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In this paper, several models are integrated into a thermal model to study the impact of 
occupants’ behaviors on the building energy consumption. An air flow model is devel-
oped to simulate ventilation related to the occupant’s patterns of window opening and 
closing. An electric consumption model is developed to simulate the usage pattern and 
the electricity input to household electric appliances. The thermostat setpoint tempera-
ture and window shading schemes are varied with different occupants’ behavior norms 
and are included in the model. The simulation was applied to a typical household located 
in the city of Oshawa in Ontario, Canada. The results show that the window opening 
has the greatest impact on the energy consumption during the heating season, and the 
shading scheme has the greatest impact on the A/C energy consumption during the 
cooling season. The electricity consumption of the A/C can be significantly reduced by 
appropriately applying the shading and opening schemes and resetting the thermostat 
setpoint temperature to a slightly higher degree. Keeping the windows closed and allow-
ing the solar radiation to be transmitted through the window in winter help reduce the 
energy usage to heat the house.

Keywords: occupants’ behavior, energy consumption, shading scheme, natural ventilation, electricity consumption

introduction

Occupants’ behaviors have a great impact on the building energy consumption as well as the peak loads 
typically experienced during the cooling season in summer time. Occupants could easily mitigate this 
by opening windows to use natural ventilation to reduce the cooling energy need in summer (Iwashita 
and Akasaka, 1997), and use a higher temperature setpoint in summer and a lower heating setpoint in 
winter for energy saving purposes (Newsham, 1997). Emery and Kippenhan (2006) observed that the 
energy need for heating the incoming cold air from the outside as a fraction of the total energy need 
in a house built in 1980 was approximately double that of an unoccupied house (29% compared with 
14%). Paatero and Lund (2006) found that if the load of household appliances is shifted by 1 hr, the 
daily peak loads can be reduced by 7.2%, and with more severe demand site management schemes, 
the peak load at the yearly peak day can be reduced by 42%. Reinhart (2004) applied the probabilistic 
switching patterns (switching from electric lighting to daylighting) for a private office with a south-
ern façade, and found that the lighting energy demand for a manually controlled electric lighting 
and shading system ranges from 10 to 39 kWh/(m2 year). The predicted mean energy savings of a 
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switch-off occupancy sensor in an office was 20% and the mean 
electric lighting energy savings due to a daylight-linked photocell 
control range was from 60% to 0. Bourgeois et al. (2006) found 
that for those occupants that actively seek daylighting rather 
than systematically rely on artificial lighting, the primary energy 
expenditure on lighting can be reduced by more than 40%, when 
compared with occupants who rely on constant artificial lighting. 
Al-Mumin et al. (2003) conducted a survey on occupancy patterns 
and operation schedules of electrical appliances in 30 houses in 
Kuwait. The computer simulation results showed an increase of 
20% of the annual energy consumption compared with the results 
using default values of occupancy patterns from the program. 
Occupant behaviors are part of the building system, with implica-
tions on building energy use once changes in the behaviors are 
implemented (Lee and Malkawi, 2014). Several studies report 
that occupant behaviors significantly affect the energy demand of 
buildings (ranging from 1.0 to 2.84 times when comparing identi-
cal buildings) (Juodis et al., 2009; Maier et al., 2009). Therefore, it 
is very important to study the impact of occupants’ behaviors on 
the energy consumption of buildings and to identify what behav-
iors can be improved to reduce the building energy consumption.

From the literature survey above, the impact of the occu-
pants’ behavior on the building energy consumption can be 
summarized as: (1) the occupants can open windows to allow 
natural ventilation for reduced cooling load in summer; (2) the 
occupants should use blinds to obstruct the solar radiation com-
ing into the house to reduce the heat gain in summer and allow 
solar radiation to enter the house to reduce the heating energy 
need in winter; (3) occupants can vary the thermostat setpoint 
temperature to reduce cooling and heating energy demands in 
winter and summer seasons; and (4) the occupants’ should pay 
attention to the time of use of electrical appliances to avoid peak 
electricity demand time during the day.

Occupants’ living patterns were the first one to be investigated 
because it determines the existence of the occupants in the dwell-
ing. They are either expressed as “diversity profile” (Papakostas 
and Sotiropoulos, 1997; Shimoda et  al., 2007; Tanimoto et  al., 
2008) or a stochastic process (Page et al., 2008). In the “diversity 
profile” method, the occupants’ living patterns were generated 
from statistical data on averaged probabilities of respective activi-
ties at different characteristic days for different types of people. 
Living patterns are often applied in the simulation software. The 
stochastic model considers occupant presence as an inhomoge-
neous Markov chain interrupted by occasional periods of long 
absence and generates a time series of the state of presence (absent 
or present) of each occupant in a particular zone of the building. 
This approach is restrained by the time-step-size selection, which 
requires a transformation of the randomness from stochastic 
adaptive behaviors to building performance predictions (Gunay 
et al., 2013). Studies on window opening are mainly on field meas-
urements on how long the window will be open/close (Jian et al., 
2011) or the proportion of windows that were opened (Madhavi, 
2010). Logistic regression models were developed to simulate the 
window open/close mechanism (Nicol and Humphreys, 2004; 
Rijal et al., 2007; Herkel et al., 2008; Andersen et al., 2009), but 
there is lack of literature on how wide the window will be opened 
to be integrated into building simulation software.

For multiple occupants’ behaviors, some researchers employed 
the framework approach (Lee and Malkawi, 2014; Hong et  al., 
2015). For example, Lee and Malkawi (2014) used an agent-based 
modeling approach to simulate five occupant behaviors in a com-
mercial building including adjust clothing level, adjust activity 
level, window use, blind use, and space heater/personal fan use, 
Hong et  al. (2015) presented a DNAs networks to model the 
energy-related occupant behavior in buildings.

Some building simulation programs, such as EnergyPlus1 or 
ESP-r2, offer the feasibility of programing to modify occupants’ 
behaviors by adding new occupancy models. However, the 
learning curve for both programs is very steep. Other programs, 
such as eQuest3 or Design Builder4 allow the user to modify the 
occupants’ living patterns. However, there is limitation on how 
much and to what extent a user can reprogram either one. In the 
meanwhile, the dynamic changes on how wide the window will be 
opened and the level of shading, as well as continuously adjusting 
thermostat setpoint are all very important factors that affect the 
thermal load and the final energy consumption of the buildings. 
The dynamic factors are difficult to be incorporated into building 
simulation software because they contradict with the current 
static settings. So, how to predict the impact of occupant behav-
iors on energy consumption in buildings more reliably?

To overcome limitations mentioned above, this paper intro-
duces a holistic and integrated model (BMEOE), which considers 
the building enclosure, mechanical system, electrical appliances, 
occupants behavior, and external environment to simulate the 
building energy consumption. The model takes into account the 
proportion of the window opening (from fully close to fully open) 
and shading factor (from non-shading to fully shaded) as well 
as continuously adjusting thermostat setpoint, light-switching, 
and electrical appliances usage pattern. The results from the 
computer model are validated by simulation results from ESP-r, 
CFD modeling, and actual measurement obtained from the open 
literature. The model is then applied to a typical house located in 
the city of Oshawa (located 55 Km east of Toronto, ON, Canada), 
to examine the impact of occupants’ behavior on the energy 
consumption in residential buildings.

Mathematical Model

heat Transfer Through the Wall/roof of the house
Governing Equation
The wall is assumed to have four layers, and there are two bound-
ary nodes and one internal node for each layer, thus there are nine 
nodes for each wall/roof.

The governing equation for the transient heat transfer pro-
cess is:

 

∂
∂

= ∂
∂

T
t

T
xh

2

2α  (1)

1 http : / /apps1.eere.energ y.gov/bui ldings/energ yplus/?utm_source= 
EnergyPlus&utm_medium=redirect&utm_campaign=EnergyPlus%2Bredirect
%2B1
2 http://www.esru.strath.ac.uk/Programs/ESP-r.htm
3 http://www.doe2.com/equest/
4 http://www.designbuilder.co.uk/
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Heat Balance Over the External Wall Surface
The heat balance over the external wall surface is written as 
follows:
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Internal Nodes Between Two Surfaces
For internal nodes between two different layers, the following 
equation is written, as an example for the surface between layers 
no.1 and 2:
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Heat Balance Over the Inside Wall Surface
The heat balance over the inside wall surface is written as 
follows:
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Window Model
As the window contains very little thermal mass, it is considered 
to behave in a quasi-steady state mode.

The heat transfer between two layers:

 q U T Twin w os is= −( )  (5)

where:

 
U

Rw
w

1=  (6)

The heat transfer over the outer layer of the window:

 q q h T Twin abs,sol,out win,o o os= + ( )−  (7)

 q q q h T Twin abs,sol,in igh,in win,in is a= + + ( )−  (8)

The optical properties of a double-pane window with each 
pane being standard 3.175  mm sheet glass have a set of poly-
nomial coefficients as shown in Table 1. The transmittance and 
absorptance are calculated as follows (McQuiston et al., 2000):
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The absorbed solar radiation over the outer layer of the win-
dow is calculated as:

 

q G Gsol,out Direct,outer D diffuse,outer d
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1 SF= − +(
+

( ) α α

α iinner sol,inq )  (15)

The absorbed solar radiation over the inner layer of the win-
dow is calculated as:

 

q G Gsol,in Direct,inner D diffuse,inner d
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1 SF= − +(
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( ) α α

α uuter sol,inq )  (16)

Three double-glazed windows are considered, mounted on the 
south wall, east wall and west wall, respectively.

air Flow Model
The air flow through the opening of the windows can be calcu-
lated by the crack method (ASHRAE, 1992):

 m C A p
.

d
n= ⋅ ⋅ ⋅ρ ∆( )  (17)

 ∆ ∆ ∆ ∆p p p p= + +w s p  (18)
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The pressure difference due to stack effect can be calculated as 
(McQuiston et al., 2000):
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where H h
2

−  is the distance to the neutral plane, assumed at mid-

height of the window (m).
Air flow can occur through one opening or more than one 

opening (e.g., two openings or three openings) as a combination 
of stack effect and wind pressure.

TaBle 1 | Polynomial coefficients for a double-pane window with 
3.175 mm sheet glass (Tanimoto et al., 2008).

j aj,outer aj,inner tj

0 0.01407 0.00228 −0.00401

1 1.06226 0.34559 0.7405

2 −5.59131 −1.19908 7.2035

3 12.15034 2.22366 −20.1176

4 −11.78092 −2.05287 19.68824

5 4.2007 0.72376 −6.74585
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For single opening or more than one opening without wind 
pressure:
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For more than one opening with stack effect and wind-driven 
ventilation, a mass balance approach is applied:
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The combination of the stack effect and the wind pressure 
results in the shift of the neutral plane (Figure  1). It can be 
divided into three types: (1) HN ≥ H; (2) 0 < HN < H; (3) HN ≤ 0. 
The position of the new neutral plane for each window can be 
calculated by:

 ∆ ∆p pw s 0+ =  (24)

Substituting Eqs 19 and 20 into Eq. 24, and the following equa-
tion can be derived:
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The air flow through one opening of the window for type no.1 
is calculated as:
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The air flow through one opening of the window for type no. 2 
is calculated as:
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The air flow through one opening of the window for type no. 3 is 
calculated from:
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If To = Ta, there will be no stack effect.
If Cp,i < Cp,a (type no. 4):

m C W H C C pi

.

d p,i p,a w

n
OF ( )= − ⋅ ⋅ ⋅ ⋅ ⋅ − −( )ρ  (30)

FigUre 1 | air flow through the window due to stack effect and wind pressure.

If Cp,i ≥ Cp,a (type no. 5):

m C H C C pi

.

d p,i p,a w

n
OF W ( )= ⋅ ⋅ ⋅ ⋅ ⋅ −( )ρ  (31)

If To  <  Ta, there will be three cases exist: (1) HN  ≥  H; (2) 
0 < HN < H; (3) HN ≤ 0.
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For HN ≥ H (type no. 6):
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For 0 < HN < H(type no. 7):
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For HN ≤ 0 (type no. 8):
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electrical appliances Power input Model
The operating electric energy consumption for the electric appli-
ances working on multi-stage operating conditions is:

 E fi h,i i*AVG=  (35)
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If it is a group of appliances:
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The electric appliances include freezer, refrigerator, lighting, 
clothes washer, dish washer, TV, second TV, oven, etc.

heat Balance of the inside air
The indoor air of the house is assumed well mixed and therefore it 
is represented by one node. The indoor air temperature Ta is held 
at the thermostat setpoint value by a heating/cooling system. The 
heat balance for the indoor air is written as:

 
Q A h T T Q QHVAC j

j 1

M

a j,in a inf internal,conv 0+ −( ) + + =
=
∑

 
(38)

house energy consumption
In this system, the house is heated by forced air and cooled by 
a central air conditioning unit, and the same duct systems are 
used for heating and cooling (Figure 2). The following are the 
components of the whole system: (1) Heating: forced air heating 
system with heat supplied by a gas-fired furnace; (2) DHW: gas-
fired hot water tank; (3) Ventilation: exhaust fan; and (4) Cooling: 
central air conditioning unit.
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The following conditions applied:

 Q Qac HVAC summer season= − ( ) (39)

 Q Qfurnance HVAC winter season= ( )  (40)

Total electricity demand is:

 W W W W Wpp blower exhaust comp app= + + +  (41)

Total energy need of the house is:

 E E E Etotal pp furnace DHW= + +  (42)

Figure  3 presents an overview of the relationships among 
the models. The heat transfer through the wall/roof model 
calculates the temperature profiles of the wall/roof/floor and 
pass the inside surface temperature to the heat balance model; 
the window model calculates the temperature profiles of the 
window and pass the inside window surface temperature to the 
heat balance of the inside air model; the air flow model calculates 
the infiltration/exfiltration rate and pass it to the heat balance of 
the inside air model; the electrical appliances power input model 
calculates the appliances electrical demand and pass it to the 
house energy consumption, and at the same time calculates the 
convective internal heat gain of the electrical appliances and pass 
it to the heat balance of the inside air model; the heat balance of 
the inside air model calculates the heating and cooling load and 
pass it to the house energy consumption model; the purpose of 
the house energy consumption calculates the final house energy 
consumption.

numerical solution

The thermal and airflow model is written as a system of linear and 
non-linear equations. Non-linear equations are generated due to 
the surface-to-surface long-wave radiation in the thermal model, 
and also due to the coupling of air movement and heat transfer 
between the house and outdoor environment. However, if the 
radiation coefficients are used to calculate the surface-to-surface 
radiation, then the whole system of equations for temperatures 
can be considered as quasi-linear. The radiation coefficients are 
generated by using the total interchange view factor (Lin and 
Zmeureanu, 2008). The system of equations can then be broken 
into two sub-systems; one system that contains the unknown 
temperatures and another system that contains the unknown 
pressure coefficients.

The convective heat-transfer coefficients are calculated based 
on the updated air temperature difference, air flow direction and 
air velocity. The radiation coefficients are calculated using the 
total interchange view factor and the updated surface tempera-
ture difference.

The system of equations of the thermal and airflow models are 
written in form of a matrix:

 

A O
O C

T B
D
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












 =









CP

 (43)

where A is the matrix containing the thermal and optical proper-
ties of the system; C is the matrix containing the properties of the 
interfaces between the indoor and outdoor; B and D contain the 
coefficients of the driving forces for temperature and pressure, 
respectively.

By using the radiation coefficient and convective heat transfer 
coefficient through iteration (Lin and Zmeureanu, 2008), the 
entire system of equations is written separately as composed of 
a linearized part that contains the unknown temperatures only:

 A T B[ ] [ ] = [ ],  (44)

and a non-linearized part that contains the unknown pressures 
only:

 C CP[ ] [ ] = [ ]D .  (45)

For a house with three double-glazed windows, the total num-
ber of unknown temperatures of the system Eq. 44 is 60.

The linearized part of the system (equations for temperature) 
is solved by the Gauss-Seidel iteration technique, and the non-
linear part of the system (equations for pressure) is solved by the 
Newton-Raphson method (Press et al., 1992).

Validation

The simulation results of the thermal load of a house located in 
Oshawa were compared with the results from the ESP-r program 
(Figure 4). The house dimensions are 10 m × 10 m × 4 m, and 
includes three double-glazed windows which are mounted on the 
south wall, west wall and east wall, respectively. The window-to-
wall ratio of 0.15 is applied. Thermal resistance of the external 
walls is 3.4 m2 K/W, and of the roof is 5.5 m2 K/W. The U-value of 
the windows is 3.06 W/m2 K. The natural air infiltration rate for 
the house is set equal to 0.15 ACH, and the thermostat setpoint 
temperature is 22.5°C. No internal heat gain is considered. The 
simulation results from the computer program predicted the 
annual energy needs of 30,733 kWh, while the simulation results 
from the ESP-r program predicted the annual energy needs of 
29,766 kWh. The difference between the results from the com-
puter program and that of the ESP-r program was only 3.2%. The 
simulation results are in good agreement with the results from 
the ESP-r program.

The results of the ventilation model (which was used to 
calculate the air flow through the window openings) were 
compared with the results from the CFD studies of (Asfour and 
Gadi, 2007) for windows with two openings at opposite site. The 
wind speed was 1.0 m/s, and wind direction was either normal to 
the window (cases No.1 and 3), or oblique to the window (case 
No. 2). Detailed information of the three cases are presented in 
Table 2. The simulation results presented in Table 3 indicate that 
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the ventilation results are also in good agreement with the CFD 
results, with a difference of less than 5%.

The results from the power input model for the electric appli-
ances were compared with the mean hourly consumption curve 
of a household during weekends provided by Paatero and Lund 
(2006). The results are presented in Figure 5, and it is observed 
that the average difference between the power plant model and the 
mean hourly household electricity consumption is about 6.5%.

The results of the energy consumption are compared with 
measurement data on a house in Oshawa which was audited. 
Thermal resistance of the external walls and roof is 3.3 m2 K/W. 
The U-value of the windows is 2.5  W/m2  K. The natural air 
infiltration rate for the house is set equal to 0.075 ACH, heating 
and cooling by a central air-conditioning system. The results are 
presented in Figure 6. The computer model predicted total energy 
consumption of 23,389 kWh while the measurement result was 
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FigUre 4 | Predictions of the hourly thermal load, comparisons 
between computer model and esP-r program.

FigUre 5 | comparison of the hourly household appliances electricity 
demand.

FigUre 6 | comparison on the energy consumption, computer 
simulation vs. measurement data.

TaBle 2 | information for the cases tested in this study.

Building 
dimension 

(m × m × m)

Opening 
area (m2)

Wind  
direction (°)

Cp1 Cp2

Case 1 5 × 5 × 5 4 0 0.7 −0.2

Case 2 5 × 5 × 5 4 45 0.35 −0.4

Case 3 4 × 8 × 4 4 0 0.6 −0.35
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21,539 kWh. The average difference between the result from the 
computer model and measurement is about 6.6%.

Overall, the predictions of the ventilation model and electric-
ity power input model, as well as the energy consumption, are 
comparable with those obtained from a detailed CFD model and 
with the experimental measurement.

case studies

A house of 100  m2 floor area and 4  m wall height, located in 
Oshawa, ON, Canada, is selected as a case study. Table 4 presents 
a list of the inputs parameters for the computer model, where 
occupants living pattern and opening factor of the window 
represent window opening behaviors; occupants living pattern 
and shading factor of the window represent window shading 
behaviors; occupants living pattern and light switching pattern 
represent light switching behaviors; occupants living pattern and 
thermostat setpoint represent thermostat adjusting behavior; 
electrical appliances using habit represent electrical appliances 
using behaviors. The outdoor dry bulb temperature, humidity 
ratio, direct normal solar radiation, global solar radiation, diffuse 
solar radiation, wind speed, and wind direction were obtained 
from EnergyPlus5 weather file database. The average dry bulb 
temperature and direct normal solar radiation are presented in 
Figures 7 and 8. Each wall of the house is composed of 100 mm 
face brick, 135 mm insulation, and 20 mm gypsum board. The 
window-to-wall ratio of 15% is applied to three facades only 

5 http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/
region=4_north_and_central_america_wmo_region_4/country=3_canada/
cname=CANADA

TaBle 3 | simulation results vs. cFD results.

air flow rate (kg/s) Difference (%)

Model cFD

Case 1 3.09 3.19 3

Case 2 2.82 2.98 5

Case 3 3.17 3.3 4

(East, South, and West). The natural air infiltration rate for the 
house is set equal to 0.15 ach for newly built house, and 0.5 for old 
house. The house has one stove oven, one clothes washer, one dish 
washer, one freezer, and one color TV. The living patterns come 
from studies by (Papakostas and Sotiropoulos, 1997; Al-Mumin 
et al., 2003). The occupants’ living patterns and electric appliances 
usage are summarized in Table 5.

Table 6 provides the results of the total energy consumption, 
the furnace energy consumption, air-conditioning system elec-
tricity consumption, and other energy consumption on an annual 
basis. The furnace is assumed to have an energy efficiency of 0.85, 
and the air-conditioner has a COP of 2.0. The variables presented 
in the table are listed as follows: Φ =  building azimuth, degree 
from due North; T = indoor air temperature; ACH = infiltration 
rate, taken as 0.15 for newly built house, and 0.5 for old house; 
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FigUre 7 | ambient air temperature for case study.

TaBle 4 | input parameters for the computer model.

global information

Building azimuth (°N)

Standard longitude (°W)

Local longitude (°W)

Local latitude (°N)

Year (year)

Month (month)

Day of the month (day)

Day of the year (day)

Ground reflectance

Thermal properties of soil: specific heat (J/kg⋅°C), thermal conductivity  
(J/m⋅°C), density (kg/m3), and ground emissivity

Weather data (hourly values)

Dry bulb temperature (°C)

Relative humidity (%)

Ambient air pressure (Pa)

Global horizontal solar radiation (W/m2)

Direct normal solar radiation (W/m2)

Diffuse horizontal solar radiation (W/m2)

Wind speed (m/s)

Wind direction (°N)

Design parameters

Design room air temperature (°C)

Relative humidity (%)

Specific heat of the air (J/kg⋅°C)

House size: length (m), width (m), height (m)

Wall information for each facade: azimuth angle (°), tilted angle (°), height (m), 
and width (m), long-wave emissivity of the outside surface, and long-wave 
emissivity of the inside surface

Roof/floor information: tilted angle (°), width (m) and length (m), long-wave 
emissivity of the outside surface, and long-wave emissivity of the inside surface

Window information for each facade: window-to-wall ratio, width of the 
window (m), height of the window (m), U-value (W/m2⋅°C)

Air infiltration rate of the house (h−1)

Installed lighting density (W/m2)

Number of occupants

Occupants behavior

Occupants living pattern

Electrical appliances using habit

Mechanical system using habit

Power plant information

Transmission efficiency

control variables associated with occupants behavior

Shading factor of the window

Opening factor of the window

Thermostat setpoint

September 2015 | Volume 1 | Article 1610

Lin et al. Occupants’ behavior and energy consumption

Frontiers in Built Environment | www.frontiersin.org

SF  =  shading factor for window, 0 for no shading and 1.0 for 
complete shading; OF = opening factor for window, the opening 
area vs. the total area; Nlight = number of light bulbs turned on each 
time; TT = total energy consumption, kWh; H = Furnace energy 
consumption; A/C  =  air conditioning consumption; O  =  other 
energy consumption. Those variables are chosen to find out the 
best building location, and the best occupants’ behaviors related 

to thermostat setpoint, window opening/shading, number of 
lighting turned on, and to find out the related impact on energy 
consumption.

When considering case No. 5 as the base case, the simulation 
results predicted energy saving of 4.1–10.1% in residential end-
use energy consumption. The least energy consumption is case 
No.16 by applying 0% shading in winter, 50% shading during 
the transition season, and 100% shading in summer. Case No. 
14 becomes the second to least energy consumer by raising the 
thermostat setpoint from 22°C to 24°C in summer. Case No. 13 
has the lowest heating energy consumption because more light-
ing was turned on which generates additional heating in winter, 
and also a lower thermostat setpoint of 22°C was used in winter.

Case No. 20 has the lowest A/C energy consumption as it 
applies the following strategies: (1) changing thermostat setpoint 
throughout the year (22°C in winter, 23°C during transition 
season, and 24°C in summer); (2) applying 0% shading in winter, 
50% shading during the transition season, 100% shading in sum-
mer; and (3) opening the window in summer when outside air 
temperature is lower than the room temperature. When windows 
are opened in winter, the heating energy consumption increases 
dramatically, as shown in case No.11.

From the comparison of case No. 5 in Table 6, it appears 
that the ventilation rate of the house has the greatest impact 
on the heating energy consumption, and the shading schemes 
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FigUre 9 | regression model derived from the simulation results, 
case no. 11.
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appear to have the greatest impact on the A/C energy con-
sumption. The optimum building azimuth is zero, with the 
front wall facing south. The electricity consumption of the 
A/C can be reduced by shading the windows, by opening them 
in summer (when the outdoor air temperature is below the 
indoor air temperature), and by employing a slightly higher 
thermostat setpoint temperature in summer and during tran-
sitional seasons.

Table 7 presents the percentage of energy consumption for 
each component of all the tested cases. It is shown that the 
furnace energy consumption accounts for 56–69%, and the A/C 
consumes 1.2–6.7%, lighting and electrical appliances consume 
11–19%, hot water consumes 9.5–12%, and fans, including 
the exhaust fan and the blower fan of the furnace, account for 
5.2–7.1% of the total energy consumption. Least amount of 
heating energy consumption and A/C consumption were found 
in Case No. 13 and case No. 20, the same as being observed in 
Table 5.

The accumulative energy consumption of the house was 
found to have a linear relationship with the accumulative degree 
days (adding all the degree days from the first day to the last day 
for calculation of the energy consumption) (Figure 9) regard-
less of the changes in occupants’ behaviors. The R2 value was 
0.99 and the relative difference between the predicted energy 
consumption from the correlation model and the simulation 
results was <7.6%. This appears to suggest that the occupants’ 
behavior has a linear impact on the building energy performance 
which deserves further investigation in order to develop simpler 
modeling algorithms of occupants’ behavior that could be eas-
ily integrated into existing building performance simulation 
programs.

The simulation then is applied to the 270 houses in Oshawa 
which were monitored by smart meters. The ranges for the thermal 
resistance for the roofs, external walls, floors, and windows are 
0.54–7.05, 0.64–3.11, 0.56–5.01, and 0.2–0.46  m2  K/W, respec-
tively. The ACH for those house ranges from 0.0745 to 0.744. 
The efficiency for heating ranges from 0.76 (furnace) to 2.0 (HP, 
estimated), for domestic hot water is from 0.55 to 0.82. The SEER 
for the AC units is from 6 to 10. The savings due to improvement 
of occupants’ behaviors is predicted to be from 6.8 to 11% of the 
total building energy consumption (Table  8). The improvement 
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conclusion

This paper presented a mathematical model that considers the 
building envelop, window shading, and opening schemes, and 
thermostat setpoint temperature and also usage pattern of the 
electric appliances, e.g., the impact on energy consumption and 
power demand due to different occupants’ behaviors related to 
window opening and shading schemes against the temperature 
and solar radiation, thermostat adjusting against the outdoor 
air temperature, and occupants’ preference on using the electri-
cal appliances can be simulated. The results from the computer 
model are validated with ESP-r, a detailed CFD model and with 
the experimental measurement with good agreements.

The simulation results showed that the infiltration/ventila-
tion rate of the house has the greatest impact on the heating 
energy consumption, and the shading schemes have the great-
est impact on the A/C energy consumption. The electricity 
consumption of the A/C can be significantly reduced by appro-
priately applying window shading and opening schemes and 
by controlling the thermostat setpoint temperature. Keeping 
windows closed in winter and allowing solar radiation to be 
transmitted through them greatly help to reduce the heating 
loads of the house. This model can also be used for assisting the 
efficient building design and retrofit analysis since it take into 
account many factors such as building orientation, building 
envelop material, shading, as well as control on heating and 
cooling.

However, it is noted that as the study is only conducted in 
the house of Oshawa. The results might be different for houses 

of occupants’ behaviors includes lowering the thermostat setpoint 
by 2°C in winter, provide full shading in summer, and close the 
window fully in winter, and turn off more lights in summer when 
not needed.

TaBle 6 | results for different cases.

case TT h a/c O Φ T ach sF OF nlight saving (%)

1 27669.9 16329.2 1849.4 9491.3 0 22 0.15 0 0 6 7.78

2 27920.5 16884.7 1593.4 9442.3 45 22 0.15 0 0 6 6.95

3 28061.3 17230.0 1422.4 9408.8 60 22 0.15 0 0 6 6.48

4 28765.7 17703.9 1563.1 9498.7 0 23 0.15 0 0 6 4.13

5e 30004.4 19143.4 1301.1 9559.9 0 24 0.15 0 0 6 0.00

6 34213.2 22415.5 1892.3 9905.4 0 22 0.35 0 0 6 −14.03

7 39282.6 27090.7 1957.6 10234.3 0 22 0.50 0 0 6 −30.92

8 28553.4 18042.2 1139.6 9371.7 0 22 0.15 0.5 0 6 4.84

9 30128.2 20157.9 620.6 9349.6 0 22 0.15 1.0 0 6 −0.41

10 31085.3 19516.1 1864.3 9704.9 0 22 0.15 0 0.001 6 −3.60

11 34564.3 22748.4 1890.7 9925.1 0 22 0.15 0 0.002 6 −15.20

12 27340.7 16730.6 1758.1 8852.0 0 22 0.15 0 0 2 8.88

13 28185.2 15739.2 1992.8 10453.3 0 22 0.15 0 0 12 6.06

14 27168.5 16408.3 1452.6 9307.5 0 22,24a 0.15 0 0 6 9.45

15 27564.0 16880.5 1370.0 9313.5 0 22,23,24b 0.15 0 0 6 8.13

16 26973.1 17081.3 714.0 9177.9 0 22 0.15 0,0.5,1.0c 0 6 10.10

17 27679.0 16344.4 1843.9 9490.7 0 22 0.15 0 0,0.001d 6 7.75

18 27464.8 17947.8 382.6 9134.5 0 22,23,24b 0.15 0,0.5,1.0c 0,0.001d 6 8.46

19 28009.6 18488.5 357.1 9164.08 45 22,23,24b 0.15 0,0.5,1.0c 0,0.001d 6 6.65

20 28343.2 18820.2 341.0 9182.1 60 22,23,24b 0.15 0,0.5,1.0c 0,0.001d 6 5.54

a22°C in winter, 24°C in summer, 22°C for other seasons.
b22°C in winter, 24°C in summer, 23°C for other seasons.
c0 in winter, 1.0 in summer, 0.5 for other seasons.
d0 in winter, 0.001 in summer when outdoor air temperature is lower than indoor air temperature.
eBase case. 
Bold font indicates the  highest and lowest energy consumption cases

TaBle 7 | Percentage of energy consumption for each component.

case Furnace 
(%)

a/c (%) lighting and 
appliances (%)

hot water (%) Fans (%)

1 59.01 6.68 15.96 11.88 6.46

2 60.47 5.71 15.82 11.78 6.23

3 61.40 5.07 15.74 11.72 6.08

4 61.55 5.43 15.35 11.43 6.24

5 63.80 4.34 14.72 10.96 6.19

6 65.52 5.53 12.91 9.61 6.44

7 68.96 4.98 11.24 8.37 6.44

8 63.19 3.99 15.47 11.51 5.84

9 66.91 2.06 14.66 10.91 5.46

10 62.78 6.00 14.21 10.58 6.44

11 65.81 5.47 12.78 9.51 6.43

12 61.19 6.43 13.83 12.02 6.53

13 55.84 6.37 19.05 11.66 7.07

14 60.39 5.35 16.25 12.10 5.90

15 61.24 4.97 16.02 11.93 5.84

16 63.33 2.65 16.37 12.19 5.47

17 59.05 6.66 15.95 11.88 6.46

18 65.35 1.39 16.08 11.97 5.21

19 66.01 1.27 15.77 11.74 5.21

20 66.40 1.20 15.88 11.60 5.22

Bold font indicates the highest and lowest percentages in energy consumption.
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TaBle 8 | savings due to improve of occupants’ behaviors from selected house in Oshawa.

house 
iD

Year  
built

rroof 
(m2 K/W)

rwall 
(m2 K/W)

rfloor 
(m2 K/W)

rwindow 
(m2 K/W)

cOP  
of ac

heating 
equipment 
efficiency

infiltration 
(ach)

Dhw 
efficiency

heating 
demand 

(kWh/cDD)

cooling 
demand 

(kWh/cDD)

saving  
(%)

39817 1987 5.25 2.12 0.76 0.3 NA 0.76 0.338 0.55 3.34 4.86 11.0
39843 1973 5.4 1.8 2.8 0.33 NA 1 0.305 0.58 4.974 3.3413 6.8
40431 1987 5.2 3 0.76 0.4 3 0.76 0.262 0.55 0.7516 8.0505 9.7
63892 1955 0.52 2.13 2.18 0.28 NA 0.8 0.551 0.55 0.927 1.66 9.6
66208 1994 5.08 2.12 5.01 0.3 3 0.94 0.33 0.58 0.6996 3.3409 10.5
66968 1996 5.28 2.12 5 0.3 3 0.9 0.226 0.58 3.1239 17.816 7.5
79433 1996 5.31 3.04 5.01 0.3 3 0.9 0.186 0.58 1.67 11.44 9.2
79463 1995 6.53 2.13 5.01 0.3 3 0.8 0.172 0.57 0.6784 4.9367 10.5
79717 1985 3.32 2.12 3.97 0.4 3 0.76 0.075 0.55 2.8561 23.208 7.8
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located in other climate zones. Future work includes (1) devel-
opment of simpler modeling algorithms of occupants’ behavior 
that could be easily integrated into existing building perfor-
mance simulation programs; (2) incorporation of occupants’ 
attitude, social, economic and cultural behavior factors into the 
computer model.
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appendix

nomenclature

Ai = area of the opening, m2;
Aj = inside wall/window surface area, m2;
AVGi = average power input per cycle of the ith electric appliance, W;
cpi = specific heat of the ith layer of the wall/floor/roof, J/kg K;
Cc = consumption coefficient, kWh/K;
Cd = flow coefficient, taken as 0.83, dimensionless;
Cf = draft coefficient, the actual pressure difference divided by the 
theoretical pressure difference, dimensionless;
Ch = consumption coefficient for heating, kWh/K;
Cp,a = Cp value of the inside surface, dimensionless;
Cp,i = Cp value at the ith window surface, dimensionless;
CDD = cumulative degree days, °C;
dxi = thickness of the ith layer of the wall/floor/roof, m;
EDHW = primary energy consumption of natural gas by the gas-
fired hot water tank, J;
Efurnace = primary energy consumption of natural gas by the gas-
fired furnace, J;
Etotal = end-use energy need of the house, J;
Epp = primary energy consumption by the power plant, J;
fd,k = frequency of daily usage for an electric appliance in a group, 
e.g., 0.31 for clothes washer and 0.11 for clothes dryer;
fh,i  =  hourly probability on the usage of the electric appliance, 
dimensionless;
Gd = diffuse solar radiation, W/m2;
GD = direct solar radiation, W/m2;
h = height to calculate the pressure difference, m;
hwin,in = combined convective coefficient over the inside surface of 
the window; W/m2 K;
hwin,o = combined convective coefficient over the outside surface 
of the window, W/m2 K;
H = height of the window, m;
ki =  thermal conductivity of the ith layer of the wall/floor/roof/
window, W/m⋅K;
mi = air flow rate through the ith opening, kg/s;
n = flow exponent, 0.5 for turbulent flow, dimensionless;
N = number of openings, dimensionless;
OFi  =  opening factor, the opening proportional to the total 
window area, dimensionless;
po = ambient air pressure, Pa;
Pi,j = power input to the ith electric appliance in phase j (e.g., ramp 
up, normal operation, ramp down), W;
qabs,sol,in = absorbed solar radiation over the inner layer surface, 
W/m2;
qabs,sol,out = absorbed solar radiation over the outer layer window 
surface, W/m2;
qconv,l,in  =  convective heat flux over the inside wall/floor/roof/
window surface, W/m2;
qconv,l,out =  convective heat flux over the outside wall/floor/roof/
window surface, W/m2;
qigh,in = internal heat gain over the window surface, W/m2;
qrad,ihg,1 = radiation heat flux due to internal heat gain, W/m2;
qsol,l,int  =  absorbed solar radiation at the inside wall/floor/roof 
surface, W/m2;

qsol,l,out =  absorbed solar radiation at the outside wall/floor/roof 
surface, W/m2;
qsurf,l,out,t  =  net surface-to-surface radiation leaving the outside 
wall/floor/roof/window surface, W/m2;
qsurf,l,in = net surface-to-surface radiation leaving the inside wall/
floor/roof/window surface, W/m2;
qwin = heat transfer through the window, W/m2;
Qac = air-conditioning load, W;
Qinf = heat loss/gain through exfiltration/infiltration, W;
QE = electricity consumption, kWh;
Qfurnace = furnace heating load, W;
QHVAC = heat addition rate by the heating system, W;
Qinternal,conv  =  convective part of internal heat gain from people, 
lighting, and electric appliances, W;
Ra = gas constant for air, J/kg K;
Rw = thermal resistance of the double pane, m2 K/W;
SF  =  window shading factor, 0 indicates no shading, and 1.0 
indicates complete shading, dimensionless;
t = time, s;
th = thickness of the wall/floor/roof, m;
T = temperature of the wall/roof/floor, K;
Ta = indoor air temperature, °C;
Tis = inner layer temperature of the window,°C;
Tj,in = temperature of inside surface j, °C;
To = outside air temperature, °C;
Tos = outer layer temperature of the window, °C;
U = building consumption factor, kWh/K;
Uw is the U-factor of the double pane, W/m2 K;
vw = wind speed over the window surface, m/s;
W = width of the window, m;
Wapp = electric power input to the electric appliances, W;
Wblower = electric power input to the blower fan of the furnace, W;
Wcomp = electric power input to the compressor of the AC, W;
Wexhaust = electric power input to the exhaust fan, W;
Wi = electric input of the ith electric appliance, W;
x = length, m;
αdiffuse,inner = absorbance of diffuse solar radiation at the inner layer 
surface, dimensionless;
αdiffuse,outer = absorbance of diffuse solar radiation at the outer layer 
surface, dimensionless;
αDirect,inner = absorbance of beam solar radiation at the inner layer 
surface, dimensionless;
αDirect,outer = absorbance of beam solar radiation at the outer layer 
surface, dimensionless;
αh = temperature diffusion coefficient for each layer of the wall, 
m2/s;
ρ = out flow air density, kg/m3;
ρa = density of the outflow air, kg/m3;
ρi = density of the ith layer of the wall/floor/roof/window, kg/m3;
ρo = outdoor air density, kg/m3;
τj = time required for phase j, min.;
Δpi  =  pressure difference between the house and the outdoor  
air, Pa;
Δpp = pressure difference due to building pressurization, assumed 
zero in this paper, Pa;
Δps = stack effect pressure difference, Pa;
Δpw,i = wind induced pressure difference, Pa;
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