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These days, there is a lot of demand for cryptocurrencies, and investors are
essentially investing in them. The fact that there are already over
6,000 cryptocurrencies in use worldwide because of this, investors with
regular incomes put money into promising cryptocurrencies that have low
market values. Accurate pricing forecasting is necessary to build profitable
trading strategies because of the unique characteristics and volatility of
cryptocurrencies. For consistent forecasting accuracy in an unknown price
range, a variation point detection technique is employed. Due to its
bidirectional nature, a Bi-LSTM appropriate for recording long-term
dependencies in data that is sequential. Accurate forecasting in the
cryptocurrency space depends on identifying these connections, since
values are subject to change over time due to a variety of causes. In this
work, we employ four deep learning-based models that are LSTM, FB-
Prophet, LSTM-GRU and Bidirectional-LSTM(Bi-LSTM) and these four
models are compared with Silverkite. Silverkite is the main algorithm of the
Python library Graykite by LinkedIn. Using historical bitcoin data from 2012 to
2021, we utilized to analyse the models’ mean absolute error (MAE) and root
mean square error (RMSE). The Bi-LSTM model performs better than others,
with a mean absolute error (MAE) of 0.633 and a root mean square error
(RMSE) of 0.815. The conclusion has significant ramifications for bitcoin
investors and industry experts.
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1 Introduction

A digital kind of money known as cryptocurrency holds all transactions
electronically. It is a form of currency that does not literally exist as hard notes. For
many years, investing in cryptocurrencies has been popular. One of the most well-
known and valued cryptocurrencies is bitcoin. Many academics have used a variety of
analytical and theoretical methodologies to examine several factors that influence the
cost of Bitcoin. The trend that underlies with its swings, since they view it as a financial
asset that can be dealt with on multiple cryptocurrency exchanges, much like the stock
market (Rosenfeld et al., 2018; Putra et al., 2021). In particular, recent advances in
machine learning have led to the presentation of several models based on deep learning
that predict bitcoin prices. Over 40 exchanges globally support over 30 different
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currencies, but bitcoin is the highest value cryptocurrency
globally. Due to its relatively short history and high volatility
compared to flat currencies, Bitcoin presents a fresh potential for
price prediction. It also has an open character, which sets it apart
from traditional flat currencies, which lack comprehensive data
on cash transactions and the total quantity of money in existence.
An interesting contrast is provided by Bitcoin. Traditional time
series prediction methods that rely on linear assumptions, such as
Holt-Winters exponential smoothing models, need data that can
be divided into components related to trends, seasons, and noise
(Guo et al., 2019). These tactics do not work well for this purpose
because of the Bitcoin market’s excessive swings and lack of
seasonality. Deep learning offers an interesting technical
solution, given the complexity of the problem and its track
record of success in related domains.

Numerous studies on the forecasting of bitcoin prices have
been conducted recently. The price and value of Bitcoin are
influenced by a number of variables. Digitalization has swept
over many industries due to the development of technology in
numerous fields, which is advantageous for both customers and
businesses. Over time, the use of cryptocurrencies has increased
as one aspect of the financial sector’s digitization. Since it is not
meticulous by central bank or other authority, Bitcoin is the first
decentralised digital currency. It was created in 2009, but it just
became popular in 2017. Bitcoin is used all around the world for
both investing and digital payments.

Bitcoin price prediction is a highly challenging and speculative
task (Tripathy et al., 2023a). The market for cryptocurrencies is
notorious for its high volatility, which is subject to a variety of

influences, including as macroeconomic developments, shifts in
regulations, market mood, and more. While various methods and
models can be used for Bitcoin price prediction, it is important to
understand that no method can provide completely accurate or
guaranteed predictions. This approach involves examining the
underlying factors that could influence Bitcoin’s price (Lamothe-
Fernández et al., 2020). This may include factors like adoption rates,
transaction volumes, regulatory changes, and macroeconomic

FIGURE 1
Greykite’s principal forecasting algorithm’s architecture diagram: Silverkite.

FIGURE 2
Correlation heatmap of Bitcoin data.
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events. While fundamental analysis is used for traditional financial
assets, its application to cryptocurrencies can be more challenging
due to the relatively young and evolving nature of the market
(Ji et al., 2019). Predicting Bitcoin prices is a complex task, and

deep learning models have shown promise in this area (McNally
et al., 2018). However, creating an inter-reliant deep learning model
for forecasting the price of bitcoin involves building a system that
leverages multiple neural network architectures or models that work
together. Figure 1 depicts Silverkite’s design and the main
forecasting algorithm in the Greykite library.

Silverkite is excellent when we need amodel that can be interpreted
to manage complicated time series data with ease. Each model may
handle time series data in a different way (Livieris et al., 2020). For
instance, FB-Prophet excels at capturing seasonality, whereas LSTM
and its variants are good at capturing long-term dependencies.
Combining the best aspects of both models LSTM and GRU is the
aim of LSTM-GRU. Performancemay be improved by using this hybrid
technique as opposed to solely LSTM or GRU. Silverkite’s interpretive
quality makes it a wise option. LSTM and other deep learning models
are powerful, but they are often hard to examine. A balance is struck by
Silverkite’s transparency in model decisions (Guindy, 2021). Analysing
patterns and trends in a dataset gathered over time is known as time
series analysis. It is essential for comprehending and forecasting the
changes of cryptocurrency values since they are intrinsically time-
dependent (Tripathy et al., 2023b). The Silverkite algorithm’s goal is
time series forecasting. It is well known for being flexible and able to
handle different kinds of time series data.

2 Related work

Deep learning systems have demonstrated promise in the difficult
task of Bitcoin value prediction. However, developing a system that
makes use of many neural network designs ormodels that collaborate is
essential to advance an interdependent deep learning model to forecast
bitcoin prices. Similar to any other investment, it is impossible to
accurately predict Bitcoin’s future (Putra et al., 2021). A number of
variables can have an impact on the future of bitcoin, which is a highly
uncertain and volatile digital asset. Research related to Bitcoin and
cryptocurrencies covers a wide range of topics, including economics,
computer science, finance, law, and more.

According to (Lamothe-Fernández et al., 2020) An evaluation of
deep learning forecasting techniques led to the development of a
novel prediction model with reliable estimation capabilities. The use
of explanatory factors for various variables connected to the creation
of the price of bitcoin was made feasible by the use of a sample of
29 starting factors. Deep recurrent convolutional neural network,
among other procedures, have been applied to the trial under
research in order to generate a hearty model that has
demonstrated the consequence of the costs of transactions and
struggle with Bitcoin pricing, among other factors. Their verdicts
have a significant latent influence on how well asset pricing accounts
for the risks associated with digital currencies, offering instruments
that contribute to market stability for cryptocurrencies (Ji et al.,
2019). examine and contrast deep learning methods for prediction of
Bitcoin values, including deep neural networks (DNN).

According to experimental outcomes, LSTM-based models
performed marginally better for price regression, whereas pricing
categorization (ups and downs) and DNN based models fared
considerably better. Furthermore, classification models fared
better for algorithmic trading than regression approaches,
according to a basic profitability study. All things considered; the

TABLE 1 Results of dickey-fuller test.

Different parameters Values

Test Statistic −1.257922

p-value 0.648197

#Lags Used 29.000000

Number of Observations 3151.000000

Critical Value (1%) −3.432427

Critical Value (5%) −2.862458

Critical Value (10%) −2.567259

Data type float64

FIGURE 3
ACF for weighted price.

FIGURE 4
PACF for Bitcoin weighted price.
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performance of deep learning models was comparable. The degree to
which the price trend of bitcoin in US dollars may be predicted is
determined by (McNally et al., 2018). The source of pricing data is
the Bitcoin pricing index. Various degrees of success in achieving the
goal can be achieved by using a LSTM network and a Bayesian-
optimized recurrent neural network (RNN). The top-performing
model is the LSTM, with 52% accuracy in classification and an
RMSE of 8%. Unlike deep learning models, the widely used ARIMA

time series prediction framework is utilised. The poor ARIMA
forecast is outperformed by the non-stationary deep learning
techniques, as expected. When both GPU and CPU based deep
learning methods were benchmarked, the GPU modelling time beat
the CPU equivalent by 67.7% (Livieris et al., 2020). claim that the key
contribution is the integration of deep learning models for hourly
cryptocurrency price prediction with three of the most popular
ensemble training techniques: collective averaging, snaring, and
amassing. The suggested ensemble models were tested using
contemporary deep learning models that included convolutional
layers, LSTM and bi-directional LSTM as component learners.
Regression analysis was used to assess the ensemble models’
capacity to conjecture the price of cryptocurrencies aimed at the
upcoming hour and predict if the cost would increase or decrease
from its existing level. Moreover, hysteresis in the errors is used to
assess each forecasting model’s accuracy and dependability.

In this study, we use four deep learning models: LSTM, FB-
Prophet, Bi-LSTM, and an ensemble model LSTM-GRU and

FIGURE 5
Lag plots.

FIGURE 6
Overall workflow diagram.

FIGURE 7
LSTM architecture.
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compare them to the Silverkite algorithm. The primary algorithm
used by LinkedIn’s Graykite Python module is called Silverkite.
Using past Bitcoin information from 2012 to 2021, we evaluated the
models’ mean absolute error (MAE) and root mean square
error (RMSE).

3 Methodology

3.1 Data collection

This work’s primary goal is to use deep learning to predict
Bitcoin values over time. Time-series prediction is the process of

expecting future behaviour through the examination of time-series
data (Liu, 2019). The first thing we do is to collect the entire “Bitcoin
Historical Data” dataset from Kaggle. For Bitcoin exchanges that
facilitate trading, historical market data is presented here every
minute. A correlation matrix of Bitcoin data collected from January
2012 to March 2021 is displayed in Figure 2. Unix time is used for
timestamps. The data columns of timestamps with no transactions
or activity include NaNs. Missing timestamps may be the result of an
unexpected technical problem with data reporting or collection, the
exchange (or its API) not existing, or the exchange (or its API) not
being available (Tripathy et al., 2022; Xu and Tang, 2021).
Prioritizing the resolution of missing values is followed by the
identification and handling of outliers that may introduce

FIGURE 8
Bi-LSTM architecture.

FIGURE 9
Library supports the forecast workflow at every stage.
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distortion into the forecasting model. We adjust the frequency of the
dataset. Transforms were applied to increase data interpretability or
stabilize variance.

Achieving steady accurate forecasting in an uncertain price
range requires the use of the variation point detection technique,
which aids in the model’s adaptation to changes and fluctuations in
the time series data. Every time a variation point is found, the
predictive model has the ability to dynamically adjust its parameters
or design to take into account the observed changes.

It covers the period from January 2012 to March 2021 and
provides minute-by-minute apprises of OHLC (Open, High, Low,
Close), volume in Bitcoin and the designated money, and the
weighted price of Bitcoin. Both the opening and closing prices
for a given day are shown in the Open and Close columns. The
price for that day at its peak and lowest points are listed in the high
and low columns, respectively. The volume column shows the total
amount that was exchanged on a certain day. Traders utilise a

trading benchmark called the “weighted price” to calculate the
average weighted price, based on price and volume, at which an
obligation has traded throughout the day. It is important since it
informs traders about the value and movement of a security. For
time series forecasting tasks, it is important to take into account
several elements like the type of data, the particular problem being
solved, and the available computational power when matching with
deep learningmodels. Furthermore, the standard of the training data
and hyperparameter adjustment can affect the model’s performance.

3.2 Exploratory data analysis

3.2.1 Augmented dickey-fuller (ADF) test
An approach to statistics known as the Augmented Dickey-

Fuller (ADF) test is used to assess a time series’ stability. Stationarity
is a key concept in time series analysis since most time series models

FIGURE 10
LSTM forecast BTC price.

FIGURE 11
FB-Prophet forecast BTC price.
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and statistical techniques depend on the belief that the data is fixed.
Time series data that has been fixed maintains statistical constants
across time, such as its mean and variance. (Dahlberg, 2019). To
determine if a unit root exists in a time series, the ADF test is
frequently employed. A stochastic tendency in the time series,
indicating that it is non-stationary. The ADF test helps
determine whether differencing the series (i.e., computing the
difference between consecutive observations) can make it
motionless. The ADF trial involves regressing the time series on
its lagged values and possibly on the differenced series. The test
statistic is then computed, and its p-value is compared to the chosen
significance level (Yousuf Javed et al., 2019). The ADF test uses
various statistical software packages like Python (with libraries like
StatsModels), R, or specialised econometrics software. Table 1 shows
the Dickey-Fuller test result.

i. When the p-value is less than alpha, we cast off the possibility
of a null and conclude that the data set is fixed.

ii. The series is non-stationary if the p-value is larger than or
equal to alpha, which means that the null hypothesis cannot
be rejected.

The null hypothesis in this instance is the only thing that differs
from KPSS. The reality of a unit root, which recommends that the
series is non-stationary, is the null premise of the test. Consequently,
ADF claims that the series is stable. We deduced that the series is not
motionless since KPSS asserts that it is not motionless (Brühl, 2020).

3.2.2 Auto correlation function (ACF)
A statistical technique called the Auto Correlation Function

(ACF) is cast-off to calculate rapport among a time series and its

FIGURE 12
Silverkite forecast BTC price.

FIGURE 13
LSTM-GRU forecast BTC price.
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own lagged version (Guesmi et al., 2019). Understanding patterns
and temporal dependence in time series requires an
understanding of this fundamental concept in time series
evaluation. There is a correlation between the price at that lag
and the present price if there is a positive autocorrelation at that
particular lag. Trend identification may be aided by this
information. For instance, a positive autocorrelation with a lag
of one indicates that the price of the previous day and the present
price are correlated. ACF is commonly rummage-sale in fields
such as economics, finance, environmental science, and signal
processing. Auto Correlation Function (ACF) is a beneficial
implement for exploring temporal dependencies, identifying
patterns, and understanding the behaviour of time series data
(Miseviciute, 2018). The ACF for the Bitcoin weighted price is
given in Figure 3. Determining noteworthy autocorrelation
values and trends by analysing the ACF plot. Plot points that
have peaks or troughs can provide information about the time
series data’s underlying structure. Seasonality is a common
occurrence in cryptocurrency markets, and it can be attributed
to several factors like as trading patterns and market sentiment
(Tripathy et al., 2022). ACF can be used to find patterns that
reoccur at particular lags, suggesting that the data may
be seasonal.

3.2.3 Partial auto correlation function (PACF)
In order to quantify the correlation among a time series and a

lagged version of themselves while accounting for the impact of
intermediate delays, time series analysts employ the Partial Auto
Correlation Function (PACF), a statistical technique (Wu, 2021). In
simple terms, PACF eliminates the impact of shorter delays by
quantifying the direct association between data pieces at various
time lags. When choosing the right variables for time series
forecasting models, it can be helpful to understand the structure
of the PACF. For example, adding certain lags to the model may
enhance its prediction ability if there are notable partial
autocorrelations at those precise lags. It is a crucial concept in
understanding the temporal dependence and patterns within a time
series, just like the Auto Correlation Function (ACF) (Mavridou
et al., 2019). The PACF for the Bitcoin weighted price is given
in Figure 4.

3.2.4 Visualizing using lag plots
Lag plots are a type of graphical technique used in data analysis

and time series analysis to explore the autocorrelation or lagged
relationships within a dataset (Zhang et al., 2021). They are
particularly useful for understanding the temporal dependence or
patterns in sequential data. Lagged plots are used to see the
autocorrelation. They are crucial when utilising smoothing
functions to modify the trend and stationarity (Lahmiri, 2021).
The lag plot helps us understand the information more clearly. The
lag plots of our dataset, which come with various time intervals,
including 1-min, 1-h, daily, weekly, and 1-month are shown
in Figure 5.

3.3 Proposed methodology

The LSTM, FB-Prophet, Bi-LSTM, LSTM-GRU, and Silverkite
algorithm models were some of the well-known models we

FIGURE 14
Bi-LSTM forecast BTC price.

TABLE 2 Error score of each model.

Model name MAE MSE RMSE

LSTM 3.228 32.148 5.670

FB-Prophet 1.804 6.620 2.573

Silverkite 1.757 6.115 2.473

LSTM-GRU 0.658 0.681 0.917

Bi-LSTM 0.633 0.664 0.815
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employed. The Bi-LSTM outperformed others since the data were
spatial-temporal and with other metrics explained in Section 4.

Data pre-processing is a critical stage in the pipeline for deep
learning and data analysis. It entails organising, sanitising, and
formatting raw data into a format that can be used for analysis or
deep learningmodel training. The specific pre-processing steps we need
to perform depend on the nature of our data. We present a framework
for improved analysis. The framework is given in Figure 6.

3.4 Model building

3.4.1 LSTM
LSTMs are designed to overcome some of the confines of traditional

RNNs when it comes to capturing and handling long-term
dependencies in sequential data (Aljinović et al., 2021). The
vanishing gradient problem limits RNNs’ efficacy in tasks involving
dependencies over time by making it difficult for them to learn and
remember information across lengthy sequences. Tasks requiring time
series data, natural language processing, and additional data sequences
with interdependent aspects are particularly well-suited for LSTMs.
Unlike traditional RNNs, LSTMs can effectively handle the vanishing
gradient problem, which often hinders the training of deep networks.
LSTMs employ the hyperbolic tangent activation function (tanh) to
process the values that flow through the memory cell (Rahmani Cherati
et al., 2021). This function ensures that values are squashed
between −1 and 1. An LSTM unit receives three vectors, or three
lists of numbers, as input. At the previous instant (instant t-1), the
LSTM produced two vectors that originate from the LSTM itself. Both
the cell state (C) and the hidden state (H) are used in this. The third
vector has an external source (Kądziołka, 2021). This is the vector X
(also known as the input vector) that was sent to the LSTMatmoment t.
We are also using bidirectional LSTM in this work. An LSTM layer is
wrapped in a bidirectional manner; we can choose the number of units
and if we want the outputs at each time step. Figure 7 shows the simple
LSTM architecture with cell state and hidden state. Eqs 1–5 show the
simple LSTM model formulations.

Input Gate–Selects the input value that will be cast-off to change
the memory.

it � σ Wi. ht−1, xt[ ] + bi( ) (1)
Ct � tanh WC ht−1, xt[ ] + bC( ) (2)

Where: σ = sigmoid activation function.
ht-1 = previous state.
Xt = input state.
Tanh = activation layer function.
Ct-1, Ct = cell state.
WC, Wi = weight matrix of input associated with hidden state
bc, bi = biases.
Forget gate–Decides which material should be removed from

the memory.

ft � σ (3)
Output gate–The output is determined by the input andmemory

of the block.

ot � σ Wo. ht−1, xt[ ] + bo( ) (4)
ht � ot* tanh Ct( ) (5)

3.4.2 Bidirectional LSTM
In this study, we employ the Bi-LSTM model, which gathers

information ranging from the past to the future by processing the
input sequence in parallel from the beginning to the end. Future data will
trigger adjustments to cell states and concealed states. The outputs from
the forward and backward passes are frequently concatenated or
combined to generate the Bi-LSTM layer’s final output. In the LSTM
model and the conventional recurrent neural network model,
information propagation is restricted to forward propagation, which
means that the state at time t depends only on the information that
existed before time t (Borst et al., 2018). To ensure that every instance has
context information, Bidirectional Recurrent Neural Network (BiRNN)
models and Long Short-Term Memory (LSTM) units are employed to
record context. Figure 8 shows the basic bidirectional LSTM model

FIGURE 15
Histogram plot of the MAE, MSE, and RMSE score.
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architecture. Eqs 6–11 give the Bi-LSTM forward simplification, while
Eqs 12–17 give the Bi-LSTM backward simplification.

• Forward LSTM equations

ift � σ Wf
iixt + bfii +Wf

hih
f
t−1 + bfhi( ) (6)

ff
t � σ Wf

ifxt + bfif +Wf
hfh

f
t−1 + bfhf( ) (7)

oft � σ Wf
ioxt + bfio +Wf

hoh
f
t−1 + bfho( ) (8)

c~ft � tanh Wf
icxt + bfic +Wf

hch
f
t−1 + bfhc( ) (9)

cft � ff
t ʘ cft−1 + ift ʘc

~f
t (10)

hft � oft ʘ tanh cft( ) (11)

• Backward LSTM equations

ibt � σ Wb
iixt + bbii +Wb

hih
b
t+1 + bbhi( ) (12)

fb
t � σ Wb

ifxt + bbii +Wb
hih

b
t+1 + bbhi( ) (13)

obt � σ Wb
ioxt + bbio +Wb

hoh
b
t+1 + bbho( ) (14)

c~bt � tanh Wb
icxt + bbic +Wb

hch
b
t+1 + bbhc( ) (15)

cbt � fb
t ʘ cbt+1 + ibtʘc

~b
t (16)

hbt � obt ʘ tanh cbt( ) (17)

3.4.3 FB-prophet
Prophet was developed by the FacebookCoreData Science team, an

open-source forecasting tool. It is specifically made for commercial and
economic applications, with the ability to deal with time series data and
produce precise forecasts. Prophet is renowned for being user-friendly
and for its capacity to simulate holidays, special events, and seasonality
in time series data. Time series data is broken down by Prophet into
three primary categories: trend, fluctuations in demand, and holidays.
The trends component shows how the data has grown or decreased over
time, while the seasonality component accounts for recurring patterns.
Holidays are included as special events that can affect the data (Kyriazis,
2020). Prophet is particularly popular in fields like retail, finance, and
supply chain management, where accurate forecasting of time series
data is essential for decision-making. It simplifies the process of time
series forecasting and can be a valuable tool for analysts and data
scientists working with historical data to make future predictions
(Akyildirim et al., 2021). Eqs 18–20 stretch mathematical form of
FB-prophet model. The additive regressive model on which FB
Prophet’s prediction is built may be written as:

y t( ) � g t( ) + h t( ) + s t( ) + et (18)

In (1), the error term is et, the trend factor is g(t), the holiday
module is h(t), the seasonality component is s(t), and the additive
regressive model is y(t). There are two techniques to model the
trend factor g(t).

Logistic growth model: This model shows growth in multiple
stages. In the early stages, development is roughly exponential;
however, once the capacity is reached, it shifts to linear growth.
The model may be written down as (2).

f x( ) � L

1 + e−k x−x0( ) (19)

In this computational framework, L stands for the model’s
maximum value, k for its growth rate, and x0 for its value at the
sigmoid point.

Piece-wise linear model: This revised version of the linear model
has separate linear relationships for the various ranges of x. The
structure of the model can be expressed.

y � β0 + β1 x + β2 x − c( ) + ε (20)

The breakpoint in the above model is x = c; (x-c) connects the
two pieces of information; (x-c)+ is the interaction term, which is
denoted by (xi1 − c)*xi2

3.4.4 LSTM-GRU
Ensemble models enhance overall performance by combining the

predictions of several independent models and we can create an
ensemble model using both LSTM and GRU networks. If both the
LSTMandGRUmodelsmake similar errors, the ensemblemay not be as
effective. Experimentation and fine-tuning are essential to getting the
best results with an ensemble of LSTM and GRU models (Wang et al.,
2016). Ensemble models can often provide better performance than
individual models because they leverage the strengths of eachmodel and
reduce their weaknesses. LSTM and GRU models can have different
strengths in capturing patterns in sequential data, and combining them
through an ensemble can lead to improved predictive performance. If
both the LSTM andGRUmodelsmake similar errors, the ensemblemay
not be as effective. Experimentation and fine-tuning are essential to
getting the best results with an ensemble of LSTM and GRU models.

The Cell Input state ~ Ct and the Cell Output state is Ct, and the
LSTM is made up of three gates: ig, fg , and og. ug and rg are the two
gates that make up GRU. ~ Ct, ~ ht, and ht are the LSTM-GRU
model’s hidden layers. The weights of the LSTMarewi,wf,wo, andwc.
The weights in GRU are wu, wu, wo, and wCt. The LSTM-GRU model
has biases bi, bf, bo, and bc. The hyperbolic tangent function is referred
to as tanh. The proportion of the exponential cosine and sine functions
is described by means of the tanh function (Keogh et al., 2001). Two
vectors’ scalar products are denoted by the symbol °. The involvement
network part multiplies xt by its own weight (wi) before adding the bias
(bi), and ht−1 is increased by its own weight (wi) as well. A ht−1 stores
the data from earlier units, t-1. It transmits to the sigmoid function,
which refreshes the cell’s state and translates values between 0 and 1.
The information and equations are obtained andmodified from sources
in the literature [22, 23]. Eqs 21–25 give the LSTM-GRU ensemble
form, while Eqs 26–30 show the structural regression analysis.

ig � σ wi ht−1, xt[ ] + bt( ) (21)
fg � σ wf ht−1, xt[ ] + bf( ) (22)
og � σ wo ht−1, xt[ ] + bo( ) (23)

Equations (21) and (22) explain how to use the sigmoid activation
function to get a value between 0 and 1. Information retention and
forgetting are controlled by the two variables ~ Ct and Ct. The tanh
function ismultiplied by~ Ct to determinewhich rate ismost important.

~ Ct � tanh wc ht−1, xt[ ] + bc( ) (24)
Ct� ft *Ct−1 + it*~ Ct (25)

The information provided are modified after sources like.
Equations (23) and (24) describe how Ct is sent as the first
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layer’s input of the GRU (ug), and how ug and ht−1 are multiplied to
create weight before being sent to the reset gate (rg).

ug � σ wu Ct[ ] + wu ht−1[ ]( ) (26)
rg � σ wr Ct[ ] + wr ht−1[ ]( ) (27)

Information preservation is decided by ht. The output layer is
then given the stayed information. The tanh firing function, which
predicts the speed of approaching traffic at a specific time and place,
is located in the same layer. Equations (25) and (26) also cover this
topic. In this regression problem, we used mean squared as the
reduction function and Adam as the optimizer.

~ ht � tanh wCt + rg°wCt ht−1[ ]( ) (28)
ht � ug° ht−1 + 1 − ug( )° ~ ht2 (29)

ht � og* tanh ht( ) (30)

3.4.5 Silverkite
In order to make prediction for data scientists simpler, LinkedIn

publishes the time-series forecasting library Greykite. Silverkite, an
automated forecasting method, is the main forecasting algorithm
utilised in this package. GrekKite was created by LinkedIn to assist its
employees in making wise decisions based on time-series forecasting
models. We provide a brief summary of the Silverkite model’s
mathematical formulation in this section, assume that Y (t), where t
represents time, is a real-valued time series with (t = 0, 1, ...). We use F (t)
to represent the information that is currently accessible. F (t), for instance,
can include other variables are Y (t-1), Y (t-2), X (t), and X (t- 1). The
latter is sometimes called a delayed regressor. Y (t-i) signifies lags of Y; X
(t) is the result of a regressor observed at time t, andX (t- 1) is the result of
the similar regressor at time t-1. Eqs 31–35 give the Silverkite model
conditional mean simplifications. The model of conditional mean is,

E Y t( )⃓F t( )[ ] ∽ G t( ) + S t( ) +H t( ) + A t( ) + R t( ) + I t( ) (31)
where G, S, H, A, R, and I are covariate functions in F (t). These
variables or their interactions are combined linearly to create them.
The overall growth term, G (t), may include the trend changepoints
t1, ., tk, and as

G t( ) � α0f t( ) +∑k

i�1αi 1 t>{ ti} f t( ) − f ti( )( ) (32)

where αi’s are parameters that need to be approximated and f (t) is
any progress function. Consider that the function of t; G (t), is
continuous and piecewise smooth. P is the set that includes all

seasonal periods, and S(t) � ∑
pε

PSp (t) comprises all Fourier series

foundations for the various seasonality gears (weekly, annual, etc.).
The equation for a single seasonality component Sp (t) is:

Sp t( ) � ∑M

m�1 αm sin 2mπd t( )( )bm cos 2mπd t( )( )[ ] (33)
where M is the series order αm and bm are the Fourier series
coefficients that the model will attempt to estimate. Where M is
the series order αm, bm are the Fourier series coefficients that the
model is supposed to estimate. The relevant time t within a season is
represented by d (t) [0, 1]. For instance, diurnal seasonality has d (t)
equal to the time of day at time t. Additionally, Silverkite predicts
these changes as follows for a list of time points t1, ... , tK If
seasonality is present is anticipated in moreover form or amplitude.

Sp t; am, bm{ }( ) +∑k

k�11 t> tk{ }Sp t; amk, bmk{ }( ) (34)

where Sp is the seasonality term with coefficients amk and bmk and
Scp (t) is a single seasonality component. This approach permits the
Fourier sequence factors to adjust most frequent seasonal trends,
much like trend changepoints. Categorical variables, such the time
of day, can also be used tomodel Sp (t). With Silverkite, the user may
modify the duration of days earlier to and following the affair when
the effect is not insignificant. Each period is simulated with its own
indicators and outcomes. These include indicators with month,
quarter, or year borders. A(t) models the remaining time
dependency by include all-time series data that has been known
as of time t.

It might be lagged data, such as Y (t-1), ... , Y (t-r) for some order
r, or an accumulation of wrapped annotations, like AVG (Y (t); 1, 2,
3) = ∑3

i�1
Y (t−i)

3 . Stingy models that capture long-range temporal
addictions can be created by aggregation.

Other time series with the identical frequency as Y (t) that might
usefully be used to forecast Y (t) are included in R(t). These time
series are regressors, indicated by the symbols X (t) = X1 (t), ... , XP

(t). In the case of p regressors, t = 0, 1, ... Let R(t) = X̂ (t) if
predictions X̂ (t) of X (t) are available.

Assume that the objective series is Y (t) and the projected series
is Ŷ (t). The residual sequence is defined as r (t) = Y (t)-Ŷ (t).
Assume that categorical factors F1, ... , FP that are known in the
future, such as day of the week, affect volatility. As long as the sample
size for that amalgamation, represented by n (F1, ., FP), is
sufficiently enough, for example, n (F1, ... , FP) > N, N = 20, one
may fit a parametric or nonparametric circulation to the
combination using the empirical distribution (R| F1, ... , FP).

The data can be used to determine an acceptable N (for instance,
through cross-validation by examining the range of the residues).
The prophecy interlude with close 1-α is then formed by estimating
the quantiles Q (F1, ., FP) from this distribution:

Ŷ t( ) + Q F1 , . . . , FP( ) α /

2( ), Ŷ t( ) + Q F1 , . . . , FP( ) 1 − α /

2( )( )
(35)

When this presumption is broken, Silverkite provides the option
of building the prediction intervals using empirical quantiles. Due to
Silverkite’s adaptability, more volatility models may be included. For
instance, numerous characteristics, including continuous ones,
might be conditional using a regression-based volatility model.

3.5 How Silverkite fulfils the conditions

The time series parameters described in Section 2 are handled by
Silverkite. The Fourier series foundation function S (t) effectively
captures strong seasonality. For the purpose of capturing intricate
seasonality patterns, a higher-order M or categorical variable (such
as the hour of day) can be utilised. By automatically identifying
seasonality and trend changepoints, growth and seasonality changes
across time are managed. Another advantage of autoregression,
which is particularly helpful for short-term projections, is quick
pattern alteration. We handle significant volatility during holidays
and month/quarter borders by letting the variation in the model
condition on such events and explicitly including their impacts in
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the meanmodel. Silverkite provides interactions between periodicity
and holiday indicators in order to capture variations in seasonality
throughout holidays. Greykite’s holiday database may be used to
quickly find the dates of floating holidays. By eliminating known
discrepancies from the training set, local abnormalities are managed.
Regressors are used to account for the impact of outside influences;
their anticipated values may originate from Silverkite or another
model. This makes it possible to contrast forecasting possibilities. As
a result, Silverkite’s design intuitively captures certain time series
properties that are conducive to modelling and understanding.

4 Discussion

In general, we separate the Bitcoin time series data in to training
and validation intervals in order to assess the forecasting model’s
accuracy. For validation, we selected a patch of data spanning from
July 2020 to March 2021, which is 10% of the overall data set. It is
known as fixed partitioning. During the training phase, we will train
our model, and during the validation phase, we will assess it. This is
the area where we conduct experiments to determine the best
training architecture. Continue adjusting it and other
hyperparameters until we achieve the necessary performance, as
determined by the validation set (Kim et al., 2018). Following that,
one may often use either the validation and training data to retrain
the system. Next, assess our model in the test (or prediction) phase
to see whether it performs similarly. If it succeeds, we may try the
new approach of using the test data to retrain again. The test data is
the set of data that most closely resembles the current situation. If
our model was not trained with similar data as well, it might not
perform as well (Shokoohi-Yekta et al., 2017).

Figure 9 displays the library that supports the forecast procedure
at every stage.We use a sort of recurrent neural network architecture
called Bidirectional LSTM (BiLSTM), which is especially well-suited
for sequence processing applications. It is an extension of the
traditional LSTM (Long Short-Term Memory) network. In a
standard LSTM, information flows in one direction through the
network, from the input sequence’s beginning to its end. On the
other hand, Bi-LSTM analyses the order of inputs in two different
ways: forward, from the start of the sequence to the end, and
backward, from the conclusion to the beginning. The network is
better able to comprehend sequential input because of its
bidirectional processing, which enables it to record relationships
across the past as well as the future setting during each time step.

In this part, results and evaluation on the test dataset are shown
graphically. The months and the overall price rate are represented by
the x and y-axes in Figure 10, which shows the LSTM predicted
Bitcoin price. Figures 11, 12 shows the FB-Prophet and Silverkite
predicted BTC price, respectively. Figures 13, 14 shows the LSTM-
GRU and Bidirectional-LSTM predicted BTC price. The test data for
this collection was collected between July 2020 and March 2021.
Dealing with time-series data can show a lot when it is visualised.
Markers can be placed on the plot to help emphasise particular
observations or events in the time series. Traders are always looking
for ways to profit from opportunities since the market for digital
currencies is always open and cryptocurrencies are susceptible to
huge price swings. Trading professionals can select when to buy or
sell by visualising the weighted price.

The majority of LinkedIn’s projections up to this point were
corporal, ad hoc, and intuition-based. Customers across all business
sectors and engineering are already embracing algorithmic
forecasting. Customers are aware of the advantages of precision,
scope, and consistency. Our projections help LinkedIn prepare and
respond quickly to new information by saving time and bringing
clarity to the business and infrastructure. This culture change was
made possible by a family of models that are quick, adaptable, and
easy to comprehend, as well as by a modelling framework that makes
self-serve forecasting simple and accurate.

Asset managers and regular investors alike need to forecast the
cost of bitcoin (Sharma, 2018). Because Bitcoin is money, it cannot
be analysed in the same manner as other traditional currencies. In
the case of conventional currencies, key economic theories include
uncovered interest rate parity, parity of buying power, and cash flow
projection models. This is because the digital currency market, such
as Bitcoin, makes it impossible to use some traditional guidelines on
supply and demand. On the other hand, a number of characteristics
of Bitcoin, such as its speedy transactions, diversity, decentralisation,
and the enormous worldwide network of individuals interested in
discussing and expressing important information on digital
currencies, notably Bitcoin, make it advantageous to shareholders
(Tripathy et al., 2024).

5 Result analysis

Right out of the box, the Bi-LSTM model exhibits good
performance on data that is internal as well as external, with
intervals coming from a range of domains. Its adaptable
architecture enables variables, the goal function, and the
volatility model to be fine-tuned. We anticipate that forecasters
will find the free Greykite library to be especially helpful when
dealing with time series that have features, such as time-dependent
expansion and seasonality, holiday impacts, anomalies, and/or
reliance on outward causes, mutual of time series pertaining to
social activity. We rapidly compare our newly proposed strategy
with the results of previous research in the sector. Table 2 confirms
that the RMSE value for the LSTM is 5.670, whereas the principles
for the FB-Prophet, Silverkite, LSTM-GRU and Bidirectional-
LSTM(Bi-LSTM) are 2.573, 2.473, 0.917 and 0.815 respectively.
Overall, the suggested forecasting model Bi-LSTM result is
significant as compared to others. Table 2 we take the error
score of each model. The histogram plot of the MAE, MSE and
RMSE scores is shown in Figure 15.

6 Conclusion

While Bitcoin price prediction models and tools can be
informative, it is important to approach them with caution and
consider them as one of many factors when making financial
decisions in the cryptocurrency market. The intervals originating
from multiple domains and ranging from hourly to monthly,
Bidirectional-LSTM (Bi-LSTM) model works well on internal as
well as external datasets right out of the box. Bidirectional wraps an
LSTM layer, and we can specify the number of units, whether we
want the outputs at each time step (return_sequences = True), and
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other parameters as needed. The objective function and the
volatility model may be adjusted thanks to its adaptive
architecture. We believe that forecasters will find the free
Greykite library to be particularly useful when working with
time series. Bitcoin has experienced significant growth and
gained popularity as a digital asset. Its volatility means that it
can experience rapid price fluctuations. When making investments
in Bitcoin or a different cryptocurrency, investors should think
about their risk tolerance, spread their portfolios, and do
extensive research.

Additionally, consulting with financial advisors and staying
informed about the latest developments in the cryptocurrency
market is advisable for those considering Bitcoin as an
investment. The prediction rate for bitcoin may be increased in
the future by further optimising deep learning models utilising
additional self-adaptive approaches and linking them to the price
and behaviour of crypto assets. Researchers can utilize the forecasted
data to gain deeper insight into the workings of the bitcoin market.
This could lead to a better understanding of the factors behind price
fluctuations. Forecasting results can be used to analyze market
sentiment and public opinion toward specific cryptocurrencies.
Plans for marketing and public relations initiatives could find
this material helpful. Accurate forecasting helps investors and
traders assess and manage the risks associated with bitcoin
transactions. When people forecast price swings, they may make
informed decisions about what to buy, sell, or hold onto.
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