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Introduction: Blockchain technology has attracted much attention due to its
decentralization, transparency and security. Initially applied in the financial field, it
has now expanded to various fields such as Internet of Things (IoT), electronic
cash and healthcare. However, the open nature of blockchain has raised potential
security concerns about sensitive transaction data, and the increasing number of
transactions requires low-latency solutions. Most blockchain applications still rely
on the lightweight Elliptic Curve Digital Signature Algorithm (ECDSA). Due to
complex operations such as vectorizedmultiplication andmodular inversion, this
may introduce significant additional overhead.

Methods: To address these issues, a new scheme named KTP-ECDSA is
proposed. This scheme is based on the improved two-parameter Elliptic
Curve Digital Signature Algorithm (TP-ECDSA) and the KGLP algorithm. In
both the signing and verification processes, this scheme eliminates modular
inverse operations and reduces scalar multiplications during the verification stage
by using batch verification.

Result: The experimental results show that, comparedwith the traditional ECDSA,
KTP-ECDSA has achieved a speed increase of over 50% in both independent
verification and batch verification, significantly improving the efficiency of
signature verification.

Discussion: By adopting the KTP-ECDSA algorithm and using the digital signature
batch verification method, multiple signatures can be verified simultaneously,
thus reducing the computational burden of the traditional single-verification
method. This greatly increases the overall transaction throughput and improves
resource utilization efficiency.
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1 Introduction

Blockchain is essentially a new type of distributed database that integrates a series of
emerging information technologies (Lin, 2023), including consensus mechanisms,
encryption algorithms, network communication, and smart contracts. These
technologies also contribute to the decentralization, transparency, traceability, and
immutability of blockchain, which plays a significant role in finance (Puthiyidam et al.,
2023;Wang et al., 2020), electronic cash (Jiarui et al., 2023), and the Internet of Things (IoT)
(Mahajan and Junnarkar, 2023). In particular, the development of blockchain in
cryptocurrency has made it a modern network technology (Zhang et al., 2022). As
Blockchain 1.0, Bitcoin has received widespread attention for its successful deployment
and application of ECDSA. ECDSA is gradually becoming the default signature mechanism
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for the current mainstream blockchain platforms and projects. The
efficient development of any network technology must consider its
cybersecurity factors (Khizar et al., 2022; Marcos et al., 2023), and
digital signature technology in cryptography can effectively solve
some security problems in blockchain.

The digital signature algorithm (DSA) uses asymmetric
encryption technology to achieve information identity
authentication, data integrity verification, and tamper resistance
(Fang et al., 2020). In blockchain, each transaction needs to be
verified by a digital signature before being added to the block.
However, blockchain faces the challenge of large-scale data
transactions in electronic cash applications. With the rapid
development of the electronic cash market, the number of
transactions and the scale of transaction data are increasing. In
order to obtain real-time results, it is important to verify multiple
signatures at any given point in time, and the signature verification
of large-scale transaction tasks can cause cumbersome overhead to
nodes (Rahman Taleb and Vergnaud, 2021). Therefore, finding a
way to improve the efficiency and security of ECDSA signature
verification has become a key issue. Currently, ECDSA remains one
of the mainstream algorithms in the blockchain field (Yehuda, ,
2021). Nevertheless, the implementation of this algorithm presents
two significant mathematical challenges. The first is modular
inversion, which is 10 times slower than multiplication (Kittur
et al., 2017). The second is ECC scalar multiplication (Binbin
et al., 2024), which is performed in both the signature and
verification stages, making it a crucial factor influencing the
efficiency of ECDSA.

In response to the above two problems, various schemes have
been proposed to improve the ECDSA modular inversion and scalar
multiplication operations. Zhang et al. (2008) proposed a fast
verification ECDSA scheme that only performs scalar
multiplication and modular multiplication operations to increase

the operation speed. The limitations to the above scheme are that
although the computational efficiency is improved, simply
increasing the efficiency of signatures by reducing the number of
inverse operations can lead to security issues with forged signatures,
and forward security cannot be guaranteed. Therefore, Xiao et al.
(2020) proposed an ECDSA scheme without modular inversion,
which introduces two random parameters to improve efficiency
while effectively ensuring the security of the scheme. Cao and Wei
(2018) proposed an improved ECDSA protocol that effectively
avoids modular inversion operations by using the SHA-256
algorithm to improve efficiency.

However, the above solutions are all based on independent
verification methods. In the face of the signature verification task
of large-scale transactions, using independent verification schemes is
not sufficient to meet strict low-latency requirements (Liu et al.,
2021). In 1994, Fiat (1997) introduced the concept of batch
verification, a method that verifies multiple signatures
simultaneously, reduces repetitive computation operations, and
greatly saves the verifier’s computational resources and
verification latency. In signature schemes such as DSA and RSA,
batch verification has been widely applied (Lim and Lee, 1994; Bao
et al., 2006). For ECDSA, researchers have proposed various batch
verification schemes (Karati et al., 2014). Although there are
technologies for batch verification of multiple ECDSA signatures,
many of them have a major drawback that they are not efficient for
larger batch verification. Therefore, in real-time scenarios, where a
large number of signatures need to be verified at once, it is important
to have a performance solution that can perform well, regardless of
the signature size without compromising security. Kittur and Pais
(2017) introduced a batch verification scheme for multiple ECDSA
signatures. This scheme introduces batch verification technology,
which combines multiple signature verification steps into one step,
thereby reducing the computational and communication overhead

TABLE 1 Parameter symbols and definitions.

Parameter Paraphrase

G Group of points on the elliptic curve

P Base point

mod Modular arithmetic

d Private key

Q Public key

r Signature part 1

n Modulus

k−1 Module inverse elements of k

m Original message

s Signature part 2

p,q Large element number

k Random digit

R,v,u Calculate intermediate values

(U,Q) User U and U’s public key Q
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and improving the efficiency of signature verification while ensuring
security. Xiong et al. introduced an ECDSA signature scheme based
on blockchain with fault-tolerant batch verification. Using batch
verification technology, the verification of multiple signatures is
combined into a set operation, thereby improving the efficiency of
verification.

Although existing technologies attempt to reduce the overhead
of verification time, for large-scale signature verification, the
verification efficiency of most batch verification schemes is not
high (Yu et al., 2023). To improve the efficiency of large-scale
verification tasks, this paper proposes a blockchain-based dual-
parameter ECDSA batch verification scheme based on the
improvement of ECDSA. The scheme can verify multiple
signatures at once based on the modulo inversion algorithm, and
it introduces the KGLP algorithm to accelerate the scalar
multiplication operation, thus greatly reducing the verification
time and significantly improving the efficiency of the scheme. It
can also prevent digital signature forgery attacks.

The rest of this paper is organized as follows: Section 2
introduces the basics of ECDSA and cryptography in blockchain.
Section 3 proposes a signature algorithm based on two-parameter
ECDSA using the KGLP algorithm and batch verification technique.
Section 4 analyzes the scheme in terms of security. Section 5 analyzes
the performance of the scheme. Finally, Section 6 summarizes
the paper.

2 Preliminaries

2.1 Scheme parameters and interpretation
instructions

The symbols and definitions of the parameters involved in this
scheme description are shown in Table 1.

2.2 Elliptic curve

Elliptic curve cryptography (ECC) is an algebraic structure
defined over a finite field, which is commonly used in
cryptography such as encryption and digital signatures. With it
set as an elliptic curve, Fp representing a prime field (p large prime
number), and the elliptic curve satisfies the following Equation 1:

E Fp( ): y2 � x3 + ax + b, (1)

where a, b ∈ Fp and are constants for any a, b ∈ Fp.

TABLE 2 Signatures for different difficult problems.

Types of difficult problems Classic digital
signature

Discrete logarithm problem (DLP) DSA, EIGamal

Integer factorization problem (IFP) RSA

Elliptic curve discrete logarithmic problems
(ECDLP)

ECDSA

FIGURE 1
Blockchain data structure.

TABLE 3 Time overhead for identical signers with independent and batch verification (ms).

Batch size 20 21 22 24 26 28 210

ECDSA individual verification — 153 457 4,737 76,462 — —

ECDSA batch verification — 79 131 431 1,630 — —

KTP-ECDSA individual verification 5.2 10.7 17.5 58 219 952 3,808

KTP-ECDSA batch verification 2.0 2.7 3.2 4.8 8.5 16.3 32.9
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2.3 Elliptic curve digital signature algorithm

ECDSA is a digital signature algorithmbased on elliptic curves, which
can be used to verify the integrity and non-repudiation of messages. The
key pair of ECDSA a, b ∈ Fp consists of a public keyQ and a private key
d that satisfyQ � dP, where P is a base point of order q on E(Fp). If the
order of E(Fp) is N, then h � N/q is called the cofactor.

2.3.1 Key generation stage
Given the main parameters T � (p, a, b, P, q, h), to generate the

signer’s key pair (d, Q), the main steps are as follows:

Step 1: select a base point P ∈ E(Fp) with order q from
elliptic curve E(Fp);

Step 2: select a random integer d ∈ [1, q − 1];
Step 3: calculate Q � dP and generate a key pair (d, Q).

2.3.2 Signature stage
The signer generates an ECDSA signature (m, r, s) for the

message m with the following main steps:

Step 1: the signer randomly selects a temporary secret value
k ∈ [1, q − 1] and calculates R � kP;

Step 2: calculate r � x(R)(mod q), where x(R) is the
x-coordinate of R. If r � 0, go back to step 1;

Step 3: calculate s � k−1(H(m) + dr)(mod q), whereH(m) is a
hash function. If s � 0, go back to step 1;

Step 4: the signer generates the signature (m, r, s) of the message
m and sends it to the verifier.

2.3.3 Verification stage
After receiving the signature (m, r, s) from the signer, the

verifier performs the following verification steps:

Step 1: the verifier first checks whether r, s ∈ [1, q − 1] holds, and
if it does not, the verification fails;

Step 2: calculate e � H(m), followed by v � es−1(mod q)
and u � rs−1(mod q);

Step 3: compute R � vP + uQ and r′ � x(R)(mod q);
Step 4: the verifier verifies whether r′ � r is valid or not. If it is

valid, then the signature is accepted; otherwise, it
is rejected.

In ECDSA, one modulo-inverse operation is required for each of
the signature and verification phases. If the data size is N, the
complexity of one modulo operation is O(N2 lnN), while the
complexity of modulo inverse operation is O(N3), which is one
order of magnitude higher than the modulo operation. Therefore,
the mode inverse operation should be avoided as much as possible in
this algorithm to improve the efficiency (Na et al., 2022) of signature
verification.

2.4 Elliptic curve discrete logarithm problem

The elliptic curve discrete logarithmic problem (ECDLP) is
recognized as a difficult mathematical problem, and its
intractability is based on the inability of the current
computational power of computers to solve large-scale elliptic
curve discrete logarithmic problems in a reasonable amount of
time. The ECDLP takes the specific form of solving an elliptic
curve E(Fp), given a point Q and a base point P, where d satisfies
equation Q � dP.

Three common types of difficult problems in current public key
cryptosystem-based digital signatures are given in Table 2, among
which, ECDLP is the most difficult to solve (Abdelkrim et al., 2022).

2.5 Batch validation for ECDSA

Batch verification is a technology that can verify multiple
signatures at the same time, which is applicable to ECDSA. In

TABLE 4 Time overhead for different signers with independent and batch verification (ms).

Batch size 20 21 22 24 26 28 210

ECDSA individual verification — 153 457 4,737 76,462 — —

ECDSA batch verification — 128 344 3,273 51,630 — —

KTP-ECDSA individual verification 5.2 12.9 34.6 177 1,079 3,014 8,417

KTP-ECDSA batch verification 2.0 2.7 3.4 5.2 8.9 17.7 34.2

FIGURE 2
Time overhead of Tp-ECDSA and KTP-ECDSA batch
verifications.
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the large-scale transaction of blockchain systems, there are many
message signatures to be verified, and a lot of time and
computational resources will be consumed if they are verified
one by one. Batch verification technology can verify multiple
message signatures at the same time, which can effectively
improve the verification efficiency of signatures and also reduce
the computational cost of verification. The standard methods for
batch verification of ECDSA signatures generated by multiple or
single signers are shown in Equations 2, 3.

The standard ECDSA signature verification equation is R = uP +
vQ. When verifying the ECDSA signature
(m1, r1, s1), (m2, r2, s2),/, (mt, rt, st) of t signers, in order to
improve the efficiency of ECDSA signature verification and save
computational resources, these signatures can be aggregated
as follows:

∑t
i�1
Ri � ∑t

i�1
vi⎛⎝ ⎞⎠P +∑t

i�1
uiQi. (2)

In the event that all signatures originate from a single signer, the
public key utilized in the verification process is identical,
Q1 � Q2 � / � Qt � Q, and the equation for bulk verification
can be simplified as follows:

∑t
i�1
Ri � ∑t

i�1
vi⎛⎝ ⎞⎠P + ∑t

i�1
ui

⎛⎝ ⎞⎠Q. (3)

The ECDSA batch verification scheme can reduce the scalar
multiplication operation in the verification phase from 2t to [2, t+1],
which greatly reduces the time overhead of signature verification. To
detect the equivalence of Equations 2, 3, Karati et al. proposed the
plain batch verification algorithm and the symbolic batch
verification algorithm.

2.6 Blockchain cryptography

Blockchain is a distributed ledger technology that originated
with the digital cryptocurrency Bitcoin. In a blockchain, each block
consists of two main parts, the block header and the block body,
where the block header contains a unique hash value as the block
address. By recording the hash value of the previous block, the
blockchain links each block into a chain structure, the specific
structure of which is shown in Figure 1. Each transaction
consists of a list of “inputs” and “outputs,” and the “inputs” of a
transaction contain digitally signed data, ensuring that the
transaction data cannot be tampered with or forged.

In the Bitcoin trading system, ECDSA is used to verify the identity
of the account holder and prevent misuse of the account. To ensure
the validity of transactions, each transaction must be verified with a
digital signature. When a node receives a transaction, it first verifies
the correctness of the digital signature to ensure that the transaction
was initiated by the account holder. Only after verifying the digital
signature will the node broadcast the transaction to other nodes and
join the blockchain. Therefore, ECDSA is an important guarantee for
the security of Bitcoin transactions, making transactions safe and
efficient in a decentralized blockchain system. However, with the
increasing volume of transactions, the verification efficiency of

ECDSA has gradually become a challenge. To address this
challenge, several optimization measures can be taken to reduce
the latency of transaction broadcasting and verification while
ensuring the security and reliability of transactions.

3 Proposed scheme

3.1 The KTP-ECDSA digital
signature algorithm

The traditional ECDSA scheme has time-consumingmode reversal
operations in both the signature phase and the verification phase, and its
computation time overhead is 10 times that of the dot product
operation. In order to improve the efficiency of the ECDSA scheme,
an improved elliptic curve digital signature algorithm (KTP-ECDSA) is
proposed, which introduces the KGLP algorithm under the premise of
the TP-ECDSA (Guang-fu et al., 2024) scheme and uses Hamming
weights instead of message hash to avoid the mode reversal operation.
The KTP-ECDSA algorithm is mainly divided into key generation,
signature, and verification stages, and the specific process is as follows.

3.1.1 Key generation stage
Given the main parameters T � (p, a, b, P, q, h), to generate the

signer’s key pair (d, Q), the main steps are as follows:

Step 1: select a base point P ∈ E(Fp) with order q from the
elliptic curve E(Fp);

Step 2: select a random integer d ∈ [1, q − 1];
Step 3: calculate Q � dP and generate the key pair (d, Q).

3.1.2 Signature stage
The signer generates an ECDSA signature (m, r, s, β) for the

message m with the following main steps:

Step 1: the signer randomly selects a temporary secret value
k ∈ [1, q − 1] and calculates R � kP;

Step 2: calculate r � x(R)(mod q), where x(R) is the
x-coordinate of R. If r � 0, go back to step 1;

Step 3: the signer uses a random number generator to generate
two numbers α, β ∈ [1, q − 1] at random that
satisfy k � αr + βm;

Step 4: calculate e � H(m) and its Hamming weight w;
Step 5: calculate s � αr + (w + r)d(mod q). If s � 0, return

to step 1;
Step 6: the signer generates the signature (m, r, s, β) of the

message m and sends it to the verifier.

3.1.3 Verification stage
Any verifier can test the validity of a sign (m, r, s, β) by following

the steps below:

Step 1: the verifier first tests whether r, s, β ∈ [1, q − 1] holds; if
otherwise, the verification fails;

Step 2: compute e � H(m) and its Hamming weights w;
Step 3: compute v � (s + βm)(mod q) and u �

(w + r)(mod q);
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Step 4: calculate R � vP − uQ and r′ � x(R)(mod q);
Step 5: the verifier checks whether r′ � r is valid. If so, the

signature is accepted; otherwise, it is rejected.

3.2 KGLP algorithms

The KGLP algorithm is a fast scalar multiplication algorithm for
elliptic curve cryptography, which is widely used in scenarios such as
digital signature and public key encryption. Compared with the
traditional scalar multiplication algorithm, the KGLP algorithm has
higher computational efficiency and better performance. The KGLP
algorithm transforms the original scalar multiplication operation
into multiple sub-operations based on the addition and
multiplication of elliptic curve points and improves the execution
speed of the whole algorithm through parallel processing. In
practice, the KGLP algorithm can significantly improve the
security and efficiency of elliptic curve cryptography, especially
when dealing with large data and performing high-strength
encryption.

In general, the most time-consuming operations in the ECDSA
batch verification scheme are scalar multiplication and the modulo
inverse operation. In contrast, the TP-ECDSA scheme does not
require the latter, with the former, therefore, representing the most
time-consuming operation in this scheme. In order to enhance the
efficiency of the TP-ECDSA batch verification scheme, we employ
the KGLP algorithm to accelerate the scalar multiplication
operation, thereby improving the overall verification efficiency.
The KGLP algorithm can calculate scalar multiplications of
multiple points at the same time, which reduces the number of
doubling operations and improves the computational efficiency. For
example, in batch verification of t TP-ECDSA signatures, the KGLP
algorithm can calculate and sum the scalar multiplications of t
points simultaneously, i.e., ∑t

i�1uiQi. The KGLP algorithm is shown
in Algorithm 1. Assuming that vi is, at most, l bits, the binary
representation of all multipliers can be written as a t × lmatrix. It is
possible to arbitrarily combine the expected results of t scalar sums,
perform scalar multiplication operations on t points, and then
perform scalar addition based on the value of column i of the
t × l matrix. Utilizing this algorithm in the batch validation of TP-
ECDSA requires only l scalar doubling and l · [1 − (1/2)t] scalar
addition, whereas t × l scalar multiplication doubling and t × l/2 +
t − 1 scalar addition are required when this operation is not used.

Input: ui = (ui,l,ui,l−1, . . . ,ui,1), Qi∈E (FP), i∈[1,t]

Output: R = ∑uiQi

1. QQj = jtQt + jt−1Qt−1 + . . . + j1Q1, j=(jt, . . . ,j1)2,

j∈[0,2t−1]; //pre-calculated results for any

combination of t-point scalar summation

2. R = ∞;

3. for i = t; i ≥ 0;i--do

4. R = 2R;

5. for j = t; j ≥ 0; j--do

6. bit = uj,i ≪ j;

7. R = R + QQbit;

8. return R;

Algorithm 1. KGLP algorithm.

3.3 KTP-ECDSA batch verification scheme

ECDSA batch verification schemes are good at checking lots of
signatures at once, but they get slower as the number of signatures in a
batch gets bigger. Blockchain transactions are large, so existing schemes
may not work. Our scheme is fast for all sizes of message signature
verification with few modulo and scalar multiplication operations. The
main time-consuming operation in the KTP-ECDSA batch verification
scheme is the scalar multiplication operation. We propose a KTP-
ECDSA batch verification scheme using the KGLP algorithm to reduce
this operation and the time overhead of signature verification. TheKTP-
ECDSA batch verification scheme is given below from the perspective of
the same signer and different signers.

3.3.1 KTP-ECDSA batch verification scheme for
same signers

For batch verification of same signers, we can utilize the same
public key and different messages and signatures. The public key of
the same signer is the same; when verifying t message signatures
(mi, ri, si, βi)(i � 1, 2,/, t), according to the verification algorithm
of the TP-ECDSA scheme, 2t scalar multiplication operations are
needed, while this scheme only needs two scalar multiplication
operations, and the KGLP algorithm accelerates the scalar
multiplication operations, which can greatly improve the efficiency
of the verification of signatures. The specific process of the KTP-
ECDSA batch verification scheme for the same signer is as follows:

Step 1: the verifier first tests whether ri, si, βi ∈ [1, q − 1] holds. If
otherwise, the verification fails;

Step 2: compute ei � H(mi) and its Hamming weights wi;

Step 3: compute ∑t
i�1vi � ∑t

i�1(si + βimi)(mod q);

Step 4: calculate ∑t
i�1ui � ∑t

i�1(wi + ri)(mod q);

Step 5: calculate R � ∑t
i�1ri;

Step 6: based on the equations in steps 3 and 4, the KGLP
algorithm is applied to perform scalar multiplication to

calculate T � ∑t
i�1viP − ∑t

i�1uiQ;
Step 7: the verifier computes R′ � x(T)(mod q) and verifies

whether R′ � R holds. If it does, then the batch of
signatures is accepted; otherwise, the batch of verifications fails.

3.3.2 KTP-ECDSA batch verification scheme for
different signers

For batch verification of different signers, there are varying
public keys and message signatures to be verified. It is assumed that
there are t signers whose key pairs are (di, Qi)(i � 1, 2,/, t) and t
signatures (mi, ri, si, βi)(i � 1, 2,/, t) are generated for different
messagesm. The use of TP-ECDSA requires 2t scalar multiplication
operations in the verification phase, while this scheme only requires
t+1, and the KGLP algorithm accelerates the scalar multiplication
operations, so the efficiency of signature verification is greatly
improved. The specific process of KTP-ECDSA batch verification
scheme for different signers is as follows:

Step 1: the verifier first tests whether ri, si, βi ∈ [1, q − 1] holds. If
otherwise, the verification fails;
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Step 2: tor t different signers, have ∑t
i�1Qi � ∑t

i�1diP;

Step 3: compute ei � H(mi) and its Hamming weights wi;

Step 4: compute ∑t
i�1vi � ∑t

i�1(si + βimi)(mod q);

Step 5: calculate ∑t
i�1ui � ∑t

i�1(wi + ri)(mod q);

Step 6: calculate R � ∑t
i�1ri;

Step 7: based on the above equation, the KGLP algorithm is
applied to calculate the scalar multiplication operation

to compute T � ∑t
i�1viP − ∑t

i�1uiQi;
Step 8: the verifier computes R′ � x(T)(mod q) and verifies

whether R′ � R holds. If it does, then the batch of
signatures is accepted; otherwise, the batch of verifications fails.

Our scheme uses the TP-EDCSA implementation, which uses
the KGLP algorithm to further reduce the time overhead of the
scalar multiplication operation. As the number of signatures
increases, the time spent verifying them decreases. The KTP-
ECDSA scheme uses the KGLP algorithm to reduce the time
spent on verification. It can verify large numbers of transactions
in the blockchain efficiently and reduces the time spent on signature
verification.

3.4 Correctness

The signature verification phase of the TP-ECDSA scheme meets
the computational correctness of individual verification processes and
batch verification processes, as shown in Equations 4–6.

3.4.1 Individual verification

Right � uP − vQ � s + βm( )P − w + r( )dP
� αr + w + r( )d + βm( ) − w + r( )d[ ]P
� αr + βm( )P
� kP
� R � Left.

(4)

3.4.2 Batch verification
For batch verification of different signers, there are ri �

x(kiP)(mod q) and ki � αiri + βimi in the signing phase. So, it
is only necessary to verify that Equation 5 holds.

∑t
i�1
kiP � ∑t

i�1
viP −∑t

i�1
uiQi. (5)

Then, the following equation holds:

Right � ∑t
i�1
viP −∑t

i�1
uiQi � ∑t

i�1
si + βimi( )P −∑t

i�1
wi + ri( )diP

� ∑t
i�1

αiri + wi + ri( )d + βimi( )⎛⎝ ⎞⎠ −∑t
i�1

wi + ri( )di
⎡⎢⎢⎣ ⎤⎥⎥⎦P

� ∑t
i�1

αiri + βimi( )P
� ∑t

i�1
kiP � Left.

(6)

4 Security analysis

4.1 Security formalism analysis

This section shows how the security model works in a game
between a challenger C and an attacker A. There are three types of
attackers: ordinary, strong, and super. Ordinary attackers usually
forge a signature with a specific public key by eavesdropping on
network communications. Strong attackers forge signatures when
they work with legitimate participants to obtain private keys. Super-
attackers can even forge signatures using only selected public keys.
They can also extract private keys from public keys and sign
messages using a “black box” tool.

Attacker A can denote the super attacker. The challenger C is
constructed by an algorithm withA as a black box and can simulateA
to gain accesses to the predictionmachine. In the next interaction game,
we assume the existence of super type I and type II attackersAI andAII.

4.1.1 Game
Super type I and type II attackers AI and AII and challenger C

play an interactive game with adaptively chosen users U and
messages m. The game is played by the attackers. During system
initialization, C generates public parameters and releases them to the
attackers. Attackers AI and AII can submit multiple queries, e.g.,
user-created queries, hash queries, etc., to the prediction machine
under the random prediction machine model in polynomial time.
After submitting all the necessary queries, if attacker AI or AII

successfully outputs a legitimate forged signature, it means that AI

or AII wins the game; otherwise, the forged signature fails.

Theorem 1: Under the intractability assumption based on the
elliptic curve discrete logarithmic problem, the proposed scheme
suffers from unforgeability under the adaptive choice of message
attack against the super type I attacker AI.

4.1.2 Proof
Under the stochastic predicatemachinemodel, a legitimate signature

can be forged assuming that in polynomial time, the attacker AI can
successfully crack the ECDLP puzzle with non-negligible probability after
executing qc user-created queries, qh hash queries, qs secret-value queries,
qk public-key queries, and qs signature queries. We can construct a
challenger C that runs AI as a subroutine for solving difficult ECDLP
problems. Given an ECDLP instance (P,Q � dP), for C, the ultimate
goal is to compute d. C and AI will play the following game:

4.1.3 Initialization phase
Challenger C runs the system initialization program, generates

the public parameter T � (p, a, b, P, q, h), sends the parameter to
AI, and randomly selects user U as the forgery target.

4.1.4 Query phase
AI performs the following randomized predicator query.
User creation query: challenger C maintains the list Lc with

element contents in the format of (U,Q) and an empty initial state.
When C receives a user-created query from AI about U, C searches
Lc and responds directly to AI if the corresponding tuple exists;
otherwise, C randomly selects d ∈ [1, q − 1], computes Q � dP, and
adds (U,Q) to the list Lc, and Q will respond to AI.
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Hash query: challenger C maintains list Lh, whose element
contents are in the format of (U, m, w) and whose initial state is
empty. When C receives a (m,w) query from AI about, it searches
the list Lh and responds directly to AI if the corresponding tuple
exists; otherwise, C chooses a random numberw ∈ Z*, computes the
weight value w of the messagem, adds it to the list Lh, and responds
to AI.

Secret value query: challenger C maintains the list Ls, whose
element contents are in the format of (U, k, R, r, α, β) and whose
initial state is empty. When C receives a secret value query from AI

about user U, C searches the list Ls and responds directly toAI if the
corresponding tuple exists; otherwise, C randomly selects
k, α, β ∈ [1, q − 1], computes R � kP, r � x(R)(mod q), and
then α and β that satisfy the equation by k � αr + βm, adds the
result to the list Ls, and responds to AI.

Public key query: when C receives the public key query from AI

about U, it searches the list Lc and re-executes the user-created query
if the tuple (U,Q) does not exist; otherwise, challenger C responds Q
to AI.

Signature query: when challenger C receives a signature query
from AI about message m, C searches lists Lc, Lh, and Ls for the
required data and randomly selects s ∈ [1, q − 1]; and if the equation
kP � (s + βm)P − (w + r)Q is valid, C responds to AI with the
formed signature σ � (r, s).

4.1.5 Forging phase
AI completes all the necessary queries and finally outputs a valid

message signature (U, m, σ � (r, s)). According to the forking
lemma, AI chooses a different hash function answer in the same
stochastic predicate machine model and obtains another message
signature pair (U, m, σ′ � (r, s′)) with the same r-value by replaying
the above process. Thus, Equations 7, 8 can be obtained as follows:

kP � s′ + βm( )P − w′ + r( )Q, (7)
kP � s′ + βm( )P − w′ + r( )Q. (8)

Based on the above two equations, (s − s′) � (w − w′)d can be
obtained, and then, d � (s − s′)(w − w′)−1 can be calculated.

Challenger C eventually computes d as a solution to ECDLP
instance (P,Q � dP) with non-negligible probability. However, this
contradicts the hardness of the ECDLP hard problem assumed in the
previous section. Therefore, the scheme in this paper is secure under
the stochastic predicate machine model with the existence of
unforgeability of the adaptive message selection attack by the
super type I attacker AI.

Theorem 2: Under the intractability assumption based on the
elliptic curve discrete logarithmic problem, the proposed scheme
suffers from unforgeability under the adaptive choice of message
attack against the super type II attacker AII.

The proof of Theorem 2 has the same idea and method as
Theorem 1, so the proof process will not be repeated in this paper.

4.2 Security analysis

1) Message integrity: Message integrity is achieved through hash
functions and Hamming weights. A hash function is a function

that maps the data on arbitrary length to a fixed length hash
value, which is unique and irreversible. Any minor changes to
the message will result in a completely different hash digest.
Hamming weights can further verify the integrity of the
message. When the data are tampered with, the Hamming
weight gives different results. Therefore, the scheme in this
paper has message integrity and can effectively prevent data
tampering. In the event that a signature is identified as being
fraudulent as a result of the injection of a fictitious signature,
the verification process will be unsuccessful.

2) Non-repudiation: in the scheme of this paper, the sender of the
message signs the message using its own private key. Since the
private key is owned only by the sender, no one else can forge
the sender’s signature. Therefore, once the signature of a
message has been verified, it can be determined that the
message was indeed sent by the sender, and the sender
cannot deny that it sent the message.

3) Forward security: assume that an illegal user can get the public
key of U. Due to QU � dUP, even if the attacker knowsQU and
P, by the elliptic curve discrete logarithm problem (ECDLP), it
is difficult for the attacker to compute dU, i.e., he cannot get the
private key of user U. Therefore, the scheme is forward secure.

4) Resistant weak randomness: after taking the first random
number k, the scheme in this paper, since k is randomly
selected in the range of [1, q − 1]. With r and m known, there
must exist an integer β ∈ [1, q − 1] that satisfies the equation
k � αr + βm when α is randomly selected from the interval
[1, q − 1]. The structure of the TP-ECDSA scheme in this
paper is reasonable and randomized, and it has the ability to
resist weak randomness.

5) Anti man-in-the-middle attack: if the two communicating
parties do not know each other’s identity, the establishment
of a critical session is vulnerable to man-in-the-middle attack.
This solution realizes two-way authentication through digital
signature technology so that illegal users cannot impersonate
either party and can effectively prevent man-in-the-
middle attacks.

5 Efficiency analysis

We compare ECDSA with KTP-ECDSA for verification to check
how well they work. The computer-based experimental runtime
environment is Windows 11, 64-bit CPU. Intel Core i5 CPU @
1.60 GHz; 8 GB RAM.

We use C to implement the schemes in this paper, calling the
parameters of the security curve in the OpenSSL source code
(OpenSSL is an open-source cryptographic library that provides a
large number of cryptographic algorithms and key protocols) and
programmed in Visual Studio 2021. The OpenSSL Development Kit
program is used to verify ECDSA and KTP-ECDSA for large prime
number domains.

The current mainstream batch algorithms include Schnorr and
SM2. However, Schnorr has not been widely adopted by all
mainstream blockchains, and the international adoption rate of
SM2 is lower than that of ECDSA and Schnorr. Consequently, in
the experimental efficiency analysis, we primarily compared with the
ECDSA algorithm.
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The ECDSA is employed in conjunction with KTP-ECDSA, as
detailed in this paper, to facilitate the individual and batch
verification of a single signatory and multiple signatories. Each
scheme is executed 100 times, and the resulting data are
averaged. The time required for the key generation phase differs
between the same-signer and different-signer signature verification
schemes. This is due to the fact that the same-signer scheme
necessitates the generation of a single set of key pairs but the
different-signer scheme requires the generation of multiple sets of
key pairs. Furthermore, the time required for each stage of the
signature verification process is almost identical. Table 3 presents
the runtime overhead of independent and bulk verification by the
same signers for varying message signature sizes. Table 4 presents
the runtime overhead of independent and bulk verification by
different signers. The use of a hyphen in tables III and IV
indicates the absence of pertinent data. As can be seen from
table III, when verifying 16 message signatures, ECDSA
consumes 4,737 ms for individual verification and 431 ms for
batch verification, while KTP-EDCSA consumes 58 ms for
individual verification and only 4.8 ms for batch verification. It is
evident from tables III and IV that the batch verification can
markedly reduce the time overhead of verification in comparison
to individual verification. In particular, the KTP-ECDSA batch
verification scheme proposed in this paper requires even less
time for the verification of signatures.

In Figure 2, we show whether the TP-ECDSA batch verification
scheme uses the KGLP algorithm to accelerate the time overhead of
the verification algorithm, i.e., comparing the time overhead of TP-
ECDSA and KTP-ECDSA batch verification, which can be shorter
and more efficient in the latter. The horizontal coordinate 2x(x �
0, 2,/, 10) in Figure 2 indicates the number of signatures, and the
vertical coordinate 2x(x � 0, 2,/, 10) indicates the time overhead
of verification. As demonstrated in Figure 2, TP-ECDSA batch
verification’s time overhead grows rapidly as the size of the
number of signatures grows exponentially, whereas KTP-ECDSA
batch verification’s time overhead grows more gradually. When the
number of signatures is 1,024, TP-ECDSA batch verification takes
approximately 1,540 ms, and TP-ECDSA batch verification takes
only 32.9 m, which optimizes the operation speed by approximately
97.8%. Therefore, for simultaneous verification of large-scale
message signatures, KTP-ECDSA batch verification with the
introduction of the KGLP algorithm can greatly reduce the
verification time and significantly improve the efficiency.

6 Conclusion

The present study proposes a batch verification scheme with the
objective of enhancing the efficiency of large-scale message signature
verification in blockchain. The proposed scheme builds upon the

TP-ECDSA scheme with a modeless inverse operation, employing
the KGLP algorithm in a dual-parameter elliptic curve digital
signature for batch verification. In comparison to independent
verification, the TP-ECDSA batch verification scheme reduces the
number of scalar multiplications and utilizes the KGLP algorithm to
accelerate the time-consuming scalar multiplication operation,
thereby significantly improving the verification speed. A security
analysis indicates that the proposed scheme ensures data security,
possesses non-forgeability, and can resist weak randomness attacks
on ECDSA. Experimental analysis demonstrates that in comparison
to existing schemes, the proposed scheme has a significant
advantage in terms of verification time costs and can achieve the
final verification result with fewer computational operations. It is
our belief that this scheme will prove to be a valuable addition to
blockchain systems in the future.
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