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This study aims to investigate the interoperability of the Bitcoin blockchain by
comparing the US dollar prices of five cryptocurrencies derived from the Bitcoin
price with their corresponding market prices. The deviation rate between the
derived price and the market price, referred to as the arbitrage return rate, is
examined with respect to its adherence to the efficient market hypothesis and
martingale theory principles, specifically regarding mean-reversion and serial
independence. Hurst exponents are estimated using R/S and DFA methods, and
their dynamics are analyzed using a sliding window technique. Our findings
demonstrate that the Bitcoin blockchain effectively facilitates transactions
among the five cryptocurrencies, though evidence suggests a potential
structural change in Bitcoin blockchain interoperability following April 2023.
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1 Introduction

The notion of blockchain interoperability is gaining significant traction both in
academic research and industrial applications. Belchior et al. (2022a) illustrate this
trend by noting a substantial increase in Google Scholar search results, from two in
2015 to 207 in 2020. This surge in research interest underscores the growing industry
demand for interoperability among many existing blockchains. Historically, individual
blockchains were developed to address specific use cases and challenges in isolation,
neglecting cross-chain interoperability (Abebe et al., 2019; Jin et al., 2018). The
adaptability of a blockchain to the requirements of its stakeholders has emerged as a
critical driver behind the proliferation of new and diverse blockchains, resulting in a
heterogeneous blockchain ecosystem and consequent fragmentation of the blockchain
landscape (Belchior et al., 2022b; Pillai et al., 2020; Xu et al., 2017). Presently, practitioners
and researchers are confronted with the challenge of balancing novelty and stability as they
consider blockchain interoperability to enhance the scalability of existing systems and
unlock new use cases (Belchior et al., 2022a).

In financial markets, blockchain technology finds significant application in
cryptocurrencies, where digital tokens are viewed as financial assets with potential
monetary use. Among the vast array of cryptocurrencies tracked across numerous
exchanges, including Bitcoin (BTC), Ethereum (ETH), Tether (USDT), Binance (BNB),
Solana (SOL), and Ripple (XRP), the top six cryptocurrencies dominate the market shares.
As of 18 March 2024, these cryptocurrencies collectively hold 77.1% of the market
capitalization, with Bitcoin alone accounting for 49.4%. Given its substantial market
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share, the Bitcoin blockchain is a prime candidate for hosting other
blockchains. In this context, bitcoin cross-chain interoperability
refers to the capability of cryptocurrencies to be exchanged with
one another over the Bitcoin blockchain.

Wegner (1996) defines interoperability as the ability of multiple
software components to collaborate effectively despite differences in
language, interface, and execution platform. The National
Interoperability Framework Observatory (NIFO) (European
Commission, 2020) identifies seven layers of interoperability:
technical, semantic, organizational, legal, integrated public service
governance, and interoperability governance. Various factors
influencing interoperability are categorized within each layer
(Campmas et al., 2022). While current efforts primarily focus on
the technical layer, we concentrate on semantic-level
interoperability. For example, facilitating a transaction from
Ethereum to a Ripple user involves at least two blockchains: the
source blockchain, Ethereum, and the target blockchain, Ripple.

The process of transferring assets across different blockchains
involves three fundamental steps: (i) locking an asset on the source
blockchain, (ii) committing to the blockchain transfer, and (iii)
creating a representation of the asset (known as a token) on the
target blockchain (Belchior et al., 2022b; Hargreaves et al., 2021).
Belchior et al. (2022a) distinguish transfers between heterogeneous
blockchains as cross-blockchain communication (CBC), contrasting
with cross-chain communication (CCC) between homogeneous
blockchains. Zamyatin et al. (2021) demonstrate that no CCC
protocol can tolerate misbehaving nodes without a trusted third
party. The choice of a trusted third party presents two options:
centralized or decentralized (Montgomery et al., 2020). A
centralized trusted party could be an exchange or institution.
Zamyatin et al. (2021) suggest that consensus among all
distributed ledgers could be an abstraction for a trusted third
party. Conversely, a decentralized trusted party could be another
blockchain. Borkowski et al. (2018) propose that the source
blockchain should replicate the consensus mechanism of the
target blockchain. Lafourcade and Lombard-Platet (2020) argue
that achieving fully decentralized blockchain interoperability is
impractical. These findings underscore a crucial realization:
Cross-blockchain transactions necessitate a trusted third party,
which may involve institutions or consensus mechanisms from
the blockchains involved.

We discuss two scenarios for establishing third-party consensus:
Cryptocurrency exchanges could use either dollars or bitcoins to

facilitate cross-blockchain transactions. For example, Ethereum and
Ripple transactions can follow two distinct paths (see Figure 1). The
first path involves utilizing a fiat currency, such as the U.S. dollar, as
an intermediary to facilitate the consensus processes in both the
Ethereum and Ripple blockchains. For instance, one Ether may be
valued at $3,480, and with the assistance of an exchange,
$3,480 could be exchanged for 5,800 Ripples. This process
establishes an exchange rate between Ethers and Ripples, referred
to as the cross-blockchain (CBC) exchange rate for Ripple in terms
of Ether, denoted ETHXRP. The second path involves employing
another blockchain, such as the Bitcoin blockchain, as the
intermediary to complete the consensus between Ethereum and
Ripple. This approach results in two distinct CBC exchange rates,
ETHBTC and XRPBTC, along with the Bitcoin-derived CBC
exchange rate, BETHXRP. Therefore, for cross-blockchain
transactions between Ethereum and Ripple, there are at least two
types of CBC exchange rates, contingent upon the choice of fiat
currency or blockchain used. The fiat-currency-derived CBC
exchange rate, specifically ETHXRP, serves as a reference point
for investigating Bitcoin cross-blockchain interoperability, as
BETHXRP represents.

It is observed that the proposed CBC transaction model can be
simplified into a halfway model. This means that using ETHUSD
represents the direct path of a CBC transaction while utilizing the
bitcoin-derived ETHUSD, denoted as BETHUSD = ETHBTC ×
BTCUSD, signifies the indirect path of a CBC transaction. The
advantage of this approach is that it allows focusing on one
cryptocurrency against bitcoin at a time.

This study aims to explore the interoperability of the Bitcoin
blockchain with the top five cryptocurrencies in terms of market
capitalization: ETH, USDT, BNB, SOL, and XRP. The methodology
involves comparing the prices of these five cryptocurrencies, namely,
ETHUSD, USDTUSD, BNBUSD, SOLUSD, and XRPUSD, with
their bitcoin-derived counterparts: BETHUSD, BUSDTUSD,
BBNBUSD, BSOLUSD, and BXRPUSD. Tether is the most
widely used dollar-pegged stablecoin. Incorporating Tether in the
analysis is worthwhile because of its profitable correlation with
Bitcoin (Bianchi et al., 2020) and its noted instability in terms of
price, returns, volatility, and trading volume (Grobys and Huynh,
2022; Hoang and Baur, 2021).

In the context of cross-blockchain interoperability, Ether’s price
in dollars, facilitated by the Bitcoin blockchain, should not
consistently deviate from Ether’s dollar price. Alternatively, the
arbitrage return rate, defined as the difference between these two
prices, should not consistently present predictable patterns. The
absence of long-term memory in the arbitrage returns not only
aligns with efficient market theories but also suggests that the
Bitcoin blockchain can effectively facilitate transactions across
other blockchains.

Fama’s (1970) efficient market hypothesis (EMH) states that
abnormal returns only exist by chance and that no individual can
consistently predict future prices using current information.
Samuelson’s (1973) martingale model suggests that successive
returns should not exhibit serial dependence. However, anomalies
cannot simply be dismissed as random errors (Tversky and
Kahneman, 1988). Frankfurter and McGoun (2001) argue that
anomalies are generic in nature and suggest a certain type of
market efficiency. Latif et al. (2011) find that calendar,

FIGURE 1
The cross-blockchain transactions between Ethereum and
Ripple, showcasing two distinct paths.
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fundamental, and technical anomalies can lead to abnormal profit.
Fama (1990) contends that “such anomalies can be explained only in
the context of some particular situations.”

One example of an anomaly is the slow response of investors to
new information. Jegadeesh and Titman (1993) observe that
adjustments to announcements usually take 12 months, with
variations ranging from 6 months to 2 years Barberis and
Shleifer (2012) attribute this slow adjustment to under-reaction
and overreaction. As Fama (1998) concludes in his work,
“Market efficiency survives the challenge from the literature on
long-term return anomalies.”

Bariviera et al. (2017) use the detrended fluctuation analysis
(DFA) method to analyze Bitcoin’s intraday returns over 5–12 h
with 500 data points. They argue that DFA is better suited for
nonstationary data than the R/S method, which tends to confuse
short-term and long-termmemory. Their study finds that long-term
memory is not linked to market liquidity and decreases over time.
Fousekis and Tzaferi (2021) utilize frequency connectedness
analysis, a method introduced by Baruník and Křehlík (2018), to
examine how shocks in one stochastic process affect another at
various frequencies, exploring the relationship between returns and
trading activities. They suggest that asymmetry, characterized as a
temporal link between returns and trading volume, can be
influenced by the strength of spillovers. Assaf et al. (2022)
explore long-term memory by employing a matrix derived from
the wavelet-based multivariate long-memory estimator developed
by (Achard and Gannaz, 2016). They discover significant long-term
correlations between Bitcoin and five other cryptocurrencies. El
Alaoui et al. (2019) observe a nonlinear interaction between Bitcoin
returns and the growth rate of trading volume using multifractal
detrended cross-correlation analysis (MF-DCCA). Stosic et al.
(2019) apply the multifractal detrended fluctuation analysis (MF-
DFA) to Bitcoin, concluding that Bitcoin returns do not exhibit
long-term memory but show anti-persistent long-term correlations
in volume changes.

This study proposes employing the rescaled range analysis (R/S)
method and detrended fluctuation analysis (DFA) to estimate Hurst
exponents using sliding windows. The Hurst exponent is a statistical
metric for predictability and is commonly utilized to assess whether
a time series exhibits long-term memory, which manifests as
volatility clustering in return time series (Bariviera, 2017). A
higher Hurst exponent also enhances the accuracy of
backpropagation Neural Networks (Qian and Rasheed, 2004).
Additionally, Bai-Perron tests for breakpoints complement the
Hurst exponent methodology. This study contributes to the
literature by investigating long-term memory in Bitcoin-related
arbitrage returns. The analysis is conducted using the R
programming language.

The remainder of the paper is structured as follows: Section 2
outlines the dataset and methodology, Section 3 presents the results
and discussion, and Section 4 concludes the paper.

2 Data and methodology

The data is collected daily from Yahoo Finance. This dataset
includes six cryptocurrencies: Bitcoin (BTC), Ethereum (ETH),
Tether (USDT), Binance (BNB), Solana (SOL), and Ripple (XRP).

Each cryptocurrency has its price time series: BTCUSD, ETHUSD,
USDTUSD, BNBUSD, SOLUSD, and XRPUSD. Since we use the
Bitcoin blockchain as the trusted third-party abstraction, there are
five cross-blockchain (CBC) exchange rates: ETHBTC, USDTBTC,
BNBBTC, SOLBTC, and XRPBTC. For simplicity, we exclude
“CBC” from the notation. The investigation period spans from
11 November 2017, to 18 March 2024, totaling 2319 observations
after discarding two missing values. However, Solana, launched in
2020, extends from 10 April 2020, to 18 March 2024, comprising
1438 observations. Using Yahoo Finance as the primary data source
for cryptocurrency prices carries the risk of data inaccuracies.
However, it provides consistency and minimizes timestamp issues.

In order to assess the interoperability of the Bitcoin blockchain,
it is necessary to generate a Bitcoin-derived dollar price for each
cryptocurrency, denoted as BCRYPTOUSD. This process involves
evaluating how closely the consensus mechanism of the bitcoin
blockchain mirrors that of other cryptocurrency blockchains and,
subsequently, how it translates this consensus into a dollar value
within its own mechanism. The computation for the bitcoin-derived
cryptocurrency price is outlined by Nan and Kaizoji (2017, 2019).

BCRYPTOUSD � CRYPTOBTC( ) × BTCUSD( ) (1)
where “CRYPTO” represents any given cryptocurrency.

For instance, the calculation of BETHUSD on 18March 2024, can
be derived from ETHUSD and ETHBTC using Equation 1:
BETHUSD� (ETHBTC)× (BTCUSD) � 0.0525× 67832.22≈ 3561.

This indicates that one ether is valued at $3561 when bridged by
the bitcoin blockchain. Notably, ETHBTC was quoted at
$3561.764 on the same day.

Similarly, there are 2319 observations for four bitcoin-derived
cryptocurrency prices: BETHUSD, BUSDTUSD, BBNBUSD, and
BXRPUSD, while BSOLUSD has 1438 observations.

For each cryptocurrency and US dollar pair, two prices are
quoted: one direct price and one indirect price bridged by the bitcoin
blockchain. The arbitrage return rate between these two prices can
be constructed using the equation provided by Nan and Kaizoji
(2020) and Pichl and Kaizoji (2017).

RETHUSD � BETHUSD

ETHUSD
− 1 (2)

where RETHUSD represents the arbitrage return rate between
BETHUSD and ETHUSD. Similarly, we can calculate the other
four arbitrage return rates using Equation 2: RUSDTUSD, RBNBUSD,
RXRPUSD, and RSOLUSD.

The Hurst exponent, denoted as H, quantifies the degree of serial
dependence in a time series. Initially developed to measure long-
term memory in hydrological time series by Hurst (1951), it was
later introduced by Mandelbrot and Wallis (1968) for analyzing
financial time series. Theoretically, the value of the Hurst exponent
categorizes a time series into three groups, as outlined by Qian and
Rasheed (Qian and Rasheed, 2004): (i) a white noise when 0 < H <
0.5, (ii) a random walk when H = 0.5, and (iii) a persistent series
when H > 0.5. As H approaches 0, the strength of serial dependence
weakens, while it strengthens as H approaches 1.

Various estimators of the Hurst exponent based on scaling
properties exist, with two commonly used ones being the R/S
estimator, which relies on the rescaled range statistic, and the
detrended fluctuation analysis (DFA) estimator. Additionally, we
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employ a sliding window method to assess the dynamics of the
estimated Hurst exponents.

2.1 R/S estimator

The rescaled range analysis (R/S) method scales the range of the
cumulative sum of deviation of a time series from its mean
(Bariviera, 2017). Let xt, t � 1, . . . , L, be a time series, and the
R/S estimator can be found through the following procedure
(Lee, 2022):

(i) Split xt into Ns subseries.

Each subperiod has an equal length of Ls. The number of
subperiods is Ns. So Ns × Ls ≥L, and the last subseries may
contain NAs.

Note that the subscripts have different meanings:

t � whole time index, t � 1, . . . , L.

s � sub series index, s � 1, . . . , Ns

i � sub time index, i � 1, . . . , Ls

(ii) Calculate the mean Ms and standard deviation Ss for
each subperiod:

Ms � 1
Ls

∑Ls
i�1
xi and Ss � 1

Ls
∑Ls
i�1

xi −Ms( )2⎛⎝ ⎞⎠1/2

Note that the last subperiod (s � Ns) has NAs, so Ls should be
adjusted accordingly.

(iii) Calculate the demeaned di,s from the original time series xi,s

for each subperiod:

di,s � xi,s −Ms

where i � 1, . . . , Ls.

(iv) Calculate the cumulative series of di,s, yi,s, for each subperiod:

yi,s � ∑i
k�1

di,s

(v) Find the range Rs for each subperiod:

Rs � max y1,s, . . . , yLs,s( ) − min y1,s, . . . , yLs,s( )
(vi) Rescale the range Rs by its standard deviation Ss to get Rs/Ss,

and then calculate the mean of the rescaled range using
Equation 3:

R/S( )Ls ≡ 1
Ns

∑Ns

s�1

Rs

Ss
(3)

(vii) Repeat steps (i) through (vi) by varying Ls.

The length of the subseries, Ls, is a variable. Typically, we can
select Ls using the following method:

Ls � L

20
,
L

21
, . . . ,

L

2k

where we aim for L/2k ≈ 23, hence k � round(log(L/23)/ log 2).
The R/S statistic is known to asymptotically follow the relation

shown in Equation 4 (Hurst, 1951)

R/S( )Ls ~ C × LH
s (4)

where H is the Hurst exponent. Hence, H can be estimated using a
simple linear regression using Equation 5:

Log R/S( )Ls � logC +HlogLs. (5)

2.2 DFA estimator

The detrended fluctuation analysis (DFA), introduced by Peng
et al. (Peng et al., 1995) mitigates spurious detection of long-range
dependence (Bariviera, 2017). Unlike the R/S method that
measures the maximum range in both directions, DFA
calculates the average of the squared vertical distance of yi,s

from the ordinary least squares (OLS) line (Mielniczuk and
Wojdyłło, 2007).

The DFA procedure involves five steps (Penzel et al., 2003).

(i) Determine the cumulative demeaned series yt of
xt, t � 1, . . . , L, referred to as the “profile”:

yt � ∑t
k�1

xt −M( )

where M is the mean of xt, t � 1, . . . , L.

(ii) Divide yt into Ns non-overlapping subseries of
equal length Ls:

Ns � ceiling L/Ls( )
which may result in a short segment at the end of the profile. To
mitigate its impact, the procedure is repeated from the opposite end,
resulting in a total of 2Ns subperiods.

(iii) Compute the local trend for each subperiod using an OLS
regression. Then, determine the variance for each subperiod
using Equation 6:

F2
Ls

s( ) ≡ 1
Ls

∑Ls
i�1

y s − 1( )Ls + i( ) − ps i( )[ ]2 (6)

where s � 1, . . . , Ns. And ps(i) is the fitting polynomials in segment
s. In the OLS fitting procedure, the polynomial could be linear,
quadratic, cubic, or higher order, conventionally called, DFA1,
DFA2, DFA3, respectively. We chose DFA1 as the fitting
polynomial, as DFA2 does not improve accuracy relative to the
degree of freedom of the noise-like return time series.

(iv) Obtain the fluctuation function by taking the square root of
averaged variances over 2Ns subperiods, as shown in
Equation 7:
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F Ls( ) ≡ 1
2Ns

∑2Ns

s�1
F2
Ls

s( )⎡⎣ ⎤⎦1/2 (7)

(v)Repeat steps (i)-(iv) for different time scale Ls.

If the time series xt exhibits long-range correlation following a
power law, the fluctuation function should follow the relation (Peng
et al., 1995):

F Ls( ) ~ C × LH
s

Similarly, H can be estimated using a log-log regression:

LogF Ls( ) � logC +HlogLs.

2.3 Sliding window

The sliding window technique involves employing a fixed
window size, denoted as, W, which is moved through the time
series xt to analyze the dynamics of Hurst exponents. We tested
window sizes ofW � 256,W � 512, andW � 1024, respectively, but
only the results for W � 512 are presented.

This approach impacts the estimation procedures of R/S and
DFA by substituting W for L. Consequently, the number of
estimations for each time series is determined by
Ne � L −W + 1. For instance, considering the length of RETHUSD

as 2319, ifW � 512, thenNe � L −W + 1 � 2319 − 512 + 1 � 1808.

3 Results

Table 1 displays the summary statistics of cryptocurrency and
bitcoin-derived cryptocurrency prices. Notably, the bitcoin-derived
prices do not exhibit significant deviations from their direct prices
regarding minimum, maximum, mean, and standard deviation. This
observation suggests that the Bitcoin blockchain’s interoperability
maintains unbiasedness from an unconditional statistical perspective.

Table 2 provides the descriptive statistics of the return rates
associated with arbitrage between the bitcoin-derived and direct
prices. While the mean of the arbitrage return rates is nearly zero
across all cases, the daily standard deviations range between 1% and
2%, implying that approximately 95% of the data points exhibit
deviations from the mean within the range of −6%–6%. Some
extreme values are observed, such as a 38% negative deviation
for Ripple and a 12% positive deviation for USDT. Furthermore,
these return series exhibit skewed leptokurtic and non-normal
characteristics.

Figure 2 displays the time series of arbitrage returns, with red
dashed lines indicating breakpoints. Each series exhibits a mean-
reverting characteristic with occasional spikes. However, a sudden
increase in fluctuation magnitudes was observed towards the end
of the time series across all five cryptocurrencies. We employ the
Bai-Perron test (Bai and Perron, 2003) to identify potential
structural changes in each arbitrage return series and determine
the locations of these breakpoints. Two breakpoints are
highlighted in Figure 2 with red dashed lines. Notably, one
common breakpoint occurred for all five return processes
between 13 March 2023, and 13 April 2023. These observations
raise questions about the Bitcoin blockchain’s interoperability: Are
these fluctuations persistent and predictable? What caused such a
change? Partial answers to these questions lie in the values of the
Hurst exponents. Table 3 provides summary statistics of the Hurst
exponents estimates.

Figure 3 illustrates Ethereum’s Hurst exponents estimated using
the R/S and DFA methods. Both series exhibit a similar trend, with
the R/S estimates mostly above the DFA’s. The DFA estimator (H_
dfa_ETH) displays increased volatility in the middle section of the
series. These findings suggest that while the DFA broadly aligns with
the R/S regarding changes in H values, they diverge in terms of their
levels: the R/S tends to overestimate H, whereas the DFA tends to
underestimate H but is more sensitive to anomalies. Both methods
indicate that Ethereum’s arbitrage return series lacks strong,
predictable persistence over the sample period: the R/S implies a
random walk process, while the DFA suggests a mean-reverting
process. However, from July 2021 to April 2023, the serial
dependence strengthened, particularly in the DFA, which exhibits
evident long-term memory despite its volatility. Interestingly, both
estimators return to non-persistent levels after April 2023,
indicating that the highly oscillating period in the latter part of
Ethereum’s arbitrage returns (see Panel (a) of Figure 1) does not
enhance predictability. Though mean-reverting processes could
suggest predictability, Fama (1998) concludes that anomalies tend
to reverse, so unpredictability still holds in the long term.

The stablecoin examined in our study, Tether, has demonstrated
significant serial dependence strength since April 2021 (refer to
Figure 4). This suggests that the Bitcoin blockchain encountered
challenges in facilitating transactions between USDT users and U.S.
dollars. This period of malfunction could lead to predictable profits.
However, after the conclusion of 2023, there appears to be a
declining trend in the estimated Hurst exponents for USDT.
Correspondingly, USDT’s arbitrage return behavior exhibited
volatility during this period.

Regarding Binance, the Hurst exponents estimated through the
R/S method indicate either a random walk pattern or a limited level
of serial dependence strength, as depicted in Figure 5. The DFA

TABLE 1 Summary statistics of the cryptocurrency prices and their bitcoin-
derived prices.

Series Obs Min Max Mean S.D.

ETHUSD 2319 84.31 4812.09 1291.52 1140.60

BETHUSD 2319 84.31 4812.11 1291.80 1140.68

USDTUSD 2319 0.97 1.07 1.00 0.01

BUSDTUSD 2319 0.91 1.13 1.00 0.01

BNBUSD 2319 1.51 675.68 173.13 175.50

BBNBUSD 2319 1.51 675.71 173.14 175.41

XRPUSD 2319 0.14 3.37 0.52 0.33

BXRRUSD 2319 0.14 3.38 0.52 0.33

SOLUSD 1438 0.52 258.93 48.91 55.08

BSOLUSD 1438 0.52 258.91 48.82 54.95

Note: Obs. Refers to the number of observations. S.D., refers to standard deviation.
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estimator tended to highlight a strong trend post-July 2021 but has
reverted to indicating a randomwalk process since the onset of 2024.

The disparity between the R/S Hurst and DFA Hurst exponents
is most pronounced for Ripple’s arbitrage returns, as illustrated in

Figure 6. This indicates that the R/S method perceives the return
pattern as more identifiable and predictable, while the DFA
considers it white noise. However, since the conclusion of 2022,
Ripple’s arbitrage returns have exhibited a strong trend, which has

TABLE 2 Summary statistics of the arbitrage return rates.

Series Obs Min Max Mean S.D. Skewness Kurtosis J-B

RETHUSD 2319 −0.08 0.04 0.00 0.01 −2.47 47.20 191195a

RUSDTUSD 2319 −0.08 0.12 0.00 0.01 1.36 17.38 20703a

RBNBUSD 2319 −0.12 0.07 0.00 0.01 −2.10 49.88 214040a

RXRPUSD 2319 −0.38 0.10 0.00 0.02 −3.52 71.64 460160a

RSOLUSD 1438 −0.18 0.09 0.00 0.02 −1.83 21.16 20561a

Note: J-B refers to the Jarque-Bera test for normality.
aSignificant at 1% level.

FIGURE 2
The arbitrage returns with potential breakpoints.
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TABLE 3 Summary statistics of Hurst estimates.

ETH USDT BNB XRP SOL

R/S DFA R/S DFA R/S DFA R/S DFA R/S DFA

Obs 1808 1808 1808 1808 1808 1808 1808 1808 927 927

Min 0.44 0.06 0.47 0.35 0.48 0.19 0.42 0.31 0.47 0.33

Max 0.69 1.23 0.70 0.68 0.69 0.84 0.66 0.61 0.68 0.72

Mean 0.56 0.48 0.60 0.54 0.58 0.52 0.53 0.42 0.60 0.52

Median 0.56 0.44 0.63 0.57 0.58 0.50 0.54 0.41 0.59 0.50

S.D. 0.05 0.11 0.06 0.08 0.05 0.09 0.04 0.06 0.03 0.07

Skewness −0.12 1.83 −0.65 −0.46 0.36 0.13 0.44 1.00 0.35 0.26

Kurtosis 2.28 10.45 2.13 2.20 2.36 2.59 3.27 3.92 2.65 2.73

J-B 42.71a 5186.50a 183.93a 112.52a 69.47a 17.90a 63.64a 365.83a 24.10a 13.00a

Note: J-B refers to the Jarque-Bera test for normality.
aSignificant at 1% level.

FIGURE 3
Ethereum’s R/S Hurst exponents and DFA Hurst exponents.

FIGURE 4
USDT’s R/S Hurst exponents and DFA Hurst exponents.
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dissipated since July 2023. The observed disparity between these
methods, particularly for Ripple’s arbitrage returns, can be
attributed to the distinct sensitivities of each technique to
different types of data noise and trends. Specifically, the DFA

method mitigates the spurious detection of long-range
dependence (Bariviera, 2017).

Finally, Solona’s arbitrage returns demonstrated significant
persistence from January 2022 to June 2022 (see Figure 7).

FIGURE 5
BNB’s R/S Hurst exponents and DFA Hurst exponents.

FIGURE 6
Ripple’s R/S Hurst exponents and DFA Hurst exponents.

FIGURE 7
Solana’s R/S Hurst exponents and DFA Hurst exponents.
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Afterwards, the DFA Hurst exponents displayed high oscillations,
suggesting increased and cyclic predictability from June 2022 to
March 2023. Subsequently, there was a divergence between the R/S
and DFA estimators. Both estimators indicated a higher level of
dependence strength at the beginning of 2024.

4 Conclusion

Cross-blockchain interoperability is a critical concern for
facilitating transactions across various existing cryptocurrencies,
with the interoperability heavily reliant on a trusted third party.
One viable option is to utilize a blockchain as this intermediary party
to bridge cross-blockchain transactions. Given its substantial market
capitalization, the Bitcoin blockchain is a strong contender for
fulfilling this role, encompassing approximately 50% of the
market share. Consequently, our investigation focused on
assessing the interoperability of the bitcoin blockchain with the
other top five cryptocurrencies by market capitalization: Ethereum,
Tether, BNB, Solana, and Ripple.

We introduced a middle-ground approach wherein each
cryptocurrency is linked to US dollars via the Bitcoin blockchain
instead of directly facilitating transactions between two
cryptocurrencies. This approach mitigates ambiguity arising from
asymmetric influences of individual cryptocurrencies. Subsequently,
interoperability was examined by comparing the dollar price derived
through the Bitcoin blockchain with each cryptocurrency’s “direct”
dollar price. The deviation rate between these two prices served as
the arbitrage-return rate. Adhering to efficient market theories, we
scrutinized whether long-term serial dependence existed in all
arbitrage-return time series.

The dynamics of Hurst exponents, estimated using the R/S and
DFA methods, indicate weak evidence of memory persistence, with
characteristics leaning more towards a random walk or white noise
pattern over our sample period from 11 November 2017, to
18 March 2024. These results are consistent with Fama’s (1970,
1990) efficient market hypothesis, suggesting that prices follow a
random walk with returns reverting to a trivial mean.

Some sub-periods exhibited pronounced strength of
dependence, accompanied by volatility and cyclical behavior. The
observed autocorrelation may originate from a sluggish reaction to
new information (Barberis and Shleifer, 2012). Cyclical behavior,
likely caused by the investor overreaction (De Bondt and Thaler,
1985), aligns with Fama’s (1998) assertion that most long-term
return anomalies tend to dissipate, leading to a pattern where past
winners become future losers and vice versa. Concerning the high
volatility observed in all five arbitrage return series after April 2023,
Malkiel (2003) concludes his research by saying that regardless of
how high the price volatility is, capital markets may still be efficient if
the price is less predictable. These findings suggest that the values of
cryptocurrencies passing through the Bitcoin blockchain do not
result in predictable deviations from the prices determined within
their respective blockchains through their consensus mechanisms.

Consequently, we infer that the semantic layer of the Bitcoin
blockchain’s interoperability generally operated effectively,
assuming the exclusion of the technical layer and other layers
beyond the scope of this study. Nonetheless, we observed a

significant increase in volatility clustering since April 2023 across
all cryptocurrencies. These phenomena may stem from structural
changes in the functionality of the Bitcoin blockchain. We propose
further exploration into the potential decreased dependency of other
cryptocurrencies on Bitcoin as a topic for future research.
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