92561,1]) and worst (i.e. [0.153252, 0.253252]) within a given time units. The

values tell the probability of the same.

4 The variable used in the TCTL formula must be globally declared

Frontiers in Blockchain frontiersin.org15

Alam et al. 10.3389/fbloc.2023.1248962

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

experiments to a fixed number of parameters, for instance, the
number of topics, which may vary for different application scenarios.

Moreover, we have made a number of assumptions regarding
the absence of issues stemming from network hardware
components, which may lead to communication delay. Although
we consider a uniform network delay in our modeling process, this
may not be the reality. In addition, our assumption on the fairness of
the communication channels hinders us to verify the properties in
presence of network failure.

Considering the aforementioned assumptions, we followed a
systematic approach for modeling the protocol to ensure that the
actual code and the model exhibit the same behavior. In
particular, we build an abstract STA model from the source
code of the protocol by extracting relevant information guided
by our properties of interest. It is important to note that this
abstract model may not be sufficient to verify any new property
due to the over-approximation behavior. In such cases, refinement
may be necessary to include property-specific information in the
model. Lastly, it is essential to highlight that our Chaincode
Analyzer currently faces limitations in handling recursion-
based functions smoothly due to the implemented Ryder’s
algorithmic constraints.

We will now delve into the threat to internal validity, which
refers to the potential experimental bias and errors that may arise
due to our implementation. We acknowledge that the call graph
construction algorithm (Ryder, 1979) used by our tool was originally
designed for FORTRAN programs, but we have ensured that it
works seamlessly for JavaScript chaincodes as well, considering their
similar function construct. Nevertheless, we must also recognize that
converting call graphs to STA may require human intervention,
which may result in model biases.

9 Conclusion

In this paper, we have formally modeled the pub-sub-based
blockchain interoperability protocol in the UPPAAL-SMC model
checker and verified its functional real-time properties. Along with
this, we have estimated the probabilities of various properties in a
given time limit and highlighted the cases where the pub-sub
interoperability protocol performs the best and worst. The
verification results revealed that no message loss takes place
during inter-blockchain communication and provides an insight
on choosing appropriate blockchain networks with suitable
throughput as publishers, brokers, or subscribers, ensuring the
highest utility of the protocol. Observe that, even though the
model satisfies some of our properties of interest, there are
certain cases where probability of failure is observed. For
example, our verification reveals the fact that the protocol may
fail to transmit messages between a publisher and a subscriber with

8% probability when the throughput of the broker blockchain is
relatively higher than that of both the publisher and subscriber,
within a given time range of 10–100 μs (microseconds). Such
information is generally valuable for the end-users as they make
decisions regarding the adoption of the pub-sub protocol in hard
real-time decentralized applications. Furthermore, as the access
control mechanism is yet to be addressed by the protocol and is
part of their future work, the verification of the security aspects of
the protocol would be an interesting future scope.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding authors.

Author contributions

Conceptualization: MA, RH, and AM; methodology: MA;
formal analysis: MA and RH; writing—original manuscript: MA;
writing—review and editing: MA, RH, and AM; supervision: RH and
AM. All authors contributed to the article and approved the
submitted version.

Acknowledgments

We graciously acknowledge the support of the Prime Minister
Research Fellowship (PMRF) Award and the SERB Core Research
Grant (Grant Number: CRG/2022/005794) by the Government of
India for carrying out this research.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abdellatif, T., and Brousmiche, K.-L. (2018). “Formal verification of smart contracts
based on users and blockchain behaviors models,” in 2018 9th IFIP international
conference on new Technologies, mobility and security (NTMS) (IEEE), 1–5. doi:10.1109/
NTMS.2018.8328737

Acorn (2014). Acorn. Available at: https://github.com/acornjs/acorn.

Afzaal, H., Imran, M., Janjua, M. U., and Gochhayat, S. P. (2022). Formal modeling
and verification of a blockchain-based crowdsourcing consensus protocol. IEEE Access
10, 8163–8183. doi:10.1109/access.2022.3141982

Aggarwal, S., Chaudhary, R., Aujla, G. S., Kumar, N., Choo, K.-K. R., and
Zomaya, A. Y. (2019). Blockchain for smart communities: applications,

Frontiers in Blockchain frontiersin.org16

Alam et al. 10.3389/fbloc.2023.1248962

https://doi.org/10.1109/NTMS.2018.8328737
https://doi.org/10.1109/NTMS.2018.8328737
https://github.com/acornjs/acorn
https://doi.org/10.1109/access.2022.3141982
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

challenges and opportunities. J. Netw. Comput. Appl. 144, 13–48. doi:10.1016/j.
jnca.2019.06.018

Alqahtani, S., He, X., Gamble, R., and Mauricio, P. (2020). “Formal verification of
functional requirements for smart contract compositions in supply chain management
systems,” in Proc. Of the 53rd Hawaii international conference on system sciences, 5278–5287.

Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, Ł. (2014).
“Modeling bitcoin contracts by timed automata,” in International conference on
formal modeling and analysis of timed systems (Springer), 7–22.

Atzei, N., Bartoletti, M., Lande, S., and Zunino, R. (2018). “A formal model of bitcoin
transactions,” in Financial cryptography and data security: 22nd international
conference, FC 2018, nieuwpoort, curaçao, february 26–march 2, 2018, revised
selected papers 22 (Springer), 541–560.

Bai, X., Cheng, Z., Duan, Z., and Hu, K. (2018). “Formal modeling and verification of
smart contracts,” in Proceedings of the 2018 7th international conference on software and
computer applications, 322–326.

Bartoletti, M., and Zunino, R. (2019). Formal models of bitcoin contracts: A survey.
Front. Blockchain 2, 8. doi:10.3389/fbloc.2019.00008

Behrmann, G., David, A., and Larsen, K. G. (2004). A tutorial on uppaal. Formal
methods Des. real-time Syst. 3185, 200–236. doi:10.1007/978-3-540-30080-9_7

Belchior, R., Vasconcelos, A., Guerreiro, S., and Correia, M. (2021). A survey on
blockchain interoperability: past, present, and future trends. ACM Comput. Surv.
(CSUR) 54, 1–41. doi:10.1145/3471140

Bengtsson, J., and Yi, W. (2004). Timed automata: Semantics, algorithms and tools.
Berlin, Heidelberg: Springer Berlin Heidelberg, 87–124.

Bertrand, N., Gramoli, V., Konnov, I., Lazic, M., Tholoniat, P., and Widder, J. (2022).
“Brief announcement: holistic verification of blockchain consensus,” in Proceedings of
the 2022 ACM symposium on principles of distributed computing, 424–426.

Bolin, M. (2010). Closure: The definitive guide: Google tools to add power to your
javascript. O’Reilly Media, Inc.

Cassandras, C. G., and Lafortune, S. (1999). “Stochastic timed automata,” in
Introduction to discrete event systems (Springer), 317–365.

Chaudhary, K. C., Chand, V., and Fehnker, A. (2020). “Double-spending analysis of
bitcoin,”, in Pacific asia conference on information systems proceedings (association for
information systems).

Chaudhary, K., Fehnker, A., Van De Pol, J., and Stoelinga, M. (2015). Modeling and
verification of the bitcoin protocol. arXiv preprint arXiv:1511.04173.

Clarke, E. M., Grumberg, O., and Long, D. E. (1994). Model checking and abstraction.
ACM Trans. Program. Lang. Syst. 16, 1512–1542. doi:10.1145/186025.186051

David, A., Larsen, K. G., Legay, A., Mikučionis, M., and Poulsen, D. B. (2015). Uppaal smc
tutorial. Int. J. Softw. Tools Technol. Transf. 17, 397–415. doi:10.1007/s10009-014-0361-y

DiGiacomo-Castillo, M., Liang, Y., Pal, A., andMitchell, J. C. (2020). “Model checking
bitcoin and other proof-of-work consensus protocols,” in 2020 IEEE international
conference on blockchain (blockchain) (IEEE), 351–358.

Dreyer, J., Fischer, M., and Tönjes, R. (2020). “Performance analysis of hyperledger
fabric 2.0 blockchain platform,” in Proceedings of the workshop on cloud continuum
services for smart IoT systems, 32–38.

Eijkel, D., and Fehnker, A. (2019). “A distributed blockchain model of selfish mining,”
in International symposium on formal methods (Springer), 350–361.

Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., and Woodhull, G. (2004).
“Graphviz and dynagraph—Static and dynamic graph drawing tools,” inGraph drawing
software, 127–148. doi:10.1007/978-3-642-18638-7_6

Esprima (2015). Esprima. Available at: https://github.com/jquery/esprima.

Fehnker, A., and Chaudhary, K. (2018). “Twenty percent and a few days–optimising a
bitcoin majority attack,” in NASA formal methods symposium (Springer), 157–163.

Foundation, T. L. (2015). Hyperledger foundation. Available at: https://www.
hyperledger.org/.

Ghaemi, S., Rouhani, S., Belchior, R., Cruz, R. S., Khazaei, H., and Musilek, P. (2021).
A pub-sub architecture to promote blockchain interoperability. arXiv preprint arXiv:
2101.12331.

Gu, X., Cao,W., Zhu, Y., Song, X., Huang, Y., andMa, X. (2022). Compositional model
checking of consensus protocols specified in tla+ via interaction-preserving abstraction.
arXiv preprint arXiv:2202.11385.

Hewa, T., Ylianttila, M., and Liyanage, M. (2021). Survey on blockchain based smart
contracts: applications, opportunities and challenges. J. Netw. Comput. Appl. 177,
102857. doi:10.1016/j.jnca.2020.102857

Khan, A. G., Zahid, A. H., Hussain, M., Farooq, M., Riaz, U., and Alam, T. M. (2019).
“A journey of web and blockchain towards the industry 4.0: an overview,” in
2019 international conference on innovative computing (ICIC), 1–7. doi:10.1109/
ICIC48496.2019.8966700

Liu, Y., Zhou, Z., Yang, Y., andMa, Y. (2022). Verifying the smart contracts of the port
supply chain system based on probabilistic model checking. Systems 10, 19. doi:10.3390/
systems10010019

Mavridou, A., Laszka, A., Stachtiari, E., and Dubey, A. (2019). “Verisolid: correct-by-
design smart contracts for ethereum,” in International conference on financial
cryptography and data security (Springer), 446–465.

Nakamoto, S. (2008). Re: bitcoin p2p e-cash paper. Cryptogr. Mail. List.

Nam, W., and Kil, H. (2022). Formal verification of blockchain smart contracts via atl
model checking. IEEE Access 10, 8151–8162. doi:10.1109/access.2022.3143145

Nehai, Z., Piriou, P.-Y., and Daumas, F. (2018). “Model-checking of smart contracts,”
in 2018 IEEE international conference on iThings &GreenCom&CPSCom& SmartData
(IEEE), 980–987.

Osterland, T., and Rose, T. (2020). Model checking smart contracts for ethereum.
Pervasive Mob. Comput. 63, 101129. doi:10.1016/j.pmcj.2020.101129

Park,W. S., Lee, H., and Choi, J.-Y. (2022). “Formal modeling of smart contract-based
trading system,” in 2022 24th international conference on advanced communication
technology (ICACT) (IEEE), 48–52.

Pnueli, A. (1977). “The temporal logic of programs,” in 18th annual symposium on
foundations of computer science (sfcs 1977) (IEEE), 46–57.

Ryder, B. (1979). “Constructing the call graph of a program,” in IEEE transactions on
software engineering SE-5, 216–226. doi:10.1109/TSE.1979.234183

Surya, the sun god: A solidity inspector (2018). Surya, the sun god: A solidity
inspector. Available at: https://github.com/ConsenSys/surya.

The callgraphjs tool (2014). The callgraphjs tool. Available at: https://github.com/
asgerf/callgraphjs.dart.

The code2flow tool (2021). The code2flow tool. Available at: https://github.com/
scottrogowski/code2flow.

The javascript explorer callgraph tool (2018). The javascript explorer callgraph tool.
Available at: https://github.com/shrivastava-apurva/Javascript-Explorer—Callgraph.

Tolmach, P., Li, Y., Lin, S.-W., Liu, Y., and Li, Z. (2021). A survey of smart contract
formal specification and verification. ACM Comput. Surv. (CSUR) 54, 1–38. doi:10.
1145/3464421

Zhang, Q., Lu, Y., and Sun, M. (2020). “Modeling and verification of the nervos ckb
block synchronization protocol in uppaal,” in International conference on blockchain
and trustworthy systems (Springer), 3–17.

Frontiers in Blockchain frontiersin.org17

Alam et al. 10.3389/fbloc.2023.1248962

https://doi.org/10.1016/j.jnca.2019.06.018
https://doi.org/10.1016/j.jnca.2019.06.018
https://doi.org/10.3389/fbloc.2019.00008
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1145/3471140
https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/978-3-642-18638-7_6
https://github.com/jquery/esprima
https://www.hyperledger.org/
https://www.hyperledger.org/
https://doi.org/10.1016/j.jnca.2020.102857
https://doi.org/10.1109/ICIC48496.2019.8966700
https://doi.org/10.1109/ICIC48496.2019.8966700
https://doi.org/10.3390/systems10010019
https://doi.org/10.3390/systems10010019
https://doi.org/10.1109/access.2022.3143145
https://doi.org/10.1016/j.pmcj.2020.101129
https://doi.org/10.1109/TSE.1979.234183
https://github.com/ConsenSys/surya
https://github.com/asgerf/callgraphjs.dart
https://github.com/asgerf/callgraphjs.dart
https://github.com/scottrogowski/code2flow
https://github.com/scottrogowski/code2flow
https://github.com/shrivastava-apurva/Javascript-Explorer�Callgraph
https://github.com/shrivastava-apurva/Javascript-Explorer�Callgraph
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3464421
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1248962

	Formal verification of the pub-sub blockchain interoperability protocol using stochastic timed automata
	1 Introduction
	2 Related work
	3 Timed automata and stochastic timed automata
	3.1 Property verification using UPPAAL-SMC

	4 Publisher–subscriber-based blockchain interoperability protocol
	5 Proposed methodology
	5.1 Formalizing chaincode
	5.2 Chaincode analysis
	5.3 Modeling of the pub-sub interoperability protocol
	5.3.1 Publisher
	5.3.2 Subscriber
	5.3.3 Broker connector
	5.3.4 Broker topic

	6 Proof of concept
	7 Experimental evaluation
	7.1 Performance analysis of the Chaincode Analyzer
	7.2 Properties verification results using UPPAAL-SMC

	8 Threats to validity
	9 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

