& frontiers | Frontiers in Blockchain

’ @ Check for updates

OPEN ACCESS

EDITED BY
Alex Zarifis,
University of Southampton, United Kingdom

REVIEWED BY

Chengzu Dong,

Lingnan University, Hong Kong, SAR China
Qasem Abu Al-Haija,

Jordan University of Science and Technology,
Jordan

Abdur Rasool,

University of Hawaii at Manoa, United States

*CORRESPONDENCE
Ivan A. Tarkhanov,
tarkhanov@isa.ru

RECEIVED 18 May 2025
ACCEPTED 10 July 2025
PUBLISHED 23 July 2025

CITATION

Hammoud O and Tarkhanov IA (2025) A scaling
distributed access control model for
blockchain-based file storage systems.

Front. Blockchain 8:1630839.

doi: 10.3389/fbloc.2025.1630839

COPYRIGHT

© 2025 Hammoud and Tarkhanov. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Blockchain

TvpE Original Research
PUBLISHED 23 July 2025
Dol 10.3389/fbloc.2025.1630839

A scaling distributed access
control model for
blockchain-based file storage
systems

Obadah Hammoud?! and Ivan A. Tarkhanov?3*

*Engineering Cybernetics Department, Institute of Computer Science, National University of Science and
Technology, Moscow, Russia, 2Department No. 9 “Mathematical Support of Computer Technology”
Federal Research Center “Informatics and Management” Russian Academy of Sciences, Moscow, Russia,
Scientific Research Department, State Academic University for Humanities, Moscow, Russia

Blockchain is considered as one of the popular solutions for decentralized data
storage which offers high availability and data immutability due to the use of a
specific structure for storing transaction blocks in combination with consensus
algorithms. However, the nature of blockchain makes it not suitable for storing
big amounts of data, like access control matrices which are typically used by DAC.
This research proposes a new access control model based on DAC and RBAC
models that is capable of managing access of various users, by storing minimal
data in blockchain, and full data off-chain with the help of Merkle trees. A new
model was proposed, which allows compressing access control data off-chain,
and storing only Merkle root hash on-chain. The article describes DecStore -
blockchain-based file storage system and how access control model can be
scaled to more than 1,000 users and 1,000 storage objects using a caching
mechanism on the users’ side. Experiments were conducted to verify the scaling
of the proposed model. Based on the obtained result, it was concluded that the
proposed model is applicable to a wide range of systems, including loT. This
model is one of the first to solve the problem of storing large-dimensional DAC
RBAC data.

KEYWORDS

access control, blockchain, Merkle tree, decentralized system, file storage system

1 Introduction

Access control management is considered an essential component in various systems.
Whether it is a file storage system, a social media website or any other system which
provides access to its private resources, it is required to manage how different parties can
access these resources. Many blockchain-based systems are not dedicated for managing
access control, but use access control as a required functionality within the system, such as
(Dong et al., 2020), where the author presents a blockchain-based model for banking, and
one of the used smart contracts is called “Controller Contract,” which handles access
control, in addition to other control-related tasks. According to (Butincu and Alexandrescu,
2024), web3 will reshape the concept of users identity by making it decentralized. Thus, it is
clear that having decentralized access control is required.

Access control can be classified into the following main types (Mudarri et al., 2015):

01 frontiersin.org

https://www.frontiersin.org/articles/10.3389/fbloc.2025.1630839/full
https://www.frontiersin.org/articles/10.3389/fbloc.2025.1630839/full
https://www.frontiersin.org/articles/10.3389/fbloc.2025.1630839/full
https://www.frontiersin.org/articles/10.3389/fbloc.2025.1630839/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2025.1630839&domain=pdf&date_stamp=2025-07-23
mailto:tarkhanov@isa.ru
mailto:tarkhanov@isa.ru
https://doi.org/10.3389/fbloc.2025.1630839
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

A. Mandatory access control (MAC): It is a type of access control
that has levels of confidentiality. An example is when
resources are classified as {common, secret, top secret}.
Thus, users can access resources based on the security level
they are granted.

B. Discretionary access control (DAC): in this type of access
control, the owner or the creator of the resource defines who is
allowed to access it. Usually, DAC uses a matrix access model
(Benantar, 2006), which is a table that describes privileges in a
subject (for example: user) versus object (for example:
resource) style. In social media networks like Facebook
(2023), a user can limit people who can access and see the
content of his profile or specific posts, which is considered as
an example of DAC.

C. Role-based access control (RBAC): In this type of access
control, users have different roles, and resources are

accessed based on the role they have. For example, in

e-commercial websites, some pages are limited to
administrators, other pages can be accessed by managers
and administrators, etc.

D. Rule-based access control (RuBAC): This type of access
control defines the rules by which resources can be
accessed, which can be various. As an example, some banks
might put a condition that currencies cannot be exchanged at

Rule-based access control is

night. usually used in

combination with Role-based access control (Gupta
et al., 2014).

E. Attribute-based access control (ABAC): It manages access by
assigning policies for different attributes of users, resources

and environment (Tarkhanov, 2016).

It is important to note that in modern systems a combination of
different types of access control models is usually used. Corporate
and government systems store millions of objects, including
financial, social media data, and IoT data. They need flexible and
reliable access control methods.

The usage of DAC can be sometimes unavoidable because it
might offer more control over data than other systems. For example,
sometimes it is required to provide a specific user access to a specific
resource, without giving permission to other users with the same
role or set of attributes. The problem is that DAC can result in a big
matrix of resources against users. In storage files systems, if there are
1 million files in total, and 1,000 users, we will end up with a billion
entries, which might be problematic when considering distributed
systems with huge data redundancy like blockchain. When
considering RBAC, less data is required to be stored, as a single
policy can cover many files. However, the resulting data size might
be still big, and unsuitable for blockchain storage. The aim of this
research is the development of a distributed DAC+RBAC access
control model that solves the problem of scaling for blockchain-
based systems without centralized components and minimizes the
size of the access rights storage in the blockchain.

2 Study case for proposed model

We will consider DecStore as a study case which is described in
detail in a series of articles (Hammoud and Tarkhanov, 2022;

Frontiers in Blockchain

10.3389/fbloc.2025.1630839

Hammoud et al, 2021). DecStore is a decentralized storage
system, which uses blockchain (Hyperledger Fabric
(HYPERLEDGER, 2019)) to manage files, users and storage
nodes. In this system, files and folders are distributed across
virtual disks (VDs) of a fixed size using several algorithms.
DecStore can be used by government and financial organizations
to provide secure and reliable exchange of confidential files between
organizations or within a large holding company. This system uses
virtual clusters (VCs). Each VC contains 3 VDs, located on different
storage nodes. The first VD in any VC contains blocks of files which
hold the content of the first halves of files. The second VD holds
blocks which contain the second halves. The last VD contains blocks
which contain the according Erasure coding (Balaji et al., 2018) of
the halves stored in the previous two-halves. Any storage node can
hold many VDs which are not located in the same VC. Figure 1
shows the architecture of the proposed system. Described below
access control model can be applied in any distributed blockchain-
based system.

It is important to note that the proposed access control model is
not proposed to be used with DecStore only. VDs can be expressed
in other systems by docker volumes, virtual disks (VHD of virtual
machines), folders, etc.

3 Related works

There are many studies that discuss applying access control in
blockchain. Most of these studies focus on how to implement access
control using blockchain for a specific field, especially IoT (Cheng
et al, 2022; Zhang et al., 2019). Cheng et al. (2022) suggested
deploying policy decision points (PDP) on blockchain, and
storing policy administration points (PAP) off-chain to reduce
the load size on blockchain. However, this study does not discuss
how off-chain data can be stored and how it is replicated or located
to prevent data loss in case of storage server loss. So, access control
rules are basically centralized (off-chain resource) and are accessed
by a decentralized system (blockchain), which is not a real
decentralized system. Also, based on the solution they offer,
when requests are sent to the blockchain, a request is forwarded
to off-chain resources for every single request, which might not be
effective in large-scale systems.

Maesa et al. (2017) proposed a hybrid framework that can store
policies right in blockchain or link to it. This framework rewrites
policies to minimize redundancies and stores a compressed version
of it in blockchain. This solution can work well with ABAC access
systems, but it does not fit DAC systems, as these policies are based
on users, and policy files can be large.

Paillisse et al. (2019) proposed a distributed system that depends
on blockchain to store policies. In their paper, they suggested that
administrators can control operations using a CLI based on a
Group-Based Policy. However, they suggest storing all policies on
the blockchain, which is not feasible when considering DAC.

Wang et al. (2018) proposed a model that enables storing data
on IPES, while the access control is managed using smart contracts.
When it is required to grant a user access to a data object, the data
owner adds his address to the list of people who are allowed to access
this file. This method does not consider the possibility of
determining the type of access, whether it is read or read/write.

frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

10.3389/fbloc.2025.1630839

VC6 = <VD6-P1,VD6-P2,VD6-EC>

A Pl

VD6-EC VD6-P1 VD6-P2

VD4-P1 VD5-P2 VD5-P1 VD4-P2 VD5-EC
VD3-P1 VD4-EC VD3-EC VD2-EC VD3-P2
VD1-P1E VD2-P1E VD1-Pﬁ VD1-E VD2-P2 ﬁ

Node 1 Node 2 Node 3 Node 4 Node 5
User
Blockchain 00,0

FIGURE 1
Data storage architecture in DecStore.

Also, such a model does not decrease the required data storage on
blockchain, as it still stores the full matrix of access control of users.

Sun et al. (2021) proposed a system based on Hyperledger
Fabric, which is dedicated for IoT applications, where the edge
devices are considered as Policy Enforcement Point, and get the
information from the blockchain ledger. Access control attributes
and policies are stored on the ledger, which means that the problem
of minimizing the size of stored data on blockchain is not
considered.

Han et al. (2025) proposed a blockchain-based access control
model, that uses Elliptic-curve cryptography for the encryption of
data, where data gets encrypted and stored on the blockchain ledger.
The method is mainly used for attribute-based access control, and
the rules of access control are represented by a tree of AND and OR
rules. This method was proposed for controlling requests from
drones for accessing data. It is clear that storing the encrypted
data on the blockchain does not minimize the data size on the
blockchain ledger.

Dai et al. (2024) managed to define the rules for controlling the
access of users to hazardous materials using smart contracts. The
method can be summarized by adding the hash of the user to the list
of hashes of users allowed to access the material, which means that
the method does not reduce the size of data on the blockchain.

Another solution (De Oliveira et al., 2022) suggests storing the
required resources off-chain while maintaining the verification on
blockchain. According to this solution, several smart contracts can
be deployed: Policies Enforcement Smart Contract (PEPSC), Policies
Decision Smart Contract (PDPSC), Policies Smart Contract

Frontiers in Blockchain

(PAPSC) and Policies Information Smart Contract (PIPSC).
Policies are stored using XACML model (Masi et al., 2012). This
method works well for ABAC, but storing the rules on blockchain in
the case of DAC is not
mentioned above.

recommended for the reasons

One interesting method for decentralized access is using zero-
knowledge proofs (e.g., zk-SNARKs) (Chen et al., 2022). This
method allows users to send proof of identity to the verification
entity instead of sending the real identity. However, this method has
a limitation, which is that the rules for all files/objects should be
stored, so the verifier can decide if this proof satisfies the rules for
accessing the required resource.

In this article, we propose a DAC and RBAC access control
model which results in minimum data storage size on blockchain,
and high scalability without compromising the expected security
level of the system or access speed.

4 Methods
4.1 Proposed access control model

The proposed access control model can be summarized as
following points:

o Creating Merkle trees for various storage entities in each

physical server
o Combining and compressing these trees

frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

TABLE 1 DAC access control data storage in blockchain.
User

f970e2767d0cfe75876€a857f92e319b

Merkle tree root hash

006d2143154327a64d86a264aea225{3

10.3389/fbloc.2025.1630839

Roles

Administrator

7694f4a66316e53c8cdd9d9954bd611d

TABLE 2 RBAC access control data storage in blockchain.

Merkle tree root hash

Administrator 0cc175b9c0f1b6a831c399e269772661 1, 4

Developer 8a8bb7cd343aa2ad99b7d762030857a2 2,3

« Store only the hash of the total Merkle tree hash for each user
in blockchain, instead of writing the access control policy for
each file on blockchain

o User Merkle proof to verify authorization

To achieve an access control model for DecStore that supports
scalability and requires minimal data storage in blockchain, the
system architecture and storage model can be modified as follows:

o Each virtual disk (VD) is provided with a unit called
“Permissions Storage unit.” For each user who has access to
at least one file in the specified VD, a tree is created in this unit.
This tree represents files organized within directories which
the user has access to by DAC. The storage units located in
VDs which belong to the same VC have the same copy of trees.

« Each storage node has a single tree for each user which
represents the combination of his DAC trees in the VDs
existing in this storage node.

« On the blockchain side, each user has 1 hash stored that
represents the total hash of his Merkle tree root (Merkle Tree:
A Fundamental Component of Blockchains | IEEE Conference
Publication | IEEE Xplore, 2023). If there are a million files,
and 100 users, only 100 hashes will be stored. Table 1 shows
how users access information is stored in blockchain. Merkle
tree root hash in this table represents user’s DAC Merkle
tree root hash.

Also, the roles are stored in blockchain in a similar way, as in
Table 2. For each role, a Merkle tree is built in which files that are
accessible by this role are addressed as tree leaves.

A typical flexible access control system is managed by policies
and consists of (Adams, 2005):

- Policy administration point (PAP): It is the component that
creates access policies.

- Policy information point (PIP): It is the source which holds the
policy information based on which the user’s access is granted
or denied.

- Policy Decision Point (PDP): It is the component that decides
whether a user is granted access or not.

- Policy Enforcement Point (PEP): It is the component that
creates a request and sends it to PDP. It collects required

Frontiers in Blockchain 04

76d80224611fc919a5d54f0ff9fbad46

Developer, team-leader

information from PIP and other resources, like user request
information to PDP

- Policy Retrieval Point (PRP): This component is not
mandatory. It is used only when there are several PDPs and
it is required to provide a centralized point for sending or
retrieving access policies.

In our proposed model, policy information point (PIP) is not
stored on a centralized server. When PDP (which is represented in
the system by a blockchain smart contract) makes a decision, it
retrieves information from two entities: the user, and the records
stored on the blockchain. The full access information is stored on the
storage nodes, and users synchronize their own access trees with the
ones located on the storage nodes. Policy Enforcement Point (PEP)
which is also represented by a smart contract, sends to PDP the
Merkle tree proof from the user request along with the according
expected Merkle tree root hash.

Thus, PIP is represented by three entities:

- The distributed network of storage nodes, which have the full
policies, and are used only to allow users to sync their policies.

- Users side, where each user stores his policies whether it is
DAC or RBAC.

- Merkle tree root hashes for both users and roles, which are
stored on the blockchain.

Users’ trees consist of three types of nodes:

Root-it represents the Merkle tree total hash.

Leaves: represent the files (or directories, in case the policy
allows the user to access all files in a directory instead of selecting
files manually). They can have an optional value “compressed.” We
will discuss it in the tree compression algorithm section.

Intermediate nodes: they can be directories or combining nodes.
A combining node is the node which combines two nodes of various
types, where any of those two nodes can be a leaf, a directory or a
combining node. This type of nodes will be discussed further in
“Building binary Merkle tree” section.

Each tree node contains two associated data structures: Hash
and value. Hash represents the hash of the value. Table 3 represents
the values of each node type.

Figure 2 represents the updated data storage architecture of
DecStore. In the updated architecture, it is clear that role trees are
distributed across storage nodes, where a storage node does not store
a role and its copy. Also, inside VDs, access trees are added.

The main outlines of the method can be described as follows:

1. An access control tree for each user is created in each storage
node. It has the set of files in this node the user has access to,
which exist in VDs of a specific preselected index. For each
user, all trees from VDs in a node are combined to a single tree,

frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

TABLE 3 Nodes’ types and structure description.

Node structure

Example

10.3389/fbloc.2025.1630839

File {Name = “File name,” Type = File, | {Name = “document.pdf,”Type = 2a72770681fa71958b02cf5511182f1fbae25efcIb361d0ebc0e533ed6842e64
Access = “Access type,” File, Access = R, Compressed =
Compressed = “compressed paths,” | Path = “/documents/”}
Path = “Path”}
Directory {Name = “Directory name,” Type = = {Name = “documents,” Type = c5503118d94f8e81085329abca5b4a21b64e2981548b13308f0a8282bad2cb8
Directory, Access = “Access type,” = Directory, Path = “/7}
Compressed = “compressed paths,”
Path = “Path”}
Combining {Type = Combiner, Paths = [“paths | {Type = Combiner, Paths = []} 4c8d6d1c41e87401619353aa6d70a577e7d25f98ba9de1002dd851a8d016365
node array”]}
VD4-P1 VD5-P2 VD5-P1 VD4-P2 VD5-EC { User access tree
VD3-P1 VD4-EC VD3-EC VD2-EC VD3-P2
VD1-P1 VD2-P1 VD1-P2 VD1-EC VD2-P2
1 1]
H Role 1 " Role 5 i ' Role 4 " : Role 3 ' Role 2 '
1 :: : 1 : 1 : 1 :
| Role3E='l Role1 'l Role2E=]!i Role4[=]!i| Role5 [
1 al ! ! a ! a
Node 1 Node 2 Node 3 Node 4 Node 5
(@5l -
Blockchain E}-@'—E
< > CACHE
User total merkle tree root
Roles total merkle tree root
FIGURE 2

DecStore architecture with proposed access control model.

Fronti

compressed and converted to a binary tree. These trees are used
for DAC (Section 4.2).

. Also, each storage node has several role trees. There is an extra

copy of each role tree, which is located on a different node. All
storage nodes have the same number of trees. Blockchain
distributes the trees and their copies on the storage nodes.

. Users synchronize their trees with the ones existing on the

storage nodes. This includes their personal trees (DAC) and the
roles trees (RBAC).

. Users use their copies of trees to access files by generating

Merkle proof. See Section 4.5.

. Blockchain handles processes related with distributing and the

recovery of trees in different situations, in order to grant that

ers in Blockchain

the system stays balanced, and that files are recoverable, or
recovered automatically to another node when a storage
node is lost.

4.2 Creating Merkle tree algorithm in case
of DAC

This algorithm has three main phases:

6. In each VD which is selected by blockchain, a tree for each user
is created. This tree shows which files a user has access to
in this VD.

05 frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

Production

SAP

|Attachments | ‘ | | Agreements ‘

Attachments

Documents

FIGURE 3
Separate VDs trees example.

7. Each node combines these trees into a single tree, which
represents which files the user has access to in this node. In
the combination process, files from different trees that are
located under the same folder get combined under a
single tree node.

8. The tree gets compressed after that, by combining tree nodes
which have a single child into one tree node, in order to
minimize the size of the tree (Section 4.2).

9. The resulting tree is converted into a binary tree, in order to
minimize the size of Merkle proof (Section 4.4).

Users’” access information is distributed across storage nodes
using VDs. This means that data is replicated in VDs that belong to
the same VC. When creating the combined Merkle tree, only one of
the VDs of each VC participates in this process to avoid redundancy,
which means that it is required to choose which VD will participate
in this process. Selecting a fixed VD for all users is not practical,
because it means more load on specific VDs, while it is preferred to
distribute the load over VDs. Assigning a set of VDs for each user is
not the best practice, as this means extra data storage in blockchain.
The selection of VD in this algorithm is dynamic, based on
the formula:

selectedVdIndex (user) = userId (user)mod 3

If the resulting number is 1, it means that only the first VD in all
VCs is selected for building the tree for this user. If it is 2, it means
that the second VD is used. If it is 0, it means that the VD which
holds the Erasure Coding is used. The initial treeNode in the
algorithm is the tree root node.

Trees are represented using sets of sets, where the main set is
the tree root, and the elements of this set represent child nodes of
the root (files and directories), and they are also sets that
represent the same concept. These sets (tree nodes) have
attributes (name, type, etc.). Files are represented by empty
sets with attributes. We will use the words «tree nodes» and
sets interchangeably. In each storage node, trees are selected
based on the selected VDs (based on the selected VD index),

Frontiers in Blockchain

10.3389/fbloc.2025.1630839

v

| saP

Attachments

| | Agreements |

FIGURE 4
User 1 combined tree of VD3-P2 and VD6-P2

which will be combined to build a single tree on the level of the
storage node. The tree node is expressed by the set TreeNode,
and the root of the tree is expressed as TreeRoot Node. The initial
selected TreeNode in the algorithm is TreeRootNode. Attribute
x of a tree root node can be expressed as TreeRoot Node*, and the
first element of the set is TreeNode;. This does not necessarily
mean that this is the tree of VC1. It means that it is the tree of the
first VD that the storage node holds, which is in the list of selected
VDs. CombinedTreeRoot Node can be calculated by selecting the
union (U) of each TreeRoot Node that participates in this process.
Starting from that, elements of a tree node Node get combined
as follows:

TreeNode ={C = AU BV A € Node A3B € Node,
B# AAA™" = BP" Uy {AV A € Node AAB € Node,

B+ AN APath — BParh}

Which means that it can have items from different trees under
the same directories, or it can be a single item if the directory has
one file only.

Let’s assume that in storage node 1 there are three VDs: VD3-P2,
VD5P1 and VD6-P2. Let’s assume also that the selected VD index is
2. In that case, only VD3-P2 and VD6-P2 are chosen. Now, if the
according trees are shown as in Figure 3, the resulting combined tree
will look like the tree in Figure 4.

The combination process repeats for every tree node in the list,
and the join function is performed on all the resulting tree nodes as
well until there are no more child nodes. The used notation shows
that tree nodes that have the same name attribute are combined with
each other and added to the TreeNode, as well as tree nodes that
have unique names.

As the current study case considers DecStore, in other systems
term VD can be replaced by “virtual machine,” or any unit that
allows logically separating files on one server (ex. folders). If files are
directly stored on the server, this means that the algorithm of
combining trees is not required.

frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

SAP/442.xml

Agreements/Documents/2023/12.23.pdf

Attachments

FIGURE 5
Compressed tree example.

Combiner 3
{paths = ['doc’, 'ppt}

Combiner 1
{paths = [/", 'doc']}

doc/1.doc

FIGURE 6
An example of the usage of paths attribute.

4.3 Compressing algorithm

After that, compression algorithm is called. This algorithm
is required to minimize the size of the tree, by compressing
tree nodes which have a single direct child into one, resulting
in a smaller tree in total. This means that directories which
have only one object (a file or a directory) are compressed
into one. Joining two tree nodes into one is described by
the formula:

JoinTreeNode (TreeNode) = {TreeN odec"mp "¢ = TreeNodeN*™

+TreeNodeComPres,

TreeNode = TreeNode, }

“Compressed” attribute in the tree leaf represents the path of
compressed tree nodes if they exist. “Access type” and “compressed”
attributes in the case of directories are used only when the policy
allows the user to access all files in a folder, so in this case, the
directory is a leaf. Starting with the root node, the compress
algorithm runs in a top-bottom model.

ParentTreeNode = TreeRootNode

The compress function for a parent tree node is defined by
the formula:

Frontiers in Blockchain

10.3389/fbloc.2025.1630839

doc

pdf
(.doc) 2 doc

@ @D G -

Example of a tree that does not use combining nodes.

;éombiner ZX

ombiner 1

;éomblner 1 k
/Comblner /Comblner 2\

FIGURE 8

Example of a tree that uses combining nodes.

Compress (ParentTreeNode) = VTreeNode € ParentTreeNode,

JoinTreeNode (ParentTreeNode), compress(TreeNode): |ParentTreeNode| = 1
compress(TreeNode): |ParentTreeNode| > 1

The compressed tree version of the tree presented in Figure 4 is
shown in Figure 5. It is clear that “compress” attribute for 12.23.pdf
is equal to Agreements/Documents/2023.

4.4 Building binary Merkle tree

The next step is converting the compressed tree into a binary
tree. In order to perform this step, a new type of Intermediate nodes
is added (combiner). Combiners are used to combine child nodes in
such a way that only 2 tree nodes are considered as direct child
nodes. This type of nodes has “paths” attribute. This attribute is set if
the combining node has a directory in one of its direct descendants
which are not combining nodes. Figure 6 represents how paths are
created in binary trees.

In combiner 3, “paths” value is doc and ppt. That is because it
has two direct folders: doc which is a “compress” value for the nodes
doc/1.doc and ppt. Folder 2023 is not added to paths, because it is a

frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

ype of tree node == DireCtory
and has child nodes

Yes

/Add a new node type combiner to treeNode/

/ Move treeNode; and treeNode;,¢ to the /
combiner

S~

v
Call ConvertTreeToBinary Algorithm
for treeNode=treeNode;, 1

Call ConvertTreeToBinary Algorithm
for treeNode=treeNode;

Stop <

FIGURE 9
Converting tree to binary algorithm.

child node of ppt, which is already added in paths. When accessing
2.ppt, given that the full path is/files/ppt/2023/2.ppt, Combiner 3 is
directly accessed because in paths it has ppt. And after that, 2023/
2.pdf is accessed directly.

Converting the tree into a binary tree is important in order to
decrease the size of Merkle tree proof. Let’s consider the tree
example in Figure 7 which does not use combining nodes:

Merkle Proof of the file 1.pdf requires checking 33 tree nodes:
L.pdf + hashes of all pdf files + hash of doc directory. If we convert
the tree to a binary one, it will require checking 7 nodes only: 1.pdf +
hash of 2.pdf + hash of 4 combiners (combiners 2 + 18+26 + 30) +
hash of doc directory as in Figure 8. The number of hashes of
required tree nodes in a single directory for Merkle proof is equal to
log, numbero ftreenodes.

Figure 9 represents the algorithm. It is clear that each 2 tree child
nodes of any tree node get combined into one combiner, and the
process is recursive until in total there are only 2 child nodes. The
algorithm then is called for each child. In this algorithm, treeNode;
is the first child of node treeNode. The algorithm is first called for the
root node of the tree.

Once all the storage nodes build the user’s tree, the root nodes
are combined the same way using combining nodes to build a single
Merkle tree. The hash of the resulting root node of this tree is stored
for each. Let’s consider building a Merkle tree for RBAC. For each
role, a tree gets built. A role tree contains the files to which the policy
associated with this role allows access. The same type of tree nodes

Frontiers in Blockchain

10.3389/fbloc.2025.1630839

and attributes proposed for DAC are used in RBAC. Roles get
duplicated, and distributed across storage nodes, where a storage
node cannot hold a role and its duplication. Each storage node holds
(|Roles|*2)/|N| of roles, where N is the set of storage nodes.

4.5 Users' access verification algorithm

This algorithm is used to verify whether a user has access to a file
or not. When a user sends a request to access a file, whether the
request is for reading or writing, he sends a Merkle proof along with
the request. The body of the request depends on the access method
used for this file. Table 4 shows the message header in the case of
RBAC and DAC.

Each user has a copy of his own personal tree + a copy of the
role(s) tree(s). The first step is to locate the file. This process can be
done using a top-bottom method without searching for all possible
tree nodes as in Depth First Search (DFS) (Tarjan, 1971), because the
Merkle tree is built in a structure which keeps the files organized in
its original path hierarchy. Files can be reached quickly by selecting
the correct intermediate nodes. Combining nodes have “paths”
attribute, which contains the names of direct directories if they
exist. Compressed attribute is also used in this process, in case there
are compressed nodes.

Once the user selects the file from the according tree, he sends
the file info along with Merkle proof to the load balancer,
represented by a blockchain smart contract. Blockchain smart
contract first checks the access type, and hashes the file info, and
then calculates the hash of the sum of the file info hash and the first
hash in Merkle proof array and repeats the process for all hashes in
Merkle proof array. After that, it compares the resulting hash with
the stored one in Table 1 in case of DAC, or with the stored hash in
Table 2 in the case of RBAC. Blockchain can confirm the user’s
identity based on his wallet authorization.

The user sends the file value without hashing it, and the Merkle
proof array (required tree nodes) P = {P1,P2,P3, .. .Pn}, where P1 is
the required file info value, and P2,P3,...Pn are the hashes of the
required tree nodes for Merkle proof.

Assuming that hash(x) is the hash function, Merkle tree hash
from the Merkle proof can be calculated using the recursive
function verif yMerkleProo f (P, n).

verif yMerkleProo f (P, i)
foi=0
" | hash(P; + veri f yMerkleProof (P,i — 1))otherwise

When the user sends a request to access a file, The type of access
sends (RBAC or DAC) is also sent along with Merkle proof. Thus,
the system understands which entry is required to be compared
with, as seen in Figure 10.

4.6 Synchronizing local access
tree algorithm

4.6.1 SIn case of DAC
When a user gets granted or revoked to access a file f, or if the
access type changes (read/write), this file gets added/removed/

frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

TABLE 4 The header of an access file request.

10.3389/fbloc.2025.1630839

{Access = “DAC,” MerkleProof = [...], FileInfo = {...}}

{Access = “

“RBAC,” Role = “Role type,” MerkleProof = [...], FilleInfo = {...}}

s file accessible
sing RBAC tree?

s file accessible
using DAC tree?

Send in the request the
according Merkle Proof along
with flag access_type=RBAC

Send in the request the
according Merkle Proof along
with flag access_type=DAC

Check in blockchain for the
access type sent in the request

l

Build the Merkle tree root hash
and compare with the Merkle
proof of the according access

type

l

Grant / revoke access based on
the comparison

FIGURE 10
Algorithm of resolving type of access.

updated in the access tree in the according VD. Changes get
propagated to the combined tree and to the total Merkle root
hash. The user can detect changes in his tree by comparing his
total Merkle root hash with the one stored in the blockchain.

4.6.2 In the case of RBAC

The same algorithm is used. If the user role gets changed, the tree
gets updated, and the user detects that by comparing the role Merkle
tree root hash stored in blockchain with his stored version of roles. If
the user gets a new role added, the user requests a copy of the role
Merkle tree from one of the storage nodes that host it, and the tree
checks from the blockchain if the user has this role or not before
sending it back. If the user loses a role, the role gets removed from his
entry in blockchain, and thus access gets revoked.

Frontiers in Blockchain

5 Experiments results

In order to estimate the performance of the algorithms, an
application which implements the proposed method for DecStore
was developed. The application was written in C++ with the help of
QT open-source platform, and the trees were represented in two
different ways: SQLite files and JSON files, as the implementation
technologies affect the performance results. The application was
tested using a laptop running Ubuntu 22.04 LTS on core i7-8575u
CPU and 16 GB of RAM. The experiment included creating two user
DAC trees from scratch consisting of 500 new files each, in order to
create the combined tree. SHA-256 hashing function was used to
create nodes hashes. The test was performed automatically
100 times. The mean time for this process is 9.48 s in case of
using SQLite, and 0.55 s in case of JSON files. Total tree size in case
of SQLite is 249.9 KB, while it is 552 KB when using JSON. The
implementation included combining 2 trees into one, compressing it
and converting it to binary, and it is available here
(Obadah Hammoud, n.d.).

In real life applications, DAC is probably much smaller than
1,000 files per node, as access is usually granted based on roles, and
also by applying policies to directories and their subdirectories,
instead of selecting individual files one by one, which means that the
size of the resulting trees is supposed to be smaller.

In order to evaluate the performance of the system compared to
other possible implementations, 3 systems were considered
for testing:

1- Centralized system: Laravel PHP framework was used to
implement it, as it is considered as a popular framework
for implementing APIs. MySQL was used for storing
access policies.

2- Blockchain Hyperledger: Where data is stored directly in
blockchain instead of using an external resource to store
policies. Docker was used for Hyperledger nodes.

3- DecStore: which is an implementation of the access control
model proposed in this paper.

1,000 files entries were generated, as well as 1,000 users. All users
were given access to all files (1,000 x 1,000). Three test cases
were performed:

1- Granting a new permission to a filee Which expresses
the speed of adding a new access rule for a user x to a file
y (1 x1).

2- Revoking a user’s access completely: Which means revoking all
types of access given to a user x to any file in the system
(1 x 1000).

3- Validating access: It is the timer required by the system to
check if a user x has access to a file y (1 x 1).

Obtained experiment results are shown in Table 5.

frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

TABLE 5 Performance tests results.

10.3389/fbloc.2025.1630839

Operation DecStore Blockchain (ms) Centralized system (ms)
JSON (ms) SQLite (ms)

Granting a new permission to a file 157 190 100 60

Revoking a user’s access completely 400 300 300 60

Validating access 130 140 100 10

Another experiment was conducted in order to understand how
much storage can be saved when applying the proposed method
(DecStore) against storing data directly on blockchain. For this
experiment, we considered the case of RBAC. 100 roles are created,
along with 1,000 files. Each file can be accessed using one of 10 roles,
from these 100 roles. Hyperledger Fabric (Blockchain) is used in this
experiment, as in the previous one. The size of data is obtained from
the peer nodes, be checking the size of the stored blockchain blocks:

— In case of using DecStore: 592 KB
— In case of using Hyperledger Fabric directly: 5.4 MB

It is important to mention that the roles were assigned directly. It
is clear that the storage size in DecStore is significantly smaller than
storing on Blockchain directly. Consecutive updating roles and
adding more files will result in much bigger size when using
Blockchain compared with Decstore. For example, adding or
revoking a role from the whole system will require updating all
affected files entries on blockchain to add/revoke the required role in
the case of Blockchain, which is time consuming and results of
having many transactions (storage size), while in DecStore, one
transaction is required, which adds-remove the role hash.

Based on the performance tests results, we can conclude that the
speed of the proposed system in various operations is not by far
behind other systems, while it supports scalability unlike other
systems. Also, it is clear that JSON files can be a good way to
represent the trees. However, the performance might differ when
implementing using other stack of technologies.

6 Discussions and limitations

The presented model has a number of advantages over the
solutions discussed earlier in Section 3. It minimizes the size of the
DAC and RBAC access rights data stored in the blockchain and is
capable of scaling.

When adding new access to the user’s combined tree, running
the compressing algorithm and converting the tree to a binary can be
performed faster than when creating from scratch, as the tree might
not require compressing at all, and the result of running the
algorithm of converting the tree to binary can end up with
adding few nodes without changing most of the nodes as it is
already in binary form.

Threats were analyzed using STRIDE modeling framework
(Shostack, 2014):

- Spoofing: If the attacker were able to spoof the Merkle proof, he
would not be able to use it to access data (as in replay attack),

Frontiers in Blockchain

10

because the Merkle proof’s hash is verified against the users’
identity value, which is tied to their wallet. Additionally,
manipulating nodes data by colluding nodes is not possible,
as the network is permissioned, which means that outsider
nodes cannot join and provide fake data, which prevents
against attacks such as Sybil (Igbal and Matulevicius, 2021).

- Tampering: If a user attempts to change his local tree copy by
adding access to a file or changing the type of access from read
to write, then the resulting Merkle proof will differ from the
one stored on the blockchain, and access will be denied.

- Repudiation: If a user’s access to a file was revoked and he does
not allow updating his local tree and sends the Merkle proof he
had before the revocation, he would not get access, as the
Merkle proof does not match

- Information Disclosure: If the attacker were able to copy the
MerKkle tree cache from another user, this would not be enough
to access data, as he has a different identity. The attack can only
succeed when he also steals the identity (wallet) of a user.

- Denial of Service (DoS): Such a problem is considered when
the attack is performed against a storage node rather than a
blockchain node, as blockchain nodes are replicated. However,
it is required to attack two nodes which have VDs that belongs
to VCs that are shared among those 2 nodes to stop data
availability.

- Elevation of Privilege (EoP): Users cannot self-assign data
access. Permissions must be granted by data owners.
Additionally, it is possible to track who has access to a
specific file using trees built in storage nodes, and access of
unwanted users can be revoked.

However, the proposed system has some limitations:

- Users are required to synchronize their trees regularly, in order
to access the system. However, synchronization does not mean
copying all the users’ trees. Changes can be detected by
comparing the total hash with the one stored in blockchain.
In case the hash is different, the node which has the modified
tree can be detected by its hash.

- Frequent changes to access rules means frequent
synchronization of changes and running the associated
algorithms. However, access can be assigned by directories
instead of selecting individual files, and RBAC can be used in
some cases instead of DAC, which can effectively minimize the
number of required processes.

- Time of revoking a user’s access operation is relatively long,
which means that the proposed model is not suitable for
systems where frequent deletion of the access rights

is necessary.

frontiersin.org

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

- Deployment: Results and performance depend on the system
settings, like the chosen blockchain network, which directly
affects various parameters, such as transaction speed, gas cost,
smart contracts, etc. Additionally, the system has several
components, which may necessitate additional deployment
time to ensure proper configuration and integration.

7 Conclusion and future work

In this research, we proposed a new access control system that
can work with blockchain in combination with off-chain storage
with caching on the users’ side. In this system, a part of the PIP data
is stored on the users themselves who request authorization, yet the
model uses Merkle tree root hashes stored on the blockchain to
prevent data manipulation. The proposed model uses a distributed
system for access control management and provides the mechanism
for maintaining data fairly distributed in several cases, including
adding or removing storage nodes. The access control model
consists of several algorithms which allow managing access
control in different scenarios. The caching mechanism reduces
the number of required requests, which means less pressure on
storage nodes. Also, it means less response time, as the decision is
made in blockchain itself, without requesting more data from the
storage node.

As experiments have shown, the proposed model is scalable and
minimizes the size of the rights storage in the blockchain several
times. However, the provided tests are implemented on a local
machine, and we plan to perform stress tests on the cloud in
the future.

This study considered a distributed file storage system
(DecStore) as a study case. However, this work can be adapted to
fit other types of systems that use blockchain and off-chain storage
to store any type of data. The approach proposed here does not
depend on the method of encoding or restoring data, but considers
the issue of reducing the dimension of the DAC matrix and the
distribution of this data in blockchain-based systems.

In future, we plan to work on integrating this access control
model with other technological platforms and study the outcome of
such integration.

References

Adams, C. (2005). “Authorization architecture,” in Encyclopedia of cryptography and
security. Editor H. C. A. van Tilborg (Boston, MA: Springer US), 23-27. doi:10.1007/0-
387-23483-7_18

Balaji, S. B., Nikhil Krishnan, M., Vajha, M., Ramkumar, V., Sasidharan, B., and Vijay
Kumar, P. (2018). Erasure coding for distributed storage: an overview. Sci. China Inf. Sci.
61 (10), 100301. doi:10.1007/s11432-018-9482-6

Benantar, M. (2006). “Discretionary-access control and the access-matrix model,”
Access control systems: security, identity management and trust models (Boston, MA:
Springer US), 147-167. doi:10.1007/0-387-27716-1_5

Butincu, C. N., and Alexandrescu, A. (2024). Design aspects of decentralized
identifiers and self-sovereign identity systems. IEEE Access 12, 60928-60942. doi:10.
1109/ACCESS.2024.3394537

Chen, T., Lu, H., Kunpittaya, T., and Luo, A. (2022). A review of Zk-SNARKSs. arXiv.
doi:10.48550/ARXIV.2202.06877

Cheng, C.,, Yan, B., and Wang, G. (2022). The blockchain based access control scheme
for the internet of things. Procedia Comput. Sci. Int. Conf. Identif. Inf. Knowl. internet
Things 202 (January), 342-347. doi:10.1016/j.procs.2022.04.046

Frontiers in Blockchain

11

10.3389/fbloc.2025.1630839

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found https://github.com/Obadah-H/
DistributedFileSystem.

here:

Author contributions

OH: Validation, Conceptualization, Writing - original draft,
Visualization, Software. IT: Supervision, Writing - review and
editing, Conceptualization.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Dai, Yi, Lu, G., and Huang, Y. (2024). A blockchain-based access control system for
secure and efficient hazardous material supply chains. Mathematics 12 (17), 2702.
doi:10.3390/math12172702

De Oliveira, T., Reis, L. H. A, Verginadis, Y., Mattos, D. M. F., and Olabarriaga, S. D.
(2022). SmartAccess: attribute-based access control system for medical records based on
smart contracts. IEEE Access 10, 117836-117854. doi:10.1109/ACCESS.2022.3217201

Dong, C., Wang, Z., Chen, S., and Xiang, Y. (2020). “BBM: a blockchain-based model
for open banking via self-sovereign identity,” in Blockchain - ICBC 2020. Lecture notes
in computer science. Editors Z. Chen, L. Cui, B. Palanisamy, and L.-J. Zhang (Cham:
Springer International Publishing), 12404, 61-75. doi:10.1007/978-3-030-59638-5_5

Facebook (2023). Facebook. Available online at: https://www.facebook.com (Accessed
August 1, 2023).

Gupta, P, Stoller, S. D., and Xu, Z. (2014). Abductive analysis of administrative
policies in rule-based access control. IEEE Trans. Dependable Secure Comput. 11 (5),
412-424. doi:10.1109/TDSC.2013.42

Hammoud, O., and Tarkhanov, I. (2022). A novel blockchain-integrated distributed data
storage model with Built-in load balancing. doi:10.1109/AICT55583.2022.10013548

frontiersin.org

https://github.com/Obadah-H/DistributedFileSystem
https://github.com/Obadah-H/DistributedFileSystem
https://doi.org/10.1007/0-387-23483-7_18
https://doi.org/10.1007/0-387-23483-7_18
https://doi.org/10.1007/s11432-018-9482-6
https://doi.org/10.1007/0-387-27716-1_5
https://doi.org/10.1109/ACCESS.2024.3394537
https://doi.org/10.1109/ACCESS.2024.3394537
https://doi.org/10.48550/ARXIV.2202.06877
https://doi.org/10.1016/j.procs.2022.04.046
https://doi.org/10.3390/math12172702
https://doi.org/10.1109/ACCESS.2022.3217201
https://doi.org/10.1007/978-3-030-59638-5_5
https://www.facebook.com
https://doi.org/10.1109/TDSC.2013.42
https://doi.org/10.1109/AICT55583.2022.10013548
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

Hammoud and Tarkhanov

Hammoud, O., Tarkhanov, I, and Kosmarski, A. (2021). An architecture for
distributed electronic documents storage in decentralized blockchain B2B
applications. Computers 10 (11), 142. doi:10.3390/computers10110142

Han, P., Sui, A.,and W, J. (2025). A secure and efficient access-control scheme based on
blockchain and CP-ABE for UAV swarm. Drones 9 (2), 148. doi:10.3390/drones9020148

HYPERLEDGER (2019). Hyperledger architecture, volume 1 introduction to
hyperledger business blockchain design philosophy and consensus. Hyperledger
Archit. 1. Available online at: https://8112310.fs1.hubspotusercontent-nal.net/hubfs/
8112310/Hyperledger/Offers/Hyperledger_Arch_WG_Paper_1_Consensus.pdf.

Igbal, M., and Matulevicius, R. (2021). Exploring sybil and double-spending risks in
blockchain systems. IEEE Access 9, 76153-76177. doi:10.1109/access.2021.3081998

Maesa, D., Mori, P., and Ricci, L. (2017). Blockchain based access control. doi:10.
1007/978-3-319-59665-5_15

Masi, M., Pugliese, R., and Tiezzi, F. (2012). “Formalisation and implementation of
the XACML access control mechanism,” in Engineering secure software and systems.
Lecture notes in computer science. Editors G. Barthe, B. Livshits, and R. Scandariato
(Berlin, Heidelberg: Springer), 60-74. doi:10.1007/978-3-642-28166-2_7

Merkle Tree: A Fundamental Component of Blockchains|IEEE Conference
Publication|IEEE Xplore (2023). Available online at: https://ieeexplore.ieee.org/
document/9588047 (Accessed September 30, 2023).

Mudarri, T., Abdo, S., and Al-Rabeei, S. (2015). Security fundamentals: access control
models. Interdiscip. Theory Pract.

Frontiers in Blockchain

12

10.3389/fbloc.2025.1630839

Obadah Hammoud (n.d.). accessControl_Github. GitHub. Available online at:
https://github.com/Obadah-H/DistributedFileSystem/tree/main/access_control
(Accessed July 3, 2025).

Paillisse, J., Subira, J., Lopez, A., Rodriguez-Natal, A., Ermagan, V., Maino, F., et al.
(2019). “Distributed access control with blockchain,” in ICC 2019 - 2019 IEEE
international conference on communications (ICC), 1-6. doi:10.1109/ICC.2019.
8761995

Shostack, A. (2014). Threat modeling: designing for security. Indianapolis: Wiley.

Sun, S., Du, R, Chen, S., and Li, W. (2021). Blockchain-based IoT access control
system: towards security, lightweight, and cross-domain. IEEE Access 9, 36868-36878.
doi:10.1109/ACCESS.2021.3059863

Tarjan, R. (1971). “Depth-first search and linear graph algorithms,” in 12th annual
symposium on switching and automata theory (swat 1971), 114-121. doi:10.1109/
SWAT.1971.10

Tarkhanov, I. (2016). Extension of access control policy in secure role-based workflow
model. doi:10.1109/ICAICT.2016.7991691

Wang, S., Zhang, Y., and Zhang, Y. (2018). A blockchain-based framework for data
sharing with fine-grained access control in decentralized storage systems. IEEE Access 6,
38437-38450. doi:10.1109/ACCESS.2018.2851611

Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., and Wan, J. (2019). Smart contract-based
access control for the internet of things. IEEE Internet Things J. 6 (2), 1594-1605. doi:10.
1109/J10T.2018.2847705

frontiersin.org

https://doi.org/10.3390/computers10110142
https://doi.org/10.3390/drones9020148
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/Hyperledger/Offers/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://doi.org/10.1109/access.2021.3081998
https://doi.org/10.1007/978-3-319-59665-5_15
https://doi.org/10.1007/978-3-319-59665-5_15
https://doi.org/10.1007/978-3-642-28166-2_7
https://ieeexplore.ieee.org/document/9588047
https://ieeexplore.ieee.org/document/9588047
https://github.com/Obadah-H/DistributedFileSystem/tree/main/access_control
https://doi.org/10.1109/ICC.2019.8761995
https://doi.org/10.1109/ICC.2019.8761995
https://doi.org/10.1109/ACCESS.2021.3059863
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1109/SWAT.1971.10
https://doi.org/10.1109/ICAICT.2016.7991691
https://doi.org/10.1109/ACCESS.2018.2851611
https://doi.org/10.1109/JIOT.2018.2847705
https://doi.org/10.1109/JIOT.2018.2847705
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2025.1630839

	A scaling distributed access control model for blockchain-based file storage systems
	1 Introduction
	2 Study case for proposed model
	3 Related works
	4 Methods
	4.1 Proposed access control model
	4.2 Creating Merkle tree algorithm in case of DAC
	4.3 Compressing algorithm
	4.4 Building binary Merkle tree
	4.5 Users’ access verification algorithm
	4.6 Synchronizing local access tree algorithm
	4.6.1 SIn case of DAC
	4.6.2 In the case of RBAC

	5 Experiments results
	6 Discussions and limitations
	7 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

