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The double impulse is introduced as a substitute of the fling-step near-fault ground 
motion. A closed-form solution of the elastic–plastic response of a structure on 
compliant (flexible) ground by the “critical double impulse” is derived for the first time 
based on the solution for the corresponding structure with fixed base. As in the case of 
fixed-base model, only the free vibration appears under such double impulse and the 
energy approach plays an important role in the derivation of the closed-form solution of 
a complicated elastic–plastic response on compliant ground. It is remarkable that no 
iteration is needed in the derivation of the critical elastic–plastic response. It is shown 
via the closed-form expression that in the case of a smaller input level of double impulse 
to the structural strength, as the ground stiffness becomes larger, the maximum plastic 
deformation also becomes larger. On the other hand, in the case of a larger input level 
of double impulse to the structural strength, as the ground stiffness becomes smaller, 
the maximum plastic deformation becomes larger. The criticality and validity of the pro-
posed theory are investigated through the comparison with the response analysis to the 
corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault 
ground motion. The applicability of the proposed theory to actual recorded pulse-type 
ground motions is also discussed.

Keywords: earthquake response, critical response, elastic–plastic response, soil–structure interaction, near-fault 
ground motion, fling-step input, double impulse

INTRODUCTION

As the dense measurement system of earthquake ground motions becomes usual, various aspects 
of near-fault ground motions have been made clear. Following these situations, the effects of 
near-fault ground motions on structural response have been studied extensively (Bertero et  al., 
1978; Hall et al., 1995; Sasani and Bertero, 2000; Alavi and Krawinkler, 2004; Makris and Black, 
2004; Mavroeidis et  al., 2004; Kalkan and Kunnath, 2006, 2007; Xu et  al., 2007; Rupakhety and 
Sigbjörnsson, 2011; Yamamoto et al., 2011; Minami and Hayashi, 2013; Khaloo et al., 2015; Vafaei 
and Eskandari, 2015). The versatile investigations clarified the fling-step and forward-directivity 
characteristics (Mavroeidis and Papageorgiou, 2003; Bray and Rodriguez-Marek, 2004; Kalkan and 
Kunnath, 2006, 2007; Mukhopadhyay and Gupta, 2013a,b; Zhai et al., 2013; Hayden et al., 2014; 
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Yang and Zhou, 2014). In particular, Northridge earthquake in 
1994, Hyogoken-Nanbu (Kobe) earthquake in 1995, and Chi-Chi 
(Taiwan) earthquake in 1999 induced strong attention to many 
earthquake structural engineers and designers.

Some researchers modeled the fling-step and forward-
directivity inputs by a few wavelets or a series of harmonic waves. 
In this modeling, many useful research works have been con-
ducted. Mavroeidis and Papageorgiou (2003) studied the charac-
teristics of this class of ground motions in detail and constructed 
some simple models (for example, Gabor wavelet and Berlage 
wavelet). Xu et al. (2007) used a kind of Berlage wavelet for the 
performance evaluation of passive energy dissipation systems. 
Takewaki and Tsujimoto (2011) employed the Xu’s approach and 
proposed a method for scaling ground motions by taking the drift 
and input energy demand into account. Takewaki et  al. (2012) 
used a sinusoidal wave for pulse-type waves.

While the closed-form or nearly closed-form solutions of 
the elastic–plastic earthquake response have been obtained 
so far only for the steady-state response to sinusoidal input or 
the transient response to an extremely simple sinusoidal input 
(Caughey, 1960a,b; Roberts and Spanos, 1990; Liu, 2000), Kojima 
and Takewaki (2015a,b) demonstrated that the elastic–plastic 
response (continuation of free vibrations) can be derived by an 
energy approach without solving directly the equations of motion 
as differential equations.

The resonance plays a key role in the earthquake-resistant 
design and it has a strong effect even in case of near-fault ground 
motions. In the previous research, the resonant equivalent fre-
quency had to be computed for a specified input level by chang-
ing the excitation frequency in a parametric manner (Caughey, 
1960a,b; Roberts and Spanos, 1990; Liu, 2000). On the contrary, no 
iteration is required in the recently proposed method for the dou-
ble impulse (Kojima and Takewaki, 2015a). They demonstrated 
that the resonance can be proved by using energy investigation, 
and the critical timing of the second impulse can be characterized 
as the time with zero restoring force. This advantageous feature is 
retained also in this paper for the structures on flexible ground. 
They also made clear that the maximum elastic–plastic response 
after impulse can be obtained by equating the initial kinetic energy 
computed by the initial velocity to the sum of hysteretic and elas-
tic strain energies. It should be reminded that while most of the 
previous researches on near-fault ground motions are aimed at 
disclosing the response characteristics of elastic or elastic–plastic 
structures with arbitrary stiffness and strength parameters and 
require tremendous amount of numerical task, the present paper 
focused on the critical response (resonant response) and enabled 
the drastic reduction of computational works.

The double impulse is introduced as a substitute of the repre-
sentative near-fault ground motion and a closed-form solution of 
the elastic–plastic response of a structure on compliant ground 
by the “critical double impulse” is derived based on the solution 
for the corresponding structure with fixed base. As in the case 
of fixed-base model, an energy approach is shown to play an 
important role in the derivation of the closed-form solution of 
a complicated elastic–plastic response on compliant ground. It 
is shown that in the case of a smaller input level, as the ground 
stiffness becomes larger, the maximum plastic deformation also 

becomes larger. On the other hand, in the case of a larger input 
level, as the ground stiffness becomes smaller, the maximum plas-
tic deformation becomes larger. These properties are explained 
by the strain energy stored in the swaying and rocking springs 
representing the ground stiffness. The energy balance law leads to 
a larger plastic deformation in the stiff ground with smaller strain 
energy at a smaller input level. On the other hand, the soft ground 
with larger strain energy just before the second impulse provides 
a larger plastic deformation at a larger input level. The criticality 
and validity of the proposed theory are investigated through the 
comparison with the response analysis to the corresponding 
one-cycle sinusoidal input as a representative of the fling-step 
near-fault ground motion.

The applicability of the proposed method using the double 
impulse to actual recorded pulse-type ground motions is also 
investigated.

DOUBLE IMPULSE INPUT

Double Impulse Input
As explained in the previous papers (Kojima and Takewaki, 
2015a,b; Kojima et al., 2015), the fling-step input (fault-parallel) 
of the near-fault ground motion can be represented by a one-cycle 
sinusoidal wave and the forward-directivity input (fault-normal) 
of the near-fault ground motion can be expressed by a series of 
three sinusoidal wavelets (see Figure 1). The fling step is caused 
by the permanent displacement of the ground induced by the fault 
dislocation and the forward-directivity effect is concerned with the 
relation of the movement of the rupture front with the site. In this 
paper, it is intended to simplify typical near-fault ground motions 
by a double impulse (Kojima and Takewaki, 2015a; Kojima et al., 
2015). This is because the double impulse has a simple charac-
teristic and a straightforward expression of the response can be 
expected even for elastic–plastic responses based on an energy 
approach to free vibrations. Furthermore, the double impulse ena-
bles us to describe directly the critical timing of impulses (resonant 
frequency), which is not easy for the sinusoidal and other inputs 
without a repetitive procedure. It is remarkable to note that, while 
most of the previous methods employ the equivalent linearization 
of the structural model with the input unchanged (see Figure 2A 
including an equivalent linear stiffness), the method proposed 
in the works (Kojima and Takewaki, 2015a,b) and in this paper 
transforms the input into the double impulse with the structural 
model unchanged (see Figure 2B).

Consider a ground acceleration u tg ( )  as double impulse, as 
shown in Figure 1A, expressed by

	
u t V t V t tg ( ) ( ) ( )= − −δ δ 0 	 (1)

where V is the given initial velocity and t0 is the time interval 
between two impulses. The comparison with the corresponding 
one-cycle sinusoidal wave as a representative of the fling-step input 
of the near-fault ground motion (Mavroeidis and Papageorgiou, 
2003; Kalkan and Kunnath, 2006) is plotted in Figure 1A. The 
corresponding velocity and displacement of such double impulse 
and sinusoidal wave are also plotted in Figure 1A. Those for the 
triple impulse are shown in Figure  1B for reference. It can be 
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FIGURE 1 | (A) Fling-step input and double impulse; (B) forward-directivity input and triple impulse (Kojima and Takewaki, 2015a).
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understood that the double impulse is a good approximation of 
the corresponding sinusoidal wave even in the form of velocity 
and displacement. However, the correspondence in the response 
should be discussed carefully. This will be conducted in Section 
“Better Correspondence between Double Impulse and Sinusoidal 
Input.”

The Fourier transform of 
u tg ( )  of the double impulse can be 

derived as

	

U V t V t t e

V e

g
t

t

( ) ( ) ( )ω δ δ ω

ω

= − −{ }
−

−

−∞

∞

−

∫ 0

1 0

i

i

dt

            = ( ))
	 (2)

Previous Work on Closed-Form Critical 
Elastic–Plastic Response of SDOF System 
Subjected to Double Impulse
In the previous work (Kojima and Takewaki, 2015a), a closed-
form expression of the critical elastic–plastic response of an 

SDOF system has been derived for the double impulse. The criti-
cal response plays a key role in the worst-case analysis (Drenick, 
1970; Takewaki, 2002, 2007; Moustafa et al., 2010; Takewaki et al., 
2012). Since this expression is used effectively in this paper, the 
essence will be shown in this section.

Consider an undamped elastic-perfectly plastic SDOF system 
of mass m and stiffness k. The yield deformation and yield force 
are denoted by dy and fy (see Figure 3). Let ω1 = k m/ , u, and f 
denote the undamped natural circular frequency, the displace-
ment of the mass relative to the ground, and the restoring force 
of the model, respectively. The plastic deformation after the first 
impulse is expressed by up1 and that after the second impulse is 
denoted by up2. The time derivative is denoted by an overdot.

The impulse input changes the mass velocity by V instan-
taneously and the elastic–plastic response of the SDOF 
system under the double impulse can be expressed by the 
continuation of free vibrations. Let umax1 and umax2 denote the 
maximum deformation after the first impulse and that after 
the second impulse, respectively, as shown in Figure 3. Those 
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FIGURE 3 | Prediction of maximum elastic–plastic deformation under double impulse based on energy approach: (A) Case 1: elastic response;  
(B) Case 2: plastic response after the second impulse; and (C) Case 3: plastic response after the first impulse (•: first impulse, : second impulse).

A B

FIGURE 2 | Comparison of the proposed method with the previous method: (A) previous method (equivalent linearization of the structural model with 
the input unchanged) and (B) proposed method (transformation of the input into the double impulse with the structural model unchanged).

January 2016  |  Volume 2  |  Article 14

Kojima and Takewaki Elastic–Plastic Structure on Ground

Frontiers in Built Environment  |  www.frontiersin.org

responses can be derived by an energy approach without solv-
ing directly the differential equation (equation of motion). 
The kinetic energy given at the initial stage (the time of 
the first impulse) and at the time of the second impulse is 
transformed into the sum of the hysteretic energy and the 
strain energy corresponding to the yield deformation. It 
should be noted that the critical timing of the second impulse 
corresponds to the state with a zero restoring force and only a 
kinetic energy exists in this state as mechanical energies. By 
using this rule, the maximum deformation can be obtained 
in a simple manner.

The maximum elastic–plastic response of the SDOF system 
under the critical double impulse can be classified into the three 
cases depending on the yielding stage. Let Vy (=ω1dy) denote the 
input level of velocity of the double impulse at which the SDOF 
system just attains the yield deformation after the first impulse. 
This parameter also presents a strength parameter of the SDOF 
system. Case 1 indicates the case of elastic response even after the 
second impulse and Case 2 implies the case of plastic deformation 
only after the second impulse. In addition, Case 3 presents the 
case of plastic deformation after the first impulse. Figure 3 shows 
the schematic diagram for these three cases.
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FIGURE 4 | Maximum normalized elastic–plastic deformation under 
double impulse with respect to input level (Kojima and Takewaki, 
2015a).
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Figure  3A shows the maximum deformation after the first 
impulse and that after the second impulse, respectively, for the 
elastic case (CASE 1) during the whole stage. umax1 and umax2 can 
be obtained as follows from the energy balance.

	 u d V Vy ymax / /1 = 	 (3)

	 u d V Vy ymax / ( / )2 2= 	 (4)

Following the similar energy balance law, umax1 and umax2 for the 
Cases 2 and 3 (Figures 3B,C) can be obtained as follows:

	 u d V Vy ymax / / ( )1 = Case 2 	 (5)

	 u d V Vy ymax / . { ( / ) } ( )2
20 5 1 2= + Case 2 	 (6)

	 u d V Vy ymax / . { ( / ) } ( )1
20 5 1= + Case 3 	 (7)

	 u d V Vy ymax / . ( / ) ( )2 0 5 3 2= + Case 3 	 (8)

Figure  4 shows the maximum normalized elastic–plastic 
deformation under the double impulse with respect to input level.

MAXIMUM ELASTIC–PLASTIC 
DEFORMATION OF SIMPLIFIED 
SWAYING-ROCKING MODEL SUBJECTED 
TO CRITICAL DOUBLE IMPULSE

Simplified Swaying-Rocking Model
In this paper, a closed-form expression (Kojima and Takewaki, 
2015a) of the maximum elastic–plastic response of an SDOF sys-
tem under the critical double impulse is used in order to derive the 
closed-form expression of the maximum elastic–plastic response 
of a simplified swaying-rocking (SR) model, as shown in 
Figure 5A, under the critical double impulse. In the simplified 

SR model, the foundation mass and floor mass moments of 
inertia are neglected in the original SR model.

The superstructure is the same as explained in Section 
“Previous Work on Closed-Form Critical Elastic–Plastic 
Response of SDOF System Subjected to Double Impulse.” Let 
kH and kR denote the swaying spring stiffness and the rocking 
spring stiffness, respectively. The restoring force characteristic is 
shown in Figure 5B. The damping of the superstructure and the 
ground is neglected here for simple explanation of the effect of the 
ground stiffness on the maximum elastic–plastic response of the 
superstructure. Let uS, uH, and θR denote the actual deformation of 
the superstructure, the swaying spring deformation and the angle 
of rotation of the rocking spring. H denotes the equivalent height 
of the superstructure mass.

In this paper, the swaying and rocking spring stiffnesses are 
assumed to be expressed by

	 k GrH = −{ . / ( . )}6 77 1 97 ν 	 (9)

	 k GrR = −{ . / ( . )}2 52 1 00 3ν 	 (10)

where ν, r, G, ρ, and VS denote the Poisson’s ratio of the ground, 
the equivalent radius of the foundation, the shear modulus of 
the ground, the mass density of the ground and the shear wave 
velocity of the ground (Parmelee, 1970).

The equations of motion for the simplified SR model in the 
elastic range can be expressed by

	 m u u H ku muS H R S g( ) 



+ + + = −θ 	 (11a)

	 ku k uS H H− = 0 	 (11b)

	 ku H kS R R− =θ 0 	 (11c)

On the other hand, the equations of motion for the simplified 
SR model in the elastic–plastic range can be described by

	 m u u H f u muS H R S g( ) ( ) 



+ + + = −θ 	 (12a)

	 f u k uS H H( )− = 0 	 (12b)

	 { ( )}f u H kS R R− =θ 0 	 (12c)

where f(uS) is the restoring force in the superstructure.

Equivalent SDOF Model of Simplified 
Swaying-Rocking Model
In order to use the expression in Section “Previous Work on 
Closed-Form Critical Elastic–Plastic Response of SDOF System 
Subjected to Double Impulse,” consider an equivalent SDOF 
model of the simplified SR model as shown in Figure 6A. The 
equation of motion of the equivalent SDOF model in the elastic 
range can be expressed by

	 mu k u mue e e
g + = − 	 (13)

where ue and ke are the displacement of the mass of the equivalent 
SDOF model and the elastic stiffness of the equivalent SDOF 
model. Since the three springs are connected in series, ke can 
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be expressed as follows in terms of the stiffnesses of the three 
springs (Veletsos and Meek, 1974; Veletsos, 1977; Jarernprasert 
et al., 2013).

	 k k k k k k He
H R= + +/ { ( / ) ( / ) }1 2 	 (14)

Because the yield force in the equivalent SDOF model is equal 
to the yield force of the superstructure, the yield displacement of 
the equivalent SDOF model can be described as

	 d f k k k k k H dy
e

y
e

H R y= = + +/ { ( / ) ( / ) }1 2 	 (15)

In addition, the natural frequency of the equivalent SDOF 
model is computed as

	 ω ω1
2

11 1e e
H Rk m k k k k H= = + +/ / { ( / ) ( / ) } 	 (16)

Using Eqs 15 and 16, the reference input level corresponding 
to Vy (=ω1dy) for the superstructure can be defined as

	

V d k k k k H d

k k k k H V
y

e e
y

e
H R y

H R y

= = + +

= + +

ω ω1
2

1

2

1

1

{ ( / ) ( / ) }

{ ( / ) ( / ) }
	 (17)

After the simplified SR model is transformed into the 
equivalent SDOF model that is defined in Figure 6, the maximum 

elastic–plastic response of the equivalent SDOF model under the 
critical double impulse can be obtained as shown in Figure 7 by 
replacing the parameters with the equivalent parameters.

Critical Elastic–Plastic Response of 
Simplified Swaying-Rocking Model 
Subjected to Double Impulse
In this section, the maximum elastic–plastic response of the 
superstructure in the simplified SR model under the critical dou-
ble impulse is derived. The ductility factor of the superstructure 
can be expressed by (dy + up)/dy. Although the ductility factor of 
the superstructure can be obtained from the ductility factor of the 
equivalent SDOF model introduced in Section “Equivalent SDOF 
Model of Simplified Swaying-Rocking Model” by modifying the 
coefficient, the direct expression of the ductility factor of the 
superstructure is derived here.

As in Section “Previous Work on Closed-Form Critical 
Elastic–Plastic Response of SDOF System Subjected to Double 
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FIGURE 8 | Prediction of maximum elastic–plastic deformation of superstructure on compliant ground under double impulse based on energy 
approach: (A) Case 1: elastic response; (B) Case 2: plastic response after the second impulse; and (C) Case 3: plastic response after the first impulse 
(•: first impulse, : second impulse).

January 2016  |  Volume 2  |  Article 17

Kojima and Takewaki Elastic–Plastic Structure on Ground

Frontiers in Built Environment  |  www.frontiersin.org

Impulse,” the three cases are treated depending on the input level 
of the double impulse, i.e., Case 1, Case 2, and Case 3.

First of all, consider Case 1 (see Figure 8A). The energy bal-
ances after the first impulse and the second impulse are expressed 
as follows:

	 mV ku k u kS H H R R
2

1
2

1
2

1
22 2 2 2/ / / /max= + + θ 	 (18)

	 m V ku k u kS H H R R( ) / / / /max2 2 2 2 22
2

2
2

2
2

2= + + θ 	 (19)

where uSmax1, uH1, and θR1 denote the maximum deformations of 
the superstructure, the swaying spring, and the rocking spring, 
respectively, after the first impulse, and uSmax2, uH2, and θR2 denote 
those after the second impulse. uH1, θR1, uH2, and θR2 in the elastic 
range can be expressed as follows in terms of uSmax1 and uSmax2.

	 u k k u kH k uH H S R R S1 1 1 1= =( / ) , ( / )max max θ 	 (20a,b)

	 u k k u kH k uH H S R R S2 2 2 2= =( / ) , ( / )max maxθ 	 (21a,b)

Substitution of Eqs 20a,b and 21a,b into Eqs 18 and 19 and 
rearrangement of the resulting equations provide

	 u k k kH k VS H Rmax / { ( / ) ( / )}( / )1
2

11 1= + + ω 	 (22)

	 u k k kH k VS H Rmax / { ( / ) ( / )}( / )2
2

11 1 2= + + ω 	 (23)

Dividing both sides of Eqs  22 and 23 by dy and taking into 
account the relation Vy  =  ω1dy, the following expressions are 
derived.

	 u d k k kH k V VS y H R ymax / / { ( / ) ( / )}( / )1
21 1= + + 	 (24)

	 u d k k kH k V VS y H R ymax / / { ( / ) ( / )}( / )2
21 1 2= + + 	 (25)

where Vy is the reference input level for the fixed-base super-
structure introduced in Section “Previous Work on Closed-Form 

Critical Elastic–Plastic Response of SDOF System Subjected to 
Double Impulse” and indicates the strength of the superstructure.

Figure 8B shows the elastic–plastic deformation of the super-
structure after the second impulse in Case 2 (the superstructure 
goes into the plastic range after the second impulse). From Eq. 25, 
the condition that the superstructure goes into the plastic range 
after the second impulse can be expressed as

	 V V k k kH ky H R/ . ( / ) ( / )> + +0 5 1 2 	 (26)

In Case 2, the superstructure is in the elastic range between the 
first impulse and the second impulse. The energy balance after the 
second impulse can be expressed as follows by using the energy 
balance law and Figure 8B.

	 m V f d f u k u ky y y p H H R R( ) / / / /2 2 2 2 22
2 2

2
2

2= + + + θ 	 (27)

where up2, uH2, and θR2 are the maximum plastic deformation of 
the superstructure and the maximum deformations of the sway-
ing and rocking springs. The restoring force of the superstructure 
in the plastic range after the second impulse is expressed by

	 f u fS y( ) = 	 (28)

uH2 and θR2 can be derived from Eqs 12b,c and 28.

	 u f k k k d f H k kH k dH y H H y R y R R y2 2= = = =/ ( / ) , ( ) / ( / )θ 	
(29a,b)

Then, up2 can be obtained by substituting Eqs 29a,b into Eq. 27 
and rearranging the resulting equation.

	 u V d k k kH k dp y H R y2 1
2 20 5 2 1= − + +. [{( ) / ( )} { ( / ) ( / )}]ω 	(30)

Dividing both sides of Eq. 30 by dy and recalling ω1dy = Vy, the 
following relation is derived.

	 u d V V k k kH kp y y H R2
2 20 5 2 1/ . [{( ) / } { ( / ) ( / )}]= − + + 	 (31)
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Figure 8C shows the plastic deformations after the first and 
second impulses in Case 3 (the superstructure goes into the 
plastic range after the first impulse). The condition that the 
superstructure goes into the plastic range after the first impulse 
can be derived from Eq. 24.

	 V V k k kH ky H R/ ( / ) ( / )> + +1 2 	 (32)

Using the energy balance law and Figure 8C, the energy bal-
ances after the first and second impulses can be expressed as

	 mV f d f u k u ky y y p H H R R
2

1 1
2

1
22 2 2 2/ / / /= + + + θ 	 (33)

	 m v V f d f u k u kc y y y p H H R R( ) / / / /+ = + + +2
2 2

2
2

22 2 2 2θ 	(34)

where up1, uH1, and θR1 denote the maximum plastic deformation 
of the superstructure and the maximum deformations of the 
swaying and rocking springs after the first impulse and up2, uH2, 
and θR2 are those after the second impulse. The restoring force in 
the superstructure can be expressed as

	 f u fS y( ) = − 	 (35)

uH1 and θR1 can be obtained from Eqs 12b,c and 35.

	 u f k k k d f H k kH k dH y H H y R y R R y1 1= − = − = − = −/ ( / ) , ( ) / ( / )θ 	
(36a,b)

uH2 and θR2 in Case 3 are the same as in Eq. 29. vc in Eq. 34 is 
the superstructure mass velocity when the restoring force of the 
superstructure becomes 0 after the first impulse. The energy bal-
ance after the initiation of unloading before the second impulse 
provides

	 f d k u k mvy y H H R R c/ / / /2 2 2 21
2

1
2 2+ + =θ 	 (37)

Substitution of Eq. 36 into Eq. 37 and rearrangement of the 
resulting equation lead to the following expression of vc.

	

v k k kH k d

k k kH k V
c H R y

H R y

= + +

= + +

1

1

2
1

2

( / ) ( / )( )

( / ) ( / )

ω
	 (38)

Substituting Eqs 29 and 36 into Eqs 33 and 34 and rearranging 
the resulting equations, the following expressions can be drawn.

	 u V d kH k k k dp y R H y1 1
2 20 5 1= − + +. [{ / ( )} { ( / ) ( / )}]ω 	 (39)

	 u v V d kH k k k dp c y R H y2 1
2 20 5 1= + − + +. [{( ) / ( )} { ( / ) ( / )}]ω 	

(40)

Dividing both sides of Eqs 39 and 40 and using Eq. 38 and the 
relation ω1dy = Vy, the following relations can be obtained.

	 u d V V kH k k kp y y R H1
2 20 5 1/ . [( / ) { ( / ) ( / )}]= − + + 	 (41)

	 u d V V kH k k k V Vp y y R H y2
2 20 5 1/ . ( / ) ( / ) ( / )( / )= + + + 	 (42)

After the comparison of Eqs 41 and 42, up2/dy > up1/dy can be 
confirmed. Therefore, we use up/dy = up2/dy. Finally, up/dy can be 
derived as follows:
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(43)

Numerical Example
In this section, the effect of soil types on the response of super-
structures is investigated using the closed-form expressions in the 
previous section.

Consider three soil conditions, soil type 1, 2, and 3. The 
shear wave velocities of soil type 1, 2, and 3 are VS = 200 m/s for 
soil type 1, VS = 133 m/s for soil type 2, and VS = 100 m/s for 
soil type 3. The mass of the superstructure is m = 800 × 103 kg 
and the natural period of the superstructure with fixed base is 
1.0  s. The superstructure is modeled from a 10-story building. 
The yield deformation is dy  =  0.16  m, the equivalent height is 
H = 40 × 0.7 = 28 m, and the equivalent radius of the foundation 
is r = 8 m. The mass density of ground is ρ = 1.8 × 103 kg/m3 and 
the Poisson’s ratio is ν = 0.35.

Figure 9 shows the relation of (dy + up)/dy with V/Vy for three 
soil conditions and fixed-base case. V is the initial velocity. In 
the present numerical example, (dy + up)/dy derived from Eq. 43 
is treated and the input level is normalized for Vy = ω1dy of the 
superstructure with fixed base.

The following observations can be drawn. In Case 2 (low 
input level), as the ground becomes stiffer, the plastic deforma-
tion of the superstructure becomes larger. On the other hand, 
in Case 3 (large input level), as the ground becomes softer, the 
plastic deformation of the superstructure becomes larger. These 
properties result from the fact that, as the ground becomes softer, 
the strain energy stored in the ground becomes larger in the case 
where the superstructure is in the plastic range.

In more detail, in Case 2, the input energy (the left-hand side of 
Eq. 27) at the second impulse is constant. As the ground becomes 
stiffer, the strain energy (the third and fourth terms of the right-
hand side of Eq. 27) stored in the ground becomes smaller and 
the plastic deformation (the second term of the right-hand side 
of Eq. 27) becomes larger (see Figure 10A).

On the other hand, in Case 3, the mass velocity (the right-hand 
side of Eqs 37 and 38) just before the second impulse becomes 
larger from Eq. 37 as the ground becomes softer (as the strain 
energy (the second and third terms of the left-hand side of Eq. 37) 
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FIGURE 9 | Relation of the maximum plastic deformation (dy + up)/dy with V/Vy for three soil conditions and fixed-base case.
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stored in the ground becomes larger). Then, the input energy (the 
left-hand side of Eq. 34) at the second impulse becomes larger and 
the plastic deformation after the second impulse becomes larger 
(see Figure 10B). This phenomenon results from the fact that the 
velocity is included in the form of second order in Eq. 34. This 
result can also be understood from the difference of the second 
terms in Eq. 43. It can be said that the closed-form expression in 
Eq. 43 is very useful in the clarification of the effect of soil types 
on the superstructure response. It should be remarked that the 
present formulation disregarded the damping of ground. Since 
the damping is larger in the soft ground, the values in Figure 9 
become smaller for softer ground in general. However, it is also 
true that the ground damping is less effective under impulsive 
inputs. These influences will be studied in the future.

APPLICABILITY OF CRITICAL DOUBLE 
IMPULSE TIMING TO CORRESPONDING 
SINUSOIDAL WAVE

In the previous paper (Kojima and Takewaki, 2015a), it has been 
demonstrated that if the maximum value of the Fourier ampli-
tude is selected as the key parameter, the responses to the double 
impulse and the corresponding sinusoidal input exhibit a fairly 
good correspondence. In this section, it is investigated whether 
the critical timing derived from the double impulse is also an 
approximate critical timing of the sinusoidal input. Although 
the SDOF model with fixed base is treated here, it is applicable 
to the equivalent SDOF model by introducing the equivalent 
parameters, V dy

e
y

e e, ,ω1 , etc.
Let t c

0 denote the critical timing of the double impulse and t0 
denote the general timing. In the previous paper (Kojima and 
Takewaki, 2015a), t c

0 has been derived as follows:

	
t T V V V Vc

y y0 1
22 1 2 1 4/ {arcsin( / )} / ( ) ( / ) / ( ) /= + −{ }+π π

	
(44)

This relation is plotted in Figure 11. It can be observed that the 
critical timing is delayed due to plastic deformation as the input 
level increases.

Figure 12A shows the maximum deformation with respect to 
t t c

0 0/ . It can be observed that t c
0 derived from the double impulse 

is a good approximate of the critical timing for the sinusoidal 
input. Figure  12B is the corresponding plot for the double 
impulse (Kojima and Takewaki, 2015a).

BETTER CORRESPONDENCE BETWEEN 
DOUBLE IMPULSE AND SINUSOIDAL 
INPUT

In the previous work (Kojima and Takewaki, 2015a), it has been 
made clear that if the magnitude of the double impulse is adjusted 
so that the maximum values of the Fourier amplitudes of the 
double impulse and the corresponding sinusoidal input are the 
same, the maximum elastic–plastic responses correspond well 
in the range of input level V/Vy <  3. However, in the range of 
V/Vy > 3, the maximum response of the double impulse becomes 
larger than that of the sinusoidal input. In order to investigate 
the better correspondence over a wider range, the amplitude of 
the sinusoidal input is amplified. As in Section “Applicability of 
Critical Double Impulse Timing to Corresponding Sinusoidal 
Wave,” although the SDOF model with fixed base is treated here, 
it is applicable to the equivalent SDOF model by introducing the 
equivalent parameters, V dy

e
y

e e, ,ω1
, etc.

Figure  13A shows the plot of the coefficient a with respect 
to the timing of the double impulse for adjusting the maximum 
Fourier amplitudes of the double impulse and the sinusoidal 
input where the sinusoidal acceleration input is expressed as 
u t A t tg ( ) sin( / )= π 0  and the coefficient a is defined by a = A/V. 
Figures 13B–E present the maximum normalized elastic–plastic 
deformations to the double impulse and the corresponding 
sinusoidal inputs amplified by 1.0, 1.1, 1.15, and 1.2 from the 
original input with the same maximum Fourier amplitude as the 
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FIGURE 10 | Schematic diagram for better understanding of effect of soil type on superstructure plastic deformation: (A) small input level (Case 2) 
and (B) large input level (Case 3).
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double impulse. It can be observed that the amplification 1.15 or 
1.2 provide the best fitting.

APPLICABILITY TO RECORDED GROUND 
MOTIONS

It seems important to investigate the applicability of the pre-
sent theory to actual recorded pulse-type ground motions. As 

explained in the previous sections, the maximum deformation 
of the simplified SR model can be obtained from the equivalent 
SDOF model. Figure 7 can be used for estimating the maximum 
deformation of the equivalent SDOF model. Therefore, it is suf-
ficient to investigate the response of the SDOF model. Moreover, 
since the consideration of ground conditions in actual recorded 
ground motions is complicated, an SDOF model with fixed base 
is considered in this section.
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FIGURE 11 | Interval time between the first and second impulses with 
respect to input level.

A B

FIGURE 12 | Maximum deformation with respect to t t0 0
c/ : (A) sinusoidal input and (B) double impulse.
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Consider two representative pulse-type ground motions, the 
Rinaldi station fault-normal component during the Northridge 
earthquake in 1994 and the Kobe University NS component 
(almost fault-normal) during the Hyogoken-Nanbu (Kobe) 
earthquake in 1995. Since the ground motions are fixed, the 
structural models are varied, i.e., ω1 or dy in Vy = ω1dy is varied. 
Figure  14 illustrates the modeling of the part of the recorded 
ground motion acceleration into a one-cycle sinusoidal input. 
Figure  15 shows the maximum amplitude of deformation for 
the recorded ground motions and the corresponding proposed 
one. As stated before, since the initial velocity V is determined 
in Figure 14, Vy is changed here. Because ω1 is closely related to 
the resonance condition, dy is changed principally. This procedure 
is similar to the well-known elastic–plastic response spectrum 
developed in 1960–1970. The solid line is obtained by changing Vy 
for the specified V using the method for the double impulse and 
the dotted line is drawn by conducting the elastic–plastic time-
history response analysis on each model with varied Vy under the 
recorded ground motion. It can be observed that the result by the 

proposed method is a fairly good approximate of the recorded 
pulse-type ground motions.

CONCLUSION

The double impulse has been introduced as a substitute of the 
fling-step near-fault ground motion. A closed-form solution of 
the elastic–plastic response of a structure on compliant (flex-
ible) ground by the “critical double impulse” is derived for the 
first time based on the solution for the corresponding structure 
with fixed base. The detailed conclusions may be summarized 
as follows:

	(1)	 The expression for a closed-form solution of the elastic–
plastic response of an SDOF model by the critical double 
impulse has been extended to a simplified SR model. The 
simplified SR model can be derived by neglecting the 
foundation mass and floor mass moments of inertia in the 
original SR model.

	(2)	 The simplified SR model has been transformed into an 
equivalent SDOF model with only one equivalent spring, 
which was modeled from three springs (superstructure, 
swaying, and rocking) via static condensation. By applying 
the previous work for an SDOF model to the equivalent 
SDOF model, the maximum elastic–plastic response of the 
equivalent SDOF model under the critical double impulse 
has been derived for the first time in closed form, and the 
corresponding elastic–plastic deformation of the super-
structure has been evaluated. It is remarkable that no itera-
tion is needed in the derivation of the critical elastic–plastic 
response.

	(3)	 By taking full advantage of the closed-form expression of 
the critical elastic–plastic response of the superstructure, 
the relation of the critical elastic–plastic response of the 
superstructure with the ground stiffness has been clarified. 
It has been shown that in the case of a smaller input level 
of double impulse to the structural strength, as the ground 
stiffness becomes larger, the maximum plastic deformation 
also becomes larger. On the other hand, in the case of a larger 
input level of double impulse to the structural strength, 
as the ground stiffness becomes smaller, the maximum 
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FIGURE 13 | Better correspondence of maximum responses to double impulse and amplified sinusoidal inputs: (A) plot of the coefficient a with 
respect to the timing of the double impulse for adjusting the maximum Fourier amplitudes of the double impulse and the sinusoidal input, 
(B) amplification factor = 1.0, (C) amplification factor = 1.1, (D) amplification factor = 1.15, and (E) amplification factor = 1.2.
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plastic deformation becomes larger. This property can be 
explained by taking into account the elastic strain energy 
stored in the swaying and rocking springs. In the smaller 
input level (Case 2), as the ground stiffness becomes larger, 
the ground deformation after the second impulse becomes 
smaller and the elastic strain energy stored in the sway-
ing and rocking springs becomes smaller. Then the plastic 
deformation of the superstructure becomes larger. On the 
other hand, in the larger input level (Case 3), as the ground 
stiffness becomes smaller, the elastic strain energy stored in 

the swaying and rocking springs during the plastic defor-
mation in the superstructure after the first impulse becomes 
larger. This elastic strain energy stored in the swaying and 
rocking springs during the plastic deformation in the 
superstructure plays an important role in the magnitude of 
plastic deformation of the superstructure after the second 
impulse.

	(4)	 It has been demonstrated that the critical timing derived 
from the double impulse is also an approximate critical tim-
ing of the sinusoidal input.
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FIGURE 15 | Maximum amplitude of deformation for the recorded ground motions and the proposed one: (A) Rinaldi station fault-normal component 
and (B) Kobe University NS component.

A B

FIGURE 14 | Modeling of part of pulse-type recorded ground motion into the corresponding one-cycle sinusoidal input: (A) Rinaldi station fault-
normal component during the Northridge earthquake in 1994 and (B) Kobe University NS component (almost fault-normal) during the Hyogoken-
Nanbu (Kobe) earthquake in 1995.
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	(5)	 In the input range of V/Vy > 3, the maximum response of the 
double impulse becomes larger than that of the sinusoidal 
input. The better correspondence over a wider input range 
can be achieved by amplifying the amplitude of the sinusoi-
dal input. The amplification factor 1.15 or 1.2 provides the 
best fitting.

	(6)	 It has been demonstrated that the proposed method using 
the double impulse is applicable to actual recorded pulse-
type ground motions within a reasonable accuracy.

The property in Conclusion (3) indicates that when we design 
a building on a soft ground, we have to design stronger members 
in such a building. On the contrary, it is generally believed that 
the soil–structure interaction can reduce the building response 
under earthquake ground motion. The period of pulse-like 
waves is in the range of 0.5–3 s. Since the critical input means 

the resonant case, the present theory dealing with the resonant 
response should be applied to buildings except very flexible ones 
of which the fundamental natural period is longer than 3 s.
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